12 research outputs found

    Automatic Configuration of Benchmark Sets for Classical Planning

    Get PDF
    The benchmarks from previous International Planning Competitions are commonly used to evaluate new planning algorithms. Since this set has grown organically over the years, it has several flaws: it contains duplicate tasks, unsolvable tasks, trivially solvable domains, and domains with modelling errors. Also, diverse domain sizes complicate aggregating results. Most importantly, however, the range of task difficulty is very small in many domains. We propose an automated method for creating benchmarks that solves these issues. To find a good scaling in difficulty, we automatically configure the parameters of benchmark domains. We show that the resulting benchmark set improves empirical comparisons by allowing to differentiate between planners more easily

    Multi-Agent Pathfinding in Mixed Discrete-Continuous Time and Space

    Get PDF
    In the multi-agent pathfinding (MAPF) problem, agents must move from their current locations to their individual destinations while avoiding collisions. Ideally, agents move to their destinations as quickly and efficiently as possible. MAPF has many real-world applications such as navigation, warehouse automation, package delivery and games. Coordination of agents is necessary in order to avoid conflicts, however, it can be very computationally expensive to find mutually conflict-free paths for multiple agents – especially as the number of agents is increased. Existing state-ofthe- art algorithms have been focused on simplified problems on grids where agents have no shape or volume, and each action executed by the agents have the same duration, resulting in simplified collision detection and synchronous, timed execution. In the real world agents have a shape, and usually execute actions with variable duration. This thesis re-formulates the MAPF problem definition for continuous actions, designates specific techniques for continuous-time collision detection, re-formulates two popular algorithms for continuous actions and formulates a new algorithm called Conflict-Based Increasing Cost Search (CBICS) for continuous actions

    Symbolic search and abstraction heuristics for cost-optimal planning in automated planning

    Get PDF
    Mención Internacional en el título de doctorLa Planificación Automática puede ser definida como el problema de encontrar una secuencia de acciones (un plan) para conseguir una meta, desde un punto inicial, asumiendo que las acciones tienen efectos deterministas. La Planificación Automática es independiente de dominio porque los planificadores toman como información inicial una descripción del problema y deben resolverlo sin ninguna información adicional. Esta tesis trata en particular de planificación automática ´optima, en la cual las acciones tienen un coste asociado. Los planificadores óptimos deben encontrar un plan y probar que no existe ningún otro plan de menor coste. La mayoría de los planificadores óptimos están basados en la búsqueda de estados explícita. Sin lugar a dudas, esta aproximación ha sido la dominante en planificación automática óptima durante los últimos años. No obstante, la búsqueda simbólica se presenta como una alternativa interesante. En esta tesis, proponemos dos mejoras ortogonales para la planificación basada en búsqueda simbólica. En primer lugar, estudiamos diferentes métodos para mejorar la computación de la “imagen”, operación que calcula el conjunto de estados sucesores a partir de un conjunto de estados. Posteriormente, analizamos cómo explotar las invariantes de estado para mejorar el rendimiento de la búsqueda simbólica. Estas propuestas suponen una mejora significativa en el desempeño de los algoritmos simbólicos en la mayoría de los dominios analizados. Hemos analizado dos tipos de heurísticas de abstracción con el objetivo de extrapolar las mejoras que se han realizado en la búsqueda explícita durante los últimos años a la búsqueda simbólica. Las heurísticas analizadas son: las bases de datos de patrones (pattern databases, PDBs) y una generalización de estas, mergeand-shrink (M&S). Mientras que las PDBs se han utilizado con anterioridad en búsqueda simbólica, hemos estudiado el uso de M&S, que es más general. En esta tesis se muestra que determinados tipos de heurísticas de M&S (aquellas que son generadas mediante una estrategia de “merge” lineal) pueden ser representadas como BDDs, con un coste computacional polinomial en el tamaño de la abstracción y la descripción del problema; y por lo tanto, pueden ser utilizadas de forma eficiente en la búsqueda simbólica. También proponemos una nueva heurística”symbolic perimeter merge-andshrink” (SPM&S) que combina la fuerza de la búsqueda hacia atrás simbólica con la flexibilidad de M&S. Los resultados experimentales muestran que SPM&S es capaz de superar, no solo las dos técnicas que combina, sino también otras heurísticas del estado del arte. Finalmente, hemos integrado las abstracciones simbólicas de perímetro, SPM&S, en la búsqueda simbólica bidireccional. En resumen, esta tesis estudia diferentes propuestas para planificación óptima basada en Búsqueda simbólica. Hemos implementado diferentes planificadores simbólicos basados en la Búsqueda bidireccional y las abstracciones de perímetro. Los resultados experimentales muestran cómo los planificadores presentados como resultado de este trabajo son altamente competitivos y frecuentemente superan al resto de planificadores del estado del arte.Domain-independent planning is the problem of finding a sequence of actions for achieving a goal from an initial state assuming that actions have deterministic effects. It is domain-independent because planners take as input the description of a problem and must solve it without any additional information. In this thesis, we deal with cost-optimal planning problems, in which actions have an associated cost and the planner must find a plan and prove that no other plan of lower cost exists. Most cost-optimal planners are based on explicit-state search. While this has undoubtedly been the dominant approach to cost-optimal planning in the last years, symbolic search is an interesting alternative. In symbolic search, sets of states are succinctly represented as binary decision diagrams, BDDs. The BDD representation does not only reduce the memory needed to store sets of states, but also allows the planner to efficiently manipulate sets of states reducing the search time. We propose two orthogonal enhancements for symbolic search planning. On the one hand, we study different methods for image computation, which usually is the bottleneck of symbolic search planners. On the other hand, we analyze how to exploit state invariants to prune symbolic search. Our techniques significantly improve the performance of symbolic search algorithms in most benchmark domains. Moreover, the enhanced version of symbolic bidirectional search is one of the strongest approaches to domain-independent planning even though it does not use any heuristic. Explicit-state search planners are commonly guided with admissible heuristics, which optimistically estimate the cost from any state to the goal. Heuristics are automatically derived from the problem description and can be classified into different families according to their underlying ideas. In order to bring the improvements on heuristics that have been made in explicit-state search to symbolic search, we analyze two types of abstraction heuristics: pattern databases (PDBs) and a generalization of them, merge-and-shrink (M&S). While PDBs had already been used in symbolic search, we analyze the use of the more general M&S heuristics. We show that certain types of M&S heuristics (those generated with a linear merging strategy) can be represented as BDDs with at most a polynomial overhead and, thus, efficiently used in symbolic search. We also propose a new heuristic, symbolic perimeter merge-and-shrink (SPM&S) that combines the strength of symbolic regression search with the flexibility of M&S heuristics. Our experiments show that SPM&S is able to beat, not only the two techniques it combines, but also other state-of-the-art heuristics. Finally, we integrate our symbolic perimeter abstraction heuristics in symbolic bidirectional search. The heuristic used by the bidirectional search is computed by means of another symbolic bidirectional search in an abstract state space. We show how, even though the combination of symbolic bidirectional search and abstraction heuristics has an overall performance similar to the simpler symbolic bidirectional blind search, it can sometimes solve more problems in particular domains. In summary, this thesis studies different enhancements on symbolic search. We implement different symbolic search planners based on bidirectional search and perimeter abstraction heuristics. Experimental results show that the resulting planners are highly competitive and often outperform other state-of-the-art planners.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: José Manuel Molina López..- Vocal: Malte Helmert .- Secretario: Andrés Jonsso

    Machine Learning for Classical Planning: Neural Network Heuristics, Online Portfolios, and State Space Topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best-first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work

    Machine learning for classical planning : neural network heuristics, online portfolios, and state space topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best- first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work.Viele Alltagsprobleme können mit Hilfe der Zustandsraumsuche gelöst werden. Heuristische Suche, insbesondere die gierige Bestensuche, ist einer der erfolgreichsten Algorithmen für die Zustandsraumsuche. Wir verbessern den aktuellen Stand der Wissenschaft bezüglich heuristischer Suche auf drei Arten. Eine der wichtigsten Komponenten der heuristischen Suche ist die Heuristik. Mit einer guten Heuristik findet die Suche schnell eine Lösung. Eine gute Heuristik für ein Problem zu modellieren ist mühsam. In Teil I präsentieren wir Methoden, um automatisiert gute Heuristiken für ein Problem zu lernen. Hierfür generieren wird die Trainingsdaten mittels Zufallsbewegungen ausgehend von (Teil-) Zuständen des Problems. Wir zeigen, dass die Heuristiken, die wir für einen einzigen Zustandsraum trainieren, oft besser sind als Heuristiken, die für eine Problemklasse trainiert wurden. Weiterhin zeigen wir, dass die Qualität aller trainierten Heuristiken je nach Problemklasse stark variiert, keine Heuristik eine andere dominiert, und es nicht vorher erkennbar ist, ob eine trainierte Heuristik gut funktioniert. Wir stellen fest, dass in fast allen getesteten Problemklassen die modellbasierte Suchalgorithmen den trainierten Heuristiken überlegen sind. Lediglich in der Storage Problemklasse sind unsere Heuristiken überlegen. Oft ist es unklar, welche Heuristik oder Suchalgorithmus man für ein Problem nutzen sollte. Daher trainieren wir online Portfolios, die für ein gegebenes Problem den besten Algorithmus vorherzusagen. Die Eingabe für das online Portfolio sind bisher immer von Menschen ausgewählte Eigenschaften des Problems. In Teil II präsentieren wir neue online Portfolios, die das gesamte Problem als Eingabe bekommen. Darüber hinaus können unsere online Portfolios ihre Entscheidung einmal korrigieren. Beide Änderungen verbessern die Qualität von online Portfolios erheblich. Weiterhin zeigen wir, dass wir auch gute online Portfolios mit erklärbaren Techniken des maschinellen Lernens trainieren können. Selbst wenn wir den besten Algorithmus für ein Problem auswählen, kann es sein, dass das Problem zu schwierig ist, um in akzeptabler Zeit gelöst zu werden. In Teil III zeigen wir, wie wir von dem Verhalten einer gierigen Bestensuche auf einfachen Problemen ihr Verhalten auf schwierigeren Problemen der gleichen Problemklasse vorhersagen können. Dieses Wissen nutzen wir, um die Suche zu verbessern. Zuerst zeigen wir, wie man Fortschrittszustände erkennt. Immer wenn gierige Bestensuche einen Fortschrittszustand expandiert, wissen wir, dass es nie wieder einen Zustand mit gleichem oder höheren heuristischen Wert expandieren wird.Wir präsentieren zwei Methoden, die diesesWissen verwenden. Aufbauend auf dieser Arbeit lernen wir von einem Problem, wie man jegliches Problem der gleichen Problemklasse in eine Reihe von einfacheren Suchen aufteilen kann

    Engineering Benchmarks for Planning: the Domains Used in the Deterministic Part of IPC-4

    Full text link
    In a field of research about general reasoning mechanisms, it is essential to have appropriate benchmarks. Ideally, the benchmarks should reflect possible applications of the developed technology. In AI Planning, researchers more and more tend to draw their testing examples from the benchmark collections used in the International Planning Competition (IPC). In the organization of (the deterministic part of) the fourth IPC, IPC-4, the authors therefore invested significant effort to create a useful set of benchmarks. They come from five different (potential) real-world applications of planning: airport ground traffic control, oil derivative transportation in pipeline networks, model-checking safety properties, power supply restoration, and UMTS call setup. Adapting and preparing such an application for use as a benchmark in the IPC involves, at the time, inevitable (often drastic) simplifications, as well as careful choice between, and engineering of, domain encodings. For the first time in the IPC, we used compilations to formulate complex domain features in simple languages such as STRIPS, rather than just dropping the more interesting problem constraints in the simpler language subsets. The article explains and discusses the five application domains and their adaptation to form the PDDL test suites used in IPC-4. We summarize known theoretical results on structural properties of the domains, regarding their computational complexity and provable properties of their topology under the h+ function (an idealized version of the relaxed plan heuristic). We present new (empirical) results illuminating properties such as the quality of the most wide-spread heuristic functions (planning graph, serial planning graph, and relaxed plan), the growth of propositional representations over instance size, and the number of actions available to achieve each fact; we discuss these data in conjunction with the best results achieved by the different kinds of planners participating in IPC-4

    Declarative symbolic pure-logic model checking

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 173-181).Model checking, a technique for findings errors in systems, involves building a formal model that describes possible system behaviors and correctness conditions, and using a tool to search for model behaviors violating correctness properties. Existing model checkers are well-suited for analyzing control-intensive algorithms (e.g. network protocols with simple node state). Many important analyses, however, fall outside the capabilities of existing model checkers. Examples include checking algorithms with complex state, distributed algorithms over all network topologies, and highly declarative models. This thesis addresses the problem of building an efficient model checker that overcomes these limitations. The work builds on Alloy, a relational modeling language. Previous work has defined the language and shown that it can be analyzed by translation to SAT. The primary contributions of this thesis include: a modeling paradigm for describing complex structures in Alloy; significant improvements in scalability of the analyzer; and improvements in usability of the analyzer via addition of a debugger for over constraints. Together, these changes make model-checking practical for important new classes of analyses. While the work was done in the context of Alloy, some techniques generalize to other verification tools.by Ilya A. Shlyakhter.S.M

    Operator Mutexes and Symmetries for Simplifying Planning Tasks

    No full text
    Simplifying classical planning tasks by removing operators while preserving at least one optimal solution can significantly enhance the performance of planners. In this paper, we introduce the notion of operator mutex, which is a set of operators that cannot all be part of the same (strongly) optimal plan. We propose four different methods for inference of operator mutexes and experimentally verify that they can be found in a sizable number of planning tasks. We show how operator mutexes can be used in combination with structural symmetries to safely remove operators from the planning task

    Operator Mutexes and Symmetries for Simplifying Planning Tasks

    No full text

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore