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Abstract

In the multi-agent pathfinding (MAPF) problem, agents must move from their

current locations to their individual destinations while avoiding collisions. Ideally,

agents move to their destinations as quickly and efficiently as possible. MAPF has

many real-world applications such as navigation, warehouse automation, package de-

livery and games. Coordination of agents is necessary in order to avoid conflicts, how-

ever, it can be very computationally expensive to find mutually conflict-free paths for

multiple agents – especially as the number of agents is increased. Existing state-of-

the-art algorithms have been focused on simplified problems on grids where agents

have no shape or volume, and each action executed by the agents have the same dura-

tion, resulting in simplified collision detection and synchronous, timed execution. In

the real world agents have a shape, and usually execute actions with variable dura-

tion. This thesis re-formulates the MAPF problem definition for continuous actions,

designates specific techniques for continuous-time collision detection, re-formulates

two popular algorithms for continuous actions and formulates a new algorithm called

Conflict-Based Increasing Cost Search (CBICS) for continuous actions.
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1. Introduction

In the multi-agent pathfinding (MAPF) problem, agents must move from their

current locations to their individual destinations while avoiding collisions. Ideally,

agents move to their destinations as quickly and efficiently as possible. MAPF has

many real-world applications [122] such as navigation [176], warehouse automation [210,

120, 75, 109], package delivery [32], airport surface operations [187, 166, 124, 129, 204,

128], games [164, 23], firefighting [152], surveying [95], security patrolling [30, 105],

search and rescue [157], intersection management [43] and farming [14]. Coordination

of agents is necessary in order to avoid conflicts, however, finding optimized, mutually

conflict-free paths for multiple agents is computationally difficult. The difficulty of the

problem increases exponentially as the number of agents is increased [217].

Most state-of-the-art algorithms [52, 85] are tailored for a simplified model of

the MAPF problem where agents move on regularly-spaced grids, have no shape or

volume, and each action has the same duration. This results in simplified collision

detection and synchronous, timed execution [97, 173]. However, in the real world,

agents have a shape, and may execute actions with variable duration [78].

1.1. Motivation

The primary motivation for studying MAPF in continuous-time settings is to

allow the practitioner to apply MAPF algorithms to any multi-agent scenario – whether

it be controlled domains with a limited set of actions of equal duration and or domains

with a large set of actions in continuous time.
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We now present two motivating examples, however, we do not limit the scope

of this thesis to these examples. This thesis focuses on general one-shot planning, that

is, building a set of conflict-free paths for all agents from start to goal in virtually any

type of MAPF domain.

1.1.1. Example 1: Warehouse Automation

Warehouse automation is critical for large modern retail and distribution com-

panies. A popular approach to warehouse automation uses movable rectangular shelv-

ing units and autonomous robots as shown in Figure 1.1 [210]. Autonomous robots are

used to transport the shelving units between loading and picking stations for adding

and removing goods from the shelves and staging areas. The shelving units in staging

areas are arranged in rows such that they can always be accessed from at least one side.

Such an arrangement is shown in Figure 1.2.

A significant amount of work has studied approaches to MAPF in this do-

main [74, 119, 120, 114, 75, 133, 145, 109]. All of these works use unit-cost actions

in cardinal directions (up, down, left or right) only. A path with cardinal direction ac-

Figure 1.1.: Warehouse Robots and Shelving Units [210]
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Figure 1.2.: An example of an automated warehouse layout with staging areas in the
center in black, and with loading and picking stations on the sides in gray.

tions is shown in Figure 1.3(a). This figure only shows part of the warehouse. There

are several paths that the robot could take, however, Figure 1.3(a) shows the one that

requires the fewest turns. Keep in mind that other robots with different, concurrent

paths would be executing in the same area.

Figure 1.3(b) shows a path which is not restricted to cardinal directions. This

path is shorter than the one in part (a). Assuming that robots are capable of turning

to arbitrary angles, such paths with arbitrary angles could result in significant cost

savings. To put this in perspective, assuming the size of the grid squares in the figure

(a) (b)(b)

Figure 1.3.: An example of (a) a path which uses unit duration actions and (b) a path
which uses non-unit duration (diagonal) actions.
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are 1m, then the length of the path in part (a) is 13m. The length of the path in part (b)

is about 9.7m., a reduction of about 25%. Assuming 1 watt of energy consumption per

meter, mean speeds of 1mps, 100 robots, and a use rate of 80% per robot in 24/7, 365

day operations. Such an update to path planning would result in up to 630 megawatts

of savings per year. Not to mention up to 25% savings in maintenance and repair costs.

While such an update to path planning in warehouses would yield shorter

paths, there are other trade-offs such as that it may introduce a higher risk of collisions,

it may incur a requirement for more complex robotic control algorithms, and comput-

ing the plans becomes more complex. This thesis develops methods for computing the

plans but we do not consider the broader trade-offs.

1.1.2. Example 2: Airport Surface Operations

The airport surface operations domain (ASO) [187, 166, 124, 129, 204, 128] is

a familiar one for most modern travelers. Aircraft pick up passengers and cargo at

a specific gate of an airport and deliver them to a specific destination. In order for

aircraft to take off, they must do so via a restricted resource: the runway. Runways

only admit one aircraft at a time for takeoff or landing. Airports may have more than

one runway, and those runways may be reached from the gates via shared paved areas

Figure 1.4.: An airport taxiway intersection
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called taxiways as shown in Figure 1.4. Taxiways and runways are used by both aircraft

leaving the airport as well as those arriving at an airport.

ASO poses a particular challenge for current MAPF algorithms for several rea-

sons. First, taxiways are mostly composed of long, narrow corridors which cause bot-

tlenecks in planning. Second, path segments are of variable length, resulting in a need

for continuous-time planning. Third, aircraft have a large footprint, often resulting in

motion paths that may conflict even when aircraft are on taxiing on separate taxiway

segments.

1.1.3. Problem Breakdown of Airport Surface Operations

The airport surface operations problem is very complex and involves the fol-

lowing factors:

• Aircraft have a large, variable-size footprint (See Figure 1.5) and kinematic con-

straints due to heterogeneous size, weight and power [74, 37, 110]. This requires

continuous-time collision detection and planning [6, 198].

Figure 1.5.: Aircraft footprint on a taxiway
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• Aircraft may be required to wait in place in runway queues or at gates and when

yielding to other vehicles and aircraft. This means that variable wait times (as

opposed to fixed-duration ones) are important [37, 6, 143].

• Due to different needs for motion planning, a solution may require mixed-domain

planning. For example, a mixture of grids for tow cars and support vehicles and

taxiway graphs for aircraft [196].

• Airport taxiway maps exist in various forms such as imagery and polygons.

These maps can be processed into plannable representations. [104, 213]

• Although airports may experience very heavy volumes (see Figure 1.6 (a)) [1],

they often have few runways (see Figure 1.6 (b)). This can cause delays, especially

when movement on the ground is congested or obstructed.

• For safety reasons, the planner must be able to scale to perhaps dozens of simul-

taneous agents and thousands of flights per day. Can we scale to the level of

YEG (400 flights per day)?, DEN (1,500+ flights per day)?, LAX (1,900+ flights

per day)? or ATL (2,500+ flights per day [that’s one flight every 28.8 seconds!])?

Assuming an average of a 10-minute taxi from gate to runway, that is about 21

YEG DEN LAX ATL

500

1,000

1,500

2,000

2,500

(a)

Flights per Day

YEG DEN LAX ATL
0

2

4

6

(b)

Number of Runways

Figure 1.6.: Daily Airport Volumes (a) and number of runways (b) at popular airports.
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aircraft actively taxiing at all times. Of course, these estimates do not account for

peak hours of the day which may be much busier.

1.1.4. Summary of Motivation

These examples illustrate (1) potential savings can be achieved by introducing

arbitrary-length actions into unit-length action spaces and (2) challenging domains ex-

ist that cannot be solved efficiently or with proper fidelity without the use of arbitrary-

length actions. We believe there are many applications of which these examples are

illustrative. Thus this thesis tackles algorithms for this broad class of problems.

1.2. Thesis Statement

Classic MAPF problems have two simplifying assumptions: Agents have no

shape and their actions always have the same duration. Multi-agent coordination in

continuous-time domains has been studied before [89, 103, 141], however, due to the

complexity of the problem the approaches were not always optimal nor scalable to

more than a handful of agents. On the other hand, state-of-the-art algorithms for Clas-

sic MAPF scale up to dozens or even hundreds of agents [52, 85]. This thesis studies

MAPF without these simplifying assumptions.

Our thesis is that: (1) We can relax the simplifying assumptions of Classic

MAPF to allow continuous-time actions for agents with a shape and (2) Efficient

algorithms can be formulated to exploit the properties of continuous-time actions.

1.3. Contributions

Many contributions are contained in this dissertation. This section provides a

brief overview of each. A more detailed comprehensive summary can also be found

in Chapter 8. Additionally, a summary and relevant experimental results are found at

the end of each chapter.
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1.3.1. Background and Survey of MAPF

Chapter 2 begins with basic definitions for the single-agent pathfinding prob-

lem, and extends these definitions for multiple agents. It introduces the Classic MAPF

problem; covering its components, objectives and and variants. This is followed by

a comprehensive survey of prior work on MAPF, including a detailed taxonomy of

MAPF algorithms.

1.3.2. Introduction to General MAPF

Chapter 3 formally defines General MAPF. General MAPF does not only mean

continu-ous-time actions. It also introduces variable speeds and non-planar graphs.

This induces the need for specialized conflict detection, conflict anticipation and wait-

time calculations.

This chapter supplies a taxonomy of collision detection techniques suitable for

segmented, continuous-time motion. It then elaborates on algebraic methods for colli-

sion detection for the cases of constant velocity and initial velocity with constant accel-

eration for circular and spherical agents. It also covers methods for collision avoidance,

both for the cases where agents are allowed to wait and/or change velocity.

Search-based algorithms generate search nodes representing the state of agents.

This chapter includes the algorithm for multi-agent search node generation which

takes conficts and continuous-time into account. This algorithm paves the way for

centralized search algorithms such as A* [69] and IDA* [96] to be easily built for non-

unit time steps.

1.3.3. Extended Increasing Cost Tree Search for General MAPF

Chapter 4 contains a re-formulation of the Increasing Cost Tree Search (ICTS)

algorithm [163] for General MAPF. The ICTS algorithm was originally formulated for

classic MAPF [173] and works by exploring discrete cost vectors representing cost com-

binations for paths which make up a solution. For continuous-time actions, which may
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have costs in a continuous range, ICTS cannot generate all possible cost vectors. Chap-

ter 4 introduces a re-formulation of ICTS for General MAPF: Extended ICTS (E-ICTS)

which changes the high level search to use cost range vectors and changes the vector

verification step to solve an optimization problem instead of a feasibility problem. Ad-

ditionally, Chapter 4 includes novel bounded sub-optimal variants of ICTS: w-ICTS

and ε-ICTS.

1.3.4. Extensions to Conflict-Based Search for General MAPF

Chapter 5 describes new extensions for the Conflict-Based Search (CBS) algo-

rithm [160] for General MAPF. Conflict-Based Search (CBS) [160] operates by system-

atically discovering and resolving conflicts between agents. Conflicts are resolved by

adding constraints to agents. This dissertation presents two extensions of CBS for Gen-

eral MAPF, namely novel biclique constraints and a reformulation of mutex propaga-

tion [218] constraints for continuous-time. We additionally introduce two new un-

bounded sub-optimal variants of CBS.

1.3.5. Conflict-Based Increasing Cost Search

Chapter 6 describes the new Conflict-Based Increasing Cost Search (CBICS) al-

gorithm. This algorithm is a hybrid of the newly extended versions of the CBS and

ICTS algorithms. Conflict symmetries (see Section 5.2.2) are a key weakness of con-

ventional MAPF algorithms, and the primary motivation for the creation of CBICS is

to robustly resolve these symmetries. CBICS recognizes that ICTS is naturally robust

to conflict symmetries that are extended over an area and that with the reformulation

of mutex-propagation from Chapter 5, CBS is robust to conflict symmetries that are

extended in time. CBICS combines both of these strengths.

CBICS differs from both ICTS and CBS because it allows non-uniform cost vec-

tor increases and uses a new technique called conjunctive splitting, which allows con-

straints to be applied to multiple sub-trees of the search simultaneously, often resulting
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in a higher degree of pruning. We show that CBICS runs faster than CBS in a variety

of General MAPF settings.

1.4. Summary

The research performed to date has advanced state of the art by introducing

novel concepts and/or combining existing concepts in a novel way. This research al-

lows MAPF algorithms to be used in more realistic real-world scenarios (e.g., with

kinematic motion constraints, etc.) where previous algorithms could not. The rest of

this thesis presents the work done so far to accomplish the objectives.
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2. Background

2.1. Definitions

2.1.1. Single-Agent Pathfinding

In order to define the multi-agent pathfinding problem, it is helpful to first

define the single-agent pathfinding problem.

Problem Definition

The objective of a pathfinding problem is to find a path (especially a shortest path)

between two points. Formally, the pathfinding problem is defined as a tuple 〈s0, sg, A〉

where s0 is an initial state, also called a start state or source state, sg is a goal state or

target state. For example, Figure 2.1(a) shows a start state and Figure 2.1(b) shows the

goal state for the fifteen puzzle [165].

State: A representation of the physical or abstract attitude, location or configu-

ration of an agent. A state can take on many representations such as a configuration of

the tiles in the fifteen puzzle shown in Figure 2.1, GPS coordinates, a set of joint angles

such as in a robotic arm, game piece positioning on a board, etc. A state is also known

as a configuration [116] in some literature.

The goal can also be expressed as a set of states or even as a set of conditions.

For example, when moving a robot across a warehouse from an initial location to a

destination such as a docking station, there may be a specific docking station specified

as the goal, or perhaps any docking station will do. For the purposes of this paper sg is

a single state. A is a set of actions.

11



13 10 11 6

5 7 4 8

1 12 14 9

3 15 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 2.1.: (a) A start configuration and (b) goal configuration for the fifteen puzzle.

Action: A rule for transition of an agent from one state to another, s → s′.

In the sliding tile puzzle shown in Figure 2.1, the set of possible actions (for the blank

space) is A={“up”,“down”,“left”,“right”}. In some domains |A| could be infinite. Not

all actions are necessarily valid in all states. Actions may have preconditions and/or

duration times. For example, a rook on a chess board may only move in a straight

line, provided that there are no obstructions and that doing so will not put its king in

check. The duration of an action for a rook is instantaneous and the resulting state for

the rook is its new location. As another example, a robotic arm may perform a rotation

at a wrist joint. There are no special prerequisites, but there is a specific time duration

required. The new state for the wrist joint is its new orientation angle.

In this paper, we additionally define an action as a pair of start and stop states:

a = (s, s′)

This definition differs from the traditional definition of an action as a transition

function (e.g., as in reinforcement learning [181]). We use the two definitions inter-

changeably in this thesis and will specifically mention which definition is being used

when it is important to do so. The state-pair definition is intuitive for explicit graphs

where an action is equivalent to an edge, it is also useful for reasoning about multi-

agent actions.
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Typically an action has a cost. The cost could be almost anything such as a

time duration, fuel cost, distance traveled, etc. We define the cost of an action a as a

function:

c(a) = c(s, s′)

Especially in the context of multi-agent systems, actions have a duration, the

amount of time it takes to transition from s to s′. We also define this as a function:

d(a)

We may treat cost and duration either as equivalent or separate quantities de-

pending on our objectives. The result of pathfinding is a path.

Path: π=[s0, ..., sg], a sequence of n=|π| states where the first state is s0, and

the last state is sg, such that each pair of sequential states represents a valid action in A

and for each pair of sequential actions a and a′, a.s′=a′.s. Alternatively, a path can be

expressed as a sequence of n−1 actions π = [a0, .., an−1]. A path also has a cost and a

duration function:

c(π) =
n−1

∑
i=0

c(ai) =
n−1

∑
i=0

c(si, si+1)

d(π) =
n−1

∑
i=0

d(ai) =
n−1

∑
i=0

d(si, si+1)

An example of a pathfinding problem is shown in Figure 2.2 (a). In this exam-

ple, states are positions on the grid. s0 is indicated in the bottom-left corner and sg is

indicated as the destination. The set of actions A is for the agent to transition from one

grid cell to any unblocked adjacent grid cell (including diagonals). Blocked cells are

filled in with black. The red dashed arrow indicates the objective, which is to find a

path that leads from s0 to sg. Figure 2.2 (b) shows a sequence of actions (indicated by

red arrows) that result in a path which solves the problem.

State Space: Also known as a configuration space or C-space, is the set of all

possible states or configurations for an agent. In Figure 2.2, the state space is all cells
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s0 sg

(a)

s0 sg

(b)(b)

Figure 2.2.: (a) A pathfinding problem and (b) a path that solves the problem.

(including the blocked cells). For example, this could be the set of all possible combina-

tions of joint angles for a robotic arm, all possible positions on a map, etc. A state space

may be uncountably infinite, countably infinite, or finite. An unquantized orientation

of a 360-degree robotic joint - any orientation in the continuous range of [0-360) is un-

countably infinte. An example of a countably infinite state space is a Cartesian grid

with no boundary where an agent is constrained to have integer coordinates (x, y) ∈ I,

but there is no upper or lower bound. An example of a finite state space is a grid with

boundaries, all possible whole-number locations on the grid are countable in finite

time. The example in Figure 2.2 represents a finite state space.

Search Space: A subset of the state space of all reachable states or configurations.

In Figure 2.2, the search space is all unblocked cells since blocked cells are not reachable

via any valid action.

Completeness: The guarantee that an algorithm will terminate [45] when given

a finite search space (whether a path to the goal exists or not) and that it will find

a path to the goal if one exists. These properties are called termination complete and

solution complete respectively. An algorithm may also be considered resolution complete,

meaning that a path is discoverable reliant on the resolution of the state space. It may

be that at a coarse level of of discretization, no solution can be found, and at a finer

level of discretization, a solution can be found.
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Optimality: An important property of pathfinding is optimality. An algorithm

may be able to guarantee a certain quality of the answer it produces with respect to

the number of actions or total cost of actions in the path. Typically, our notion of path

quality is minimization of c(π). In other words, we seek π∗ which has minimal cost

among Π, the set of all valid paths:

π∗ = ARGMIN
π∈Π

c(π)

The path shown in Figure 2.2 (b) is the only shortest path.

The optimality property of pathfinding algorithms falls into three major cate-

gories:

• Optimal: The algorithm is guaranteed to return a lowest-cost path.

• Bounded Sub-optimal: The answer represents a path with cost that is no greater

than optimal within a bounding function [188, 31]. For example, within a factor of

w or no greater than optimal plus a constant margin ε.

• Unbounded Sub-optimal: Also known as satisficing [45], the objective is to find

a any valid path, hence the answer has no bound on length or cost.

In the case that an algorithm is run on a discrete state space optimality can

only be measured up to the degree of discretization. Resolution optimal means that no

path of lower cost exists per the level of state space discretization. The same algorithm

run on a state space with finer discretization or in continuous space may be able to

achieve a lower cost path, although typically algorithms take longer to run with finer

discretization.

An example of truly optimal pathfinding in continuous space is Polyanya [40]

which finds shortest paths in two-dimensional spaces with polygonal obstacles. Re-

lated to the concept of optimality in continuous state spaces is probabilistic optimality.

An example of this is the rapidly-exploring random trees (RRT) [102] algorithm where
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Figure 2.3.: 2k Neighborhood movement models for k = 2,3,4 and 5.

state transitions are sampled from continuous space. Eventually, given enough sam-

ples, RRT will find a truly optimal solution.

A popular example of action-space discretization is 2k neighborhoods [71, 151]

(see Figure 2.3). In these configurations for grid maps, the action space is discretized by

the number of cells an agent may move to. In these domains and more generally in do-

mains with regularly spaced vertices, and/or symmetric-shaped obstacles, symmetries

can occur. With respect to a path, a symmetry is an alternate path which is different,

but has equivalent cost. For example, in Figure 2.4 (a) there are many equivalent-cost

paths connecting s0 and sg. Symmetries are shown in (b) as well, but none exist in (c).

Symmetries are the reason for multiple optimal paths existing for a problem instance.

It is also possible to formulate a search problem to simultaneously optimize

multiple objectives. For example, to optimize for both distance and time elapsed. Gen-

erally, multi-objective search [66] can be formulated with a vector of action costs, mean-

s0

sg

s0

sg

s0

sg

(a) (b) (c)

Figure 2.4.: Set of optimal path edges with 4-neighbor (a), 8-neighbor (b), and 16-
neighbor (c) grids.
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ing that the path cost function returns a vector of costs rather than a single scalar value.

There are several variants of multi-objective search: Lexicographic, where objectives are

strongly ordered and each cost objective is infinitely more important than another in

order. Weighted, where each objective has a relative importance or weight. Equally-

weighted, where each objective is as important as another.

Equally-weighted objectives introduce the notion of pareto-optimality, a situa-

tion where multiple differing optimal paths are possible. A set of paths is pareto-

optimal when no other objective value can be increased without lowering another.

Computing an entire pareto-optimal set may require an exponential number of node

expansions [8]. The relevance of pareto-optimal sets to multi-agent pathfinding will be

discussed in Section 2.3. In this work, however, we mainly focus on single-objective

algorithms unless otherwise noted. Another property of pathfinding algorithms is com-

pleteness.

2.2. Systematic Search Algorithms

In the case of finite, or countably infinte state spaces, the search space can be

represented as a graph G = (V, E), where each vertex v ∈ V represents a state and

each edge e ∈ E; e = (u, v) ∈ V represents an action. In the case of a finite state space,

it may be possible to create a representation of the entire search space in memory; this

is called an explicit search space. In the case of a very large or countably infinite search

space, the search graph may not have a full representation in memory; this is an implicit

search space.

All systematic search algorithms explore the search space by performing node

generations and node expansions. A node is an in-memory representation of a state thus

a node generation is the act of instantiating a state in the search space. Each state may

have a set of neighboring states which it may transition to via actions. The average

number of neighbors that can be reached from an arbitrary state in the search space is

called the branching factor, denoted b. The act of generating the neighbors of a particular
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node is called node expansion and usually means marking the state as visited in a data

structure. A key characterization of a search algorithm is the order in which it performs

node expansions.

There are many algorithms which are suitable for searching on graphs: breadth-

first search (BFS) [125], depth-first search (DFS) [184], Dijkstra’s Algorithm [42], A* [69]

and bidirectional search [134]. There are a significant number of enhancements to these

algorithms which cannot be discussed here.

2.2.1. The A* Algorithm

The A* algorithm is of central importance for much of the discussion in this the-

sis. The A* algorithm is a best-first search algorithm [45]. Best-first search algorithms

use an OPEN list, which is a priority queue that orders search nodes with the “best”

candidates first. The notion of “best” in A* is based on cost, which has two parts: h-

cost and g-cost. To determine h-cost, A* employs a heuristic, which is a function that

estimates the cost-to-go from the current state to the goal. A* combines g-cost which

is the cost accumulated from the start node to the current node with the h-cost to get

the f-cost, which is the estimated total cost of a path from the start node through the

current node to the goal. Hence, the OPEN list is ordered by f-cost.

Pseudocode for the A* algorithm is shown in Algorithm 2.1. A* starts by ini-

tializing the OPEN list with the start state and the h-cost (lines 2, 3). Then A* system-

atically pops states from the OPEN list (lines 4, 5). It will terminate if it has found a

goal (lines 6, 7), otherwise, it generates successors (line 8) and if the state does not yet

exist in OPEN (i.e., its g-cost is ∞) (line 10 its g-cost is set (line 11) and it is added to

OPEN (line 13) or if it is already in OPEN but its current g-cost is better, (line 10) its

g-cost is updated (line 11). In the case no path to the goal exists, OPEN will eventually

be empty (line 4) and a null solution is returned (line 14).
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2.2.2. Heuristics

Whether A* will return an optimal result depends on the heuristic. If the heuris-

tic never over-estimates the cost-to-go, it is called admissible. With an admissible heuris-

tic, A* is guaranteed to return an optimal result [69]. Any heuristic that over-estimates

the cost-to-go is inadmissible. An optimal result is not guaranteed with an inadmissible

heuristic, but A* is complete whether it uses an admissible heuristic or not.

A* is also guaranteed have optimal efficincy, meaning it will do a minimal amount

of work in terms of node expansions [41]. But this is only guaranteed if A* uses a con-

sistent heuristic. A heuristic is consistent if it is admissible and {∀(s, s′), (s.v, s′.v)∈E},

h(s)≤h(s′)+c(s, s′). That is, on a direct path to the goal, the h-cost will never increase.

2.2.3. Time and Space Complexity

In computer science, two properties are generally used to describe algorithms

(including search algorithms): time complexity or computational complexity - the num-

ber of operations required to execute an algorithm and space complexity - the amount of

memory that an algorithm uses.

Algorithm 2.1. A* Algorithm

1: Input: A search problem: s0, sg, h
2: OPEN ← {s0, h(s0)}
3: GCOST[sstart]← 0
4: while OPEN 6= ∅ do
5: n← OPEN.pop() . Retrieve node with lowest f-cost
6: if n = sg then
7: return RECONSTRUCTPATH(n) . Return solution
8: for n′ ∈SUCCESSORS(n) do . Generate successors
9: g← GCOST[n] + c(n, n′)

10: if g < (GCOST[n′] or ∞) then . Path to n’ is better or not seen yet
11: GCOST[n′]← g
12: if n′ /∈ OPEN then
13: OPEN ← OPEN ∪ n′, g + h(n′)
14: return ∅
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For search, both computational complexity and space complexity are commonly

defined in terms of b, the branching factor, d, the depth of a path from start to goal, and

sometimes n, the total number of states in the search space - n is only concretely defined

for finite search spaces.

The computational complexity, space complexity, optimality and completeness

properties of algorithms may make one algorithm more suitable for a particular appli-

cation than another. For example, both BFS and DFS have a computational complexity

of O(bd), where d is the depth, or number of actions from the start to the goal. BFS has

the property that it will terminate even on countably infinite search spaces provided

that a goal is reachable, however its space complexity is O(bd), meaning it will take up

to bd memory. DFS on the other hand only uses O(d) memory, but may run forever on

countably infinite search spaces, even when a reachable goal is present.

There are many different variants of systematic search algorithms. One exam-

ple is the iterative deepening A* (IDA*) algorithm [96] which is a hybrid of DFS and

A*. It combines the strengths of DFS and A*. Another example is partial expansion A*

(PEA*) [214] which defers some node generation operations until just before they are

needed.

2.2.4. Free-space Search Algorithms

When dealing with uncountably infinite search spaces, it is impossible to ex-

plore every possible state in the state space without discretization. One approach to

discretization is to build a graph with vertices at regular intervals in the search space

and use systematic search algorithms. Another approach is to sample the continuous

space dynamically during the search process.

Space Discretization

Several systematic graph building approaches have been proposed. One ap-

proach called visibility graphs [206] attempts to construct edges between all pairs of
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obstacle vertices which have unobstructed line-of-sight. There are also several ap-

proaches which augment existing graphs to simplify them by converting some bidi-

rectional edges to directed edges, or create hierarchical graphs that represent some

subsets of the graph as a single node [73, 175].

Workspace decomposition focuses on decomposing the free configuration space

into a graph by discretizing or abstracting the free space into a smaller representa-

tive graph. Some methods for decomposition are: vertical cell decomposition [29],

navigation meshes [190], generalized Voronoi diagrams [137] and reduced visibility

maps [135, 101]. The probabilistic road map (PRM) approach [88] builds graphs us-

ing randomization. There are many approaches including, sampling the medial axis

of open space [208] and visibility based sampling [136]. Typical space discretization

approaches come with guarantees of connectedness and resolution completeness.

Dynamic Sampling

The rapidly-exploring random trees (RRT) algorithm [102] starts at the initial

configuration and randomly creates branches outward by making a radius-constrained

sample in the continuous space around the latest sample and then connecting the

newest sample to the closest sample with an edge. If the edge is obstructed by an

obstacle, the sample is discarded. The process is repeated until a sample is discovered

within a certain radius of the goal. Several variants of this approach have been pro-

posed: bidirectional sampling [99], optimal RRT (RRT*) [86], A*-RRT [28], Informed

RRT* [56] and Theta*-RRT [138].

Other Algorithms

The single agent problem can also be formulated as a constraint satisfaction

problem (CSP) [106, 115], boolean satisfiability problem (SAT) [4] or a integer linear

programming problem (ILP) [144].
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(a) (b)(b)

Figure 2.5.: A MAPF problem instance (a) and solution (b).

2.3. The Multi-Agent Pathfinding Problem

The multi-agent pathfinding (MAPF) problem was originally defined in 1984

[97] and is a natural extension of the single-agent problem. We define two variants of

the problem, Classic MAPF and General MAPF.

2.3.1. Classic MAPF

A classic MAPF problem instance is defined by a tuple (G, k, Vs, Vg). G=(V, E)

is an unweighted graph, and each v∈V is associated with unique coordinates in a met-

ric space. There is a set of k agents labeled 1 through k where agents occupy a point

in space. Vs⊆V={start1, ..., startk} and Vg⊆V={goal1, ..., goalk} are sets of unique start

and goal vertices for each agent where starti 6=startj, goali 6=goalj for all i 6=j.

The objective is to find non-conflicting (the definition of a conflict follows shortly)

paths from start to goal for each agent. We use the following definitions:

• s = (v, t) is a single-agent state composed of a vertex v∈V and a time t∈Z+.

• S = {s1, .., sk} is a multi-agent state or joint state.

• S.V = {s1.v, .., sk.v} is the set of vertices of a multi-agent state.

• a = (s, s′) is a single-agent action, composed of two states such that (s.v, s′.v)∈E.

As described in Section 2.1.1 this definition of an action differs from the tradi-

tional reinforcement learning definition; it refers to traversing a specific edge at
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a specific time. MAPF allows self-directed edges for single-agent wait actions,

where a.s′.v = a.s.v and a.s′.t = a.s.t + 1 meaning that an agent stays at the same

vertex for one time step.

• A = {a1, .., ak}={(s1, s′1), .., (sk, s′k)}=(S, S′) is a multi-agent action or joint action

such that all actions overlap in time: ∩
a∈A

[a.s.t, a.s′.t] 6=∅.

• π = [s0, .., sd] is a single-agent path composed of d+1 sequential single-agent

states. Analogously, a path can be composed of d sequential actions:

π=[a0, .., ad−1]=[(s0, s1), (s1, s2), .., (sd−1, sd)].

• π(s) is a single-agent path from the start state ending at s. In the context of

search, π(s) is the current single-agent path from the start state to s in the OPEN

or CLOSED list.

• Π = [π1, .., πk] is a solution which is a set of single-agent paths which termi-

nate at the goal (π(goali)), one for each agent. Π is equivalently represented as

[S0, .., Sd] or [A0, .., Ad−1]. These alternative representations use joint states and

joint actions.

• Π(S) is a solution from the start joint-state ending at S. In a search context, Π(S)

is the current solution from the start joint-state to S in the OPEN or CLOSED list.

• c(a) is the cost of a single-agent action. c(a)=c(s, s′)=w(e) where e=(s.v, s′.v)∈E.

• d(a) is the duration of a single-agent action. For the purposes of this thesis cost

and duration are analogous: d(a)=c(a), but they can easily be treated as separate

quantities.

• c∗(s, s′) denotes the cost of a shortest path between s and s′ (e.g., when s.v and

s′.v are not adjacent).

• c(π) = ∑
a∈π

c(a) is the cost of a path.
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• c(A) = ∑
a∈A

c(a) is the cost of a multi-agent action.

• g(s) = c(π(s)) is the g-cost or cumulative cost of π(s) for s in the OPEN or

CLOSED list.

• g(a) = g(a.s′) is the g-cost or cumulative cost of π(a.s′).

• g(S) = ∑
s∈S

g(s) is the g-cost of a multi-agent state.

• g(A) = g(A.S′) is the g-cost of a multi-agent action.

• h(s) is the h-cost or heuristic estimate from s to the goal.

• h(a) = h(a.s′) is the h-cost or heuristic estimate from a.s′ to the goal.

• h(S) is the multi-agent h-cost or heuristic estimate from S to the goal.

• h(A) = h(A.S′) is the multi-agent h-cost or heuristic estimate from A.S′ to the

goal.

• f (s) = g(s) + h(s) is the f-cost of a shortest path from start to goal through s.

• f (a) = g(a) + h(a) is the f-cost of a shortest path from start to goal that includes

the action a.

• f (S) = g(S)+h(S) is the estimate of summed-shortest paths from start to goal

through S.

• f (A) = g(A)+h(A) is the estimate of summed-shortest paths from start to goal

that include the joint action A.

• tmin(S) = MIN
s∈S

s.t is the earliest time of all states in a joint state.

• S (bold ‘S’) is a set of joint states.

• s (sans bold ‘s’) is a set of single-agent states for one agent.

• S = {s1, .., sk} (sans bold ‘S’) is a set of sets of single-agent states.
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A solution is feasible if none of the k agents come into conflict at any time while

traversing their respective paths. A conflict happens when two agents attempt to oc-

cupy the same vertex at the same time, or traverse an edge in opposite directions at the

same time. A conflict is denoted as a tuple:

〈ai, aj〉

, for a pair of actions in πi and πj respectively for agents i and j which conflict.

2.3.2. General MAPF

In Classic MAPF, because all actions have uniform duration, all actions hap-

pen in lock-step, meaning that all agents’ actions start and end at synchronous times.

General MAPF (also called MAPFR [198]), the central focus of this dissertation, is an

extension of Classic MAPF for weighted graphs with positive, real-valued weights,

∀e∈E, w(e)∈R+. Thus the cost and/or duration of single-agent actions are not uni-

form. This introduces the notion of continuous-time motion which is defined in Chap-

ter 3. When we need to distinguish between Classic MAPF and General MAPF, we will

refer to those terms specifically.

2.3.3. Objective and Hardness of MAPF

When all agents have equal priority, solutions to MAPF, like multi-objective op-

timization, have a pareto-optimal structure. This is illustrated in Figure 2.6 where part

(a) shows the problem instance, part (b) shows a solution where the blue agent yields

to the red agent, and (c) where red yields to blue. Arrows indicate actions. Looped

arrows indicate wait actions. This illustration shows that there may be many feasi-

ble solutions to a problem instance where c(πi) cannot be reduced without increasing

c(πj) and vice-versa. This pareto cost structure applies generally over any set of agents.

Computing and reasoning over the pareto cost structure for MAPF instances is

expensive, since the number of pareto-optimal solutions is exponential in the number

25



of agents in the worst case [60]. However, in this thesis, we focus only on objectives

that optimize a combined cost c(Π). The most popular combined objective functions for

MAPF are:

• makespan: minimizing the maximum cost path in a solution:

MAKESPAN(Π) = minimize
[

MAX (c(π))
π∈Π

]
• flowtime or sum-of-costs: minimizing the total cost of all paths in a solution.

FLOWTIME(Π) = minimize

[
∑

π∈Π
c(π)

]

Most MAPF algorithms can be formulated for makespan or flowtime.

For satisficing search, Classic MAPF is solvable in polynomial time on undi-

rected graphs [97, 90, 155, 207] and strongly biconnected graphs [22]. But Classic

MAPF is NP-hard on general directed graphs [131]. Additionally, all known poly-

nomial time algorithms for MAPF assume agents are holonomic, that is, they can turn

in-place.

(a)

(a)

(a)
���

(b)

(a)
			

(c)

Figure 2.6.: An example of the pareto-optimal cost structure of MAPF: (a) A MAPF
problem instance, (b) a solution favoring the red agent and (c) a solution
favoring the blue agent.
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Finding optimal and bounded sub-optimal solutions to MAPF is NP-hard for

both flowtime [217] and makespan [178] – furthermore, makespan and flowtime can-

not be optimized simultaneously [217]. As the Classic version is a special case of the

General version, the optimization of General MAPF instances is also NP-hard.

2.3.4. Variants of MAPF

Our definition so far covers the Classic MAPF problem, however there are

many variants of the MAPF problem in terms of its objectives and rules of movement

[173].

• Multi-Objective MAPF – Agents simultaneously optimize multiple individual

objectives [149].

• Anonymous MAPF – Goals are not assigned to any specific agent [92, 215].

• K-Color MAPF – Teams of agents and goals are assigned a color. Any agent may

satisfy a goal of the same color. In other words, goals are interchangeable within

agents belonging to the same team [118, 168].

• Multi-Agent Meeting – Agents goal is to meet at a dynamically-determined lo-

cation. This variant may be with or without timing constraints [20, 10].

• Coverage optimization – Agents must maintain distributed coverage of an area

[39].

• Convoy planning and Trains – Agents may span a chain of multiple vertices and

edges in the graph at one time [186, 9].

• Network/Capacity/Flow planning – Agents may move along edges simultane-

ously, but edges have capacity limits. This is the classic maximum flow problem

[68, 17].

• MAPF with Deadlines – Agents must arrive at their goals inside certain dead-

lines [121].
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• Online MAPF – A variant of MAPF where agents may dynamically enter or leave

the joint planning space [182, 127, 117].

• Lifelong MAPF – Continuous planning where agents receive new goals once a

goal is reached [120, 109].

• Robust MAPF – Agents must account for possible delays in the execution of

other agents’ paths before execution of the plans [12, 13, 11, 158].

2.3.5. Agent Movement and Type Variants

Variants in the rules for MAPF and nuances for agent movement can make a

significant difference in the performance of an algorithm [173].

• Sequential Movement: This variant is known as the pebble motion on graphs

(PMG) [97] problem and is essentially the same as the 15-puzzle game [165]

where only one agent (tile) is allowed to move into a blank space at a time. Solu-

tions can be found in polynomial time, however, finding an optimal (minimum

number of moves) solution is NP-hard [64, 147]. Most modern variants of MAPF

allow parallel movement, where agents perform actions simultaneously.

• Lock-step Movement: In this variant, all actions have unit duration and ac-

tions are begun simultaneously, hence all agents movements start and end syn-

chronously. Lock-step assumptions greatly simplify conflict detection. This is

always the case in Classic MAPF. With Non Lock-step Movement actions [198,

6, 179], where agent actions are not all at the same time nor of identical duration

introduce the need for continuous-time conflict detection in all algorithms and

partial time overlap (PTO) expansion routines for coupled algorithms 2.4.2.

• Goal blocking: In this variant, agents remain at their respective goals after ar-

riving at their destinations. This variant may require agents to move out of the

way. Disappearing agents [196] do not remain in the configuration space once
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they reach their goal. Some problems naturally have disappearing agents, for

example in airport surface operations aircraft that have parked on an apron can

no longer conflict with agents on taxiways.

• Following: When the workspace is decomposed into vertices or grids, some for-

mulations of MAPF allow one agent to occupy a vertex in a time step directly

after another agent has left it.

• Rotations: Some formulations allow agents to swap adjacent vertices via an edge

without incurring a collision [172]. This variant makes solution sizes smaller in

general, but does not change the hardness of the problem [217].

• Agent body size: Can have a significant impact, especially when agent bodies

are larger than the workspace discretization – this becomes similar to the con-

voy planning problem in that an agent may occupy multiple edges and vertices

simultaneously [110].

2.4. Prior Work in MAPF

A wide variety of solutions to MAPF have been published since the problem

was formally defined in 1984 [97].

2.4.1. Centralized and Distributed Algorithms

MAPF algorithms broadly fall into two categories: Centralized and Decentral-

ized or Distributed. Centralized algorithms assume that perfect information about the

location and movement of all agents is known and being managed from a central al-

gorithm. Distributed algorithms assume that agents do not have perfect information

about the state of other agents. Therefore, they cannot plan collision avoidance with-

out some form of message passing or organically observed information about the state

of other agents.
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All distributed algorithms are decoupled, while centralized algorithms may

use coupled, decoupled or dynamically coupled approaches. The definitions for cou-

pled, decoupled and dynamically coupled are discussed in the following sections.

2.4.2. Coupled Algorithms

Coupled algorithms conceptually combine the states of k agents into a joint

state space. Coupled algorithms fall into several categories: Search Based, Rule Based,

Reduction Based and Auction Based.

Search Based Algorithms

Well-known search-based, single-agent algorithms such as A*[69], IDA*[96],

EPEA*[63], and others may be used for the multi-agent problem. A difficulty with

coupled, search-based algorithms is that the number of combinations of ways in which

the set of agents can move is exponential. If each agent has a branching factor of bbase,

the multi-agent branching factor is bbase
k. Meaning that if the number of agents is fixed,

the branching factor is polynomial in the number of agents – exponential if we think

of k as not being fixed.

Multi-Agent Expansion: In addition to dealing with exponential branching

factors, additional difficulty is that multi-agent expansions must account for action

combinations that result in conflict between agents. Such combinations are typically

eliminated during the expansion phase. Also, in the case of General MAPF, arbitrary

offsets in time must be accounted for. Algorithm 2.2 illustrates a multi-agent, conflict-

aware expansion routine.

The Conflict-Aware Multi-Agent Expansion routine takes a joint state S for k

agents as input and determines which of the k single-agent states can be expanded and

which must be repeated in order to maintain time overlap. Time overlap means that for

all s′∈S′ the respective actions A = {a1, .., ak}={(s1, s′1), .., (sk, s′k)}=(S, S′) where S is

the predecessor of S′, the actions overlap in time: ∩
a∈A

[a.s.t, a.s′.t] 6=∅. This is is done
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on lines 3-9. Then, given the k sets of single-agent states whose generating actions

have time overlap, the subroutine GENJOINTSTATES is called (line 10) which recur-

sively computes the Cartesian product of the sets, removing conflicting ones in the

process (lines 22-24). Resulting in a set of non-conflicting joint-state successors with

time-overlap.

One way to mitigate the daunting size of the branching factor is to use a tech-

nique called operator decomposition (OD) [171]. With OD, during the expansion pro-

cess, we fully expand one agent to generate bbase successors (see Algorithm 2.2 line

6) and pick only one intermediate state to generate for the other k − 1 agents. In this

manner, the branching factor at each step of the search is reduced to only bbase. How-

ever, OD increases the search depth to the goal by a factor of k. Hence, when using

blind search algorithms such as Dijkstra’s algorithm, there is no savings in the num-

ber of operations required to find the goal, however, when using heuristically-guided

algorithms such as A*, a significant amount of savings can be realized.

Multi-Agent Heuristics: A straightforward approach to computing a multi-

agent heuristic is to sum the single-agent h-costs, ∑
s∈S

h(s). This is an admissible multi-

agent heuristic if all single-agent heuristics are admissible. However, more accurate

heuristics can be computed by finding solution costs for subsets of agents [98] or ana-

lyzing conflicts [51, 108, 112].

Enhanced partial expansion A* (EPEA*) [63] uses heuristic information to limit

the nodes generated during the expansion process (its predecessor PEA*[214] gener-

ated all nodes, but discarded heuristically sub-optimal ones.) In this manner EPEA*

saves a significant amount of time and memory to perform a multi-agent search. How-

ever, the function for selecting which nodes to generate can be very difficult to formu-

late - especially for spaces with large branching factors or non-trivial cost functions.

M* is a framework for A* called subdimensional expansion [194] which initially

plans paths using an optimal policy and then selectively backpropagates extra edges

when agents come into conflict, effectively allowing them to circumvent each other.

M* has been shown to be especially effective in mazes [52, 85].
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Algorithm 2.2. Conflict-Aware Multi-Agent Expansion

JOINTEXPANSION

1: Input: S — A joint-state
2: Output: S ′ — A set of joint state successors
3: S← {∅1, ∅2, ..., ∅k} . Sets of single-agent successor states
4: minTime← tmin(S)
5: for si ∈ S do
6: if si.time = minTime then . Expand only the earliest. (One state only for OD)
7: Si ← SUCC(si)
8: else
9: Si ← {si}

10: S ′ ← GENJOINTSTATES(S, 1, ∅) . Generate Cartesian product
11: return S ′

GENJOINTSTATES

12: Input: S — A set of k sets of single-states
13: agent — Current agent under consideration
14: S — Partially accumulated joint-state
15: Output: S — A set of joint-states; initially empty, modified in-place
16: if agent = k then
17: S ← S ∪ S
18: for s ∈ Sagent do
19: S′ ← S . Make a copy
20: con f licting← false
21: for q ∈ S′ do
22: if CONFLICTTEST(s,q) then . Check for conflict
23: con f licting← true
24: break
25: if con f licting then . Skip this state – it has a conflict with a state in S′

26: Back to line 18
27: S← S′∪ GENJOINTSTATES(S, agent + 1, S’)

The increasing cost tree search (ICTS) algorithm [163] is a two-level search

algorithm. ICTS is based on the observation that a solution to a MAPF problem con-

tains a set of paths with unique cost. ICTS searches for a cost vector that represents

a lowest-cost feasible solution by combinatorically generating cost vectors and test-

ing for feasibility. ICTS has been shown to be especially effective in spaces with large

rooms or wide corridors [52, 85]. ICTS is covered in detail in Chapter 4.
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Rule Based Algorithms

There are several polynomial-time algorithms that achieve constant-bounded

quality solutions for holonomic agents: Pebble Motion on Graphs [97], Tree-based

Agent Swapping Strategy, [90], Parallel Push-and-Swap [155] and Push-and-Rotate

[207].

Additionally time interleaving strategies [141], where the only resolution op-

tion that agents are given for resolving conflicts is to wait are polynomial in time com-

plexity.

Reduction Based Algorithms

Similar to single agent reduction based algorithms, there are several reduction

based algorithms for MAPF: Constraint Satisfaction (CSP) [153, 18, 17, 202], Satisfiabil-

ity (SAT) [177, 180], ILP [216] and Answer Set Programming (ASP) [46].

Auction Based Algorithms

Combinatorial auction-based algorithms implement a mechanism where agents

bid on sets of preferred paths for themselves (e.g., shortest paths). The auctioneer then

determines whether the sets of preferred paths are disjoint (non-conflicting) and will

award some or all agents their bids for non-conflicting paths. The auction continues,

raising the price until all agents are able to win non-conflicting bids [5].

2.4.3. Decoupled Algorithms

This family of algorithms does not plan in the joint state space. All decentral-

ized algorithms are also decoupled.

Reactive Planning

Reactive planners do not coordinate their plans with other agents. Each agent

is autonomous and reacts to the world in the immediate vicinity, or a limited version of
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the world which it can sense. Reactive planning is unbounded-sub-optimal in all cases

and from a multi-agent global perspective completeness is not always guaranteed.

Velocity Obstacles [53] were first defined as a method of collision prediction,

and have been adapted for use with reactive planners [54, 19, 167]. Velocity obstacles

define a temporospatial region in which two bodies in motion will collide assuming

their trajectories are straight, constant velocity motion vectors. Velocity Obstacles are

discussed in more detail in Chapter 3. Reactive planners use the velocity obstacle to

select alternate motion vectors which do not put the agent on a collision course.

Potential Fields [89] represent attractive and repulsive electromagnetic forces.

Potential field methods are used for robotic planning to attract agents toward their

individual goals and repel them away from obstacles and other agents. Once the fields

are defined, a path from start to goal can be found via gradient descent. For the multi-

agent case, each agent’s repulsive potential fields are updated dynamically as agents

move through the configuration space until agents reach their respective goals. It is

possible for agents to get trapped in local minima when using potential fields. This

problem can be mitigated however by the use of harmonic functions [2] or local search

methods. Potential fields have been used ubiquitously in robotic planning not only for

goal-oriented planning, but for formations [154], swarming [16], flocking [183], and

joint manipulation behaviors [169].

Prioritized Planning

Prioritized planning [47] is a scheme of planning the paths for agents sequen-

tially where any agent earlier in the planning process gets its actions reserved, pre-

cluding agents later on in the planning sequence from coming into conflict with earlier

agents. This approach is sub-optimal but fast.

Some incomplete prioritized planning algorithms are Windowed-Hierarchical

Cooperative A* (WHCA*) [164], Conflict-oriented WHCA* (C-WHCA*) [21], Distribut-

ed Multi-Agent Path Planning (DMAPP) [34], Safe Interval Path Planning (SIPP) [143],
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Any-angle SIPP (AA-SIPP) [212]. The first known approach to MAPFR [174] is also

based on prioritized planning.

An extension of DMAPP that has completeness guarantees (DiMPP) [33], sys-

tematically tests independent sub-permuatations of agent priority orderings in order

to achieve completeness.

2.4.4. Dynamically Coupled Algorithms

These algorithms solve MAPF problems by breaking them up into smaller sub-

problems. Sub-problems are joined together dynamically, when the algorithm deter-

mines that it needs to do so.

Independence Detection

It is often the case that a MAPF instance contains multiple independent sub-

problems. An independent sub-problem in MAPF consists of a subset of agents and

their start and goal states. We partition sets of agents into independent sub-problems

based on whether the agents’ paths conflict with each other. The Independence De-

tection (ID) algorithm [171] (Algorithm 2.3) starts by assigning each agent to its own

sub-problem (line 3) and planning a path for each agent independently (line 4). The

paths of the agents are then checked for conflicts (line 5). Any agents which have con-

Algorithm 2.3. Independence Detection

1: Input: Vs, Vg . Start and goal states for each agent P← ∅ . Set of sub-problems
Π← ∅ . Solution

2: for i ∈ [1, .., k] do
3: P← P ∪ {i} . Create a problem group for each agent
4: Πi ← FINDSHORTESTPATH(vi

s∈Vs, vi
g∈Vg) . Find shortest path for each agent

5: while Π has conflicts do
6: Merge conflicting sub-problems in P
7: for p ∈ P do
8: Run MAPF algorithm on agents in p
9: Update Π with new paths for agents in p

10: return Π
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flicts are combined into a new sub-problem (line 6) and re-planned (line 8) repeatedly

until no conflicts exist. This simple approach can be very effective, but in the worst

case, the entire problem must still be solved.

Conflict-Based Search (CBS) [160] takes the notion of independence detection

further by recognizing that merging conflicting agents together to plan their entire

paths is a larger granularity of coupling than needed. CBS only couples agents to-

gether at the point of their conflicting actions and solves their paths separately, using

motion constraints to help avoid conflicts. The details of how this is done is addressed

in Chapter 5. CBS is a very popular algorithm with many enhancements [24, 196, 25,

15, 35, 118, 51, 110, 113, 111, 218, 112, 26].

Several enhancements to CBS for General MAPF have also been proposed. In

general, these enhancements focus on continuous-time collision detection and con-

straint representation [6, 37, 199, 192]

Conflict-Based Increasing Cost Search (CBICS) [200] combines the strengths of

CBS and ICTS in the form of motion constraints and cost constraints. CBICS is discussed

in Chapter 6.

Expanding A* (X*) [191] is an anytime framework which performs local re-

pairs for conflicting sets of agents by defining a window, which includes a bounded

state space region. The repair operation attempts to find non-conflicting paths for the

subset of agents from where they enter and exit the window region. If unsuccessful,

or with remaining time, the window region is expanded systematically. As time al-

lows, the window regions are expanded to include the entire search space, at which

full optimality is guaranteed. X* works well for problems with sparse, geographically

dispersed conflicts because it reuses much of the planned paths for each agent.

Techniques for Dynamically Centralized Algorithms

The Conflict Avoidance Table (CAT)[172] is used with dynamically coupled

algorithms. The idea is to store the set of paths for each agent in a data structure
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where the agents’ actions can be looked up quickly. When a subset of agents is re-

planned, actions which conflict with the paths of the other agents which are not being

re-planned are updated with the number of conflicts. Then paths with fewer conflicts

can be prioritized over paths which conflict – either by tie-breaking in the OPEN list

(for optimal algorithms) or as the primary priority (for sub-optimal algorithms). The

CAT has proven to be effective at helping MAPF algorithms avoid unnecessary work.

The Conflict Count Table (CCT) is an undocumented technique for dynami-

cally coupled algorithms. It is used with ID, CBS and CBICS. The CCT stores a list

of the number of conflicts between pairs of agents which have conflicts in their paths.

This bookkeeping technique helps avoid performing unnecessary conflict checks. The

CCT is initialized by checking all pairs of paths (that’s O(k2)) path checks. Then when-

ever any agent’s path is re-planned, the re-planned path is checked versus all other

agents’ paths (only O(k) path checks) and the CCT is updated. If the CCT is empty,

the current solution is conflict free. The CCT helps reduce the overhead of conflict

checking by remembering which pairs do not need to be re-checked.

2.4.5. Other Techniques Related to the MAPF Problem

There are several techniques that also apply to MAPF and may be used with

various algorithms. They generally fall into two categories: workspace decomposition

and heuristic guidance. All of these methods are sub-optimal but have been shown to

be effective.

Workspace Decomposition Techniques

The physical characteristics of graphs can be augmented to promote collision

avoidance [203, 153, 201]. Methods such as probabilistic road maps (PRM) [195] sample

a continuous state space to produce a discrete state space of smaller size. Another

approach is to dynamically change agent branching factors to avoid collisions or speed

up the search [196, 62].
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Heuristic Guidance Techniques

Some techniques encourage collision avoidance via heuristics, e.g., to promote

circular movement in open spaces [80] or to promote the use of predetermined, or

dynamically learned directional highways [35]. Reinforcement Learning has been used

to train heuristic models which help agents avoid collisions [156, 77].

Algorithm Selection Techniques

There is no MAPF algorithm that dominates all others in every type of problem

instance [52, 85]. An algorithim selector [148, 84] can be used to select the best algo-

rithm based on physical characteristics of maps or other factors in a specific problem

instance.

2.5. Summary

We have provided a formal problem definition for MAPF, building on defi-

nitions from single-agent pathfinding. We have provided common formulations of

cost and definitions of optimality and completeness. We have provided definitions,

complexity analysis and background for heuristic search. We have provided extensive

background information on MAPF, including a list of MAPF problem variants and

variations on cost and movement for Classic MAPF.

We reviewed prior work on the MAPF problem and provided a taxonomy of

the various algorithms. We have provided pseudocode for important sub-routines

of MAPF and reviewed other techniques that may be applied to various types of al-

gorithms. All of this information now sets the stage for the next chapter, where we

introduce the primary focus of this thesis: General MAPF.
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3. General MAPF

3.1. Definition of General MAPF

The definition of General MAPF is necessitated by the fact that the simplify-

ing assumptions of unit-duration actions and unit costs in the Classic MAPF definition

is insufficient for many real-world and real-world-inspired domains such as the ones

mentioned in the introduction. The definition that follows is more general in that it al-

lows for non-unit costs, non-uniform action durations, shaped agents, variable speeds,

and/or non-holonomic or kinodynamic movement constraints. Numerical methods

for planning in General MAPF domains were being considered in robotics as early as

1986 [89]. The earliest known search-based algorithm for General MAPF was run on

8-neighbor grids [174].

General MAPF (also called MAPFR [198]) is a natural extension of Classic MAPF

where G is a positive-weighted graph: ∀e∈ E w(e)∈R+, and each v ∈ V is associated

with unique coordinates in a metric space. Also, agents have a physical shape such

as circles, spheres, polygons or polygonal meshes which are situated in metric space

relative to a reference point [110].

The form of a solution in General MAPF is similar to a solution in Classic

MAPF; a solution is a set of k paths, one for each agent. However, a solution in Gen-

eral MAPF is conceptually different. In General MAPF, actions represent continuous

motion, hence each path represents segmented motion. Segmented motion is defined

as a sequence of actions (or motions) that have a discrete duration. A state s in its

simplest form is s=(v, t) where v∈V and t∈R+. However, a state may be represented

differently and contain other information such as Cartesian coordinates s = 〈x, y, t〉,
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Figure 3.1.: Conflict types in General MAPF: (a) vertex conflict, (b) edge conflict, (c)
intersecting-edge conflict, (d) non-intersecting edge conflict and (e) edge-
vertex conflict

velocity s = 〈x, y, ẋ, ẏ, t〉, acceleration s = 〈x, y, ẋ, ẏ, ẍ, ÿ, t〉 or other state information.

The definition of a state, including the number of dimensions will depend upon the

application. For simplicity in this thesis, we use s=(v, t) unless otherwise stated. An

action (or motion segment) a = (s, s′) is continuous between s and s′, thus the transi-

tion between them must be kinematically feasible.

An action ai begins with the agent’s reference point at ai.s.v at time ai.s.t and its

reference point moves in continuous metric space, ending at ai.s′.v at time ai.s′.t. In this

thesis, we assume all agents move with the same constant velocity. But motion could

be described differently, such as parameterized motion (e.g., with velocity and/or ac-

celeration [197]) or discretized motion (e.g., using a reservation table of grid squares

and time interval of the reservations [37]).

A conflict is the condition when the area or volume of two or more agents over-

lap at the same instant in time. Because agents have a shape, conflicts not only occur

when two agents arrive at the same vertex at the same time (Figure 3.1(a)) or traverse

an edge in opposite directions (Figure 3.1(b)). But, conflicts can also occur when agents

traverse separate edges (Figure 3.1(c)), even when the edges don’t intersect (Figure

3.1(d)). Furthermore, an agent waiting in place can come into conflict with another

agent traversing an edge (Figure 3.1(e)). Agents are able to traverse the same edge

simultaneously, provided they are both moving in the same direction and have suffi-

cient spatial separation. In the case of arbitrary-length action durations, agents may

start and end their actions at asynchronous times, which requires more sophisticated

conflict detection mechanisms than Classic MAPF.
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The remainder of this thesis focuses on General MAPF, but we simply refer to

it as MAPF for notational simplicity. When we need to distinguish between Classic

MAPF and General MAPF, we will refer to those terms specifically.

3.2. Conflict Detection In General MAPF

Conflict detection is important for many problems with multiple moving agents.

In the case of navigation and routing problems for multiple agents, feasible solutions

cannot be found or verified without proper conflict detection. In a general sense, a

conflict is a simultaneous attempt to access a joint resource. Depending on the target

domain a conflict may have different meanings. Consider, for example, when states

have non-spatial attributes such as time scheduling problems or resource allocation

problems (e.g., allocating time slots for classrooms [130] or coordinating memory and

cpu allocation for processing jobs [83]) or when abstract states are used such as in

dimensionally-reduced spaces [146]. Typically, when considering only temporospatial

aspects, conflict detection is referred to as collision detection.

Collision detection has been extensively studied in the fields of computational

geometry, robotics, and computer graphics [81, 93]. When selecting a method for

checking conflicts one must be cognizant of type I and type II errors [132], that is, false

positives (reporting a conflict that does not actually occur) and false negatives (not re-

porting a conflict that actually does occur). A method that exhibits type II errors should

never be used because type II errors can lead to infeasible solutions. A method that ex-

hibits type I errors may be used, but may make an overall algorithm incomplete or

lead to sub-optimal solutions. In this section we provide a brief taxonomy of collision

detection techniques for multiple moving agents.

In order to detect conflicts accurately in the General MAPF problem, agents’ re-

spective motion must be considered in continuous time and space. These conflicts are

denoted 〈ai, aj〉where ai and aj are the conflicting actions for agents i and j respectively.

Continuous time and space conflict detection algorithms fall into four basic categories:
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(a)

(b)
(c)

Figure 3.2.: Collision Detection using geometric containers. A collision is correctly de-
tected between agents (a) and (b), but erroneously detected between (a)
and (c).

geometric containers, sampling based, algebraic and geometric. In the following sub-

sections, we provide an overview of each.

3.2.1. Geometric Containers

Geometric containers encapsulate portions of segmented motion in time and

space using polygons, polytopes or spheres [193]. Then intersection detection is de-

tected between the geometric containers of differing agents to determine if a collision

has occurred. There are various approaches to intersection detection for stationary

objects [82, 94].

In Figure 3.2 an example of this approach is shown which uses axis-aligned

bounding boxes as geometric containers. The temporal dimensions are not shown, but

each bounding box also has a temporal component. Agent (a), (b) and (c) take actions

(represented as directed edges) to arrive at their goal. Axis-aligned bounding boxes are

reserved for each of these edges, then an intersection check is carried out. Although

a collision is correctly detected between (a) and (b), an erroneous collision is detected

between (b) and (c). Although this approach is computationally fast, it will reserve

more temporospatial area than necessary, especially when long edges are present in a

path, resulting in the possibility of type I errors.
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(a)

(b)
(c)

Figure 3.3.: Sampling-Based Collision Detection. A collision is correctly detected be-
tween agents (a) and (b).

3.2.2. Sampling-Based

This approach involves translating objects along their trajectories incrementally

and using static spatial collision detection methods to detect overlaps at each incre-

ment. Figure 3.3 shows an example of this approach. Axis-aligned bounding boxes

are created for each agent at regular intervals along their trajectories. In contrast to the

example in Figure 3.2, there is no erroneous collision detected between agent (a) and

agent (c). The sampling approach is very important, samples too far apart may miss a

collision, but samples too close together is computationally costly. Adaptive sampling

approaches can help improve the computational cost [61].

In grid worlds, a coarse form of collision detection, Brezenham’s line algo-

rithm [27], can be used for selecting a specific set of grid-squares covered by a trajectory

and then checking whether agents are in the same grid square at intersecting times. A

more robust approach based on Wu’s antialiased line algorithm [209] can be used for

agents with a shape [212].

3.2.3. Algebraic

When dealing with discrete-length motion segments, algebraic methods can

be used to determine whether a collision will occur during the segment of motion.

By parameterizing the trajectory, a closed-form solution to continuous-time conflict

44



−0.2 0.2 0.6 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)
X

Y
P1 P2vx1

vy1

vx2

vy2

−0.2 0.2 0.6 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)
X

Y

P1 P2vx1

vy1

vx2

vy2

ax1

ay1

ax2

ay2

Figure 3.4.: Collision times for agent trajectories with constant velocity (a) and initial
velocity with constant acceleration (b) can be solved algebraically

detection for circular, spherical, [48] and trianglular [126] shaped agents have been

formulated. An example for circular agents is shown in Figure 3.4.

Algebraic methods calculate the exact time and duration of collision between

two moving obstacles using closed-form equations. A detailed derivation of these

equations for circular agents are presented in Appendix A.

3.2.4. Geometric

Geometric solutions are the most computationally expensive collision detec-

tion approaches, however they are formulated for many different obstacle shapes -

typically primitive shapes, polygons or meshes. Two of the most popular approaches

are constructive solid geometry (CSG) [150], and velocity obstacles (VO) [55].

CSG approaches treat the time domain as an additional polygonal dimension,

extruding polygons into the time dimension, after which a static polygonal intersection

check is applied. Computation of the extruded volumes can be very expensive and

formulating ways to enhance CSG has been a subject of ongoing research [44, 91].

Velocity obstacles have been formulated for infinite length vector collision de-

tection for arbitrary-shaped agents [55]. A velocity obstacle is depicted in Figure 3.6.

A VO is created for two agents A and B, located with center points A and B as shown
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Figure 3.5.: Constructive Solid Geometry Collision Detection. Time is extruded into the
model as an extra dimension, after which polygonal intersection detection
is performed.

(a)

−→
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B

(b)

A+
−→
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B
r A
+

r B

Figure 3.6.: Velocity Obstacle (VO) construction based on (a) two agents with motion
vectors. The trajectories and shapes of agents are interpreted to create (b)
the velocity obstacle – labeled ’VO‘
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in diagram (a). The agents have shapes – here shown as circles with radius rA and rB.

The agents’ motion follows velocity vectors VA and VB shown as arrows.

In order to construct the VO, first, the shape of agent B is inflated by computing

the Minkowski sum A ⊕ B of the two agent’s shapes. Next, two tangent lines from

point A to the sides of A⊕ B are calculated to form a polygon. Finally, the polygon is

translated so that its apex is at A+VB. The area between the translated tangent lines is

the velocity obstacle (labeled VO in the diagram). The VO represents the unsafe region

of velocity for agent A, assuming agent B does not change it’s trajectory. If the point

A + VA lies inside the VO, agent A will collide with agent B some time in the infinite

future.

In the case of segmented motion, VOs can still be used for collision detection

with some adaptations [6]. In addition, collision avoidance can be achieved by choos-

ing a velocity for A such that A + VA lies outside the VO. One approach is to set VA so

that A + VA lies on the intersection point of either of the VO tangent lines ±ε.

3.2.5. Summary

Depending on the application, any of the above methods may meet the prob-

lem constraints. Geometric containers is the approach of choice for domains with

discretized-time movement models as it is the cheapest and (depending on the move-

ment model) may yield no loss in accuracy. In continuous-time domains, one of the

latter choices is usually preferable, with sampling often being the cheapest approach,

followed by algebraic and geometric approaches. There is a trade-off with respect to

accuracy and computational cost. The latter approaches provide the most flexibility

when high accuracy and complex agent shapes are necessary.

3.3. Completeness in General MAPF

Recall that completeness means that an algorithm is guaranteed to terminate in

a finite amount of time. There are two parts to completeness:
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1. Termination with a solution if one exists. We call this solution complete.

2. Termination if a solution does not exist. We call this termination complete.

The proof for case 1 in MAPF has been shown extensively for A* [171] and

CBS [160, 110]. However, a proof for case 2 has so far remained elusive. In fact, CBS

and other search-based algorithms will run forever given a MAPF instance with no

solution. Even a simple instance like the one shown in Figure 3.7(a) will cause CBS to

run forever.

For CBS with Classic MAPF instances, it has been suggested [160] that practi-

tioners run a sub-optimal, polynomial-time, complete algorithm [97, 155, 90] in parallel

with CBS. In the case that no solution exists, the polynomial-time algorithm will report

this fact and then CBS can be terminated. Complete, sub-optimal algorithms have been

formulated for General MAPF [33]. However, polynomial-time algorithms for General

MAPF remain elusive.

Figure 3.7(b) shows a breadth-first search tree for the instance in part (a). In the

figure, each node depicts a joint-state, showing the action used to get to the state from

its parent. Circles containing loops mean wait actions and arrows mean motion to the

right or left. Some nodes lower in the tree are abbreviated with “...” for brevity. An

“x” means the node was pruned due to a conflicting combination of actions. Because

both agents can take actions such as waiting in place or moving back and forth without

coming into conflict, the search tree grows infinitely.

The reason for this infinite growth is related to the inclusion of time in the state

space. Adding the time dimension to a finite map like the one in Figure 3.7(a) makes

the state space infinite. This results in an infinite search space.

In spite of this infinite search space, it has been shown that the upper bound

on the number of joint-states in a Classic MAPF solution is O(|V|3) [97]. Therefore

any Classic MAPF algorithm can safely return NO SOLUTION once the length of

agents’ plans exceeds |V|3. However, a proof for a similar polynomial bound for Gen-

eral MAPF remains elusive.
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Figure 3.7.: Illustration of (a) a MAPF instance with no feasible solution, (b) a corre-
sponding breadth-first search tree and (c) a breadth-first search tree with
wait actions of 1/2 .
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Temporally-relative duplicate pruning is a novel technique to ensure completeness

for search-based MAPF algorithms including A*, CBS and CBICS. We first formally

define it, then show its applicability to both Classic MAPF and General MAPF.

3.3.1. Temporally-Relative Duplicate Pruning

Duplicate pruning is a technique commonly used with search algorithms in

graphs with cycles in order to eliminate exploring sub-optimal paths with loops [185].

A loop in a path visits the same state twice anywhere in the sequence of states. In MAPF,

loops are not recognized as duplicates because of the time dimension. In fact, a feasible

solution may correctly contain many, or even all agents visiting the same vertex more

than once (for example when one agent waits for another).

In Figure 3.7(b), each level in the tree represents a unique time step which dis-

tinguishes a joint-state at one level from the nodes above and below it. However, if

the way we distinguish between joint-states at different time steps is relaxed, dupli-

cates can be found. Two joint-states from different time steps that are identical when

the comparison of the time dimension is relaxed are called temporally-relative duplicates.

In Figure 3.7(b), a dashed line connecting a parent to child node means the child is a

temporally-relative duplicate of its parent or one of the parent’s ancestors. For exam-

ple, the leftmost child (node N1) of the root node (node N0) is a temporally-relative

duplicate of its parent because the location of agents are exactly the same in both the

parent and child nodes and the temporally-relative time is the same for each agent.

The node labeled N2 is a temporally-relative duplicate of N0.

Nodes with solutions containing temporally-relative duplicates have sub-optim-

al solutions and expanding these nodes is unnecessary for MAPF algorithms. Fur-

thermore, temporally-relative duplicates always occur with unsolvable instances, and

pruning them ensures completeness.

Temporally-relative duplicate pruning removes successors during expansion which

have been visited before in a temporally-relative sense. In this discussion, and as
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shown in Figure 3.7(b), we assume the Classic MAPF setting, using the breadth-first

search (BFS) [38] algorithm. Within the BFS, we include all k agents in the state space.

This is an important distinction from decoupled algorithms like CBS and CBICS which

plan subsets of agents at the low level. In Sections 3.3.2 and 3.3.3, we address the

General MAPF setting, CBS and CBICS.

BFS starts with an initial state, and then performs an expansion, which means

generating all successors of a node. For this, we use the conflict-aware successor gener-

ation algorithm, Algorithm 2.2 which generates S′, the Cartesian product of all single-

state successors which are non-conflicting. Figure 3.7(b) shows conflicting joint-states

with an “x” over them.

We define Π(S) to be the predecessor path of S such that Π(S) is a sequence

of joint-states reaching from the joint start state to S. We define a joint-state temporal

adjustment function which adjusts the time component of all single-agent states to be

relative to the earliest single-agent state:

∆t(S)={∀si∈S; (si.v, si.t− tmin(S))}

where

tmin(S)=MIN
si∈S

si.t

We determine the set of temporally-relative duplicates S′dup ⊆ S′ by perform-

ing a set-intersection of temporally-adjusted joint-states:

S′dup = ∆t(Π(S)) ∩ ∆t(S′)

Then all corresponding S′ ∈ S′dup are removed from S′:

S′ ← S′ \ corr(S′dup)

where corr() fetches original states corresponding to temporally-relative ones.
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This procedure is easily added to the JOINTEXPANSION routine shown in Algo-

rithm 2.2. It will prevent temporally-relative duplicated states from being added to the

OPEN list. For example, temporally-relative duplicate pruning will remove the left-

most child of the root {(A1, 1), (A3, 1)} in Figure 3.7(b) because when adjusted to be

temporally-relative {(A1, 0), (A3, 0)}, it is identical to the start state which is a member

of Π(S).

Temporally-relative duplicate pruning has two effects:

1. It eliminates sub-optimal paths from consideration in the search.

2. It renders the search-space finite.

With temporally-relative duplicates removed (e.g., eliminating child nodes link-

ed to parents with dashed lines in Figure 3.7(b)), the search tree is much smaller, saving

computation. Additionally, once all combinations of feasible locations have been ex-

plored (two locations for the red agent and two locations for the blue agents) no further

child nodes can be visited. Equivalently, the original infinite search space becomes fi-

nite. Hence, instead of growing forever, the tree is truncated allowing the search to

terminate and BFS recognizes that no solution exists. Detailed proofs are given in Ap-

pendix B.

It has been shown that if a solution exists to a “classic” MAPF problem, the

lowest-cost solution can have no more than O(|V|3) time steps [97]. Thus we can con-

clude that one can terminate any MAPF algorithm once candidate solutions reach a

cost of |V|3. By this logic, for the instance in Figure 3.7(a) with |V|=3, one can termi-

nate the algorithm once the BFS tree reaches a depth of |V|3=9. This would render BFS

complete, however, because this problem has a max branching factor of b=6 it would

perform O(69) expansions to do so. On the other hand, with temporally-relative du-

plicate pruning, the search space is exhausted after only 7 expansions.
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3.3.2. Temporally-Relative Duplicate Pruning in General MAPF

Now, we further generalize temporally-relative duplicate pruning to General

MAPF. The theory for temporally-relative duplicate pruning ultimately relies on mod-

ular arithmetic. That is, some time t is a duplicate of t′ mod∆, where t < t′ and ∆ is a

differential in action start times. If we make the assumption that all action durations

used by all agents are in Q+, the set of non-negative rational numbers, then ∆ is also a

rational number. Also, if the set of action durations is finite, then ∆ is guaranteed to re-

peat eventually, resulting in a temporally-relative duplicate. For this reason, we define

MAPFQ as MAPF with rational-valued action durations. Considering that in modern

computing, numeric representations are limited to discrete values and that many prob-

lems can be represented with a finite set of action durations, MAPFQ is a reasonable

surrogate for MAPFR (MAPF with real-valued action durations).

In order to transform the example problem in Figure 3.7 into a MAPFQ instance,

we change wait actions to be 0.5 duration. Doing so changes the search tree so that

levels in the tree are now staggered as shown in Figure 3.7(c). This also means that

some of the longer-duration actions may be duplicated in Π(S). The following shows

Π(S) for N1.

Π(N1) = [

S0={(A1, 0), (A3, 0)},

S1={(A1, 0), (A3, .5)},

S2={(A2, 1), (A3, 1)},

S3={(A2, 1), (A3, 1.5)},

S4={(A1, 2), (A3, 2)}

]
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the following shows ∆t(Π(S)) for N1:

∆t(Π(N1)) = [

S0
∆={(A1, 0), (A3, 0)},

S1
∆={(A1, 0), (A3, .5)},

S2
∆={(A2, 0), (A3, 0)},

S3
∆={(A2, 0), (A3, .5)},

S4
∆={(A1, 0), (A3, 0)}

]

Because S0
∆ = S4

∆, S4 would be pruned during the expansion of S3. The tempo-

ral adjustment correctly distinguishes between duplicates. For example, even though

the vertices are identical between S0 and S1, the blue agent is allowed to wait in place for

two time steps from S0 to S1 while the red agent is taking a longer action. Temporally-

relative duplicate pruning is guaranteed to make the search space finite for MAPFQ.

When no solution exists, enough temporally-relative states will be visited so that even-

tually no non-duplicated joint states can be generated, and the search will halt with no

solution. Detailed proofs of these claims are included in Appendix B.

3.3.3. Temporally-Relative Duplicate Pruning for a Subset of Agents

So far, we have seen how temporally-relative duplicate pruning works for cen-

tralized algorithms such as BFS or A*. For dynamically centralized algorithms such

as CBS or CBICS, agents are planned separately in the low level search. Duplicate

pruning cannot be applied in the same way for subsets of agents because an agent or

subset of agents may need to repeat actions multiple times due to the presence of other

agents. We would not want to prune such states in the low level search. However, the

influence of other agents is applied via motion constraints at the low-level. Thus we

can apply temporally-relative duplicate pruning in the local context to any generated
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states which occur after the end of the last motion constraint. If re-planning for agent

i given a set of motion constraints Mi, temporally-relative duplicate pruning can be

applied to states that occur after tmax(Mi). Other approaches are also possible, but are

outside the scope of this thesis. This guarantees completeness at both the low and the

high level and proofs for this claim is in Appendix B.

3.3.4. Summary

We have shown that temporally-relative duplicate pruning has desirable prop-

erties for MAPF algorithms, namely, increased efficiency and completeness guarantees.

It can be applied to search-based algorithms for both Classic MAPF and MAPFQ, a rea-

sonable surrogate for General MAPF. We also discussed an application for dynamically

centralized MAPF algorithms.

As described at the beginning of this section; no Classic MAPF instance can

take more than |V|3 time steps [97]. Hence, instead of eliminating temporally-relative

duplicates we could prune nodes with MIN(S.t)≥|V|3. Although this approach would

allow us to definitively claim completeness for Classic MAPF, the O(|V|3) bound (or

any bound) has yet to be proven for General MAPF.

Experimentally, we found that explicitly pruning temporally-relative dupli-

cates for small unsolvable Classic MAPF instances allowed termination significantly

before |V|3 steps were reached. For solvable instances we found that pruning tempor-

ally-relative duplicates had no statistically significant impact on runtime.

3.4. Wait Times in General MAPF

The algorithms in this thesis focus on finite graphs. However, some formula-

tions of General MAPF allow for arbitrary wait times [6, 37], meaning agents may wait

at a vertex for an arbitrary time duration, d(a)∈R+. Another natural extension would

allow arbitrary velocities.
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3.4.1. Durative Conflicts

In contrast to Classic MAPF in which conflicts are instantaneous, conflicts in

General MAPF are typically durative, meaning, the period of overlap for two conflict-

ing agents’ shapes may be longer than one instant in time. An example of a durative

conflict is shown in Figure 3.9. Given a pair of conflicting actions for a pair of agents,

the amount of time necessary for one agent to wait in order to avoid conflict with an-

other agents is called wait time. See Appendix Figure A.2 for an illustration of wait

time.

The wait time for avoiding conflict is also known as an unsafe interval [6, 199,

197] because it is the interval in which an agent cannot start traversing an edge with-

out coming into conflict. An unsafe interval [t, t′], may vary depending on the length

and relative angles of the edges being traversed, as well as the size and shape of the

agents. Details surrounding this phenomenon, including calculation of the duration of

overlap and are covered in Section 3.4.3. Unsafe intervals are an important component

of developing constraints for General MAPF as discussed in the next section.

3.4.2. Arbitrary Wait Times

Allowing arbitrary wait times can have several benefits: (1) path and solution

costs may be reduced in many cases, (2) the amount of work may be reduced in many

cases (due to both shorter paths and simpler conflict resolution) and (3) an unsolvable

problem may be made solvable. Figure 3.8(a) illustrates a scenario where the optimal

solution is for agent a to arrive at vertex x at exactly t=2. However, assuming fixed

wait times of 1 (shown by self loops), this is impossible because edge (as, x) has a

duration cost of 1.4. Again, with fixed wait times of 1, the next best alternative is for

agents b, c and d to move through node x first, followed by agent a. This will incur a

total cost of 23.8. Waiting for agent a to move first will also incur a total cost of 23.8.

Allowing a wait time of 0.6 for agent a (moving from as to ag will allow all

agents to proceed directly to their respective goals, without incurring extra cost on any
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Figure 3.8.: Pathological cases for General MAPF.

other agent. Thus the total cost is reduced to 20.4. Alternatively, agent a could begin

its motion immediately, but at a reduced velocity of 0.7.

Figure 3.8(b) shows a solvable instance and Figure 3.8(c) shows an unsolvable

instance. In these examples, each agent is already at its goal except for agent a which

needs to move from as to ag. Additionally, waiting is not allowed in any node except

the two nodes with self loops. In instance (b), an optimal solution will require agents

b-h to move back and forth, clockwise or counter-clockwise until the blank space lines

up such that agent a can arrive at the open space between its start and goal positions
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at the exact time that it is unoccupied. for example, if agents b-h move in the clockwise

direction (1.0 duration) and then back in the counter-clockwise direction (for a total of

t=2.0) and perform the same two actions again to arrive back at the start position (for

a total of t=4.0). Also, at the same time agent a performs four wait actions for a total

time of t=3.6. Then agents b-h move clockwise one step, which will leave the space

between agent a’s start and goal open at precisely t=5.0, while agent a traverses to the

open space to arrive at precisely t = 5.0. Finally, one more step puts agent a at its goal,

and one step clockwise returns all other agents to their goal position.

We observe from instance (b) that the ability to arrive at the goal depends on

the action durations to be rational (action durations need to have a common denomi-

nator). Thus instance (c) is unsolvable. No matter how many combinations of moves

the agents make, the gap will never line up for agent a to pass through without con-

flict. Thus solvability for fixed wait times in general for General MAPF instances is

reliant upon rational action durations. Furthermore, the amount of work can increase

exponentially as the resolution of the action durations increases. If example (b) were

to change the cost of the diagonal edges to 1.42 instead of 1.4. The length of the solu-

tion d would increase linearly, causing the base complexity of the problem O(bkd

base) to

increase exponentially.

The unsolvability and extraneous work that fixed wait times incurs can be al-

leviated by allowing arbitrary wait times. In instance (b), a wait action of duration 1.6

for agent a could be used to solve the problem in only 3 steps. In instance (c), a wait

action of 3−
√

2 would make the problem solvable.

3.4.3. Determining Arbitrary Wait Time

In order to determine the arbitrary wait time needed to avoid conflict, a binary

search algorithm can be used for actions ai, aj for two conflicting agents. The approach

is to test different time delays for agent ai until no conflict occurs. We start with a

delay value of ∆t=ai.s′.t−ai.s.t. If a conflict occurs with that delay, ∆t is doubled and
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a conflict check is performed iteratively until no conflict occurs. After a value of ∆t

for which no conflict occurs is found, binary search is performed between the previ-

ously conflicting delay time and ∆t until the difference between non-conflicting and

conflicting values for ∆t is within some accuracy threshold ε.

The delay time is not always the same for both agents in the conflict, but the

procedure can either be performed for agent j separately, or binary search can be ap-

plied in the negative direction for agent i to find the delay for agent j.

Although this approach is generic, it is limited in accuracy by the parameter

ε, and limits our usage to problem instances with rational action durations. In some

cases, a more accurate and computationally efficient solution is possible via a closed-

form equation to find the exact delay required. Figure 3.9 illustrates the use of a conic

equation to find the exact amount of delay required for collision avoidance for circular

agents.

Figure 3.9(a) shows the agents position and motion vectors. The agents start

their motion at the same time and their radii are .25 units. Figure 3.9(b) shows a

squared distance plot between the edges of the circles as a function of time. The portion

of the graph below zero indicates overlap of the circles.

Figure 3.9(c) shows a bivariate conic section (ellipse) which represents ∆t as a

function of time. Any combination of ∆t and time that falls inside the ellipse will result

in collision. Meaning, a delay of ∆t will cause a conflict at time t. If delay is increased

or decreased sufficiently, no conflict will occur. Thus the minimum time of delay for

agent i occurs at the top of the ellipse, and the minimum time of delay for agent j occurs

at the bottom of the ellipse. The derivation of equations for these values is detailed in

Appendix A.2.1.

Determining the velocity change needed to avoid conflict can be done in a sim-

ilar fashion, using binary search. An analytic method for minimum velocity change for

circular agents is detailed in Appendix A.2.3.

Note that the example in Figure 3.8(b) uses rational numbers for edge weights.

If the value 1.4 is changed to
√

2 (an irrational number) as in 3.8(c), the binary search
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Figure 3.9.: (a) Agent trajectories, (b) squared distance plot and (c) ellipse showing
collision intervals for varying delay.

method will not suffice, since an acceptable accuracy threshold can theoretically never

be reached. Hence, the binary search method is only valid for MAPFQ.

3.4.4. Implementing Arbitrary Wait Times in MAPF

For planning with arbitrary-duration wait actions the Safe Interval Path Plan-

ning (SIPP) [143] algorithm can be used. SIPP is an A*-based algorithm for finding a

safe and optimal path for an agent among moving obstacles with known trajectories.

In SIPP, the state space is augmented such that states are tuples (v, [t, t′]) where v ∈ V

is a vertex in G and [t, t′] is a safe interval. A safe interval is a contiguous time range in

which an agent may occupy vertex v without coming into conflict with any obstacles.

In environments applicable to canonical orderings such as the 2k neighbor-

hoods, Jump Point Search with Temporal Obstacles (JPST) [76] has also been success-

fully used for MAPF.

3.5. The Conflict Avoidance Table

The conflict avoidance table (CAT) is used with dynamically coupled algo-

rithms. As described in Section 2.4.4, the CAT stores the actions of all agents’ paths
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in a way that they can be looked up quickly. It functions as a tie-breaking mechanism

in the OPEN list. When there are multiple paths of equal cost, preference is given to

paths containing fewer conflicts with other agents. It has been shown to be an effec-

tive enhancement on 4-neighbor grid domains for selecting candidate solutions in the

independence detection (ID) framework [171], and has been shown to be useful with

CBS [160] and CBICS [200]. Outside of this thesis, the utility of the conflict avoidance

table has not been studied for General MAPF.

Tie-breaking in the OPEN list using the CAT can be done as follows:

1. During a node generation, determine the number of actions nc in the CAT that

the action a=(s, s′) conflicts with. Where s is the parent node and s′ is the newly

generated child node.

2. Store nc as an attribute of the newly generated node.

3. For the OPEN list’s comparison operator, prioritize states with equal cost (as a

secondary criterion) by lower nc.

In step 1, determining nc for a requires a lookup of other agents’ actions which

have time overlap with a in the CAT, followed by performing a conflict check. We will

refer to this process as a lookup+conflict check. With this approach, a conflict check

operation will occur at most once per node in the OPEN list.

The data structure for a CAT in Classic MAPF can be constructed to allow ran-

dom access for fast lookup and insertion times. However, more complex data struc-

tures are required for General MAPF. With arbitrary length intervals, one action in the

path of agent i may have full or partial temporal overlap with many actions by the

other k−1 agents. In the worst case one must check an action for agent i against all

other actions in the paths of all other agents. That is O(kd) operations where d is the

maximum path length of all paths in the solution. Some possible implementations

of this lookup mechanism are an interval tree or a hash table with direct addressing

quantized to the smallest possible action duration.
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An interval tree approach will incur O(kd log(kd)) operations per node in OPEN

(compared to O(k) for classic MAPF). A hash table approach will incur an expected

O(k`) operations per OPEN node where ` is the average time length of actions divided

by the bucket size of the hash table. Because most actions are not likely to land exactly

on the hash boundary, the time interval will usually span at least two buckets in the

hash table.

The key question is: Considering that lookups and collision checks are much more

expensive in General MAPF and a lookup+conflict check must occur at least once for each node

in the OPEN list, at what point does the computational cost of the CAT outweigh the benefits?

There are often many symmetric, optimal paths in grids and (more generically)

graphs where the problem has certain start/goal configurations. The simplest exam-

ple is that of cardinal grids (see Figure 3.10(a)), when the start and goal are separated

by ∆x and ∆y, the total number of points, area, that fall in optimal paths is of size

∆x∆y. In grid domains, area is computable directly, however, it can be computed in

a domain agnostic manner as will be explained later. Though area is polynomial in

the dimensional space, the number of combinations of possible optimal paths through

the optimal points is exponential [151]. For 2k neighborhoods, the number of opti-

mal paths is O(4
d

2(k−1) ) based on the central binomial coefficient where d=∆x+∆y, (i.e.,

Manhattan distance), but is also highly dependent on the ratio ∆x/∆y. Notably, this

asymptotic bound decreases with k – meaning the number of optimal paths decreases

exponentially as k increases.

G
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Figure 3.10.: Set of optimal path edges with (a) 4-neighbor, (b) 8-neighbor, and (c) 24-
connected grids. area, the number of grid cells in optimal paths, is 15, 9
and 3 respectively.
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This phenomenon is illustrated in Figure 3.10 where area is shown for domains

with 4, 8, and 16-neighbor grids. Comparing area in the examples, it is easy to see that

when actions allow direct, or near-direct movement toward the goal, the number of

optimal edges from start to goal decreases, hence area decreases. This means that when

performing tie-breaking which the CAT facilitates, there are fewer options to tie-break

between. Thus we hypothesize that the CAT will be less effective as area decreases.

Because this type of analysis is domain-specific, we propose a generic sampling-based

approach to computing a “directness" statistic ratio – a measure which we hypothesize

is correlated to the effectiveness of the CAT.

1. Randomly create a set of problem instances I for the target environment.

2. Compute area, the number of vertices in all optimal paths from start to goal

for each problem instance. This can be done using a depth-first or breadth-first

search or by using an A* search from start to goal, and then counting nodes on

the OPEN list for which f = C∗.

3. Compute length, the length of any optimal path - that is, the number of actions

needed to traverse from start to goal.

4. Compute ratio, the mean of area/length
d over all instances in I. Where d is the di-

mensionality.

Empirically, when ratio is much greater than 1, the conflict avoidance table will

be of benefit. When ratio is close to 1, the impact of a conflict avoidance table will be

marginal or negative.

We tested this hypothesis on a 2-dimensional environment with varying con-

nectivity. First, we computed ratio for 4, 8, 16, and 32-neighbor grids (see Table 3.1).

Next, we ran CBS on 4, 8, 16 and 32-neighbor grids. Figure 3.5 shows the reduction

in CBS high-level conflicts when the CAT was used in each of the environments. The

experiments for Figure 3.5 consist of 100 random start/goal configurations for varying
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Table 3.1.: Mean of ratio statistic for 1000 samples

Configuration area length ratio
4-neighbor 56.1444 14.0602 1.9966
8-neighbor 27.9296 10.2445 1.4265

16-neighbor 16.9658 5.94673 1.3632
32-neighbor 11.4157 4.59839 1.2413

numbers of agents. Instances that took more than 5 minutes to find a solution were

terminated early and their results are included in the averages.

We found that the reduction in conflicts was directly correlated to ratio, and that

in the case of the 32-neighbor environment, the CAT was of little benefit. In addition,

the overhead of maintaining the CAT negatively impacted the runtime. In the case

of the 32-neighbor environment, almost all of the runtimes were lower when the CAT

was not used.
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Figure 3.11.: Comparison of the reduction in mean number of total conflicts in CBS
when using a conflict avoidance table planning on an unobstructed 64×
64 grid.
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3.6. Summary

We provided a new formal definition of General MAPF which allows for a

wider range of applications by allowing actions of arbitrary duration and velocity;

and agents of arbitrary size and shape. Because of this, conflict detection takes a con-

siderable amount of extra attention. We provided a short survey of conflict detection

techniques. One must decide on a conflict detection mechanism that is accurate and

fast, and preferably does not return false positives and never returns false negatives.

We explained the concept of durative conflicts. We provided a new analysis

of completeness for General MAPF and a new approach for guaranteeing completeness

for MAPF in general called temporally-relative duplicate pruning (TRDP). We proved that

completeness can be guaranteed in General MAPF, assuming action durations are ra-

tional and temporally-relative duplicate pruning is performed. Finally, allowing ar-

bitrary wait times has multiple benefits, including better cost quality for solutions,

exponentially less work, and may allow solvability when fixed wait actions will not.

Finally, we provided a new statistic for describing the ratio of equivalent-cost

alternate paths in a General MAPF domain which is useful in determining whether to

use a conflict avoidance table with dynamically centralized algorithms.
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4. Extensions for Increasing-Cost Tree

Search

4.1. The Increasing-Cost Tree Search

Increasing-Cost Tree Search (ICTS) [163] is an optimal search algorithm for

MAPF. ICTS is complete, but only if a solution exists. In Classic MAPF, it was shown

to be state-of-the-art for certain types of problems such as grid maps with wide open

areas [52, 85]. ICTS is a two-level algorithm; we describe each level next.

4.1.1. High Level

At its high level, ICTS searches the increasing cost tree (ICT). Every node in

the ICT consists of a k-ary vector 〈C1, ..., Ck〉 which represents the question: Is there a

feasible solution where the path cost of each agent ai is exactly Ci? The total cost of an ICT

node I is C=C1 + ... + Ck. The objective is to find an ICT goal node of minimal C. The

ICT root contains the k-ary vector of the shortest path cost from starti to goali in G for

each agent, ignoring other agents. A child in the ICT is generated by increasing the

cost for one of the agents by an increment value δ=1. Figure 4.1.1 depicts an ICT for

3 agents. The root node contains the optimal path costs for individual agents ignoring

conflicts: 〈10, 10, 10〉. The leftmost child is created by incrementing the first element to

yield 〈11, 10, 10〉, the next child increments the second element to yield 〈10, 11, 10〉 and

so on. Dashed lines indicate duplicate children which are pruned.

An ICT node containing 〈C1, ..., Ck〉 is a goal if there is a feasible solution such

that the individual path cost for each agent ai is exactly Ci. We use ∆ to denote the
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Figure 4.1.: Unit-cost ICT with cost vectors

depth of the lowest cost ICT goal node. Since all nodes at the same height have the

same total cost, a breadth-first search of the ICT will find the optimal solution.

4.1.2. Low Level

The low-level acts as a goal test oracle for the high-level. For each ICT node gen-

erated by the high-level, the low-level is invoked. Its task is to find a feasible solution

such that the cost of the individual path of agent ai is exactly Ci. For each agent ai, ICTS

stores all single-agent paths of cost Ci as a directed acyclic graph with no duplicated

edges or vertices. This compact representation is also known as a multi-value decision

diagram (MDD) [170]. The low-level searches the Cartesian product of the MDDs in

order to find a set of k feasible paths. If a feasible set of paths exists, the low-level

returns true and the high-level halts. Otherwise, false is returned and the high-level

resumes its search. In Figure 4.1.1(a) the low-level returned false for 〈10, 10, 10〉 (the

root of the ICT) so 3 successors are generated. The next node visited by the high-level

is 〈11, 10, 10〉. Assuming the low-level returns true at this node the high-level would

then halt.

4.1.3. Pruning Enhancements

Several pruning enhancements have been introduced for ICTS [161]. These

techniques search for a solution at the low level for m < k agents. If there exists a

subset of m agents for which no valid solution exists, there cannot exist a valid so-

lution for k agents. Thus, the low-level can immediately terminate with false. Since

building a Cartesian product for a subset of agents takes exponentially fewer steps,
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it is often worth testing the Cartesian product of subsets of agents for feasibility be-

fore committing to a testing a full k-agent Cartesian product. Experimentally, testing

m-agent subsets for m=2 and m=3 was shown to yield a significant improvement in

performance. In general, settings of m=2 performed the best. This enhancement is

called Simple Pairwise Pruning (SPP).

Additionally, analysis of conflicts of the Cartesian product between m < k

agents’ MDDs allows for eliminating mutually-conflicting nodes from the individual

MDDs. This makes the individual MDDs sparser, potentially allowing for elimination

of even more MDD nodes versus the Cartesian product of other agents. Addition-

ally, this speeds up the process of computing the cross-product of all k MDDs. Again,

settings of m=2 performed the best. This enhancement is called Enhanced Pairwise

Pruning (EPP).

4.2. Sufficient Conditions for Completeness and Optimality

Although the comptational complexity of ICTS is discussed in the literature,

to our knowledge, no formal proof of optimality and completeness for ICTS was ever

published [162, 161, 163]. We offer a proof here as follows: We first show that all

possible cost combinations are explored in an increasing manner until a goal is found.

Next, we show that the low-level is optimal and complete. Finally, we show that if a

solution exists, ICTS is guaranteed to find it.

Lemma 4.2.1. In the ICTS High-Level, all possible cost combinations for all agents are explored

in order of increasing sum-of-costs until a goal is found.

Proof. Each level in the ICT contains all possible cost combinations for a fixed sum-

of-costs for all agents and the sum-of-costs is strictly increasing as the level increases.

Assuming the low-level is complete, a breadth-first search of the ICT guarantees an

optimal solution will be found if one exists because each level is explored in its en-

tirety before moving on to the next level. By contradiction, assume that a sub-optimal
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solution was found by ICTS on level ` of the ICT. This would mean that no solution

was found on any level <`. But this is impossible since an optimal solution must lie on

some level <`. Thus, either the low-level has returned an invalid result for some node

in a previous level, or some cost combination has been skipped in a previous level.

This contradicts the known properties of breadth-first search, or else it contradicts our

assumptions about the low-level.

Now that we have shown that the high-level will explore all possible lowest

costs until a goal is found, we show that the low-level is complete.

Lemma 4.2.2. The low-level is complete.

Proof. The low-level operates on a set of k finite-sized MDDs. Therefore, the search

space is finite. We assume that the low-level uses the successor generation scheme

from Algorithm 2.2 and depth-first search. Because depth-first search is complete for

finite state spaces [38], then a joint state where all agents are in their goal configuration

is guaranteed to be found if one is reachable. Hence, the low-level is guaranteed to

return the correct result, whether a goal is reachable or not.

We now combine the proofs to show that ICTS is optimal and complete.

Theorem 4.2.3. ICTS is optimal and complete if a solution to the problem instance exists.

Proof. Per Lemma 4.2.1, the ICTS high-level is guaranteed to be optimal if the low-level

is guaranteed to be complete. The low-level is guaranteed to be complete per Lemma

4.2.2. Therefore, ICTS is guaranteed to be optimal and complete (if a solution to the

problem instance exists).

Observation 4.2.4. ICTS is incomplete if no solution to the problem instance exists. This

is because the search space of the high-level is infinite. We conjecture that temporally-relative

duplicate pruning can be used to allow ICTS to terminate in the case no solution exists.

Recall from Section 3.3.1 that temporally-relative duplicate pruning prunes du-

plicate states when a state is re-visited in a temporally-relative sense. We conjecture
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that ICTS can be made to terminate in the case that a solution does not exist as follows:

First, perform temporally relative duplicate pruning at the low-level. Second, compare

the size of the low-level tree for an ICT node with that of its parent.

Because temporally-relative duplicate pruning makes the search space finite

per Lemma B.0.8, if the parent and child explored the exact same number of nodes,

it means their finite search space is identical in spite of the child node having a cost

limit increase. Therefore, we hypothesize that further exploration of the child branch

is guaranteed not to lead to a solution and can be pruned. If the instance is unsolvable,

eventually all branches at the high level will be pruned, allowing ICTS to terminate.

Further clarification and proofs of this hypothesis are beyond the scope of this thesis.

4.3. Re-Formulation for General MAPF

Several changes to the original ICTS algorithm are necessary for General MAPF.

The formulation of the new high level algorithm is dependent on the structure of the

MDDs built by the low-level. Figure 4.2 depicts a single-agent pathfinding problem

on a grid where the agent must move from the start coordinate B1 to the goal coor-

dinate A3. Figures 2(b) and 2(c) depict the MDD for optimal paths when the grid is

4-connected, and fully connected – where every grid square is directly connected to

all other grid squares. The x-axis shows cost which increases as the agent moves from

the start toward the goal with Euclidean costs. Because the 4-connected MDD has unit

costs, it results in a single sink node at the goal. However, when fully-connected, the

resulting MDD has multiple sink nodes in the highlighted interval (
√

5,
√

5 + 1]. This

leads to the simple observation that with non-unit costs, for each ICT node multiple

goals may be found in the interval (C, C + δ].

Setting δ=ε, the smallest possible increment, will ensure optimal results, but

may cause the ICT depth, ∆, to be extremely large. On the other hand, if we set δ

to a large value and change the low-level search to solve an optimization problem

(instead of a satisfaction problem), the result will also be optimal. While this would
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incur a smaller ICT, our new choice of δ might push the value of C significantly past

the optimal solution cost C∗, causing a large computational cost at the low-level. Since

the value of C∗ is usually unknown, we recommend setting δ to be a moderate value

in order to mitigate the size of ∆ and reduce the risk of drastically overshooting C∗.

4.3.1. Reformulated High Level Search

Algorithm 4.1 shows pseudo code for the reformulated high level search. In

order to find a solution with cost C∗ in the interval (C, C + δ], we generalize ICT nodes

to have a vector of cost intervals: 〈(lb1, ub1], ..., (lbk, ubk]〉. The root node now consists

of the vector 〈(opt1, opt1], ..., (optk, optk]〉, where opti is the cost of the optimal path for

agent i, ignoring other agents (line 4). A child ICT node I′ is generated from its parent I

A

B

1 2 3

(a)

B1

B2
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Figure 4.2.: (a) Problem instance and (b) associated MDD for all paths of cost between
2 and 3 for 4-Connected Grid (b) and (c) Fully Connected Grid
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Algorithm 4.1. Reformulated ICTS High Level Search

ICTS
1: Input: A MAPF instance, δ: Increment value
2: incumbent← ∞: Best solution cost so far
3: best← ∅: Best solution so far
4: Build and push the root ICT node onto OPEN
5: while OPEN not empty do
6: I← OPEN.pop()
7: if h(I) ≥ incumbent then
8: return best
9: C ←LOW-LEVEL(I,incumbent)

10: if C = h(I) then . Was goal found?
11: best← I
12: return best . This is the optimal solution
13: else if C < incumbent then . New incumbent?
14: incumbent← C
15: best← I
16: else
17: for i in 1 to k do . Generate successors
18: I′ ← I
19: I′.lbi ← I.ubi
20: I′.ubi ← I.ubi + δ
21: Compute h(I′) by building ubi-limited MDDi
22: OPEN.push(I′)

by setting I′.lbi to I.ubi and incrementing I′.ubi by δ (lines 19, 20). Figure 4.3.1 shows an

example of an ICT with δ=1. The root node of the tree contains vectors where both lbi

and ubi contain optimal costs of 10 (with the abuse of notation (10, 10]) for each agent.

Now, instead of reporting the existence of a solution in the ICT, the low-level will detect

and report the best cost C, in the summed-interval (lb, ub] = (lb1 + ... + lbk, ub1 + ... +

ubk] if a feasible solution exists, ∞ otherwise (line 10). With cost-interval ICT nodes, it

is now most efficient to search the ICT in a best-first manner. We define the minimum-

cost single agent solution in the interval (lbi, ubi] from each MDDi as besti and use this

for a lower-bound heuristic for an ICT node: h(I) = best1 + ... + bestk (line 21).
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Figure 4.3.: Reformulated ICT with cost interval vectors

4.3.2. Sufficient Conditions for Optimality and Completeness:

In unit-cost domains, the first feasible solution found in the high-level is guar-

anteed to be optimal. This is not necessarily the case in non-unit cost domains. If the

low-level reports that I in level ` of the ICT has a feasible solution of cost C, there are

two possibilities:

1. C=h(I): I is a goal (line 11). Because OPEN is ordered by h(I), there can be no

other node in the OPEN list that contains a better solution. Therefore, in this case

optimality is guaranteed.

2. C> h(I): I may not contain an optimal solution. We set incumbent←C (line 14),

and then continue the search until a new ICT node with a lower cost is found,

in which case incumbent is updated again, or h(I)≥ incumbent (line 7), at which

point we are guaranteed that incumbent is the best cost.

Continuing the high level search until C=h(I), or h(I)≥ incumbent, may cause

up to k-1 additional levels past ` to be searched to ensure optimality in the worst case.

For instance, if δ=1+ε and the difference between C∗ and C is 1, theoretically, the cost

of one agent could be decreased by 1 and then each agent’s cost could be increased

by 1/k, to result in a cost equal to C∗. This situation would require an additional k−1
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additional levels to be generated before the upper cost bound of each of the k−1 agents

could be increased to allow the 1/k additional cost for each agent.

This reformulated algorithm is guaranteed to be complete if a solution to the

problem exists. However, observation 4.2.4 also applies to the subset of General MAPF,

MAPFQ. Therefore, we conjecture that ICTS can be made complete with temporally-

relative duplicate pruning in the case no solution exists as well.

4.3.3. Reformulated Low Level Search

The low-level determines the best cost of a feasible solution for I if one exists.

First, the low-level builds MDDi for each agent from starti to goali respectively. This

can be done using a depth-first or breadth-first search. In this process, the lowest cost

path in the interval (lbi, ubi] is saved as besti for use in the heuristic function h(I).

In order to find the lowest cost solution, a search of the joint k-MDD space

(Algorithm 4.2) is performed. The root node of the low-level, Iroot={MDDroot
1 , ...,

MDDroot
k }, is a joint state containing the root nodes from MDD1,...,MDDk. S, the set

of joint state successors of S (line 9) are generated using joint branching as defined in

Algorithm 2.2. A feasible solution is found when a joint state is visited such that all

si ∈ S=goali (line 5).

The low-level continues until one of the following occurs: (1) the search is ex-

hausted or (2) a solution that is optimal in the joint-MDD space is found based on

h(I) (line 17). If no solution is found, ∞ is returned. If a feasible solution is found

with C > h(I) (line 6) it is saved as the new incumbent, but it is not necessarily op-

timal and the low-level must continue. If the low-level only finds a feasible solution

with C > h(I), more ICT nodes may need to be explored at the high-level to ensure

optimality.
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Algorithm 4.2. reformulated ICTS Low Level Search

JOINTDFS
1: Input: S: A joint state, incumbent: Best cost so far
2: C ← ∑k

i=1 c(si ∈ S) . Get sum of costs
3: if incumbent < C then . Not a better solution
4: return incumbent
5: if All agents are at their goal then
6: incumbent← C . Mark as best so far
7: return incumbent
8: S← JOINTEXPANSION(S) . Expand S
9: for S′ ∈ S do

10: C ← JOINTDFS(S′, incumbent)
11: if C < incumbent then
12: if satis f icing then . Return first solution...
13: return C
14: if C = h(I) then . Return optimal solution
15: return C
16: incumbent← C
17: return incumbent

4.3.4. Pruning Enhancements

The SPP and EPP enhancements are still valid for General MAPF with no sig-

nificant changes. Our empirical results include the SPP enhancement.

4.4. Sub-Optimal Variants

Previous attempts in formulating a bounded sub-optimal variant of ICTS for

Classic MAPF yielded mixed results [3]. These variants increase the individual cost of

all agents at each level in the ICT, effectively increasing the sum-of-costs by k at each

level. The optimal formulation of ICTS was faster on problem instances with low agent

density (e.g., a large map with few agents), but the sub-optimal variant was faster on

problem instances with high agent density. For General MAPF, it is possible to obtain

a much tighter cost bound, and the effectiveness is not adversely affected by the agent

density of the problem instance.
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4.4.1. ε-ICTS

Instead of searching the k-MDD space for an optimal solution, one can treat the

low-level as a satisficing search and exit upon finding the first feasible solution (See

algorithm 4.2 line 12). Assuming a solution with C ≥ h(I) is found at the low-level,

an immediate exit may result in a significant time savings in the low-level as well as

a significant pruning of ICT nodes in the high-level (up to k−1 levels of search may be

avoided in the best case).

For flowtime, the cost of each single-agent path is at most δ greater than op-

timal, thus the overall bound on sub-optimality is guaranteed to be no greater than

ε=kδ. Therefore a specific ε can be achieved by setting δ, though very large or small

values may negatively impact performance. Additionally, a more precise bound on

sub-optimality is returnable as C− h(I), the difference between the actual cost and the

lower bound.

4.4.2. w-ICTS

In order to obtain a weighted bound on sub-optimality, as the sub-optimality

bound for ε-ICTS is kδ, δ can be adjusted on the fly for each ICT node to guarantee

a weighted bound w > 1. We initialize the root in the same way as in the optimal

algorithm, then for the generation of each ICT node I′ thereafter, set δ=(w− 1)h(I)/k.

4.5. Theoretical Analysis

The time complexity of the high level search is a combination of three factors:

(1) The size of the MDDs used at the low-level and the search space required to build

the MDDs; (2) The computational complexity of the low level search; (3) The compu-

tational complexity of the high level search.
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4.5.1. MDD Size

When building an MDD for agent i at the low-level, a cost-limit parameter ubi

is supplied, yielding MDDi=(Vi, Ei), a time-extended directed acyclic graph for all

paths from starti to goali with cost ≤ ubi. ubi is incremented by δ as the high level

search proceeds, causing the size of MDDi to increase. Eventually, Vi will span every

vertex in V and after that point, |Vi| will only increase by |V| with each increase of ubi.

Hence in unit-cost domains, the change in |Vi| between ubi and ubi + δ is bounded by

|V|. For example, on a 5x5 grid, the change in |Vi| as ubi increases by 1 will never be

greater than 25.

In non-unit time step domains, assuming that there are at least two discrete

action durations allowed (e.g. 1 and
√

2 as in 8-connected grids), and at least one

of the action durations shares no common denominator with the others, the increase

in |Vi| is upper-bounded by |V|/r where r is the resolution of cost. Continuing our

example with the 5x5 grid, with r=10−3, the change in |Vi| can be no greater than

25,000. Although the rate of MDD growth is still linearly bounded, there is a much

steeper growth. The number of operations required to build the MDD is, in the worst

case, linear in |V|, d and r. If a very fine resolution is supplied for r, e.g., IEEE floating-

point precision, optimal ICTS may spend a lot of time to save a very small amount of

cost. Fortunately, a coarse setting of r may be feasible for many applications.

4.5.2. Low Level Search Complexity

Because MDDs contain only ubi-bounded paths the average branching factor

for MDDs, bmdd, is typically much smaller than bbase. Our experiments showed an av-

erage OD-style branching factor of only 1.54 at the low-level on 8x8, 8-connected grids

with 10 agents. Recall from Section 2.4.2 and Algorithm 2.2 that operator decompo-

sition repeats the states of some agents in a joint-state expansion to achieve a lower

branching factor. With OD-style branching, the depth of the low level search is O(dk)

where d is the max depth of all MDDs, resulting in a complexity of O((bmdd)
dk).
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4.5.3. High Level Search Complexity

The number of nodes at level ` of the ICT (with duplicates removed) is the

same as the number of terms in a multinomial coefficient [123], the number of ways of

adding k positive integers that add up to `. Hence the size of the ICT is: ∑∆
`=0 (`+k−1

k−1 )

= (k+∆)!
k!∆! =O(MIN(∆k, k∆)). Assuming the number of agents is fixed, this is ∆k. When a

candidate solution is found at depth ∆, an additional k− 1 levels of the ICT may need

to be explored in the worst case to prove optimality. Therefore the overall complexity

of ICTS is: O((bmdd)
dk(∆+k−1)k).

4.5.4. Sub-Optimal Variants

Let `≤∆ be the shallowest level of a feasible solution in the ICT. In the best

case, the k deepest levels in the ICT tree may be pruned, including all remaining nodes

in level ` plus k−1 levels past `. Let the average MDD depth at `−1 be d−1 and at

`+k−1 be dk−1. With OD-style branching, the amount of savings could be up to (`+

k−1)k(bmdd)
kdk−1−(`−1)k(bmdd)

kd−1 which is O((`+k)k(bmdd)
kdk−1).

4.6. Experimental Results and Analysis

All empirical tests were conducted on a machine with 64 Intel Xeon (r) cores at

2.2GHz with 128 GB of RAM. Test sets consist of 100 random instances of the MAPF

problem with varying numbers of agents on 4, 8, 16, and 32-connected grid domains

also known as 2k neighborhoods [151] with wait actions allowed. Any instances taking

longer than 300 seconds to complete were terminated and marked as a failure.

4.6.1. OD-Style Versus Full Branching

In order to quantify the differences between OD-style and full branching, we

configured the planner in two ways: 1) Worst-case simulation, where ID is turned off

and the low-level is set not to exit immediately when finding a solution, but to search

78



the entire joint-MDD space; and 2) average case simulation, where ID is turned on and

the low level is allowed to exit as soon as an optimal solution is found. We ran 100,

10-agent tests in 8x8 grids with both branching styles. Table 4.1 displays the mean

statistics for various grid connectivity settings. In the worst-case simulation, we see

a tradeoff between the number of node generations and collision checks. OD-style

branching generates more nodes in non-unit time step domains, but incurs fewer over-

all collision checks, especially with higher branching factors. This tradeoff suggests

that in general, when collision checks are expensive, OD-style branching is preferred

and when node generations are expensive, full branching is preferred.

Let O and F be the sets of nodes of the search trees created at the low-level

by OD-style branching and full branching respectively in the worst-case scenario. OD-

style branching only calls succ(si) for one si ∈ S (with si.time=tmin) in the Cartesian

product. Hence tmin ≤ t′min for all S and S′ in O. Because full branching calls succ(si)

for all si having minimum time, tmin < t′min for all S and S′ inF . HenceF ⊆ O, therefore

|F |≤ |O|. This explains the difference in the number of search nodes in the worst-case

as shown in Table 4.1. However, as evidenced by the statistics for the average-case

simulation, OD-style branching appears to save a small amount of work.

Worst-Case Simulation
Search Nodes (in thousands) Collision Checks (in millions)

Conn. 4 8 16 32 4 8 16 32
OD 21.6 3.7 166.3 311.4 1.18 .50 80.27 198.30
Full 22.7 1.6 102.3 183.5 1.25 .51 115.68 666.31

Average-Case Simulation
Search Nodes (in thousands) Collision Checks (in thousands)

OD .16 .91 9.00 17.16 4.33 81.05 231.15 371.47
Full .24 .96 7.45 17.53 4.49 91.31 223.07 384.90

Table 4.1.: Comparison of average and worst-case scenario for OD-style versus full
branching for 10 agents on 8x8 grids.
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(a) (b)

Figure 4.4.: Performance of ICTS versus A* and CBS on 4, 8 and 16-neighbor grids.

4.6.2. Best Setting for δ

We ran tests for 10 agents on 8-neighbor, 8x8 grids for different settings of δ

with action costs of 1 and 1.4 for cardinal and diagonal actions respectively. Run times

were best with a value of 1 and very similar for all values of δ in the range .4∼1.4 and

performance degraded outside of that range. Considering that for 8-neighbor grids,

4 actions are diagonals with a cost of 1.4 and 5 actions have a cost of 1 (4 cardinal

actions and 1 wait action), actions with a cost of 1 are slightly more likely. This gives

a rule-of-thumb that the best setting for δ is the most commonly occurring action cost.

Additionally, with a set M of unique action costs, the "sweet spot" for δ lies in the range

[max(M)−min(M), max(M)].

4.6.3. ICTS versus A* and CBS

As an initial test, we compared A* and CBS against the reformulated ICTS al-

gorithm. Both A* and ICTS use OD-style branching and the ID framework, solving

only conflicting agents jointly. The CBS algorithm is using continuous-time collision

detection and the conflict prioritization (PC) enhancement from ICBS [25]. Our initial

analysis shows that the conflict avoidance table (CAT) is ineffective and often detri-
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mental for the high branching factor domains of General MAPF, hence is not used. All

algorithms use a time resolution of r=10−3. The ICTS algorithm is using an increment

of δ=1 and the simple pairwise pruning enhancement.

Figure 4.4 shows the mean time to solution (with failure times of 300 sec aver-

aged in) of 100 trials (y-axis) and the number of agents (x-axis). ICTS and CBS clearly

dominate A* and have nearly identical run-times in 8x8 grids, but in 64x64 grids ICTS

clearly dominates CBS for 8 and 16-connected domains (non-unit costs), but not in

the 4-neighbor domain (unit costs). These results may indicate a strength in ICTS for

non-unit cost domains, however, this is an area that needs further research.

4.6.4. Sub-optimal variants

We ran both ICTS and the sub-optimal variants on 64x64 grids with δ=1.0,

w=1.5, and both r=10−3 and r=10−6. The results for the latter setting of r are shown

in Figure 4.5. The results for the former setting are not as dramatic, but show the

same trend. Figure 4.5(a) displays the mean time to solution with failure times of 300

seconds averaged in (y-axis) and number of agents (x-axis) and Figure 4.5(b) shows

the percentage of problems solved in under 300 seconds. Run times for both ε-ICTS

(a) (b)

Figure 4.5.: Performance of sub-optimal variants versus ICTS on 4, 8 and 16-neighbor
grids.

81



Performance on 2k Neighborhoods
Cost Time (sec)

Conn. 4 8 16 32 4 8 16 32
ICTS 1283 1013 1012 1005 73 170 132 181

ε-ICTS 1283 1041 1013 1010 73 72 24 54
w-ICTS 1284 1051 1051 1020 40 20 22 71

Ratio Versus Optimal ICTS, 4-neighbor
Cost ratio Time ratio

ICTS 1.0 .79 .79 .78 1.0 2.33 1.81 2.48
ε-ICTS 1.0 .81 .79 .79 1.0 .99 .33 .74

w-ICTS 1.0 .82 .82 .80 .55 .27 .30 .97

Table 4.2.: ICTS and sub-optimal variant performance for various branching factors
planning for 30 agents on a 64x64 grid.

and w-ICTS are better for higher branching factor domains compared to run times in

4-neighbor domains.

Table 4.2 displays partial results from Figure 4.5 for 30 agents. Note that not

only is the time to solution in the sub-optimal algorithms lower than for 4-neighbor

grids, but the solution quality is better. For example ε-ICTS on 16-neighbor grids yields

a mean 21% improvement on solution quality and a 3× improvement on solution time

versus ε-ICTS on 4-neighbor grids. This surprising result suggests that higher quality

paths can be achieved in less time by using finer discretization in agent actions and

using a sub-optimal solver.

4.7. Summary

In this Chapter, we explained the Increasing-Cost Tree Search Algorithm (ICTS).

We presented the first proofs for completeness and optimality of ICTS. We introduced

novel extensions for General MAPF domains. These extensions are general, and allow

ICTS to be used with virtually any General MAPF instance. We showed that it has
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better performance than multi-agent A* and comparable performance to CBS in many

settings.

We introduced two new bounded sub-optimal variants of ICTS: ε-ICTS and w-

ICTS. We showed that these enhancements allow significant performance improve-

ments over optimal ICTS without a significant impact on solution quality.
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5. Extensions for Conflict-Based Search

5.1. Conflict-Based Search

Conflict-Based Search (CBS) [160], shown in Algorithm 5.1, is an optimal state-

of-the-art algorithm for MAPF. CBS can be decomposed into three abstract pieces:

1. A conflict detection mechanism. E.g., collision detection (See Section 3.2).

2. A way to represent constraints. For example, a constraint for an agent to avoid

an action at a specific time (See Section 5.3).

3. A low-level single-agent (or multi-agent) solver capable of planning with con-

straints. For example, A* [69], Safe Interval Path planning (SIPP) [143] or Jump

Point Search with Temporal Obstacles (JPST) [76] (See Section 5.6).

CBS uses a two-level search. The high level searches the conflict tree (CT). An

example of a CT is shown in Figure 5.1 (b). Each node N in the CT contains a set of k

x y

z

A

B

C

1 2 3
(a)

{}{}{}

{B2@1}{}{} {}{B2@1}{}

{B2@1}{B2@1}{} {B2@1}{}{B2@1} {B2@1}{B2@1}{} {}{B2@1}{B2@1}

x y

y z x z

(b)

Figure 5.1.: (a) An example Classic MAPF instance and (b) a partial CT for the instance.
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Algorithm 5.1. Conflict-Based Search

1: Input: A MAPF instance
2: Plan N.Π ignoring conflicts, insert N into OPEN
3: while OPEN not empty do
4: N ← best node from OPEN
5: if No conflict between all πi, πj ∈ N.Π then
6: return N.Π
7: else . Perform a split by creating two child nodes
8: N1 ← N
9: N2 ← N

10: Add a constraint to N1 for agent i to avoid conflict
11: N1.Π.πi ←Replan(πi)
12: Add a constraint to N2 for agent j to avoid conflict
13: N2.Π.πj ←Replan(πj)
14: Add N1, N2 to OPEN
15: return NO SOLUTION

paths N.Π= {π1, ...πk}, representing a possible solution. (N.Π is not shown in Figure

5.1 (b).) N.Π for the root node is constructed using a low level search without taking

other agents into account (line 2). N.Π is checked for conflicts between paths (line 5). A

conflict is defined minimally as a tuple 〈ai, aj〉where ai and aj are the conflicting actions

from πi and πj. In Section 5.2 we will provide more details.

If no conflict is found, N.Π is a feasible solution and the algorithm terminates

(line 6). If a conflict is found, a split is performed, meaning two child nodes N1 and

N2 are generated with constraints c1 and c2 respectively. These constraints cause the

low-level to avoid the conflict (lines 10, 12). This is shown in Figure 5.1 (b). At the root

node, a conflict between agent x and y is detected and two child nodes are generated.

Constraint sets are shown in curly brackets with the location and time step. For ex-

ample, B2@1 means the agent cannot occupy position B2 in the example instance from

Figure 5.1 (a) at time step 1. In Section 5.3 we discuss several choices for representing

constraints.

Next, the conflicting agents are re-planned to respect the new constraints and

their paths are updated in the child nodes (lines 11, 13). Constraints are added cumu-

latively as the CT deepens, where child nodes append to the constraint sets of their
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parent nodes as shown in Figure 5.1 (b). Eventually, enough constraints are added in

order to allow a feasible solution. These CT nodes are placed into an OPEN list (line

14) which is prioritized by flowtime. The search terminates when a feasible solution is

found or when the OPEN list is empty.

In the next sections, we discuss details of the three pieces of CBS – the low-level,

conflicts and conflict detection, and constraint representation with novel techniques

for constraint generation. Then we discuss areas of research regarding the high-level

search itself. This is followed by novel contributions on sub-optimal search and theo-

retical analysis.

5.2. Conflicts

The notion of a conflict was explained in detail in Section 3.2. Essentially, a

conflict occurs when two agents’ shapes or volumes overlap in the same time time

interval (also known as a collision). It is possible to change or extend the notion of

conflicts for CBS. For the scope of this thesis, we do not explore alternative definitions

of conflict other than collisions, except to note that it has been done successfully. For

example, in k-robust MAPF [12], the notion of a conflict for CBS is extended in time, so

that agents’ shapes must not occupy the same space for at least k actions.

5.2.1. Conflict Types

The concept of a conflict has meaning at the individual action level in the sense

that two actions may conflict. It also has meaning at the path level in the sense that two

paths may have a series of action-level conflicts based on local obstacles and agents’

relative path orientation.

Section 3.1 enumerated the possible types of action-level conflicts, namely: ver-

tex conflict, edge conflict, intersecting-edge conflict, non-intersecting edge conflict and

edge-vertex conflict. The former two are only applicable in Classic MAPF. Figure 3.1

shows examples of these basic conflict types.
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A Cardinal conflict is a path-level conflict in which neither agent can reach their

goal unless at least one agent increases its path cost (e.g., by adding a wait action or

by taking a different, longer route to the goal). For example, in the instance in Figure

5.1(a), either agent x must increase its cost to avoid conflicting with agent z in cell B2

at time step 1 or vice-versa in order for both agents to arrive at their respective goals

without conflict.

A semi-Cardinal conflict is one in which, to avoid a conflict, a specific agent must

increase its path cost, but the other agent in the conflict must not. For example, in

Figure 5.1(a), if agent x increases its cost by 2 (by moving through cell C1), agent y may

proceed to its goal with no cost increase. The converse is not true.

A non-Cardinal conflict is one in which neither agent must increase its path cost

in order to avoid conflict.

An improved version of CBS (ICBS) [25] recognizes the distinction between

path-level conflicts. ICBS prioritizes Cardinal conflicts to be resolved first, and in the

case of non- or semi-Cardinal conflicts, it attempts to ”fix up“ N.Π to avoid the conflict

by computing a bypass path for one or possibly both agents. If the total number of

conflicts in the new fixed up N.Π is less than the original, the conflict is successfully

bypassed and the fixed up node is re-inserted into OPEN. These two improvements,

namely conflict prioritization and bypass resulted in significant performance gains [25].

5.2.2. Conflict Symmetries

Cardinal conflicts may involve symmetries. In Classic MAPF, these symmetries

are classified into at least 3 types: Rectangle conflicts [113], corridor conflicts [111] and

swapping conflicts [111], however other types of conflict symmetries may also exist.

An example of each is shown in Figure 5.2.

A conflict symmetry occurs when all paths for all infeasible cost combinations

(for example, the individual lowest-cost paths) for two agents conflict when either of

them move through a region called a region of conflict. Figure 5.2 (a) illustrates a rectan-
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gle conflict [113] in a 4-neighbor grid map where the red and blue agent (shown as filled

circles) try to move to their respective goals (shown with dashed lines). The shaded re-

gion in the center is the region of conflict. No matter which lowest-cost path the agents

take through the region, they will always conflict. Figure 5.2(b) illustrates a corridor

conflict in a 4-neighbor grid. Figure 5.2(c) shows a swapping conflict. The shaded re-

gion shows the region of conflict - not only can the agents not move through these

regions with their lowest-cost individual paths, but also multiple higher cost paths.

Conflict symmetries in General MAPF have not yet been classified into specific

types, but can be broadly placed into two categories: spatial conflict symmetries and tem-

poral conflict symmetries. Spatial conflict symmetries are similar to the rectangle conflict

in the sense that all paths of lowest cost in a spatial region between two agents will

conflict. Temporal conflict symmetries are similar to corridor and swapping conflicts

in the sense that two agents will incur the same conflict or set of conflicts over and

over at increasing time steps until one of the agents increases its cost sufficiently (for

example, by waiting) and allowing the other agent to pass. While spatial symmetries

require agents to explore many alternate equal-cost paths, temporal conflict symme-

tries require the agents to increase costs multiple times.

It has been shown that conflict symmetries in general require an exponential

amount of work to resolve in CBS [113]. Detection and resolution of conflict symme-

(a) (b) (c)

Figure 5.2.: Illustration of Classic MAPF instances with conflict symmetries: (a) a rect-
angle conflict, (b) a corridor conflict and (c) a swapping conflict.
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tries in both Classic and General MAPF settings has been a subject of study [113, 111,

112, 218, 199, 200]. In the subsequent sections, the details of these studies are explained

and expanded upon.

5.3. Constraints

In CBS, the detection of a conflict triggers the creation of constraints and a split

in the CT (see Algorithm 5.1 lines 10-13). Constraints are then used at the low-level

to constrain agents to avoid conflicts. Minimally, a constraint must include enough in-

formation about the conflicting action so that the low level search can avoid reproduc-

ing the conflicting action during re-planning; for example, by restricting constrained

actions or states from being generated during expansion in the low-level. Various ap-

proaches to constraint formulation and constraint generation have been studied.

5.3.1. Basic Constraint Types

In Classic MAPF settings, two constraint types are used, namely vertex con-

straints and edge constraints. A vertex constraint is a tuple 〈i, s〉 where i is the agent

number and s is a state (vertex and time tuple). An edge constraint is a tuple 〈i, a〉

where i is the agent number and a is an action (a tuple of two states).

Note that vertex constraints are not strictly necessary because an edge con-

straint can also be used to prevent an agent from entering a vertex at a specific time.

However, vertex constraints are more powerful, because they may block agents from

moving to the blocked state via any adjacent edge. Hence, vertex constraints are typ-

ically used in response to vertex conflicts and edge constraints are used in response

to edge conflicts. We also note that using a vertex constraint in response to an edge

conflict can result in blocking optimal solutions, or even in incompleteness of the over-

all algorithm. See Table 5.1 for an overview of Classic MAPF conflicts and applicable

constraints.

1See section 5.3.3
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Table 5.1.: A summary of conflict types and applicable constraints for Classic MAPF

Non-Cardinal Conflicts
Vertex

Constraint
Edge

Constraint

Vertex
Conflict

3 3 correct
3 7 efficient

Edge
Conflict

7 3 correct
3 efficient

Cardinal Conflicts
Vertex & Edge

Constraints

Context-
Specific

Constraint1

Mutex-
Propagation
Constraint

Spatial
Conflict

Symmetry

3 3 3 correct
7 3 33 efficient

Temporal
Conflict

Symmetry

3 3 3 correct
7 33 3 efficient
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In General MAPF settings, both vertex and edge constraints are valid, however,

due to the durative nature of conflicts, time range constraints [12] are more effective [37,

6]. A time range constraint is a tuple 〈i, e, [t, t′]〉where i is the agent number, e ∈ E is an

edge and [t, t′] is the unsafe interval for the durative conflict (see Section 3.4.1). A time

range constraint blocks agent i from traversing e at any time during the unsafe interval.

In contrast to an edge constraint which blocks an agent from edge traversal at a single

point in time, time range constraints are more powerful because they can potentially

block multiple actions and prevent more conflicts from occurring in the sub-tree of

the high-level search. A time range constraint can also be applied to a vertex instead

of an edge. See Table 5.2 for an overview of General MAPF conflicts and applicable

constraints.

These constraint types are the basic building blocks for building sophisticated

constraint sets for CBS in Classic and General MAPF.

5.3.2. Constraint Sets and Constraint Correctness

In order to ensure completeness and optimality, constraints used in a split must

be mutually disjunctive [12, 110]. That is, no pair of conflict-free paths for agents i and

j involved in a split can violate both ci and cj simultaneously. A simple way to check

whether ci and cj are mutually disjunctive, is to compute Ai and Aj, the sets of actions

blocked by ci and cj respectively, and check that the sets are mutually conflicting. Two

sets of actions Ai , Aj are mutually conflicting if for all pairs of actions (ai, aj ) in the

Cartesian product Ai × Aj, ai conflicts with aj.

Lemma 5.3.1. CBS is complete if constraints added to child nodes Ni, Nj created from a CBS

split only block action sets Ai, Aj which are mutually conflicting.

Proof. Let Ni and Nj be the child nodes created during a CBS split. Also let Ai and Aj

be the set of actions which are blocked by the constraints from Ni and Nj respectively.

Additionally, assume there is only one feasible solution for the problem instance, Π∗

which contains paths π∗i ∈Π∗ and π∗j ∈Π∗. By contradiction, if ∃(ai, aj) ∈ Ai×Aj such
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Table 5.2.: A summary of conflict types and applicable constraints for General MAPF

Non-Cardinal Conflicts
Vertex

Constraint
Edge

Constraint

Time
Range

Constraint
Biclique

Constraint

Time-
Annotated

Biclique
Constraint

Vertex
Conflict

3 3 3 3 3 correct
3 7 33 33 333 efficient

Edge
Conflict

7 3 3 3 3 correct
7 33 33 333 efficient

Intersecting
Edge

Conflict

7 3 3 3 3 correct
7 3 33 333 efficient

Non-
Intersecting

Edge
Conflict

7 3 3 3 3 correct
7 3 33 333 efficient

Edge-Vertex
Conflict ���

7 3 3 3 3 correct
7 3 33 333 efficient

Cardinal Conflicts
Vertex & Edge

Constraints

Time
Range

Constraint
Biclique

Constraint

Time-
Annotated

Biclique
Constraint

Mutex-
Propagation
Constraint

Spatial
Conflict

Symmetry

3 3 3 3 3 correct
7 7 3 33 33 efficient

Temporal
Conflict

Symmetry

3 3 3 3 3 correct
7 7 7 7 3 efficient
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that ai does not conflict with aj and ai∈π∗i or aj∈π∗j , then CBS cannot find a goal so-

lution of Π∗ in Ni or Nj nor their respective sub-trees. This is because in Ni and Nj

and their sub-trees ai or aj are blocked by constraints and no solution exists that does

not contain ai or aj. Thus CBS will either terminate with no solution or fail to termi-

nate with the solution. Hence, unless constraint sets block action sets Ai, Aj which are

mutually conflicting, we cannot guarantee completeness.

Conversely, if constraint sets used in child nodes of a split are mutually dis-

junctive, meaning that their blocked action sets are mutually conflicting, then CBS will

never block actions in both Ni and Nj simultaneously which are part of a feasible solu-

tion. This is because, assuming Ai and Aj are mutually conflicting, no pair of actions

in their Cartesian product can ever exist simultaneously in a feasible solution. Hence,

a feasible solution must lie in one of Ni or Nj or their respective sub-trees and CBS will

eventually find it.

Following the mutually disjunctive property, it is evident that using a pair of

vertex constraints in response to an edge conflict may block other valid paths through

the vertex in question (though, in some cases it might not), hence the pair of constraints

is not necessarily mutually disjunctive in this case. This is indicated in Table 5.1.

Instead of using exactly one constraint per child node in a split, it is also valid

to use sets of constraints, Ci, Cj, provided that the sets of actions blocked by the con-

straints are mutually conflicting. This variant is called multi-constraint CBS (MC-

CBS) [110]. The proof of optimality for MC-CBS is the same as for the original CBS

[160]. In short, optimality is guaranteed if no optimal solutions are blocked by con-

straints (i.e., constraints are mutually disjunctive) and both the high and low level

OPEN lists are prioritized by flowtime.

The motivation for blocking multiple actions with each split is clear – by block-

ing multiple actions in one node, we resolve potentially multiple conflicts and avoid

additional splits in the sub-tree. An example problem is shown in Figure 5.3 (a) where

the goal location for agent i is the start location for agent j and vice versa. The move-
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|

Ai []
Aj []
πi A1,A2,A3
πj A3,A2,A1
〈A1:3,A3:7〉

Ai [A1:3]
Aj []
πi A1,B2,A3
πj A3,A2,A1
〈A1 : 4, A3 : 7〉
Ai [ ]
Aj [A3:7]
πi A1,A2,A3
πj A3,B2,A1
〈A1 : 3, A3 : 6〉

Ai [A1:3,A1:4]
Aj [ ]
πi A1,B1,B2,A3.
πj A3,A2,A1

〈〉

Ai [A1:3,A1:4]
Aj [ ]
πi A1,B1,B2,A3
πj A3,A2,A1
〈none〉

Ai [A1:3]
Aj [A3:7]
πi A1,B2,A3
πj A3,B2,A1
〈A1 : 4, A3 : 6〉

A B

C

D

E

(c)
Ai []
Aj []
πi A1,A2,A3
πj A3,A2,A1
〈A1 : 3, A3 : 7〉

Ai [A1:3,A1:4].
Aj [ ]
πi A1,B1,B2,A3.
πj A3,A2,A1

〈none〉

Ai [A1:3,A1:4]
Aj [ ]
πi A1,B1,B2,A3
πj A3,A2,A1
〈none〉

Ai [ ]
Aj [A3:7,A3:6].
πi A1,A2,A3
πj A3,B3,B2,A1.

〈none〉

Ai [ ]
Aj [A3:7,A3:6]
πi A1,A2,A3
πj A3,B3,B2,A1
〈none〉

A

C

B

(d)

Figure 5.3.: Example showing (a) a simple MAPF problem for circular agents i and j,
(b) enumerated actions for each agent, (c) a possible CT for the problem
and (d) a possible CT where multiple actions are blocked at a time.

ment model is based on an 8-connected grid as shown in (b) where each action is enu-

merated for reference. A CT for the problem is shown in (c). Each node contains:

• Ai, Aj, sets of blocked actions. For example, node B shows Ai [A1 : 3] meaning

that action 3 is blocked for agent i at location A1

• A potential solution, which is a pair of paths πi and πj

• A conflict 〈ai, aj〉, which is a pair of actions that conflict.
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For example, node A shows the conflict 〈A1 : 3, A3 : 7〉 because agent i, per-

forming action 3 at A1 and agent j, performing action 7 at A3 results in a conflict.

When a conflict is detected, a split operation is performed. For example, the conflict

〈A1 : 3, A3 : 7〉 in node A causes nodes B and C to be generated with constraints that

block action A1:3 and A3:7 respectively. This process continues until a non-conflicting

set of paths is found in G.

Diagram (d) shows a possible CT that can occur if multiple actions are blocked

per CT node. Observe that when multiple actions are blocked (Ai : [A1 : 3, A1 : 4])

as shown in node B, after the first split a goal node is found immediately instead of at

depth 3 as in part (c). This observation leads us to a few simple corollaries: (1) blocking

multiple actions during a split can result helpful in pruning of the CT, often reducing

∆, the depth of the goal. (2) The size of the CT is O(2∆); hence the number of nodes

pruned can be exponential in the best case, and (3) the pruning potential is directly

proportional to the cardinality of the sets Ai, Aj; hence as |Ai| and |Aj| increase, ∆ is

likely to decrease.

Based on these observations, we wish to maximize the number of blocked ac-

tions in a split, while maintaining the mutually disjunctive property. We now review

some prior and novel approaches to generating large mutually disjunctive constraint

sets.

5.3.3. Context-Specific Symmetry Breaking in Classic MAPF

The characteristics of 4-connected grids allow some context-specific approaches

to conflict symmetry breaking [112]. In response to a rectangle conflict, shown in Figure

5.2(a), a technique called rectangle reasoning [113] can be applied to recognize rectan-

gle conflicts and generate mutually disjunctive constraint sets called barrier constraints

which help resolve the conflict immediately. An example of a rectangle conflict and

barrier constraints is shown in Figure 5.4. Rectangle reasoning discovers the region of

conflict (shaded area with hatched lines) and generates the barrier constraint which is
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a set of constraints that occupies the row or column of the region of conflict opposite

the agent. These individual constraints block the agent from entering the cell at the

specific time necessary to resolve the conflict.

Corridor and swapping (or target) conflicts are also solved in a context-specific

way by identifying the conflict type and the region of conflict, then applying constraint

sets to the conflicting agents in order to resolve the conflict [111].

These techniques are very effective in resolving specific types of conflict sym-

metries, reducing the amount of work required by CBS exponentially. However, they

are not always applicable to General MAPF instances.

5.4. Time-Annotated Biclique Constraints

Biclique constraints are a primary contribution of this thesis. Biclique con-

straints, which are really sets of constraints Ci and Cj, are created via a process called

bipartite reduction (BR) for use with multi-constraint CBS (MC-CBS) [110]. Because

|A|, the size of the set of actions blocked by C is positively correlated with pruning at

the high-level, it is beneficial to maximize |A|. BR heuristically maximizes |A| while

maintaining the mutually disjunctive property. In contrast to context-specific symme-

A

B

C

D

E

1 2 3 4 5

7
7
7

A

B

C

D

E

1 2 3 4 5

7 7 7

Figure 5.4.: Illustration of rectangle reasoning and barrier constraints
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Figure 5.5.: Illustration of (a) actions for two agents, (b) the corresponding bipartite
conflict graph and (c) the corresponding time-annotated biclique.

try breaking approaches, BR is general and may be used without any special analysis

of the planning graph nor relative motion of agents. It is also applicable to both dis-

cretized and continuous environments.

5.4.1. Ensuring Completeness and Optimality

As stated earlier, for completeness, constraint sets Ci and Cj which are created

during a split, must be mutually disjunctive, which means the sets of actions blocked by

Ci and Cj must be mutually conflicting.

For example, in Figure 5.5(a) action 1 conflicts with 6, 7 and 8; action 2 con-

flicts with 6, 7 and 8 and action 3 conflicts with 6, 7, 8, 9 and 10. Thus the action sets

{1, 2, 3}, {6, 7, 8} are mutually conflicting. Although actions 9 and 10 also conflict with

action 3, they cannot be included because they do not conflict with actions 1 and 2. BR

reduces the problem of constructing mutually conflicting constraint sets to finding a

biclique in a bipartite graph.

5.4.2. Reduction to Bipartite Graphs

The conflicts between a pair of action sets Ai and Aj, (shown as arrows in Figure

5.5(a)), can be represented as a bipartite conflict graph (BCG), shown in Figure 5.5(b). A

BCG, G = (U, V, E), has two sets of vertices U and V such that each u ∈U represents

97



an action ai∈Ai and each v∈V represents an action aj∈Aj. E consists of the subset of

vertex pairs (u, v)∈U×V for which the corresponding actions (ai, aj)∈Ai×Aj conflict.

For CBS, it is sufficient to construct a BCG only for the subset of actions which

conflict with the core action pair which is the actions from the conflict 〈ai, aj〉 that caused

a split. In Figure 5.5(a), the core action pair is 〈3, 8〉, hence only actions which conflict

with 3 or 8 are depicted. In this setting, each vertex is guaranteed to be connected to

the opposing agent’s core action in the BCG.

Although Figure 5.5 shows a BCG construction based only on actions from the

start states of the core action pair, in practice, a BCG can include all actions from all

states that conflict with an opposing agent’s core action. However, it may not be com-

putationally efficient to do so.

5.4.3. Constraint Set Construction Using Bicliques

A biclique G′ = (U′, V ′, E′) ⊆ G is a fully bi-connected bipartite graph, that is,

E′=U′×V ′, meaning all u∈U′ are connected via an edge to all v∈V ′. A BCG may have

many bicliques. In order to maximize pruning in the CT, we find a max-vertex biclique

(MVB) in G which is a biclique with a maximal number of vertices. This can be done

in polynomial time [58]. Algorithm 5.2, lines 1-5 shows pseudocode for computing

a MVB. Because G′ is fully bi-connected, U′ and V ′ represent the mutually conflicting

action sets suitable for a split, and edge constraints could be used to block these actions.

In CBS, edge constraints are only for a single time t. However, given a MVB, unsafe

intervals can be computed and time-range constraints can be used (see Section 5.3.1).

After extracting G′ from G, G′t, a time-annotated biclique (TAB) is constructed

(Algorithm 5.2, line 6) by annotating each edge e′ ∈ E′ with its unsafe interval (see

Section 3.4.1). An example of a TAB is shown in Figure 5.5(c). Finally each vertex in

U′t , V ′t is annotated with an interval that is fully included by the annotated intervals for

each e ∈ E′t incident to it (line 7). An interval tri = [tstart
i , tend

i ) fully includes another

interval trj =[tstart
j , tend

j ) if trstart
i ≤ trstart

j and trend
i ≥ trend

j . In set notation, this is trj ⊆ tri.
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Algorithm 5.2. Compute Largest Time-Annotated Biclique

1. INPUT: A bipartite graph G = (U, V, E)

2. Construct G, the bipartite complement of G

3. Find M, a maximal matching in G

4. Construct K, a minimum vertex cover of G from M

5. Take the bipartite complement of K to get G′ ⊆ G, a max-vertex biclique

6. Annotate all edges e ∈ E′ ∈ G′ with computed unsafe intervals to create a time-
annotated biclique G′t:

For each e∈E′, E′t←E′t∪(e,UNSAFEINTERVAL(e.u, e.v))

7. Annotate all vertices U′t , V ′t with the intersection of all unsafe intervals of incident
edges:

For each u∈U′t , u← (u,
⋂

e∈INCIDENT(u) e.intvl); analogously for V ′t
8. return (U′t , V ′t )

A time interval tri is fully included by a set of time ranges T if tri ⊆
⋂

trj∈T trj.

This relation is illustrated in Figure 5.6 (b): the interval in blue is fully included by all

other intervals. Figure 5.6(a) illustrates the annotation of a vertex in a TAB. The blue

time interval annotation on vertex 1 is the intersection of all intervals annotated on its

adjacent edges as shown by the blue interval in part (b). Thus, the result of Algorithm

5.2 is a TAB where each vertex is annotated with an unsafe interval which is fully

included by the intervals of its incident edges.

[-.8,.8)

[-.7,1.9)

[-.09,.9)

[-.09,.8)

1 6

7

8
(a)

(a)
(1,8)

(1,7)

(1,6)

Time
-1 0 1 2

(b)

Figure 5.6.: Example of (a) a TAB with (b) corresponding unsafe intervals plotted on a
concurrent timeline.
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Thus, for a split we first build the relevant TAB. Then for the left node we add

the set of time-range constraints Ci that includes 〈u, tr = [tstart, tend)〉 for each u ∈ U′t

where [tstart, tend) is the unsafe interval associated with it. This is then done analo-

gously for the right node using V ′t . This approach yields constraint sets that guarantee

completeness. We call CBS with time annotated biclique constraints CBS+TAB.

Theorem 5.4.1. CBS+TAB is complete.

Proof. First, the action sets U′, V ′ ∈ G′ are guaranteed to be mutually conflicting be-

cause G′ is a biclique. Second, since the annotated unsafe interval for each vertex

ut ∈ U′t and vt ∈ V ′t is the intersection of all unsafe intervals of incident edges ∈ E′t,

all time range constraints ci∈Ci and cj ∈Cj constructed from those intervals are guar-

anteed to block only actions that conflict. Hence, Ci, Cj are mutually disjunctive. Thus,

per Lemma 5.3.1 completeness is guaranteed.

5.4.4. Additional Variants

We define two additional variants which utilize BR: CBS+MVB omits the time

annotation step and uses U′ and V ′ from the MVB to create edge constraints instead

of time range constraints. This variant may be required for some domains in which

computing unsafe intervals is not possible or too expensive. CBS+TMA (for time-

annotated max-biclique approximation), approximates a TAB by assuming that the

MVB is a 1×N biclique, that is, |U′| = 1 and |V ′| = N. For example, using the sets {3},

{6,7,8,9,10} from Figure 5.5. However, instead of explicitly blocking each action in U′t

and V ′t , the TAB is represented implicitly, using only two constraints, one time range

constraint ci for agent i that blocks ai (this is U′t), and another constraint cj for agent

j that blocks all actions that conflict with ai (this is V ′t ). cj in this case is implemented

such that it performs a collision check versus ai during low-level expansions. With this

representation, ci and cj can be created without explicitly constructing a BCG.
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5.4.5. Empirical Results

We experiment with CBS+TAB, CBS+MVB and CBS+TMA. CBS+TAB and CBS+

MVB use TABs that were computed a-priori and saved in a lookup table. We also ex-

periment with Extended-ICTS [198] (denoted ICTS), CBS with edge and vertex con-

straints [160] (denoted Classic) and CBS with time-range constraints [12] – based on

CCBS [6] and ECBS-CT [37] (denoted Time). Our implementation uses A* with a fixed

duration of 1 for wait actions at the low level instead of SIPP. Hence, we do not run

CCBS and ECBS-CT, but perform a direct comparison of the effectiveness of the time-

range constraints which they use.

Tables 5.3, 5.4 and 5.5 show results for 8-, 16- and 32-neighbor grids on the

MAPF benchmarks [173] which consists of 25 tests on each of 28 grid-based maps of

various types. Each test consists of up to 1,000 problem instances with increasing num-

bers of agents. Tests were run by incrementally adding one agent at a time until it

becomes unsolvable within the allotted time limit of 30 seconds. The results for each

experiment are the sum of the max number of agents solvable per each of the 25 trials.

Top scores are in bold.

With the exception of some DAO maps where ICTS is faster, CBS+TAB is the

strongest overall algorithm in 8-connected grids, and about equally as strong as CBS+

TMA in 16-connected grids. CBS+TMA is consistently stronger in 32-connected set-

tings.

Table 5.6 shows the size of the CT from sample problems from each category in

Table 5.3. The results are for a number of agents that were solvable by all algorithms

in under 30 seconds. CBS+TMA and CBS+TAB show a significant reduction over prior

approaches. When comparing the amount of node reduction to the values in Table 5.3,

the improvement is generally less significant – this is due to the low-level performing

extra work evaluating constraints. In the case of CBS+TAB and CBS+MVB, a large

number of constraints are usually added per CT node. In the case of edge, vertex

and time-range constraints, there is only one constraint added per CT node and these
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Table 5.3.: Total problems solved in under 30 seconds on 8-neighbor grid MAPF
benchmarks

Type Map ICTS Classic Time MVB TMA TAB

City
Berlin_1_256 628 1,626 1,595 1,624 1,785 1,790
Boston_0_256 623 1,406 1,312 1,446 1,563 1,574
Paris_1_256 615 1,545 1,480 1,607 1,653 1,695

DAO

brc202d 363 627 585 658 637 658
den312d 777 550 456 558 545 549
den520d 941 856 879 880 911 954
lak303d 520 586 575 594 583 600
orz900d 227 707 706 736 739 780
ost003d 924 571 615 589 669 687

Dragon
Age 2

ht_chantry 484 638 640 649 711 705
ht_mansion_n 393 843 774 854 843 871
lt_gallowstemplar 461 634 633 676 661 699
w_woundedcoast 322 795 825 865 899 935

Open

empty-8-8 442 451 237 461 485 493
empty-16-16 429 567 96 592 595 599
empty-32-32 674 986 70 1,001 1,019 1,027
empty-48-48 899 1,297 40 1,314 1,393 1,307

Open+
obstacles

random-32-32-10 487 880 938 910 903 925
random-32-32-20 305 686 773 699 757 773
random-64-64-10 656 1,539 1,521 1,383 1,483 1,415
random-64-64-20 535 1,068 1,013 1,101 1,152 1,152

Maze

maze-32-32-2 239 306 373 308 315 344
maze-32-32-4 223 297 269 299 291 304
maze-128-128-10 252 356 309 356 399 422
maze-128-128-2 232 237 243 250 241 278

Room
room-32-32-4 278 440 347 441 457 480
room-64-64-16 355 516 426 529 555 575
room-64-64-8 310 346 299 399 371 383
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Table 5.4.: Total problems solved in under 30 seconds on 16-neighbor grid MAPF
benchmarks

Type Map ICTS Classic Time MVB TMA TAB

City
Berlin_1_256 601 1,356 1,001 1,431 1,629 1,570
Boston_0_256 559 1,226 858 1,351 1,463 1,442
Paris_1_256 645 1,207 1,075 1,236 1,489 1,393

DAO

brc202d 324 460 401 485 485 505
den312d 450 476 347 477 507 502
den520d 805 695 670 686 821 748
lak303d 542 369 308 393 449 435
orz900d 197 330 320 345 369 361
ost003d 622 468 414 490 541 539

Dragon
Age 2

ht_chantry 318 499 426 529 585 559
ht_mansion_n 344 561 468 607 645 609
lt_gallowstemplar 412 568 495 599 607 625
w_woundedcoast 292 461 411 479 519 503

Open

empty-8-8 384 375 254 387 445 386
empty-16-16 354 486 259 518 521 527
empty-32-32 422 832 490 808 891 827
empty-48-48 510 1,196 727 1,204 1,299 1,214

Open+
obstacles

random-32-32-10 387 624 358 662 761 724
random-32-32-20 305 586 354 607 627 645
random-64-64-10 519 1,032 632 1,078 1,203 1,112
random-64-64-20 448 732 495 792 853 882

Maze

maze-32-32-2 229 271 251 291 271 282
maze-32-32-4 170 173 173 184 251 264
maze-128-128-10 176 244 211 291 315 306
maze-128-128-2 190 236 190 184 197 213

Room
room-32-32-4 259 382 274 393 395 426
room-64-64-16 326 405 300 435 485 513
room-64-64-8 294 291 241 302 315 345
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Table 5.5.: Total problems solved in under 30 seconds on 32-neighbor grid MAPF
benchmarks

Type Map ICTS Classic Time MVB TMA TAB

City
Berlin_1_256 565 1,104 715 1,212 1,521 1,310
Boston_0_256 600 855 579 927 1,205 974
Paris_1_256 631 1,076 745 1,124 1,375 1,280

DAO

brc202d 329 373 291 386 473 413
den312d 522 426 273 452 479 470
den520d 802 511 373 521 627 552
lak303d 534 307 211 326 363 346
orz900d 157 260 223 276 297 281
ost003d 701 391 244 421 471 423

Dragon
Age 2

ht_chantry 433 396 282 448 541 477
ht_mansion_n 377 429 273 511 561 513
lt_gallowstemplar 364 520 331 549 571 553
w_woundedcoast 253 326 261 362 453 384

Open

empty-8-8 329 337 134 361 423 333
empty-16-16 314 412 210 414 471 457
empty-32-32 438 709 407 735 841 762
empty-48-48 484 1,015 506 1,030 1,205 1,091

Open+
obstacles

random-32-32-10 395 575 316 601 713 624
random-32-32-20 313 518 303 577 605 615
random-64-64-10 463 857 438 904 1,085 953
random-64-64-20 480 644 399 662 811 774

Maze

maze-32-32-2 208 232 195 250 259 260
maze-32-32-4 156 158 152 179 233 230
maze-128-128-10 180 220 162 250 267 283
maze-128-128-2 192 203 134 179 193 187

Room
room-32-32-4 267 373 246 378 397 415
room-64-64-16 281 333 218 367 443 424
room-64-64-8 267 255 191 263 309 306
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Table 5.6.: Final size of CT on 16-connected grids

Configuration Classic Time MVB TMA TAB
City: Boston 1,422 360 304 180 174
DAO: ost003d 2,043 1,197 575 485 473
DA2: ht_chantry 2,762 669 607 164 150
Open: 16x16 27 25 23 24 19
Obstacles: 64x64-20 896 240 602 201 199
Maze: maze-32-32-4 13,237 9,332 10,326 6,261 5,752
Room: room-64-64-8 1,462 459 1,451 468 321

constraints are inexpensive to evaluate. In the case of CBS+TMA, there is only one

constraint per CT node, however, because the implicit constraints perform a collision

check when evaluated, they are more costly in terms of runtime. It is often the case that

an MVB is a 1×N biclique (about 56% in 16-connected grids), thus, the set of blocked

actions in CBS+TMA constraints is identical to CBS+TAB in many cases.

5.5. Continuous-Time Mutex Propagation

5.5.1. Background: Unit-Cost Mutex Propagation

Mutex propagation (MP), a technique for finding unreachable states in plan-

ning graphs [205], has been integrated into CBS for symmetry breaking [218]. MP helps

to determine sets of mutually exclusive states for conflicting agents, often allowing for

an immediate resolution of conflict symmetries.

Unlike biclique reduction which only applies to spatial conflict symmetries, MP

is general and applies to both spatial and temporal conflict symmetries. MP for unit

time is carried out in four steps:

1. Build an MDD for each agent.

2. Discover initial mutexes between MDDs.
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3. Propagate the mutexes.

4. Extract motion constraints for CBS.

In Step 1, MDDs are built for two conflicting agents as shown in Figure 5.7(a),

where the nodes in red correspond to agent x and the nodes in yellow correspond to

agent y in Figure 5.1(a).

In Step 2, the MDDs are traversed in parallel from start to goal. At each time

step, the Cartesian product of the two MDDs is checked for conflicts. For example, in

Figure 5.7(a), the combination {B1}×{C2}={(B1,C2)} is checked at time step t=0, and so

on, for each time step. A mutex 〈st
i , st

j〉 is created for any pair st
i∈MDDi and st

j∈MDDj

of MDD nodes (or edges) which conflict (e.g., (B2,B2) at time step 1). These initial

mutexes are depicted as blue dashed lines in Figure 5.7(a).

In Step 3, the initial mutexes are propagated, meaning that whenever all parent

MDD nodes of st
i are mutex with all parent MDD nodes of st

j, a new mutex 〈st
i , st

j〉 is

created. A propagated mutexes represent a combination of actions that can never be

reached due to conflicting predecessors. These propagated mutexes are depicted as red

dotted lines in Figure 5.7(a). For example, at time step 2, B3 and A2 get a propagated

mutex because their only parents (B2 and B2) respectively, at time step 1 are mutex.

B1 B2 A2

C2 B2 B3

t=0 1 2

(a)

B1 B2 A2

B1 B2 A2

C2 B2 B3

t=0 1 2 3

(b)

Figure 5.7.: (a) Mutex propagation for agents x and z for the MAPF instance in Figure
5.1(a) with cost limits 〈2,−, 2〉 and (b) the same analysis as (a) but with cost
limits 〈3,−, 2〉.
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In Step 4, we analyze the MDDs and mutexes. For any st
i which is mutex with

all st
j at the same time step, vertex constraints are created for st

i . These are shown in

Figure 5.7(a) as dashed nodes. For example, B2 at time step 1 in the upper MDD is

used for a constraint for agent x because it is mutex with all nodes at the same time

step in the lower MDD. In Figure 5.7(b), the cost limit for agent x has been increased to

3, resulting in additional MDD nodes being added to the upper MDD. Because of these

additional MDD nodes, B2 in the lower MDD is no longer mutex with all MDD nodes

in the upper MDD at t=1. Hence it can no longer be used for a constraint in CBS.

5.5.2. Continuous-Time Mutex Propagation

To perform mutex propagation in General MAPF domains, we present a novel

algorithm: Pairwise Constraint Search (PCS). In contrast to classic mutex propagation

which uses explicitly constructed MDDs, PCS plans two conflicting agents in their

joint state space to discover motion constraints. Like biclique constraints, the approach

to discovering valid sets of motion constraints in PCS involves analysis of bipartite

conflict graphs [199]. This is illustrated in Figure 5.8.

Note that it is not necessary to use vertex constraints – edge constraints capture

enough information to make CBS complete. We can replace a vertex motion constraint
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Figure 5.8.: An example of determining motion constraint sets using a bipartite conflict
graph. (a) A General MAPF instance, (b) an enumeration of actions avail-
able to the agents with wait actions omitted, (c) a bipartite conflict graph
for the problem in part (b); a biclique is shown with thick lines and (d) the
same bipartite conflict graph with bi-complete nodes in bold and a biclique
for them in thick lines.
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with a set of edge constraints for all edges that are connected to a vertex. We addi-

tionally note that, unlike vertex constraints, edge constraints are valid for all types of

conflicts in General MAPF (see Figure 5.2). For this reason, analysis for vertex con-

straints are omitted from PCS.

Figure 5.8(a) shows an example problem where two agents must cross paths.

Figure 5.8(b) shows an enumeration of all actions available to two agents at overlap-

ping time frames with wait actions omitted. Figure 5.8(c) and (d) show the bipartite

conflict graph for the enumerated actions. Bicliques are shown with thick lines.

A vertex v ∈ V of a bipartite graph B = (U, V) is said to be bi-complete if v is

connected to all vertices in U. Figure 5.8(d) shows a bi-complete biclique (BBC), where

each vertex in the biclique is bi-complete. Bi-complete vertices are shown with bold

borders in Figure 5.8(d). For example, node 2 is connected to all nodes on the right side

of the full BCG, hence is bi-complete. Vertex 5 is also bi-complete, hence the biclique

shown in thick lines (connecting nodes 2 and 5) is a BBC.

While biclique constraints as discussed in Section 5.4 are limited to a single

time frame, we show that with the notion of BBCs they can be extended to future time

frames as well, using mutex propagation. Figure 5.9(a) shows all actions for paths

which arrive at the goal within a cost of 2.4, where we assume diagonal actions cost

1.4 and cardinal actions cost 1. In other words, these are MDDs. The actions in these

MDDs are enumerated in Figure 5.9(b).
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Figure 5.9.: An example of determining motion constraint sets using mutex propaga-
tion. (a) Paths with a cost limit of 2.4, (b) an enumeration of actions in the
respective MDDs, (c) steps in continuous-time mutex propagation.
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Figures 5.9(c.i-c.iii) show the steps of continuous-time mutex propagation. In

Figure 5.9(c.i) the time window of [0, 1) is considered and a BBC containing nodes 2

and 5 is found – actions 2 and 5 conflict with all other actions in this time frame. In

Figure 5.9(c.ii) the time window of [1, 1.4) is considered, and the BBC is increased to

include nodes 3 and 8. Note that although nodes 3 and 5 do not directly conflict, the

parent of node 3 (node 1) conflicts with node 5, hence nodes 3 and 5 get a propagated

mutex, shown with a dashed line. The same situation applies for nodes 2 and 8.

Furthermore, we introduce a new notion called inherited mutexes. An inherited

mutex is applied to all parents of mutexed nodes. These are shown as dotted lines

in Figures 5.9(c.ii), (c.iii). For example, in Figure 5.9(c.ii), node 1 is connected with a

dotted line to node 8 because node 1 is the parent of node 3 and node 3 conflicts with

node 8. This process is continued in Figure 5.9(c.iii), resulting in a BBC with 6 nodes.

Using only bi-complete nodes in the BBC guarantees that they are mutually conflicting

across space and the inclusion of inherited mutexes guarantees that the actions are

mutually conflicting across time.

Thus we use Algorithm 5.2 to find a max-vertex BBC which covers both the

spatial and temporal domains. CBS with mutex propagation would use the BBC vertex

sets {2, 3, 4} and {5, 7, 8} in a disjunctive split in the high-level tree.

The final details, pseudocode and empirical results of continuous-time mutex

propagation are concluded in Section 6.3.

5.6. Low Level Search

In this section, we discuss prior work which is not a new contribution of this

thesis. It is included here for completeness. A key factor for the choice of algorithm

for the low-level depends upon whether fixed or arbitrary-duration wait actions are

allowed. In some domains, only discrete wait actions are allowed, for example in Clas-

sic MAPF, where in others, continuous-time/arbitrary duration wait actions may be

preferred, for example, in robotic motion planning.
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For fixed-duration wait actions, A* is sufficient because the expansion routine

is well-defined. For planning with arbitrary-duration wait actions the Safe Interval

Path Planning (SIPP) [143] algorithm can be used ( See Section 3.4.4).

For the purposes of MAPF, SIPP is modified to respect CBS constraints during

successor generation [6, 37]. All vertices are initialized with safe intervals of [0, ∞].

Then, as conflicts are detected, the safe intervals are split up such that they omit the

unsafe interval. For example, with an unsafe interval [2, 3], the safe interval for v be-

comes [0, 2), (3, ∞]. The safe intervals are then used to plan wait actions. For example,

during planning, if the shortest path for agent i requires it to enter vertex v at time t,

and no safe interval at time t exists, a wait action is generated such that agent i will

wait a sufficient amount of time to move to v at a safe interval. It has been shown that

CCBS with SIPP can not only find solutions faster in many cases due to resolving con-

flicts by waiting appropriate durations, but often the wait times are shorter resulting

in lower-cost solutions.

In environments applicable to canonical orderings such as the 2k neighbor-

hoods, Jump Point Search with Temporal Obstacles (JPST) [76] has also been success-

fully used with CBS for arbitrary-duration wait actions.

5.7. High Level Search

In Section 5.2.1 we mentioned the Improved CBS algorithm [25] which does

conflict prioritization and uses a bypass whenever possible. In this section, we discuss

further improvements for the high-level search algorithm.

5.7.1. High-Level Heuristics

Classic CBS prioritizes nodes in the OPEN list by flowtime. This is analogous

to g-cost in A* (see Section 2.2.1). Heuristics can also be applied to CBS to guide the

search. Recall from Section 2.2.2 that a heuristic is an estimate of cost-to go. In CBS,

the cost-to-go is analogous to determining the number of conflicts left to resolve and
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estimating the expected cost increase required to resolve them. In order to do this, the

concept of a conflict graph was introduced [51].

A conflict graph (CG) is a graph with k vertices, one for each agent. Edges con-

nect two vertices if there is a Cardinal conflict between the two agents’ paths. It is pos-

sible that resolving a conflict between two agents will also resolve a conflict between

two other agents when they are re-planned. In order to keep the heuristic admissi-

ble, we cannot count all of the conflicts, instead we must count the minimal number

of conflicts that require resolution. Computing this is analogous to finding the size of

a minimum vertex cover (MVC) [50]. The MVC problem is NP-hard [211], thus may

be prohibitive to compute in large graphs, however a slightly weaker heuristic can be

computed by finding the maximal matching (MM) [142] which can be done in polyno-

mial time. Use of the CG heuristic was shown to reduce the total number of expanded

nodes significantly, with consistent improvement in overall runtime.

The conflict graph was extended to the notion of a dependency graph (DG) [108]

which incorporates conflict symmetry analysis to add edges for cases when symme-

tries are detected. Furthermore, a DG is extended to use weighted edges, known as

a weighted dependency graph (WDG) [108]. It captures the required cost increase to

resolve conflicts as edge weights. With the WDG, instead of solving the MVC problem,

the edge-weighted minimum vertex cover (EWMVC) problem or max-weight match-

ing (MWM) problem is solved instead. The EWMVC problem is formulated as an

integer linear program [139]:

minimize

∑
x∈X

(x)

subject to xi + xj ≥= wij ∀(xi, xj) ∈ X×X; wij ∈ w(E); i 6= j

xi ≥ 0 ∀xi ∈ X

wij ≥ 0 ∀wi j ∈ w(E)

(5.1)
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where X is the set of all k path costs and wij is the weight of the edge between vertices

i and j in the WDG.

In the case of General MAPF, because costs are not integers, Formula 5.1 is

solved using a (non-integer) linear solver, such as the revised simplex algorithm [49]

or the internal point method [87]. The former has exponential complexity in the worst

case, and the latter has polynomial complexity. But the revised simplex method tends

to outperform the internal point method for this particular LP formulation.

5.7.2. Additional Enhancements of CBS

The conflict avoidance table (CAT) as discussed in Sections 2.4.4 and 3.5 has

been shown to be effective with CBS for Classic MAPF, but may have limited effective-

ness in domains with few path symmetries. The conflict count table (CCT) as discussed

in Section 2.4.4 is an effective memoization technique for CBS.

Meta-Agent CBS (MA-CBS) [159] is an extension of CBS which is optimal. It

was invented in order to resolve pathological cases such as conflict symmetries us-

ing an alternate solver. In MA-CBS, initially all meta-agents are initialized as groups

consisting of a single agent. When a pathological case is detected between two or

more meta-agents, the meta-agents are merged and solved using a separate multi-

agent solver at the low-level.

Disjoint splitting [107] re-formulates a split to use a positive constraint which

forces one agent ai to be at vertex v ∈ V at time t and all other agents aj; x 6= i to avoid

v at time t using negative constraints, and re-plans any agents that are in violation of

these negative constraints. This approach resolves a fundamental inefficiency of CBS

which is that it may resolve the same conflict multiple times in different sub-trees of

the CT. Disjoint splitting was shown to significantly reduce the overall runtime in most

cases when compared to non-disjoint splitting.

Iterative Deepening CBS (IDCBS) [26] re-formulates the high-level to perform

a depth-first [96] approach instead of a best-first approach. IDCBS mitigates a shortfall
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of CBS which is that it must retain the entire CT, or at least the leaf nodes of the CT in

memory, and may quickly exhaust available memory when solving difficult problems.

IDCBS alleviates this problem by using an approach analogous to depth-first iterative

deepening [96] which only holds O(∆) nodes in memory at one time where ∆ is the

depth of the goal. In addition to this, IDCBS capitalizes on minimizing memory use

for the CAT, CCT and even the open list for the low-level search. Although IDCBS may

ultimately generate more nodes than CBS, the overhead of multiple operations such as

sorting the OPEN list, re-planning agents, etc. is smaller, hence IDCBS outperforms

CBS in most cases.

5.7.3. Empirical Results

We now evaluate the effectiveness of mutex propagation. All tests in this sec-

tion use an implementation of mutex propagation (MP) that follows Algorithm 6.2,

which is for General MAPF domains based on A* with bookkeeping and does not build

the MDDs explicitly. Figure 5.10 shows the performance of CBS+MP versus CBS for

various benchmark problems on 4-neighbor grid maps (Classic MAPF instances). Both

variants use the WDG heuristic. The x-axis shows the number of agents and the y-axis

shows the percentage of problems successfully solved in under 30 seconds for a specific

number of agents. As the number of agents increases the problem gets exponentially

harder, so solving for even one more agent in the allotted time frame represents a sig-

nificant gain. We see in Figure 5.10 that the addition of mutex propagation is the most

helpful in maps with relatively large empty areas. It is less helpful in maps with many

small obstacles.

In our implementation, MP is only run when CBS encounters a Cardinal con-

flict. Depending on the specific configuration, MP may or may not find useful con-

straint sets. In the case where a Cardinal conflict is a conflict symmetry, MP will find

constraint sets of size larger than one. However, when a Cardinal conflict is not a con-

flict symmetry, MP finds only one constraint for each agent. Because MP is relatively
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Figure 5.10.: Success rates of CBS and CBS+MP for benchmark problems on 4-neighbor
grids.

114



computationally expensive, running it in maps without a significant number of conflict

symmetries can be detrimental.

Figures 5.11 and 5.12 show performance of CBS, CBS with biclique constraints

(CBS+BC) and CBS+BC+MP. CBS+BC uses the time-annotated biclique approximation

(referred to as TMA in Section 5.4) in 8- and 16-neighbor grids respectively (General

MAPF domains). CBS+BC+MP uses mutex propagation on Cardinal conflicts and bi-

clique constraints on non-Cardinal conflicts. Note that Figure 5.10 does not contain re-

sults for an implementation of biclique constraints because bicliques are always equiv-

alent to edge or vertex constraints in Classic MAPF. All implementations use the WDG

heuristic.

In 8-neighbor grids, CBS+BC dominates CBS+MP+BC on all shown bench-

marks in Figure 5.11 except for empty grids. The reason for this is the BC algorithm is

significantly less computationally expensive, and also has properties of spatial conflict

symmetry breaking. CBS+BC+MP is stronger in empty maps because empty maps typ-

ically contain a large amount of spatial conflict symmetries and MP is able to resolve

these conflict symmetries with one split operation. CBS+BC dominates CBS+MP+BC

in all benchmarks shown in Figure 5.12, including the empty grid maps because 16-

neighbor grids have fewer symmetries in general (see Figure 5.2). Therefore, The more

computationally-efficient biclique constraints are more effective in this case.

We also note that mutex propagation is affected significantly by the length

of the paths being planned. The complexity of MP (which plans for two agents) is

O(b2
base

d
) where bbase is the mean single-agent branching factor and d is the depth or

length of the solution. Hence, large maps which tend to have longer paths will cause

exponentially more overhead than paths in small maps. A strong heuristic for MP

however, can significantly reduce the complexity.
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on 8-neighbor grids.
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5.8. Sub-Optimal Variants of CBS

Bounded and unbounded sub-optimal variants of CBS have also been formu-

lated [15, 36, 196, 199]. The simplest of these variants is Greedy CBS (GCBS) [15] which

is unbounded sub-optimal. GCBS changes the prioritization of the open list to use no-

tions other than cost. The simplest, and most effective is an ordering by NC, the num-

ber of conflicts in N.Π. This helps CBS find a solution significantly faster, but no guar-

antee can be made on the level of optimality of the final solution. Some experiments

were done with inflation of heuristics at the low-level, but generally speaking, longer,

sub-optimal paths at the low level resulted in more conflicts at the high-level [15].

The Enhanced CBS (ECBS) [15] and Improved Enhanced CBS (IECBS) algo-

rithms utilize an OPEN list and a FOCAL list [140] prioritized by an alternate objective

that leads to faster solutions (e.g., NC). A sub-optimality bound parameter w is sup-

plied. Candidates from the top of the OPEN list with f-cost inside the w-bound are

inserted into the FOCAL list and re-prioritized. In this way, solutions are found much

faster, with guaranteed optimality bounds.

This thesis contributes two additional techniques for sub-optimal CBS. The first

technique is constraint layering, the second is sub-optimal constraints. Both approaches

are shown to significantly increase performance.

5.9. Constraint Layering

Conflict-Based Search with Constraint Layering (CBS+CL) [196] uses a hierar-

chy of edge subgraphs (subgraphs with edge deletions) to simplify the planning pro-

cess. CBS+CL plans individual agents in the environment, successively removing ar-

tificially added constraints from each agent as conflicts are discovered. Initially, for

instance, an agent may be constrained to plan only in a 4-neighbor gird. But when col-

lisions must be resolved, constraints on the agent’s motion are relaxed to allow move-

ment on an 8-neighbor grid, giving it more freedom to move and avoid conflicts. Our
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results show that this approach allows us to solve up to 2.4 times more agents in the

same amount of time when compared to regular CBS on the original graph and over

50% more agents in the same amount of time when compared to regular CBS on edge

subgraph abstractions.

Environment abstractions can be created by forming subgraphs via node con-

tractions, edge deletions or adding new embeddings to the original search graph [72].

Various abstraction techniques have been published viz. Clique Abstraction, Sector

Abstraction, Line Abstraction, STAR [73, 175] and JPS [67]. All of these abstractions

rely on the downward refinement property which means that a path between nodes in

an abstracted graph must be refinable to a path in the original graph.

CBS+CL combines the strengths of constrained and unconstrained environ-

ments. To mitigate the cost of search in environments with high branching factors

it is helpful to perform the low-level search on a constrained/abstracted version of the

original environment. By introducing movement constraints into the original environ-

ment we reduce the branching factor, allowing better performance in the CBS low-level

search.

We formulate constrained environments as graph abstractions. The practice of

constraining on an agent is analogous to removing edges from the planning graph.

Conversely, adding edges to the planning graph is analogous to relaxing the con-

straints. Figure 5.13 shows a continuum with representations of more- and less- con-

More Constrained
Low branching factor

Less optimal

Less Constrained
High branching factor

More optimal

Constraints

Figure 5.13.: Continuum of constraint abstraction.

119



strained environments. As the level of constraint increases (i.e., edges are removed),

the branching factor is increased and vice-versa.

Formally, graphs formed by edge deletion are known as edge subgraphs [59]. An

edge subgraph is a graph G′ ⊆ G s.t. G′ = (V, E′), E′ = E\X where X is the set of

edges deleted from the initial graph G.

Search on edge subgraphs does not require special downward refinement as

edge subgraphs contain a subset of the edges in the original domain. Additionally,

this method of abstraction maintains the original edge lengths which allows conflict

detection logic to be the same for all abstractions.

5.9.1. Abstraction For Conflict Avoidance

A sub-optimal method of conflict avoidance at the low-level is to direct the

search in ways that produce fewer conflicts. Direction maps [80] have been proposed

to augment heuristics. Direction maps provide an underlying flow field and agents

are penalized if they do not follow the flow. Direction maps can be formulated as

highways or circular movement patterns. In ECBS+HWY, [35] direction maps are used

to influence agent movement to produce significant performance improvements.

Edge subgraphs are similar to flow fields because possible movements are re-

stricted. Flow-Annotation Replanning (FAR) [201] performs static analysis of the search

graph and creates edge subgraphs, favoring directed edges so that collisions are less

likely.

Instead of augmenting heuristics or abstraction via node contraction, we have

taken an approach similar to FAR, which is abstraction via the creation of edge sub-

graphs. However, unlike FAR, we do not perform static analysis and augmentation of

the environment. Instead, we apply uniform edge deletions across the entire search

graph.
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(a) (b)

Figure 5.14.: Comparison of grid-based search with differing movement constraints.
In (a), movement for both agents is constrained to be on 4-neighbor grids,
thus all optimal path combinations will conflict in any of the grey squares.
In (b), agent S2 moves on a 4-neighbor grid, but agent S1 moves on an 8-
neighbor grid.

5.9.2. Constraint Layering for Conflict Avoidance

Consider an environment where agents are allowed to move on an 8-neighbor

grid. The search will have a maximum branching factor of 9 if waiting is allowed. If we

restrict agents to cardinal directions or wait, the maximum branching factor is reduced

to 5 which may speed up pathfinding, however collisions become more likely. This

scenario is illustrated in Figure 5.14(a), where both agents may only choose to move

in a cardinal direction or wait. In this example, a rectangle conflict is immediately

resolved in Figure 5.14b because agent 1 is allowed to use octile movement rules. Recall

that conflict symmetries like rectangle conflicts can result in an exponential number of

CT nodes at the high level. Instead, this approach allows immediate resolution of the

conflict in many cases.

CBS+CL modifies the CBS algorithm as follows: We first define several envi-

ronment abstractions (constraint “layers”), ranging from coarser (more constrained) to

finer (less constrained). Then we set a conflict threshold for each environment. When

the number of conflicts between two agents in any sub-tree of the CT meets the thresh-

old for a particular environment, we still create two CT nodes as in traditional CBS,
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except in CBS+CL we re-plan one agent path in each CT node using the new environ-

ment (line 21). If we set our thresholds to be incremental, the search environments

become “layered" in the sense that as conflicts increase, we search on increasingly fine

environments. Intuitively, highly-conflicting agents are increasingly given less con-

straints on their movement allowing them to circumvent conflicts easier.

5.9.3. Theoretical Analysis

CBS+CL has no optimality bound in general, though a specific bound may be

provable depending on the characteristics of environment abstractions used. Though

it is difficult to bound the optimality of CBS+CL, it is guaranteed to terminate with a

solution if one exists [196]. Further, our empirical results show that CBS+CL does not,

in practice, generate extremely costly paths for agents compared to optimal algorithms.

5.9.4. Airplane Domain Test Environment

In our testing, we apply both traditional CBS and our proposed improvements

to a model of an aviation environment. We modeled the airspace with a three-dimensional

grid, the width of which will allow an aircraft moving at maximum speed to negotiate

a 90◦ turn. Each grid cell forms a cube with all three dimensions being the same.

In our model, we have a maximum branching factor of 63 - all combinations of

heading changes: {0◦, +45◦, -45◦, +90◦, -90◦, left shift, right shift}, speed changes: {no

change, speed up, slow down} and height changes: {no change, climb, descend}. A shift

is a maneuver where the aircraft moves in the diagonal direction but does not change

heading. This environment which allows simultaneous change in heading, height and

speed will be referred to in this thesis as the “base" environment. See Figure 5.15 for a

representation of the movement model.

Our cost function is the same for all environment types and is based on fuel

consumption. We base our fuel consumption on distance (liters per grid). The cost

function is implemented with rules derived from [79]:
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Figure 5.15.: Grid-based vertical and horizontal aircraft movement model for aircraft.

• Climbing adds fuel cost. (We used cclimb = 0.001L.)

• Descending saves fuel to half the cost of climbing. (We used cdesc = −0.0005L.)

• Traveling faster or slower than cruise speed decreases the fuel efficiency. We used

5 speeds with consumption rates of: cspeed = [0.008, 0.0077, 0.006, 0.007, 0.008].

The middle speed is cruise speed.

• Diagonal moves (45◦ turn and shift maneuver) multiply the fuel cost by
√

2 ex-

cept for the cost of vertical movement, which is not affected by diagonal move-

ment.

Given vector-valued aircraft states containing the variables: 〈x, y, z, heading,

speed〉, the cost function C(to, f rom) (the cost from the state “from" to the state “to") is

described by:

C = cspeed(to.speed) · α + β

Where:

α =


1 |from.x− to.x| 6= |from.y− to.y|
√

2 otherwise

β =


cclimb to.z− from.z > 0

cdesc to.z− from.z < 0

0 to.z− from.z = 0
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Time is incremented based on speed and distance traveled. Thus, agents mov-

ing at higher speeds arrive at the next lattice point sooner and agents moving on a

diagonal edge require additional traversal time.

Abstractions

All environments used in our experiments are abstractions formed by delet-

ing edges from the “base environment". Because edge deletions never decrease path

lengths from start to goal, admissible heuristics in the base environment remain ad-

missible in an abstraction. It should be clear that the base heuristic may be weak in the

abstracted environment, necessitating unique heuristics on a per-abstraction basis.

Highway Abstractions

We form highway abstractions by converting all undirected edges in the x, y

and z dimensions to directed ones. We formulate vertically separated highways where

agents flying at the same height fly in the same direction. The highway above or be-

low a given height has edges pointing in an adjacent horizontal direction. Thus if an

agent needs to turn, it must simultaneously change altitude to enter the highway for

the desired direction. Thus we retain edges that simultaneously change altitude and

heading into the highway just above and below a given highway.

Because agent heading is restricted, some goal or start states may be invalid.

We cannot simply restrict all start/goal states to be within the highway abstraction,

thus we relax the abstraction via adaptive dimensionality [62] for such states near the

start and goal of the search:

• If an agent’s start state does not have a heading that conforms to the highway

based on its height, it is only allowed to make moves that put it in alignment

with the highway which lies in the direction of its goal.

• If an agent’s goal state is invalid with respect to the highway system, the agent is

allowed to move freely when it is within 2 grid spaces from it’s goal.
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5.9.5. Experimental Results and Analysis

All of our experiments are for a set of k agents with random start and goal

locations inside an 80x80x20 three-dimensional grid world. Each configuration was

run on a set of 100 MAPF instances with random start and goal positions. Our current

implementation also assumes that agents disappear, i.e. do not remain in the collision

space once reaching their goal. We tested on a progressively increasing number of

agents. If a problem takes longer than five minutes to terminate, we mark it as a failure

and set its completion time to five minutes. All experimental results shown were run

on servers with Intel Xeon processors running at 2.4 GHz with 12 GB of memory.

Experimental Environments

All environments were benchmarked using the regular CBS algorithm. We also

benchmarked against Greedy-CBS (GCBS) [15].

Base (8-Way) Environment This is the environment described at the beginning of this

section. Agents are allowed to turn, change height and/or change speed simultane-

ously. The maximum branching factor is 63.

4-Way Environment This abstraction is the same as the “Base" environment except

turns are restricted to 90◦. The maximum branching factor is 27.

Simple Environment This abstraction restricts actions to one change per movement:

heading, speed or height. The maximum branching factor is 11.

Highway-8 Environment We implemented an 8-directional highway system which

enforces height-separated directional highways where agent heading is forced to be

congruent to height modulo 8. The maximum branching factor is 9.

Highway-4 Environment This is similar to “Highway-8" except directions are re-

stricted to height modulo 4. The maximum branching factor is 9.
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5.9.6. Experimental Implementations

CBS We implemented CBS with the bypass enhancement [24] with no high-

level heuristic and tie breaking toward CT nodes with lower conflict counts.

Greedy-CBS GCBS is the previous state-of-the-art for unbounded sub-optimal

MAPF solvers which can be formulated for non-holonomic vehicles. It was shown that

the performance of GCBS is on par with or better than the unbounded sub-optimal

multi-agent A* variant MGS1 [172]. Our implementation GCBS uses NC for priori-

tization in the high level OPEN list. We include the performance of GCBS on the H4

environment as a benchmark because it is empirically the most performant abstraction.

5.9.7. Qualitative and Performance Results

Benchmark Environments

Figure 5.16 shows the results for mean time-to-solution. These results show

that when using the traditional CBS algorithm, using any of the abstractions decreases

the time-to-solution relative to the “Base" environment. The “Highway-4" abstraction

is the best performer, allowing us to solve roughly twice as many agents in the same

amount of time when compared to the “Base" environment.

We attribute the better runtimes to reduced branching factor and reduced con-

flicts due to highway traffic flows. We found that the number of conflicts that occurred

in each environment indicated that the runtime strongly correlates to the number of

conflicts. Using GCBS on the Highway-4 environment improved performance as well,

allowing us to solve for about 30% more agents in the same amount of time.

Analysis of path lengths showed that solutions produced using the “Highway-

4" environment are maximally 18% suboptimal when compared to the “Base" environ-

ment. GCBS seemed to have a minimal impact on solution quality. Table 5.8 shows

the path quality and time to solution for various configurations. These results are from

a subset of the 100 instances with 40 agents in which all environments were able to

terminate with a result under the 5-minute time limit.
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Figure 5.16.: Comparison of performance of different environment configurations

Layered Environments

Finally, we show our results for CBS+CL. We experimented with various ab-

straction layerings and switching thresholds. We found that it is generally most bene-

ficial to set switching thresholds at increments of 1 so that upon encountering a conflict,

the environment is switched immediately. We found that “Highway-4→Highway-8"

had the best overall performance as shown in Figure 5.16. These combinations al-

lowed us to find solutions for roughly 50% more agents when compared to just using

“Highway-4", and 20% more agents when Compared to GCBS on “Highway-4".

Table 5.7 shows CT node and total low-level expansion counts for a set of prob-

lems which were solvable under the time limit by all configurations. Analysis of work

done at the high and low level searches revealed that CBS+CL consistently lowered

the number of conflicts found in the high-level search. Low-level expansion counts are
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Table 5.7.: High and Low-Level Work by Configuration
Configuration CT Nodes Low-Level Expansions

H4→H8→Base 5.53 312099
H4→H8→Simple 5.61 294901
H4→H8→4-Way 5.61 301112

H4→H8 5.69 294712
H4→H8 GCBS 6.56 324818

H8→Simple→Base 8.62 303680
H4 GCBS 9.64 426309

H4 20.76 427492
H8 GCBS 28.62 305683

Base 29.32 2834728
4-Way 69.77 1219804

H8 84.62 471414
Simple 105.69 1372531

Table 5.8.: Quality and Performance by Configuration
Configuration Sol. Cost Optimality Time

H4→H8 GCBS 4.44 0.83 0.84
H4→H8 4.43 0.83 0.85

H4→H8→4-Way 4.43 0.83 0.88
H4→H8→Base 4.43 0.83 0.91

H4→H8→Simple 4.43 0.83 0.92
H4 4.46 0.82 0.99

H4 GCBS 4.46 0.82 1.04
H8→Simple→Base 3.78 0.97 1.42

H8 GCBS 3.79 0.97 4.36
H8 3.79 0.97 6.92

Simple 3.72 0.99 10.77
4-Way 4.28 0.86 22.43

Base 3.67 1.00 67.86

affected both by the branching factors of the mixture of environment abstractions used

in the test and the number of CT nodes. For example, although H4→H8→Base had

fewer conflicts overall than H4→H8→Simple, the number of expansions is higher due

to the high branching factor induced by switching some of the agents into the Base

environment. Notice however that both choices are better than using H4 alone.

We also experimented with GCBS+CL on “Highway-4→Highway-8” and found

that it provided a slight improvement over CBS+CL on the same configuration. We be-
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lieve the set of conflicts resolved by GCBS and CBS+CL have overlap, and thus using

them in conjunction does not give a large incremental improvement.

Table 5.8 shows solution qualities for the same set of problems as Table 5.7. We

found that in the “Highway-4→Highway-8” configuration, optimality varied between

18% and 3% sub-optimal depending on the percentage of agents in the search instance

that switched to the “Highway-8” environment. Not only does switching into less-

constrained abstractions reduce the number of conflicts and time-to-solution, it also

improves the optimality of the solutions.

5.10. Sub-Optimal, Complete Constraints

We now introduce another novel contribution – sub-optimal constraints. In

Section 5.4 we showed that biclique constraints are formulated to block large sets of

mutually-conflicting actions to increase pruning of the CT. It is possible to further in-

crease the number of blocked actions by relaxing the mutually disjunctive requirement,

for example, by blocking all actions in the BCG. However, doing so may cause incom-

pleteness in two ways: (1) termination at the low level without finding a path or (2)

agents being constrained such that each low-level search returns a path which still

conflicts with other agents. For example, if two agents continuoe to conflict over an

over, but at increasingly later times. In situation (2) collisions tend to recur over and

over at increasingly later times, causing the algorithm to run forever. For complete-

ness, we must detect and avoid these two conditions. For this purpose, we introduce

conditional constraints.

5.10.1. Conditional Constraints

Constraints for a CT node N apply permanently to N and are inherited by all

CT nodes in the sub-tree of N. Conditional constraints are turned on by default, but

may be turned off, meaning they no longer block any actions in N or its sub-tree. A

constraint is turned off by omitting it from the low-level re-plan step after a split op-
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eration. Per Lemma 5.3.1, if an action that is not in the biclique is blocked, CBS is no

longer complete. To avoid this, mutually-conflicting actions from the MVB are always

blocked permanently and other actions not in the MVB are blocked conditionally, so that

those actions may be unblocked to avoid incompleteness.

Figure 5.17(a) and the corresponding BCG in (b) are shown for the same sce-

nario as Figure 5.5: Actions corresponding to the MVB are permanent and shown with

bold lines. All other actions in the BCG are shown with dashed lines – these are the set

of conditional constraints.

Algorithm 5.3 contains pseudocode for the CT node expansion portion of CBS

(see Algorithm 5.1 lines 5-14) with enhancements for biclique constraints. Further en-

hancements for implementing conditional constraints are highlighted in red. After

detecting a conflict between two core actions (line 2) child nodes Ni, Nj are created as

copies of N (line 4). Then the steps for creating permanent constraints are executed in

the same manner as described in Section 5.3 (lines 8-12). Then conditional constraints

are created from U \U′t and V \ V ′t where U and V are from the BCG, and U′t and V ′t

are from the TAB (lines 13,14). Then conditional constraints can later be turned off

according to the two causes of incompleteness as follows:

Situation (1) will occur when a low-level re-plan for an agent returns no path

because a conditional constraint blocked a feasible path (lines 23, 27). When this occurs,

i j
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Figure 5.17.: Illustration of (a) sets of available actions for two agents and (b) the corre-
sponding BCG.
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conditional constraints are removed from Ni.C and Nj.C and the re-plan is performed

again (lines 25, 29).

Situation (2) will occur when an agent is over-constrained such that it cannot

arrive at its goal. Because this situation is caused by one of the conditional constraints,

we use a strategy to turn them off probabilistically. Specifically, they are turned off with

an increasing probability ρoff = MIN(1, (∆i−1)/di) (line 16) where di (line 6) is the length

of the path for agent i in the root CT node and ∆i (line 5) is the number of conflicts with

Algorithm 5.3. Expand-CT-Node

1: Input: N – a CT node
2: 〈ai, aj〉 ←find-conflict(N.Π)
3: if No conflict return N.Π as goal
4: Ni ← N; Nj ← N // Copy N to child nodes for split
5: Get conflict counts ∆i, ∆j: the number of conflicts from N to root
6: Get length of path di, dj in CT root node for i and j
7: // Compute BCG and biclique for core action pair
8: (U, V, E)← CreateBCG(ai, aj)
9: (U′t , V ′t )← ComputeMaxVertexTAB(U, V, E)

10: // Create constraints
11: Ni.C←Ni.C ∪ CreatePermanentConstraints(U′t)
12: Nj.C←Nj.C ∪ CreatePermanentConstraints(V ′t )
13: Ni.C←Ni.C ∪ CreateConditionalConstraints(U \U′t)
14: Nj.C←Nj.C ∪ CreateConditionalConstraints(V \V ′t )
15: // Create probabilistically filtered sets
16: ρi←MIN((∆i−1)/di, 1.0); ρj←MIN[e]((∆j−1)/dj, 1.0)
17: Remove conditional constraints from Ni.C with probability ρi
18: Remove conditional constraints from Nj.C with probability ρj
19: // Re-plan with (filtered) constraint sets
20: Ni.Π← Replan(starti, goali, Ni.C)
21: Nj.Π← Replan(startj, goalj, Nj.C)
22: // Check for no path and re-plan without conditional constraints
23: if Ni.Π.πi = ∅ then
24: Remove all conditional constraints from Ni.C
25: Ni.Π← Replan(N.Π.πi, Ni.C)
26: if Nj.Π.πj = ∅ then
27: Remove all conditional constraints from Nj.C
28: Nj.Π.πj ← Replan(N.Π.πj, Nj.C)

29: Add Ni, Nj to OPEN
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agent i in CT nodes from N to the root. As the search progresses, if agent i has recurring

conflicts, ∆i will grow relative to di increasing ρoff, resulting in a higher proportion

of conditional constraints being turned off. Eventually, any conditional constraints

causing situation (2) to occur will be turned off, allowing a goal to be found. We call

this algorithm CBS+TCC (TAB with conditional constraints).

5.10.2. Theoretical Analysis

Theorem 5.10.1. CBS+TCC is complete.

Proof. First, no feasible solution is ever blocked by permanent constraints because they

will never block a feasible solution per Lemma 5.3.1. Second, there are two cases to

consider for any conditional constraint c ∈ Cc, where Cc ⊂ C is the set of conditional

constraints from N:

Case 1: c blocks an action in a feasible solution. If all feasible solutions are blocked,

a conflict resulting from situation (1) or (2) will occur. In the case of (1), all conditional

constraints are turned off immediately (including c), (lines 23,27) allowing a solution

to be found. In the case of (2), if the probabilistic filtering (lines 17,18) does not turn

off c at this stage, a new CT node will be created, increasing ∆i. This situation may be

repeated in subsequent CT nodes with increasing ρoff until c is turned off. Because ∆i

is monotonically increasing, ρoff will reach 1 after a finite number of steps, hence c is

guaranteed to be turned off after a finite number of steps, (if a goal is not found in a

different sub-tree of the CT first) allowing CBS to complete.

Case 2: c blocks an action that causes a conflict. If c is turned off before a goal is

found, an agent may now be allowed to take an action which re-introduces a conflict

into N.Π. In this case, either a goal node will be found in a different sub-tree, or the

resulting conflict will eventually be detected in the sub-tree of N and a permanent

constraint to avoid it will be created, allowing CBS to find a goal.

Eventually, in the worst case, all conditional constraints are turned off and the

algorithm reduces to CBS+TAB which is guaranteed complete per Theorem 5.4.1.
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CBS+TCC can yield significant speed-ups over CBS+TAB because it preemp-

tively blocks actions that are likely to lead to dead-ends in the CT, resulting in finding

a feasible solution sooner. Optimality is not guaranteed because active conditional

constraints may block an action in an optimal solution. An example is shown in Figure

5.18. The optimal solution as shown in (a) is unachievable when conditional constraints

from Figure 5.17 are used for the problem. This is because action 5 is conditionally

blocked for agent i and action 6 is permanently blocked for agent j after the first split,

precluding at least one of the agents from taking an initial diagonal action. This is in-

dicated by the ‘x’s on Figure 5.18(b). However, a sub-optimal, feasible solution such as

in diagram (b) would be found by CBS+TCC immediately after the first split.

5.10.3. The Conflicting Paths Strategy

A more powerful blocking strategy called CBS+TCP (TAB with conflicting

paths) blocks actions that conflict with the paths of all other agents (in addition to

agents i and j). This technique has strong resemblances to prioritized planning algo-

rithms [164, 189, 34, 33]. This is done during the CBS feasibility check routine. The first

conflict encountered during the check is the core conflict. Mutually conflicting actions

between agents i and j in the core conflict are blocked using permanent constraints (by

computing the TAB for the core action pair). For every conflict between agent i or j and

i j

(a)
|

i j

5

6

(b)
|

i j

(c)
|

Figure 5.18.: Example showing (a) an example problem instance, (b) an optimal solu-
tion blocked by a conditional constraint and (c) a sub-optimal solution
caused by the conditional constraint.
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any other agent that is encountered thereafter, conditional constraints for all actions in

the corresponding BCG are added to Ci or Cj.

Figure 5.19 (a) shows the regular constraint allocation strategy which adds per-

manent constraints for resolving only one conflict. This is indicated by the black ‘x’

over the collision area. Diagram (b) shows the CBS+TCP strategy which allocates ex-

tra conditional constraints for all conflicts beyond the core conflict as indicated by the

dashed ‘x’s. With CBS+TCP, when agent i (resp. j) is re-planned as part of a split op-

eration, it will attempt to avoid conflicts with all other agents (not just agent j). This

technique can result in a significant performance improvement because of aggressive

pruning high in the CT.

The same conditions for turning off conditional constraints in CBS+TCC are

employed by CBS+TCP, hence it is complete but sub-optimal.

5.10.4. Empirical Results

We compare state-of-the-art, Greedy CBS (GCBS) [15], an unbounded, subopti-

mal variant of CBS using NC for prioritizing the OPEN list and time-range constraints

with GCBS+TCC and GCBS+TCP which are GCBS with the new strategies discussed in

Section 5.10. GCBS low-level prioritization on fewest conflicts with other agents is not

performed because the CAT enhancement is not effective for 2k neighborhoods with k

of 3 and higher (see Section 3.5).

(a) (b)

Figure 5.19.: Illustration of (a) regular CBS constraint allocation and (b) allocation with
the conflicting paths strategy.
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Table 5.9.: Total problems solved in under 30 seconds

Type Map
GCBS+Time GCBS+TCC GCBS+TCP

8 32 8 32 8 32

City
Berlin_1_256 2,473 1,121 4,413 2,970 4,920 3,068
Boston_0_256 3,027 1,073 6,021 2,937 5,879 2,983
Paris_1_256 2,833 1,153 6,115 3,011 6,745 3,027

DAO

brc202d 1,701 733 2,703 1,709 3,385 2,035
den312d 849 451 1,885 1,919 2,549 2,457
den520d 1,653 737 2,911 2,783 3,161 3,235
lak303d 1,035 435 2,289 1,883 2,635 2,495
orz900d 1,507 509 2,163 963 2,393 1,059
ost003d 1,139 493 2,341 2,167 2,645 2,687

Dragon
Age 2

ht_chantry 1,221 577 2,635 2,381 3,327 3,217
ht_mansion_n 1,251 565 2,391 2,515 2,847 2,809
lt_gallowstemplar 1,325 653 2,223 2,213 2,493 2,497
w_woundedcoast 2,031 735 3,277 1,726 3,853 2,873

Open

empty-8-8 392 221 800 800 800 800
empty-16-16 423 223 1,695 1,751 2,147 2,121
empty-32-32 839 431 2,991 3,061 3,765 3,737
empty-48-48 1,079 535 4,043 4,683 5,271 5,833

Open+
obstacles

random-32-32-10 689 381 2,787 2,723 3,283 3,389
random-32-32-20 765 401 2,175 1,991 2,657 2,435
random-64-64-10 1,261 595 4,869 5,105 5,891 6,051
random-64-64-20 1,135 681 3,743 3,581 4,105 4,185

Maze

maze-32-32-2 447 261 999 917 1,103 1,123
maze-32-32-4 339 222 651 631 745 665
maze-128-128-10 981 435 1,793 1,711 2,295 2,155
maze-128-128-2 601 301 1,117 1,025 1,223 1,171

Room
room-32-32-4 489 256 1,205 1,135 1,395 1,349
room-64-64-16 709 317 1,503 1,465 1,909 1,677
room-64-64-8 419 230 1,055 1,005 1,163 1,092

Table 5.9 shows results for the same set of benchmark problems. GCBS+TCP

consistently outperforms the other variants. The improvement over GCBS is signifi-

cant, up to 5×. Figure 5.20 shows success rate for a subset of the benchmark problems.
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Figure 5.20.: Success rate of sub-optimal variants

Table 5.10.: Comparison of solution quality on 4- and 16-neighbor grids
Optimal Complete

Configuration CBS[4] CBS[16] GCBS[4] GCBS[16] GCBS+TCC[16] GCBS+TCP[16]
Empty 8x8 (25 agents) 116 77 (67%) 132 (114%) 105 (91%) 107 (92%) 107 (92%)
Empty 64x64 (100 agents) 4,277 3,353 (78%) 4,283 (>100%) 3,355 (78%) 3,358 (79%) 3,358 (79%)
den520d (50 agents) 9,025 7,266 (81%) 9,028 (>100%) 7269 (81%) 7292 (81%) 7321 (81%)
brc202d (50 agents) 21,072 18,894 (90%) 21,090 (>100%) 18,899 (90%) 18,980 (90%) 18,922 (90%)
ost003d (50 agents) 7,889 6,148 (78%) 7,899 (>100%) 6,154 (78%) 6,293 (80%) 6,182 (78%)
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GCBS+TCP is the strongest overall, with its most significant gains in maps with wide

open spaces.

Table 5.10 shows mean solution costs where CBS[4], and GCBS[4] are for 4-

neighbor grids, and CBS[16], GCBS[16], GCBS+TCC[16] and GCBS+TCP[16] are for

16-neighbor grids. The solution quality compared to optimal costs in 4-neighbor grids

(the underlined values) is shown next to each statistic as a percentage in parenthesis.

Solutions in 8x8 grids show the highest percentages of sub-optimality. This is due to

the high agent density. Both strategies do not significantly degrade the overall solution

quality when compared to GCBS[16], usually 1% of optimality or less. GCBS+TCP,

which shows a significant speedup over GCBS+TCC, does not show any significant

degradation in solution quality.

Path quality in 16-neighbor grids is better than for 4-neighbor grids [151], and

this phenomenon is reproduced here – CBS[16] consistently yields higher quality so-

lutions than CBS[4], and all sub-optimal variants consistently report better solution

quality than CBS[4]. This is a key highlight because it means that if sub-optimal results

are acceptable, when given a choice between a low-fidelity, unit-cost movement model

and a higher-fidelity non-unit cost movement model, a higher fidelity model can yield

both higher quality solutions and better runtime performance by using sub-optimal

variants.

5.11. Theoretical Analysis of CBS for General MAPF

5.11.1. Computational Complexity

The computational complexity of the CBS high-level search for Classic MAPF

is equivalent to the size of the CT at the time of termination which is O(2k2µ∗3
) [65]

where k is the number of agents and µ∗ is the makespan of the lowest-cost solution.

The term µ∗3 represents the upper bound on the size of an MDD for a path of cost

µ∗ in 4-neighbor grids. The rationale behind using the MDD size in this equation is
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that the total number of grid cell, time-step combinations in the path of an agent can

be no larger than its MDD of makespan cost. Furthermore, two agents can not have

more conflicts than the number of vertices and edges in one of the two agent’s MDDs.

There are (k
2) pairs of agents that can have conflicts, hence the k2 term. The low-level

complexity is O(µ∗n) where n is the number of vertices in G. Normally a single-agent

solver like A* would have a complexity of O(n) because with duplicate detection, each

vertex would only be expanded once in the worst case. However, because of the time

component in the state space, A* may expand the same vertex (at different time steps)

O(µ∗) times.

We now introduce our novel analysis for the complexity of CBS with General

MAPF. The size of an MDD varies depending on the specific MAPF instance. For 2k

neighborhoods, the size of an MDD is O(µ∗2(µ∗ − µ0)/r) where µ∗ is the makespan

(e.g., largest cost of a single agent in the final solution), µ0 is the smallest cost of an

agent in the final solution and r is the inverse resolution of time. E.g., r=100 for a

resolution of 1/100. Inside of a cost of µ∗, an agent cannot move more than µ∗ from the

start vertex in any direction, hence the µ∗2 term. Assuming a finite set of edge costs, an

agent may arrive at its goal with a cost in the range [µ0, µ∗]. Similarly, it may occupy

any vertex within a radius of µ∗ inside a maximum time range of (µ∗ − µ0) and the

number of unique costs possible in that range is (µ∗ − µ0)r.

Increasing the connectivity of the graph (e.g., from 23 to 24) increases the num-

ber of unique costs in which a given vertex can be reached - but that number cannot ex-

ceed (µ∗ − µ0)r. For example with µ∗=10 and µ0=5 and r=100 a goal may be reached

at a maximum of 500 unique times. After simplification, the bound is O(µ∗3r), hence

the overall complexity of CBS for General MAPF is O(2µ∗3r). This bound holds for gen-

eral graphs embedded in a metric space, provided that time and cost are synonymous.
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5.11.2. Sufficient Conditions for Completeness and Optimality

Rigorous proofs for optimality and completeness have been shown for the basic

CBS algorithm [160] and Multi-Constraint CBS [110]. The proofs for General MAPF

are identical. In this thesis, we only provide a proof sketch covering these proofs. This

section utilizes the symbols and definitions set forth in Section 2.3.1.

We start with some additional definitions:

• N is a CT node.

• N.C is the set of constraints associated with a CT node which includes all con-

straints from itself and all constraints from its ancestor nodes from N to the root.

• Π (bold Π) is a set of solutions.

• Π+ is a set of feasible solutions.

• Π∗ is the set of all lowest-cost feasible solutions.

Assumption 5.11.1. Assume that the problem graph G is finite and that the minimum

edge cost is positive constant bounded.

Assumption 5.11.2. Assume that the algorithm used at the low level is optimal and

complete and will either terminate with a lowest-cost path that is consistent with all

constraints in N.C, or will terminate with no solution in the case that none exists.

This assumption is required to ensure that the low-level will terminate.

Theorem 5.11.3. (Completeness)

If constraint sets in each split are mutually disjunctive (see Section 5.3.2), CBS is

guaranteed to find a feasible solution if one exists, otherwise it may not terminate.

Proof sketch. This is a proof by induction.

Base Case: Any solution in Π+ is permitted at the root because it contains no con-

straints.
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Induction Step: Adding constraints to child nodes N1 and N2 will result in one of two

cases for N1 and N2:

1. The child node permits any Π ⊆ Π+ because, by definition, mutually disjunctive

constraint sets cannot block any feasible path combination.

2. The constraint(s) added completely block the low-level from finding a path that

is consistent with the constraints and therefore the node is pruned from the CT.

General Case: Any further splits will continue to ensure that no Π ∈ Π+ is precluded

by constraints. Hence, because new constraints are systematically added precluding

infeasible solutions, eventually some Π ∈ Π+ will be discovered which is consistent

with N.C (via a series of nodes following case 1 of the induction step). Otherwise, the

algorithm will terminate with no solution where each leaf node in the CT is pruned

following case 2 in the induction step in the case no solution exists. Or else (assuming

no temporally-relative duplicate pruning is applied) the algorithm will run forever, but

only in the case no solution exists. See Section 3.3.1 on temporally-relative duplicate

pruning for details on why it could run forever.

Finally, CBS is guaranteed to make progress toward a goal (if one exists) be-

cause (1) the low-level is guaranteed to terminate per Assumption 5.11.2 and (2) each

split will eliminate at least one single-agent action in each branch. Therefore, after a

finite number of steps, all conflicts will eventually be eliminated by some N.C and a

feasible solution will be found. Furthermore, since the CBS OPEN list is ordered by

flowtime and adding of constraints eventually results in a cost increase after a finite

number of steps, CBS cannot get stuck continuously adding constraints to some infea-

sible branch – eventually the cost will increase and a node from a different branch will

come to the top of the OPEN list, causing a branch that allows a feasible solution to be

explored and the goal found (if one exists) after a finite number of steps.

Theorem 5.11.4. (Optimality)

CBS will find an optimal solution assuming one exists if the high-level OPEN list is

sorted by f-cost and an admissible heuristic is used.
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Proof sketch. By Theorem 5.11.3, CBS will find a feasible solution in Π+ assuming one

exists. Because of the ordering of the OPEN list, lower-cost solutions will be consid-

ered strictly before higher-cost ones, ensuring that a lowest-cost feasible solution in

Π∗ ⊆ Π+ is found before a sub-optimal one. A sub-optimal solution cannot be consid-

ered before an optimal one because the heuristic is admissible [69]. Thus after a finite

number of steps CBS will reach an optimal solution.

5.12. Summary

We have provided a description and pseudocode for the CBS algorithm. We

have explained various conflict types, the notion of Cardinal conflicts and conflict sym-

metries. We highlighted how conflicts differ in General MAPF domains and specific

approaches to deal with them, using appropriate constraints in CBS. We have defined

the notion of correctness for constraint sets in CBS and the motivation for generating

large sets of constraints for CBS with examples.

We have introduced a novel approach to generating large sets of constraints

that are guaranteed to be correct using analysis with bicliques and bipartite conflict

graphs. Additionally, we provided a new technique for more powerful, time-aware

constraint generation using time-annotated bicliques. The empirical tests show that biclique-

based constraint generation methods dominate other classic approaches to constraint

generation in terms of reducing the amount of work performed and runtime necessary

to find solutions.

We provide a new algorithm for performing mutex propagation in General MAPF

domains. This allows more effective symmetry breaking in the case of conflict symme-

tries. We discussed options for low-level search routines in General MAPF and pro-

vided novel analysis for adaptation of high-level heuristics for General MAPF domains.

We empirically compare CBS with constraints built using mutex propagation and con-

straints built with bicliques and find that CBS with bicliques dominates generally, with

exceptions for some specific cases.
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Next, we explored two new approaches to sub-optimal CBS: constraint layer-

ing and conditional constraints. The former allows refinement of solutions which can

make the algorithm faster. The latter works by adding extraneous constraints to avoid

conflicts and relaxing them as necessary to avoid incompleteness. Our results show

that conditional constraints can boost performance significantly without significantly

degrading solution quality.

Finally, we provided new theoretical analysis for the computational complexity,

completeness and optimality of CBS in General MAPF domains.

142



6. Conflict-Based Increasing Cost Search

In this chapter, we take a deeper look at conflict symmetries in the context

of continuous-time and formulate a new algorithm: Conflict-Based Increasing Cost

Search (CBICS) [200] which combines elements of Conflict-Based Search (CBS) [160]

and Increasing Cost Tree Search (ICTS) [163]. CBICS has been shown to be an im-

provement over CBS and ICTS in many settings.

6.1. Introduction

The main idea of CBICS is that useful information is learned by analyzing the

path costs of individual agents and the pairwise solution costs of pairs of agents. This

information can be exploited to avoid unnecessary work. In Figure 6.1(a), the path

costs of the agents are x=2, y=2, z=2 when conflicts between agents are ignored. To

resolve the conflict between agents y and z, at location B2 at the first time step, agent

y must wait for agent z to enter B2, or vice versa. This results in the path cost combi-

nations 〈y=2, z=3〉 and 〈y=3, z=2〉. Hence, y+z=5 in either case. We refer to this sum

lbi,j (for arbitrary agents i and j) as the pairwise lower bound, since there is no feasible

solution whose sum is less than this bound.

Without the information that lby,z=5, lbx,z also appears to be 5 (agent z must

wait for agent x or vice versa). However, given lby,z=5, it must be that lbx,z=6: If we

fix y=2 and z=3, the path cost for agent x must be x≥4. For example, if agent y follows

the path left, left and agent z follows the path wait, up, up, then the only lowest-cost

path for agent x is down, right, up, right. In general, by fixing the path costs of some

agents, we can make inferences about the lower bound path costs of other agents.
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Figure 6.1.: (a) An example unit time MAPF instance, (b) a partial ICT with an implied
δ of 1 for the MAPF instance and (c) a partial CT for the MAPF instance.

In CBICS we use cost constraints to fix the costs of certain agents. Cost con-

straints will be explained in more detail later. CBICS also uses motion constraints which

are essentially the same as CBS “constraints” as discussed in Section 5.3. In order to

clearly distinguish between the two types of constraints we use the terms “motion con-

straint” for constraints which constrict motion like CBS does, and “cost constraint” for

constraints which restrict the upper-bound cost of an agent’s path, similar to extended

ICTS [198].

Consider the partial search trees for CBS (Figure 6.1(c)) and ICTS (Figure 6.1(b)).

CBS adds only motion constraints at each depth of the CT, eventually resulting in

enough cumulative motion constraints to eliminate infeasible path combinations. But

little insight is gained at each depth in the CT. ICTS systematically increases the path

cost for each agent, but does not learn that some subsets of path costs can never lead to

a feasible solution.
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CBICS gains insight about feasible path cost combinations and uses motion

constraints and cost constraints in order to reduce the size of the search tree and find

solutions more quickly.

6.2. CBICS High Level

CBICS searches the cost-range constraint tree (CRCT) as shown in Figure 6.2.

A CRCT node is a tuple: 〈R, M, LB, Π, SoC〉 where R={r1, .., rk} is a set of path cost

ranges for each agent where ri=[lb, ub), for example ri=[2, ∞). We use the shorthand

2+ for [2, ∞) and 2 for [2, 2]. M={M1, .., Mk} is a set of motion constraint sets for each

agent. LB={lb1,2, lb1,3, .., lb(k−1),k} is the set of lower bounds for the sum of path costs

for all pairs of agents (pairwise path costs). Π is a solution. SoC is the sum-of-costs of

all agents. For a CRCT node N we use the shorthand N.ri to refer to the cost range in

N.R for the ith agent, N.Mi to mean the set of motion constraints in N.M for the ith

agent, N.πi to mean the path in N.Π for the ith agent and N.lbi,j to mean the pairwise

sum-of-costs lower bound for the ith and jth agents.

Each node in Figure 6.2 shows the path cost ranges R (in colors) and SoC or

flowtime (in black parentheses) in the top row, pairwise cost lower bound information
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Figure 6.2.: The entire CRCT for the MAPF instance in Figure 6.1(a).
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LB in the second row (in black) and motion constraint sets M in the remaining rows

(in colors). When motion constraint sets contain more than one member, “. . ." is used

to indicate this.

Recall that in Section 5.3 edge motion constraints m∈N.Mi restrict agent i from

performing one action at a specific time. A motion constraint is a tuple m=〈n, a〉where

n is the agent number and a=〈st, st+1〉 is the action for the agent to avoid. In this paper,

the notation for motion constraints are in the format B1@0→B2@1 meaning the agent

is prohibited from moving from location B1 at time step 0 and arriving at location B2

at time step 1. However, in Figure 6.2 motion constraints are shown with abbreviated

notation like B2@1, which is shorthand for an action that ends at location B2 at time

step 1. The start location can be inferred from the MAPF instance. The color indicates

the agent number. When a motion constraint is struck through (e.g., B2@1), it means

that the constraint was conditionally removed. Conditional constraints are discussed

later. The solution Π of each node is not shown.

Cost constraints restrict agents to paths with costs inside certain cost ranges. For

N.ri=[lb, ub), N.πi is restricted to a path such that c(N.πi)∈[lb, ub). The pairwise path

cost N.lbi,j similarly restricts paths based on the sum of two path costs. That is, for

N.lbi,j=`, N.πi and N.πj are restricted such that c(πi)+c(πj)≥`.
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Figure 6.3.: (a) The combined cost range of agents y and z (a) for node A and (b) for
nodes B, C and D of Figure 6.2.

146



The range of possible path costs for agents y and z for node A from Figure 6.2 is

shown in Figure 6.3(a). The cost region (shown in gray) represents all values bounded

by ry=2+ represented by the blue line, rz=2+ represented by the orange line, and all

pairwise path costs lby,z=4 represented by the black line.

Pseudocode for CBICS is shown in Algorithm 6.1. On line 3, the root CRCT

node N (e.g., node A in Figure 6.2) is constructed. N.Π in the root node contains

paths for all agents, planned for shortest paths without taking the other agents into

account. Each ri∈N.R is set to [c(πi), ∞) respectively, SoC is c(N.Π), N.LB gets the

sum of costs for each pair in N.Π and all elements of N.M are set to empty. CBICS

checks for conflicts between the paths in Π (line 9). If no conflict is found, N.Π is set as

the new incumbent (line 11). This incumbent is needed due to the lazy evaluation of

some nodes. Some nodes may have a cost increase after evaluation. The OPEN list is

ordered by SoC. If no better solution exists in the OPEN list, the incumbent is returned

as the solution (line 13). If a conflict is found, the low-level subroutine PAIRWISECON-

STRAINTSEARCH is called for the two conflicting agents (generically, agent i and j) (line

16).

The PAIRWISECONSTRAINTSEARCH (PCS) which was initially discussed in Sec-

tion 5.5.2 is an implementation of continuous-time mutex propagation which plans two

conflicting agents (agents i and j) jointly to find a feasible solution and discover mo-

tion constraints and cost constraints at the same time. PCS takes as input two path cost

constraints ri and rj, a pairwise cost constraint lbi,j (also known as the current pairwise

cost frontier) and motion constraints Mi and Mj. Line 16 shows N as the input because

N contains all of the information needed. The output is: (1) a pair of new motion con-

straint sets M′i and M′j, (2) a set of lowest-cost path pairs P={〈πi, πj〉1, .., 〈πi, πj〉n} such

that ∀〈πi, πj〉∈P:

• πi and πj have no conflicts.

• πi and πj respectively conform to motion constraint sets Mi and Mj. (Paths do

not violate any motion constraint inputs from the high-level.)
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Algorithm 6.1. CBICS Algorithm
1: Input: a MAPF instance
2: OPEN ← ∅
3: Initialize the root node and add it to OPEN
4: incumbent← dummy with SoC=∞
5: while OPEN 6= ∅ do
6: N ← OPEN.pop()
7: if N has any empty πi ∈ N.Π then
8: Re-plan each empty πi with cost and motion constraints
9: A← FINDCONFLICT(N.Π) . Find conflicting actions 〈ai , aj〉

10: if A = ∅ then
11: incumbent← N if N.SoC < incumbent.SoC
12: if incumbent.SoC ≤ OPEN.top.SoC then
13: return incumbent
14: else
15: P, M′i , M′j, lb′i,j ← PAIRWISECONSTRAINTSEARCH(starti , startj, goali , goalj, N.Mi ,
16: N.Mj, N.ri , N.rj, N.lbi,j)

17: if M′i 6= ∅ ∨M′j 6= ∅ then . Conjunctive split
18: for 〈π′i , π′j〉 ∈ P do . Nodes with pairwise costs = lbi,j

19: N′ ← N
20: N′.ri ← [c(π′i), c(π′i)]
21: N′.rj ← [c(π′j), c(π′j)]
22: N′.lbi,j ← c(π′i)+c(π′j)
23: N′.SoC ← N.SoC− c(N.lbi,j) + N′.lbi,j
24: N′.Mi ← N′.Mi ∪M′i . Cost-cond. constraints
25: N′.Mj ← N′.Mj ∪M′j
26: N′.πi ← π′i
27: N′.πj ← π′j
28: OPEN ← OPEN ∪ N′
29: N′ ← N . Node for path costs at and above the next frontier
30: N′.lbi,j ← lb′i,j
31: N′.SoC ← N.SoC− c(N.lbi,j) + N′.lbi,j
32: N′.Mi ← N′.Mi ∪M′i . Cost-cond. constraints
33: N′.Mj ← N′.Mj ∪M′j
34: N′.πi ← ∅ . Will be replanned lazily on line 8
35: N′.πj ← ∅
36: OPEN ← OPEN ∪ N′
37: else . Disjunctive, CBS-style split for conflicting agents
38: N′ ← N . Create node for agent i
39: N′.ri ← [MINπ′i∈Pc(π′i), ∞)

40: N′.lbi,j ← c(P0.π′i)+c(P0.π′j) . P0 is the first pair in P
41: N′.SoC ← N.SoC− c(N.πi) + c(π′i)
42: N′.Mi ← N′.Mi ∪ {〈i, ai〉} . Regular motion constraint
43: N′.πi ← ∅ . Will be replanned lazily on line 8
44: N′.SoC ← N.SoC− c(N.πi) + c(π′i)
45: OPEN ← OPEN ∪ N′
46: N′ ← N . Create node for agent j
47: N′.rj ← [MINπ′j∈Pc(π′j), ∞)

48: N′.lbi,j ← c(P0.π′j)+c(P0.π′j) . P0 is the first pair in P
49: N′.Mj ← N′.Mj ∪ {〈j, aj〉} . Regular motion constraint
50: N′.πj ← ∅ . Will be replanned lazily on line 8
51: N′.SoC ← N.SoC− c(N.πi) + c(π′i)
52: OPEN ← OPEN ∪ N′)
53: return "No solution"
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• c(πi)+c(πj)≥lbi,j (The sum of each pair of path costs conforms to the pairwise

liwer bound cost constraint.)

• c(πi)∈ri and c(πj)∈rj (Each path cost conforms to the path cost constraints.)

• 〈c(πi), c(πj)〉 is unique in P. (P cannot contain more than one path pair with

the same cost combination.)

and (3) lb′i,j, the next lowest pairwise cost frontier. Further details of PCS are covered in

Section 6.3.

For example, in Node A of Figure 6.2, based on the conflict between agents y

and z, ry=2+, rz=2+, lby,z, My=∅ and Mz=∅ are passed to PCS in order to plan agents

y and z jointly. PCS would then return two path pairs in P with path costs 〈2, 3〉 and

〈3, 2〉. These cost pairs correspond to points marked “B” and “C” in Figure 6.3(b). The

resulting pairwise cost frontiers, lby,z=5 and lb′y,z=6 are also shown as diagonal black

lines. These two path pairs in P are the basis for generating the two child nodes B and

C of node A in Figure 6.2. Additionally, lb′y,z=6 is the basis for generating a third child,

node D in Figure 6.2.

6.2.1. Motion Constraint Sets for Splitting

CBICS generates child nodes based on outputs from PCS. Recall from the dis-

cussion of CBS that during a split, agents i and j receive a set of new motion constraints

Mi and Mj, respectively. This helps the agents to avoid a conflict. Completeness is en-

sured only when Mi and Mj are mutually disjunctive (See Section 5.3.2). In this chapter

we also use the term valid to describe constraint sets that are mutually disjunctive.

There are two possibilities for PCS outputs M′i , M′j: (1) motion constraints are

found for at least one of the two agents or (2) no motion constraints are found. In

case (1) CBICS performs a conjunctive split. In case (2), CBICS performs a (CBS-style)

disjunctive split.
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6.2.2. Conjunctive Splitting

In a conjunctive split, the same motion constraint sets are applied to all child

nodes. See lines 18-36 of Algorithm 6.1. A child node N′ is created for each path pair

π′i , π′j in P, where N′.ri and N′.rj are assigned the costs c(π′i) and c(π′j), respectively,

the pairwise lower bound, N′.lbi,j gets c(π′i)+c(π′j), N′.Π is updated with π′i and π′j

and N′.M is updated with M′i and M′j (lines 18-28).

For example, node A of Figure 6.2 is split based on the conflict between agents y

and z, producing two child nodes because PCS returned two path pairs in P with costs

〈2, 3〉 and 〈3, 2〉. Child nodes B and C take on fixed values for ry and rz (ry=2, rz=3

and ry=3, rz=2, respectively). Child B and C also get lby,z=5, and the same sets of

constraints are added to both. CBICS also replaces B.πy, B.πz, C.πy and C.πz with the

respective paths from P.

CBICS generates an additional node whose cost constraints represent the cost

range based on the next pairwise cost frontier, lb′i,j (lines 29-36). Note that paths for this

node are not filled in, but are lazily planned on line 8. The creation of the additional

node is illustrated by node D, which is generated based on lb′y,z=6, and also receives

the same motion constraint sets as nodes B and C. The cost range for node D in Figure

6.2 is shown as the shaded region in Figure 6.3(b).

6.2.3. Disjunctive Splitting

Lines 37-52 show the steps for a disjunctive split. In a disjunctive split, only

two nodes are created, one for each agent in conflict. Each node then gets motion con-

straints for one agent respectively. The cost constraints are not updated in a disjunctive

split.

6.2.4. Cost-Conditional Motion Constraints

In order to ensure completeness, motion constraints used in a conjunctive split

must be cost-conditional motion constraints. Recall that conditional motion constraints (See
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Section 5.10.1) are similar to regular constraints, except that they can be turned off,

meaning that they are omitted from the low-level search based on some criteria. The

need for cost-conditional motion constraints in conjunctive splitting scenarios can be

understood using the example in Figures 5.7(a) and (b). As discussed in Section 5.5,

CBS with mutex propagation [218] constructs motion constraints for the mutexed MDD

nodes shown with dashed outlines shown in Figure 5.7(a). Figure 5.7(b) shows the

same analysis if the cost limit is increased to 3 for agent x. The MDD node B2 at time

step 1 for agent z is no longer mutex with all MDD nodes for agent x, hence the mo-

tion constraints for agent x remain valid, but the motion constraints for agent z are no

longer valid. This can be seen by comparing the nodes with dashed outlines between

Figure 5.7 (a) and (b).

We therefore create motion constraints that are conditional on the cost of the

other agents. The analysis in Figure 5.7(b) leads us to define a cost-conditional mo-

tion constraint 〈n, a, ref, c〉, where n is the agent being constrained, a is the action to be

avoided, ref is the reference agent for the constraint, and c is the upper cost bound of

the reference agent. Hence, the motion constraint is only valid when the cost of the

reference agent is no greater than c, otherwise it is turned off. Referring back to Figure

5.7(b), a cost-conditional motion constraint 〈n=x, a=B1@0→B2@1, ref=z, c=2〉 would

be returned by PCS.

6.2.5. High-Level Search

The CRCT is searched in a best-first fashion using the sum-of-costs as the pri-

mary sorting criterion. A heuristic such as WDG (See Section 5.7.1) should be used.

Some nodes in the CRCT which are generated before node E (the goal node in Figure

6.2) are pruned quickly because the combination of costs is infeasible. These pruned

nodes are shown with red ‘X’s in Figure 6.2. For example, the left child of node C is

pruned because setting rx=3 and ry=3 makes conflict-free paths for agents x and y

impossible.
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The search continues in this fashion, finding the current pairwise cost frontier,

creating child nodes for fixed costs on the frontier and one child node representing

pairwise costs at and above the next lowest pairwise cost frontier.

Prior to calling PCS, CBICS checks each mi∈Mi and mj∈Mj against the upper

bound of each r∈R. All mi with mi.re f=j and mi.c<rj.ub are removed from the con-

straint set (i.e., turned off). Then PCS is executed. For example, the analysis in Figure

5.7(a) creates four conditional motion constraints based on the actions terminating at

dashed nodes.

1. 〈n=x, a=B1→B2@0, re f=z, c=2〉

2. 〈n=x, a=B2→B3@1, re f=z, c=2〉

3. 〈n=z, a=C2→B2@0, re f=x, c=2〉

4. 〈n=z, a=B2→B3@1, re f=x, c=2〉.

If PCS were called with parameters rx=2 and rz=3, constraints (1) and (2) would be

omitted because rz=3 is greater than c=2 for both of them.

The upper cost bound of a conditional motion constraint mi.c is valid iff it is

mutually disjunctive with all of the conflicting agent (agent j)’s actions at the same time

when agent j’s path cost is less than or equal to mi.c. Hence, we say cost-conditional

motion constraint sets are valid iff no solution exists when both agents i and j violate

any (non-turned off) motion constraint from Mi and Mj simultaneously. By non-turned

off, we mean motion constraints mi for which mi.c≤rj.ub where rj.ub is the upper bound

of the cost range for agent j (and analogously for mj).

In node E in Figure 6.2, because of the motion constraints and the cost con-

straints for agent y from node B, only one feasible solution for agents x and y exists

with costs 〈4, 2〉. This results in pushing the individual cost limit for agent x from 2+

(in node B) to 4 (in node E) and lbx,y from 4+ (in node B) to 6 (in node E). Because of

the cost increase for agent x, we can infer that lbx,z=7 (because rx=4 and rz=3).
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In this instance, the goal node E is found sooner than would have been the case

with either CBS or ICTS for two reasons: (1) CBICS can apply motion constraints to

multiple agents at the same time. Hence, both agents y and z get motion constraints in

nodes B, C and D where CBS would have applied them only to one agent. This often

results in resolving more conflicts per node. (2) CBICS can increase the path costs of

multiple agents at the same time, by specific amounts. ICTS would have increased the

cost of only one agent and only by the fixed amount δ.

6.3. Pairwise Constraint Search

PCS plans two conflicting agents jointly to find feasible solutions and discover

motion constraints and cost constraints at the same time. Discovering valid sets of mo-

tion constraints involves analysis of bipartite conflict graphs [199]. This is illustrated

in Figure 5.8. As shown in Figures 5.1 and 5.2 it is not necessary to use vertex motion

constraints – edge motion constraints capture enough information to make CBS and

CBICS complete. For this reason, analysis for vertex motion constraints are omitted

from this analysis for General MAPF instances.

Section 5.5.2 introduced analysis of biclique constraints and bi-connected bi-

cliques as shown in Figure 5.8. This analysis is projected into the future using mutex

propagation and novel inherited mutexes as shown in Figure 5.9.

Note that Figure 5.9 limits the MDDs to costs that make the problem infeasible

as originally proposed for mutex propagation [218]. However, PCS continues to ex-

plore costs until all feasible cost combinations (hence all feasible MDD sets) are found.

Figure 6.4 shows the next step, which would be carried out directly after the analysis

in Figure 5.9 is complete. The cost limit of agent y is increased to 3.0, which allows for

a feasible solution. 1 At the end of the process shown in Figure 6.4, motion constraint

sets include {2, 4} and {5, 7, 8, 11, 12, 14}. Note that the constraint set for agent y is

reduced from {2, 3, 4} from Figure 5.9(c.iii) to {2, 4}.

1Though it is not shown in Figure 6.4, PCS would also test increasing the cost limit of agent x separately.
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Figure 6.4.: An example of how PCS finds constraints. (a) Paths with a cost limit of
2.4 for agent x and 3.0 for agent y, (b) an enumeration of actions avail-
able to the agents including diagonal actions with wait actions omitted, (c)
continuous-time mutex propagation.

If we take a close look at action number 2, we notice that, assuming agent y

promises to never increase it’s path cost above 3.0, we can always block agent x from

taking action number 2. We find a similar, respective situation for action number 5.

An important point to notice is that if neither agent increases its path cost above 3.0,

action number 2 and action number 5 can be be blocked conjunctively. This is because

action number 2 and 5 can never be contained in the paths of either agent if the cost

constraints are honored. This situation is called mutually cost-conjunctive. The same can

be said for all nodes in the BBC shown in Figure 6.4(c.v).

Formally, we say that two sets of motion constraints are mutually cost-conjunct-

ive if, given individual cost constraints on agent’s paths, no path for either agent can

ever violate a motion constraint and be part of a feasible solution. This is in contrast to

the mutually disjunctive property, in which one of the two agents can violate a motion

constraint and still be part of a feasible solution. Mutually disjunctive is a subset of

mutually cost-conjunctive, meaning all mutually cost-conjunctive sets are also mutu-
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ally disjunctive, but not necessarily the other way around. Mutually cost-conjunctive

constraint sets additionally guarantee resolution of conflict symmetries and may be

used conjunctively with cost-conditional constraints.

Observation 6.3.1. While the nodes of any biclique in a BCG are guaranteed to yield mutu-

ally disjunctive constraints, constraints generated from the nodes of a BBC are mutually cost-

conjunctive. Hence, BBC-based constraint sets are strictly more efficient than biclique-based

constraint sets.

The result of applying the motion constraints (with the assumption of the cost

restrictions of 2.4 and 3.0 for agents x and y respectively) shown in Figure 6.4 simulta-

neously is that the problem is resolved immediately – agent x is forced to take the path

[1, 3] and agent y is forced to take the path [9, 10, 13]. In contrast, using disjunctive con-

straints from Figure 5.9(c.iii) would result in an additional two levels of the high-level

tree to be explored in the worst case.

The steps of mutex propagation as shown in Figures 5.9 and 6.4 are illustra-

tive, however, the process is meticulous and computationally expensive. Instead, we

present a faster approach to the PCS algorithm which does not explicitly build the

MDDs, but accomplishes the same result with a single, integrated two-agent search

with some bookkeeping.

The pseudocode for PCS shown in Algorithm 6.2 is based on A*, where the

state space is the joint state space for the two agents. A state in the joint state space

is S={si, sj}, where si and sj are single-agent states. It respects motion constraints Mi

and Mj for the agents during successor generation (line 5). It respects cost constraints

by pruning successors (line 41). PCS terminates after all lowest cost combinations of

solutions have been found and the first next-lowest cost solution is found (line 9) or

when OPEN is empty.

During the successor generation phase (lines 4-9), successors are generated to

maintain time overlap between the actions of the agents. Time overlap means that for

ai=〈si, s′i〉 and aj=〈sj, s′j〉, si.t∈[sj.t, s′j.t] or s′i.t∈[sj.t, s′j.t]. This is only needed for contin-
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uous time [198]. Successor nodes are marked as infeasible if their parent is infeasible.

This is similar to how MP checks the mutexes of predecessor MDD nodes for comput-

ing propagated mutexes. PCS performs mutex propagation, but it does this without

the use of MDDs. Instead, it keeps a list of motion constraints, updating the upper cost

bound m′.c as necessary.

Consider the example instance in Figure 6.1(a). If PCS were planning for agents

x and y, the root state would be S=〈sx=B1@0, sy=B3@0, f=(2, 2), f easible=true〉, where

sx and sy are the states of agents x and y and f is f (sx) and f (sy) respectively. f (si) is

the f-cost of s which is a lower-bounded estimate of the cost of a path from starti to goali

that passes through si. The successors of this joint state as produced by Algorithm 16,

lines 4-9 would be:

1. 〈sx=C1@1, sy=B3@1, f=4, 3, f easible=true〉

2. 〈sx=C1@1, sy=B2@1, f=4, 2, f easible=true〉

3. 〈sx=B1@1, sy=B3@1, f=3, 3, f easible=true〉

4. 〈sx=B1@1, sy=B2@1, f=3, 2, f easible=true〉

5. 〈sx=B2@1, sy=B3@1, f=2, 3, f easible=true〉

6. 〈sx=B2@1, sy=B2@1, f=2, 2, f easible= f alse〉

Lines 15-18 will get an existing motion constraint (for updating) or add a new

motion constraint (as an initial mutex) with an initial upper cost bound set to the f-cost

of the opposing agent (line 18).

Continuing the example, five new cost-conditional motion constraints will be

created from the successor nodes, whose upper cost bound m′.c will be updated.

1. 〈n=x, a=B1@0→B1@1, re f=y, c=3〉

2. 〈n=x, a=B1@0→B2@1, re f=y, c=3〉

3. 〈n=x, a=B1@0→C1@1, re f=y, c=3〉
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Algorithm 6.2. Pairwise Constraint Search Algorithm
1: Input: starti , startj, goali , goalj, Mi , Mj, ri , rj, lbi,j
2: Mi ← Mi \ {∀mi ∈ Mi ; mi .re f 6=j ∨mi .c<rj.ub} . “Turn off" conditional constraints
3: Mj ← Mj \ {∀mj ∈ Mj; mj.re f 6=i ∨mj.c<ri .ub}
4: OPEN ← 〈starti , startj〉
5: M′i ← ∅, M′j ← ∅, P← ∅, Bi ← ∅, Bj ← ∅
6: while OPEN 6= ∅ do
7: S = 〈si , sj〉 ← OPEN.pop()
8: if S′. f easible ∧ S′ is goal ∧
9: P 6=∅ ∧ f (s′i)+ f (s′j) > all path costs in P then

10: M′i ← M′i \ {∀m′i∈M′i : m′i .c<rj.lb ∨m′i .a /∈ Bi}
11: M′j ← M′j \ {∀m′j∈M′j : m′j.c<ri .lb ∨m′j.a /∈ Bj}
12: return P, M′i , M′j, lb′i,j= f (s′i)+ f (s′j)
13: S′ ← TIMEAWAREJOINTEXPANSION(S, Mi , Mj) . See Algorithm 6.3
14: for S′ ∈ S′ do
15: if ∃m′i ∈ M′i such that m′i .a = 〈si , s′i〉 then
16: M′i ← M′i \m′i
17: else
18: m′i ← 〈n=i, a=〈si , s′i〉, re f=j, c= f (s′j)〉
19: if S′. f easible = f alse then
20: if not m′i .costIsCapped then
21: m′i .c← MAX( f (s′j), m′i .c) . Increase range

22: else
23: if f (s′j) ≤ m′i .c then
24: m′i .c← f (s′j)− ε . Decrease range permanently
25: m′i .costIsCapped← true
26: M′i ← M′i ∪m′i
27: Analogously for s′j
28: if S′ is goal ∧ f (s′i)≤ri .ub ∧ f (s′j)≤rj.ub then
29: if S′. f easible ∧ 〈 f (s′i), f (s′j)〉 is unique in P∧
30: f (s′i)≥ri .lb ∧ f (s′j)≥rj.lb ∧ f (s′i)+ f (s′j)≥lbi,j then
31: P← P ∪ path to S′ . Save unique-cost solutions
32: else if ¬S′. f easible then
33: while ¬S. f easible do . Add to infeasible action sets
34: Bi ← 〈S.si , s′i〉
35: Bj ← 〈S.sj, s′j〉
36: s′i ← S.si
37: s′j ← S.sj

38: S← S.parent
39: if f (s′i)<ri .ub ∧ f (s′j)<rj.ub then
40: OPEN ← OPEN ∪ S′ . Add to open
41: else if f (s′i)≤ri .ub ∧ f (s′j)≤rj.ub then
42: if S′∈OPEN then . G-cost is included in duplicate check
43: if ¬S′. f easible then
44: OPEN ← OPEN \ S′ . Replace with feasible joint state
45: else
46: OPEN ← OPEN ∪ S′ . Add to open
47: return ∅, ∅, ∅, ∞ . No solution
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Algorithm 6.3. Joint Expansion with Temporally-Relative Duplicate Pruning
1: Input: S = 〈si , sj〉, Mi , Mj
2: tlasti ← MAX

m∈Mi
(m.a.s′.t) . End time of latest constraint

3: tlastj ← MAX
m∈Mj

(m.a.s′.t)

4: if si .time < sj.time then . Get successors for continuous time
5: s′i ← successors(si , Mi) . Get successors which do not violate motion constraints
6: s′j ← {sj}
7: else
8: s′j ← successors(sj, Mj) . Get successors which do not violate motion constraints
9: s′i ← {si}

10: S′ ← s′i × s′j . Cartesian product
11: for S′ ∈ S’ do . Mark feasibility
12: S′. f easible← S. f easible
13: if s′i ∈ S′ conflicts with s′j ∈ S′ then
14: S′. f easible← f alse
15: if MAX(si .t) > MAX(ri .lb, tlasti ) ∧ MAX(sj.t) > MAX(rj.lb, tlastj )∧
16: f (si)>ri .lb ∧ f (sj)>rj.lb ∧ f (si)+ f (sj)>lbi,j then
17: tmin ← MIN(s.t)

s∈S
18: S∆ ← ∅
19: while S.parent 6= ∅ do
20: S∆ ← S∆ ∪ {∀s∈S; (s.v, s.t− tmin} . Make times relative
21: S← S.parent
22: for S′ ∈ S’ do
23: S′∆ ← {∀s∈S; (s.v, s.t− tmin} . Make times relative
24: if S′∆ ∈ S∆ then
25: S′ ← S′ \ S′ . Remove temporally-relative duplicates
26: return S′

158



4. 〈n=y, a=B3@0→B3@1, re f=x, c=4〉

5. 〈n=y, a=B3@0→B2@1, re f=x, c=4〉

The logic for updating m′.c occurs at lines 19-25. Consider what happens for

motion constraint 1, listed above. Because agent x’s action B1@0→B1@1 does not con-

flict with either of agent y’s actions B3@0→B3@1 and B3@0→B2@1, the cost is capped

so that it cannot grow (see line 25) and its upper cost limit, m′.c is reduced, (after com-

paring to both states) to 2−ε where 2 is the f-cost of agent y’s B3@0→B2@1 action, and

ε is a small constant. Now consider what happens for motion constraint 2 which is for

agent x’s action B1@0→B2@1. It does not conflict with agent y’s action B3@0→B3@1,

but it does conflict with B3@0→B2@1. Thus, the cost gets capped at 3−ε, (for the f-cost

of B3@0→B3@1), but does not get decreased when checked versus B3@0→B2@1. If

the actions had been checked in the reverse order, the result would be the same. By

inspection, it is apparent that as long as agent y’s cost does not go above 3−ε, agent x

can never perform the action B1@0→B2@1 without conflict.

Subsequent expansions will either increase or decrease m′.c values appropri-

ately so that each m′.c is the top of the continuous conflicting path cost range for the

opposing agent. Note that the resulting m′.c for some cost-conditional motion con-

straints will be less than the lowest possible path cost for the opposing agent, hence

are unusable and must be omitted entirely (line 10). For example, m′.c for motion

constraint 1 is 2−ε which is below the cost of a shortest path for agent y, and can be

omitted from Mx.

In cases where heuristics that inform f-costs are not exact (without the addi-

tional logic described here), PCS could include motion constraints in M′i and M′j which

block actions for paths with costs that are outside the cost bounds of ri and rj respec-

tively. This would lead to incompleteness. In order to remove motion constraints

which fall outside the cost bounds, PCS computes the sets of infeasible actions (liter-

ally f easible= f alse) Bi and Bj for agents i and j at lines 5 and 32-38. These sets include

only infeasible actions included in infeasible paths to the goal that fall inside the cost
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bounds. Finally, in addition to removing all m′ where m′.c is less than the lower cost

bounds, we also remove any m′ where m′.a is not in the set of infeasible actions Bi and

Bj respectively (lines 10 and 9).

In summary, PCS performs the mutex propagation process until it finds all

feasible cost combinations, in order to determine mutually cost-conjunctive motion

constraint sets. Additionally, it determines cost limits for all cost-conditional motion

constraints in these sets. This is done using bookkeeping in a continuous A* search,

instead of incrementally building MDDs as with traditional mutex propagation.

6.4. Sufficient Conditions for Completeness and Optimality

For proving optimality and completeness, we use the symbol definitions from

Section 2.3.1. We also use the following definitions:

• F(a)=
[

MIN
a∈a

f (a), MAX
a∈a

f (a)
]

is the inclusive f-cost range of a set of actions.

• MAPFQ⊂MAPFR is the subset of all instances of MAPFR such that all edge weights

are restricted to the set of non-negative rational numbers Q+. That is, ∀e∈E;

w(e)∈Q+. This is a reasonable assumption since the most commonly used nu-

merical representations in computing systems are limited to rational numbers.

Heuristic properties:

• h(s) is considered to be an admissible heuristic if ∀s h(s)≤c∗(s, goal), otherwise it

is inadmissible.

• An admissible heuristic h(s) is consistent if {∀(s, s′), (s.v, s′.v)∈E}, h(s)≤h(s′)

+c(s, s′), otherwise it is inconsistent.

• For consistent heuristics, we define an exactness measure e(h)=c∗ − h which is

the difference between h and a perfect heuristic. For a perfect heuristic e(h)=0 and

an uninformed heuristic (where h=0) e(h)=c∗.
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Based on these heuristic properties, we define MAPF instances which inherit

all of the properties of MAPFQ:

• MAPF instance IL-ADM: This is an instance of MAPFQ with admissible low-

level/single-agent heuristics.

• MAPF instance IL-IADM: This is an instance of MAPFQ with one or more inad-

missible low-level/single-agent heuristics.

In order to prove optimality and completeness for CBICS, we rely on the follow-

ing properties of PCS. Proofs of correctness for each of these properties can be found

in Appendix C.

1. PCS is guaranteed to return a set of context-optimal paths in P. Context optimal

means that PCS returns a set of lowest-cost path pairs, which conform to motion

and cost constraints.

2. PCS is guaranteed to terminate in the case that no solution exists.

3. PCS is guaranteed to compute valid sets of cost-conditional motion constraints.

We begin the proof of correctness of CBICS by showing with the following three

lemmas that a path to a goal node in the CRCT can never be blocked due to cost-

conditional motion constraints in conjunctive splits, permanent motion constraints in

disjunctive splits, nor by cost bound changes.

Lemma 6.4.1. Sets of valid cost-conditional motion constraints applied conjunctively never

block a path to any goal node in the CRCT.

Proof. Let πi and πj be any pair of non-conflicting paths for agents i and j. Also let Mi

and Mj be sets of cost-conditional motion constraints for the agents. Each mi∈Mi has

a cost upper-bound mi.c contingent on c(πj) and analogously for Mj. If πi and πj are

non-conflicting, it follows that one of eight cases holds:
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1. c(πj)≤mi.c and c(πi)≤mj.c and no motion constraints are violated

2. c(πj)>mi.c and πi violates a motion constraint in Mi

3. c(πi)>mj.c and πj violates a motion constraint in Mj

4. c(πj)>mi.c and c(πi)>mj.c and only one of πi or πj violates a motion constraint.

5. c(πj)≤mi.c and c(πi)≤mj.c and one or more motion constraints are violated

6. c(πj)>mi.c and πj violates a motion constraint in Mj

7. c(πi)>mj.c and πi violates a motion constraint in Mi

8. c(πj)>mi.c and c(πi)>mj.c and neither πi or πj violates a motion constraint.

In case 1 no cost-conditional motion constraints are turned off and no motion con-

straints are violated. In cases 2, 3 and 4 all violated motion constraints are turned

off (see Algorithm 6.2 lines 2 and 3) due to the reference agent’s increased cost, and

thus are allowed. Cases 5, 6 and 7 can only occur if Mi and Mj contain invalid cost-

conditional motion constraints and will never occur if PCS is implemented correctly.

In case 8, no motion constraints are turned on and none are violated. In cases 1, 2, 3, 4

and 8 no feasible combination of paths is ever blocked, and cases 5, 6 and 7 violate the

assumption of valid constraints and can never happen, therefore, no feasible solution

is ever blocked.

Lemma 6.4.2. Sets of regular motion constraints applied disjunctively never block a path to

any goal node in the CRCT.

Proof. When constraints are applied disjunctively to resolve a conflict 〈ai, aj〉 in N.Π

between agent i and agent j, motion constraints Mi and Mj blocking only mutually-

conflicting actions are applied to agent i in the first child node Ni and agent j in the

second child node Nj (see Algorithm 6.1 lines 37-52). This means agent j is allowed

to perform aj in Ni because agent i is blocked from executing any action that might

conflict with it and vice-versa.
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Proof by induction. In this proof, we assume a feasible solution exists for the

problem instance.

Base Case: A conflict in the root node is resolved by creating two child nodes.

A feasible solution must lie in the sub-tree of Ni or Nj. By contradiction, if a feasible

solution does not lie in either Ni or Nj, then the constraints added to Ni and Nj do not

resolve a conflict. But this is impossible based on the assumptions about Mi and Mj.

Induction Step: A feasible solution lies in one of the two child nodes of Ni or one

of the two child nodes of Nj.

General Case: Because a feasible solution exists, there must be a finite number

of conflicts to be resolved. A feasible solution must lie down at least one path from the

root to a leaf. If the addition of some set of motion constraints during a split results in

blocking an agent from reaching its goal, there must be a node in a different sub-tree

that allows the agent to reach its goal.

Lemma 6.4.3. CBICS will never preclude a feasible cost combination from being explored.

Proof. Proof by induction.

Base Case: The root node includes all possible feasible cost ranges because it

includes the lowest feasible individual and pairwise costs for all agents and has unlim-

ited upper bounds. See Figure 6.3(a).

Induction Step: Assuming PCS finds a solution and returns P and lb′i,j for some

conflicting pair of agents i and j, the sum of the path costs for any pair of paths in

P represents the current pairwise cost frontier lbi,j. The original cost range from the

base case is perfectly sub-divided, without missing any part of the cost range because

CBICS will generate nodes for all cost combinations equal to lbi,j (Algorithm 6.1 lines

18-28). It will also generate a node for the inclusive unbounded cost area greater than

or equal to the next pairwise cost frontier lb′i,j (lines 37-52). See Figure 6.3(b). In the

case PCS does not find a solution, no child nodes are created, eliminating the infeasible

cost combination from consideration.
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By contradiction, assume some feasible pairwise cost lb′′i,j between lbi,j and lb′i,j
exists. This cannot happen because PCS is guaranteed to find lowest-cost solutions

which respect the cost constraints per Lemma C.0.4.

General Case: When a node is expanded by CBICS, a new set of nodes for the

next pairwise cost frontier and unbounded area above it will be generated, perfectly

sub-dividing again. Therefore, no feasible individual or pairwise cost combinations

are ever precluded from evaluation.

We have shown that goal nodes cannot be blocked. Now, we continue by show-

ing that making progress toward the goal is guaranteed.

Lemma 6.4.4. Cost constraint lower bounds will increase after a finite number of steps.

Proof. First, we show that cost constraint lower bounds cannot decrease, then we show

that the cost constraint lower bounds are guaranteed to increase after a finite number

of steps.

Let N be a CRCT node with individual cost constraints r1, .., rk and pairwise

cost constraints lb1,2, lb1,3,..,lb(k−1),k for each pair of agents. After conflict detection is

performed (Algorithm 6.1 line 9) PCS is invoked (line 16). Per Algorithm 6.2 line 30

PCS cannot return any solution with costs less than ri.lb, rj.lb and lbi,j. Thus there are

three possible outcomes:

1. no solution is found by PCS such that c(πi)∈ri, c(πj)∈rj and c(πi)+c(πj)≥lbi,j

2. there is no increase in any c(πi), c(πj) or c(πi)+c(πj) for 〈πi, πj〉∈P

3. at least one of c(πi), c(πj) or c(πi)+c(πj) is increased.

No cost decrease with respect to N is possible in any case, hence each child node of N

can never have decreased cost constraint lower bounds (see lines 20-22, 30, 39 and 41).

Now we show that cost will increase after a finite number of steps. In case 3,

the cost constraint lower bounds clearly increase, however, we must show that case 2

cannot recur indefinitely. With each split, either cost-conditional motion constraints are
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added to all child nodes (see Algorithm 6.1 lines 18-28) or regular motion constraints

are added disjunctively to the child nodes (see Algorithm 6.1 lines 37-52).

Though many shortest paths may exist for a single agent, there is only one cost

of a shortest path. Because there is a finite single-agent branching factor, the number

of equal-cost shortest paths is finite. After a split, motion constraints are always added

which block one or more actions on a shortest path. In the case of a disjunctive split,

the motion constraints are based on conflicts in shortest paths in N.Π. In the case of

a conjunctive split, PCS is guaranteed to have selected motion constraints in shortest

paths because OPEN is ordered by g-cost. If no motion constraints are found by PCS,

a disjunctive split is performed instead, hence constraints blocking actions in shortest

paths are always added to child nodes.

Because there are a finite number of shortest paths of particular cost, and be-

cause motion constraints are added cumulatively, eventually all shortest paths will be

blocked and the cost will increase.

In the case of a conjunctive split, conditional constraints remain “turned on"

unless the reference agent’s cost increases. So either constraints accumulate to increase

the cost of agent i or the cost of agent j increases. In either case, the cost increases for

at least one agent.

Theorem 6.4.5. CBICS is optimal and complete.

Proof. Lemma 6.4.1 and Lemma 6.4.2 show that neither conjunctive nor disjunctive

splits ever block a feasible solution. Lemmas 6.4.3 and 6.4.4 show that no feasible cost

combination is ever precluded from consideration and cost constraints will increase

after a finite number of steps. Hence, in cases where PCS returns increased costs or

new motion constraints, CBICS will progress toward the goal - either the cost goes

up, or invalid motion combinations at the current cost level are resolved by motion

constraints.

Finally, optimality is ensured by prioritizing the OPEN list by the sum-of-costs.

Because under some circumstances paths are re-planned lazily (Algorithm 6.1 line 8),
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an incumbent is stored as soon as a feasible solution is found and a solution is accepted

as soon as no better solution (in terms of sum-of-costs) exists in OPEN. Because CBICS

guarantees no feasible solution is ever precluded from being found, the use of the

prioritized OPEN list ensures that no sub-optimal solution is ever returned.

6.4.1. Additional Enhancements

Some additional enhancements make CBICS more efficient. Instead of letting it

dynamically find the pairwise costs and cost-conditional motion constraints during the

search, it is possible to run a preprocessing step to discover the costs and/or motion

constraints at the root node (see line 3 of Algorithm 6.1).

The first variant is called the preprocessing-cost (PCST) enhancement. This pre-

processing step first performs a conflict check between all initial paths. Any pairs of

paths that have a conflict are then planned together with PCS, but with mutex propa-

gation turned off so that invalid joint states are discarded instead of propagated. This

allows PCS to find the pairwise costs faster. The pairwise costs are then updated in

the root node. This preprocessing can help achieve a more accurate heuristic for nodes

early in the search, and may help prune nodes based on cost. However, this preprocess-

ing step can be computationally costly – especially when a large number of conflicting

agent pairs exist.

Another variant is called the preprocessing-constraints (PCON) enhancement.

This preprocessing enhancement is similar to PCST, except PCS (with mutex propaga-

tion turned on) is run for all conflicting agent pairs. The pairwise costs are updated

in the root node just like PCST. Additionally, all cost-conditional motion constraints

found for any agents are added to the root node. This can result in more constrained

paths for agents high in the tree, which pushes up costs faster, leading to more ac-

curate heuristics and pruning. PCON is even more computationally expensive than

PCST, and the extra time spent performing mutex propagation may, or may not result

in finding motion constraints.
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Figure 6.5.: Structure of a CBICS tree.

In some scenarios, |P|, the number of unique-cost path combinations found by

PCS can be large, which for conjunctive splits, results in a large branching factor at the

high level. In order to keep the branching factor small, some of the cost combinations

can be combined into a single node. Of all approaches we tried, the best approach is to

create four nodes from P: (1) a node with the minimum cost for ri and maximum cost

for rj. (2) a node with the maximum cost for ri and minimum cost for rj. (3) a node that

combines all costs in between (but not equal to) the minimum and maximum costs. (4)

the node for where the sum of costs is at least lb′i,j. For example, with the following cost

combinations: 〈2, 5〉, 〈3, 4〉, 〈4, 3〉, 〈5, 2〉, four nodes with the following path cost ranges

would be generated: 〈ri=2, rj=5〉, 〈ri=[3, 4], rj=[3, 4]〉, 〈ri=5, rj=2〉 , 〈ri=2+, rj=2+〉.

This is called the combination enhancement.

6.4.2. Analysis

Figure 6.5 shows an example of a typical CBICS tree. Orange nodes represent

conjunctive nodes with an unlimited upper cost bound (unlimited nodes), red nodes
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represent conjunctive nodes with finite cost bounds (limited nodes), and blue nodes

represent disjunctive nodes. The sub-trees of limited nodes tend to be much smaller

than the right sub-trees and are often searched to completion – eliminating the sub-

trees from consideration before moving on to expanding unlimited nodes. In practice,

conjunctive splits occur most often at unlimited nodes. This is because lower bounds

on individual costs are rarely increased for unlimited nodes and, when the costs are

low, PCS (and mutex propagation in general) is more likely to find motion constraints.

Conversely, as costs increase, PCS is less likely to find motion constraints and dis-

junctive splitting is used. Often, the pattern results in the sub-trees of limited nodes

resembling a regular CBS tree. However, occasionally a sufficient number of disjunc-

tive motion constraints are added in a sub-tree to allow PCS to find motion constraints,

triggering a conjunctive split.

When compared to CBS, which has a branching factor of two, CBICS has a

larger branching factor on average. With the combination enhancement, the branching

factor can be no larger than four. However, unlike CBS, nodes in CBICS have cost

constraints which tend to eliminate a significant proportion of the sub-trees quickly.

Thus, while CBS and ICTS tend to build fuller binary and k-ary-like trees respectively,

CBICS tends to build an unbalanced search tree.

The branching factor of the joint state space for PCS is b=(bbase)
2, where bbase

is the single-agent branching factor. The depth of the solution ∆, can be no larger

than MAX(di, dj) where di and dj are the lengths (number of states) in πi and πj in

the unit time case. ∆ can be no larger than di+dj in the continuous time case because

of a phenomenon related to operator decomposition [171]. Hence, the computational

complexity of PCS is no worse than for regular mutex propagation, namely O(b∆) in

unit time domains, and O(b2∆) for continuous time domains. This means that the

complexity of PCS is exponential in the worst case (in ∆), meaning, running PCS for

long paths (e.g., in large maps) can take significantly longer to complete. However, a

strong low-level heuristic can reduce the complexity significantly.

168



6.5. Empirical Results

First we analyze enhancements to CBICS, then compare it to CBS. All experi-

ments were run using an Intel i9 processor at 2.4GHz. The implementation is publicly

available2.

The experiments come from the MAPF benchmarks set [173] which includes

various grid maps and MAPF instances with randomly selected start and goal vertices

for agents. There are 25 problem instances for each map. The benchmarks were run by

starting with five agents, incrementally increasing the number of agents and recording

the runtime and number of instances that were solvable within 30 seconds. Any MAPF

instance that was not solved within this time limit was marked as a failure.

All MAPF instances were solved for circular agents with a radius of 1/(2
√

2) cells,

a fixed wait time of 1, the sum-of-costs objective, and agents do not disappear at their

goals, but will block others when waiting at their goal. We have run experiments on 4-,

8- and 16-neighbor grid maps which are 2k neighborhoods [151]. The 4-neighborhood

is the Classic MAPF domain. 8- and 16-neighborhoods are General MAPF domains

because the edge lengths and weights are not uniform. All experiments, including

for Classic MAPF, were run on an implementation which has collision detection, the

conflict avoidance table and other aspects optimized for continuous time. This causes

differences in our results versus MAPF solvers which are optimized for Classic MAPF.

6.5.1. CBICS Enhancements

Figures 6.6, 6.7 and 6.8, show results for 4-, 8-, and 16-neighbor grids on var-

ious benchmark instances. The y-axis shows the success rate where 100% means all

25 instances were solved within the time limit and 0% means none were solved inside

the time limit. The x-axis shows the number of agents in the problem instance. As the

number of agents is increased, the problem instance is exponentially harder to solve in

terms of worst-case computational complexity.

2https://github.com/thaynewalker/hog2/tree/id/apps/CBICS
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Figure 6.6.: Success rates of CBICS, CBICS+PCST and CBICS+PCON of CBICS for
benchmark problems on 4-neighbor grids.
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Figure 6.7.: Success rates of CBICS, CBICS+PCST and CBICS+PCON for benchmark
problems on 8-neighbor grids.
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Figure 6.8.: Success rates of CBICS, CBICS+PCST and CBICS+PCON for benchmark
problems on 16-neighbor grids.
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In general, CBICS+PCON is stronger than CBICS+PCST, especially in the lower

branching factors, while CBICS+PCST is slightly stronger in the higher branching fac-

tors. The modified PCS variant used by PCST which prunes infeasible joint states from

the search, and this pruning is more significant in higher branching factors.

CBICS without enhancements is strongest in cases with a significant amount

of spatial conflict symmetries (see Section 5.2.2). For example, maps with wide open

spaces (e.g., where spatial conflict symmetries are common) and few narrow corridors

(e.g., where temporal conflict symmetries are common) – especially in low branching

factors, where the conflict symmetries involve a higher number of states (see Figure

2.4). Although PCON will eliminate all of the lowest-cost conflict symmetries in the

root node, it turns out that only eliminating some of them is necessary to solve the

problem for spatial conflict symmetries. For instance, if agent x, y and z each have

pairwise conflicts, it is often the case that increasing the cost for only one of the agents

(e.g., agent x) solves the symmetry for two of the three pairwise conflicts. PCST and

PCON in this case perform more work than is necessary by solving for all conflicts.

Conversely, PCST and PCON are effective in situations with fewer spatial con-

flict symmetries and more temporal conflict symmetries such as with the higher branch-

ing factors, dense random obstacles (e.g., random-64-64-20) and mazes. With temporal

conflict symmetries, costs usually need to be increased multiple times, and it is less

often the case that increasing the cost for one particular agent resolves conflicts with

multiple agents. Thus both preprocessing enhancements are beneficial in these settings

because they push up the cost and add a more significant set of constraints at the root.

6.5.2. Comparison with CBS

In Section 5.4.5 we showed that CBS with biclique constraints dominates ICTS

and CBS with edge and vertex constraints. In Section 5.7.3 we showed that CBS with

biclique constraints is stronger than CBS with mutex propagation in most cases. We

now compare CBICS with CBS. The setup and implementation are the same, where we
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benchmark problems on 8-neighbor grids.
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Figure 6.11.: Success rates of CBS+BC, CBS+BC+MP and two variants of CBICS for
benchmark problems on 16-neighbor grids.
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measure the success of each variant’s ability to solve problem instances within the time

limit, increasing the numbers of agents.

In Figures 6.9, 6.10 and 6.11, we show the performance of CBS, CBICS-DJ and

CBICS. CBICS-DJ is a variant of CBICS in which only disjunctive splits are allowed.

This variant is similar to CBS+MP except it uses cost constraints. By comparing CBICS

with CBICS-DJ, we can evaluate the effectiveness of conjunctive constraints. For Figure

6.9, the variant of CBS used is CBS+MP because CBS+MP is only applicable to contin-

uous time domains. In Figures 6.10 and 6.11, CBS+BC is used because it dominates

CBS+BC+MP in most General MAPF domains (see Figures 5.11 and 5.12). For CBICS-

DJ, we ran additional tests for CBICS-DJ+PCST and CBICS-DJ+PCON. For CBICS we

reference the same tests as in Figures 6.6, 6.7 and 6.8. In each plot, we display results

for the most performant variant (i.e., PCST or PCON). This is to compare the best per-

former in each category without making the plots too cluttered.

CBICS clearly dominates CBICS-DJ in all benchmarks. CBICS dominates CBS

in many benchmarks, especially in 4-neighbor grids. However, CBS tends to be stronger

as the base branching factor increases, especially in larger maps. This is because there

are fewer symmetries in general in the higher branching factor settings, hence fewer

conflict symmetries. Because the computational complexity of PCS is exponential in

the search depth (or path length), CBICS variants’ performance is not as good in large

maps. Although BC constraints are not as powerful as MP constraints, BC has a lower

computational complexity, and its complexity is not affected by the length of the path.

Hence we see better performance in large maps with CBS+BC (i.e., Boston_0_256,

orz900d and brc202d).

Tables 6.1, 6.2 and 6.3 show a summary of the total number of agents solved

for in all of the MAPF benchmarks by the specific algorithm variant. The general

trends shown in the plots are also apparent in these tables: CBS+BC dominates in the

larger maps, especially as the single-agent branching factor increases. CBICS works

best in smaller maps with narrower spaces. CBS+MP does best in small maps with

large empty spaces and with small single-agent branching factors. The preprocessing
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Table 6.1.: Total problems solved in under 30 seconds on 4-neighbor grid MAPF
benchmarks

Map CBS CBICS
BC MP PCST PCON

Berlin_1_256 1315 – 1339 918 744 737
Boston_0_256 897 – 825 844 688 701
Paris_1_256 1257 – 1326 758 581 576
Total 3469 – 3490 2520 2013 2014

brc202d 320 – 291 388 309 322
den312d 556 – 452 545 606 594
den520d 780 – 745 645 557 556
lak303d 322 – 396 434 473 450
orz900d 325 – 324 278 204 212
ost003d 563 – 504 563 468 463
Total 2866 – 2712 2853 2617 2597

empty-8-8 430 – 475 499 506 503
empty-16-16 758 – 778 814 785 851
empty-32-32 1154 – 1463 1232 988 1042
empty-48-48 1366 – 1740 1342 1000 1070
Total 3708 – 4456 3887 3279 3466

ht_chantry 528 – 484 493 530 500
ht_mansion 776 – 817 783 680 671
lt_gallowstemplar 583 – 485 482 530 516
w_woundedcoast 556 – 514 514 485 479
Total 2443 – 2300 2272 2225 2166

maze-128-128-10 283 – 281 316 330 313
maze-128-128-2 237 – 194 231 246 261
maze-32-32-2 244 – 254 303 323 316
maze-32-32-4 312 – 283 308 335 325
Total 1076 – 1012 1158 1234 1215

random-32-32-10 889 – 1035 1079 990 1053
random-32-32-20 667 – 695 687 752 775
random-64-64-10 1485 – 1406 1329 1055 1080
random-64-64-20 1029 – 886 1021 1089 1111
Total 4070 – 4022 4116 3886 4019

room-32-32-4 405 – 419 430 465 458
room-64-64-16 592 – 660 610 655 679
room-64-64-8 417 – 350 359 395 387
Total 1414 – 1429 1399 1515 1524
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Table 6.2.: Total problems solved in under 30 seconds on 8-neighbor grid MAPF
benchmarks

Map CBS CBICS
BC BC+MP PCST PCON

Berlin_1_256 1115 1211 1040 1025 906 870
Boston_0_256 748 924 804 800 739 715
Paris_1_256 986 1150 933 888 843 824
Total 2849 3285 2777 2713 2488 2409

brc202d 303 322 271 375 308 292
den312d 467 556 465 453 505 520
den520d 612 649 575 605 525 524
lak303d 336 424 335 374 416 412
orz900d 258 259 259 276 262 262
ost003d 417 475 422 429 464 460
Total 2393 2685 2327 2512 2480 2470

empty-8-8 416 436 430 421 421 428
empty-16-16 489 580 603 563 575 597
empty-32-32 907 1024 1123 996 1022 1035
empty-48-48 1186 1357 1353 1337 1212 1205
Total 2998 3397 3509 3317 3230 3265

ht_chantry 446 580 439 446 531 510
ht_mansion 606 723 637 579 706 696
lt_gallowstemplar 516 569 514 470 508 496
w_woundedcoast 359 408 303 408 411 375
Total 1927 2280 1893 1903 2156 2077

maze-128-128-10 258 285 250 254 289 286
maze-128-128-2 169 197 166 181 200 200
maze-32-32-2 238 290 252 252 264 249
maze-32-32-4 246 273 249 260 266 271
Total 911 1045 917 947 1019 1006

random-32-32-10 714 827 751 710 718 729
random-32-32-20 481 593 464 456 504 493
random-64-64-10 1051 1211 1083 1056 1166 1214
random-64-64-20 712 827 655 649 726 750
Total 2958 3458 2953 2871 3114 3186

room-32-32-4 316 388 330 321 334 359
room-64-64-16 414 506 453 407 444 437
room-64-64-8 267 360 283 289 319 314
Total 997 1254 1066 1017 1097 1110
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Table 6.3.: Total problems solved in under 30 seconds on 16-neighbor grid MAPF
benchmarks

Map CBS CBICS
BC BC+MP PCST PCON

Berlin_1_256 756 899 687 697 642 628
Boston_0_256 611 743 598 609 648 619
Paris_1_256 735 846 712 780 699 695
Total 2102 2488 1997 2086 1989 1942

brc202d 224 251 233 265 237 240
den312d 371 447 366 367 422 445
den520d 361 484 418 449 435 396
lak303d 232 279 246 263 307 297
orz900d 175 181 163 200 180 180
ost003d 324 389 366 360 381 373
Total 1687 2031 1792 1904 1962 1931

empty-16-16 352 451 408 385 410 404
empty-32-32 677 770 726 749 774 767
empty-48-48 954 1103 1041 984 977 978
empty-8-8 322 355 351 345 356 350
Total 2305 2679 2526 2463 2517 2499

ht_chantry 325 409 336 350 409 401
ht_mansion 344 427 400 382 423 427
w_woundedcoast 238 278 229 286 275 281
lt_gallowstemplar 397 453 402 411 429 418
Total 1304 1567 1367 1329 1536 1527

maze-128-128-10 197 247 220 210 227 217
maze-128-128-2 124 148 124 155 159 163
maze-32-32-2 189 231 195 209 220 214
maze-32-32-4 183 216 209 208 222 228
Total 693 842 748 782 828 822

random-32-32-10 477 606 535 499 523 533
random-32-32-20 384 479 377 364 415 415
random-64-64-10 638 766 714 643 714 724
random-64-64-20 464 623 505 483 579 586
Total 1963 2492 2131 1989 2231 2258

room-32-32-4 249 319 269 273 288 292
room-64-64-16 278 389 353 324 355 333
room-64-64-8 230 305 239 269 279 275
Total 757 1013 851 866 922 900
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Map
E-ICTS CBS+BC CBS+BC+MP CBICS
4 16 4 16 4 16 4 16

empty-8-8 219 28369 - 2048 4221 41994 592 6647
random-32-32-20 16 12722 - 938 5 114 4 48
maze-32-32-4 103 167 - 774 291 589 80 428
room-32-32-8 169 10132 - 798 84 465 15 212

Table 6.4.: Nodes expanded for small-map benchmarks with 10 agents.

enhancements for CBICS are most effective on maps with narrow spaces like mazes

and with low single-agent branching factors.

Table 6.4 shows the average number of high-level node expansions for some

benchmarks with 10 agents. When an algorithm was not able to solve an instance, the

number of node expansions at the timeout was used instead. All algorithms expanded

more nodes for the empty-8x8 map than for the other maps because of high agent

density, requiring the resolution of many conflicts and cost increases to find a solution.

Also, a smaller map means shorter path lengths and the low level of each algorithm

thus does less work, enabling it to expand more nodes in less time.

Mutex propagation is an effective yet computationally expensive algorithm.

Although CBS+BC+MP uses the same implementation as CBICS, its average number

of expansions is consistently larger than for CBICS because of conjunctive motion con-

straints and pruning of infeasible cost combinations. Additionally, when running PCS

with cost limits, a lot of work is reduced, allowing CBICS to evaluate nodes faster.

Map
E-ICTS CBS+BC CBS+BC+MP CBICS
4 16 4 16 4 16 4 16

empty-8-8 0.6 5.4 - 3.0 3.4 4.5 1.8 3.8
random-32-32-20 0.7 29.7 - 28.3 9.9 48.2 4.0 17.7
maze-32-32-4 89.4 151.5 - 20.1 35.8 48.8 38.7 42.7
room-32-32-8 0.6 1.5 - 27.1 27.5 41.8 25.8 36.5

Table 6.5.: Low-level runtime for benchmarks with 10 agents.
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Table 6.5 shows the average runtime per high-level node expanded for the low-

level of each algorithm in milliseconds. For instances that were unsolvable, the run-

time of all expanded high-level nodes were used. E-ICTS generally has a very small

runtime per node evaluated because it uses small, cost-exact pairwise checks and elim-

inates infeasible combinations before doing a final k-agent search. The majority of its

low-level searches never perform the full k-agent search because the pairwise tests fail

quickly. PCS evaluates the entire pairwise space, including the infeasible combina-

tions. This causes longer low-level runtimes, but more information is gleaned in the

process. The runtime per node of CBS+BC+MP is consistent across all 32x32 maps, but

the low-level runtime per node of CBICS has more variance. This is because limited

nodes and the nodes in their sub-trees have tighter cost constraints, and so can be eval-

uated faster. The unlimited nodes in CBICS, having unlimited upper cost bounds, are

similar to CBS+BC+MP nodes and tend to take longer to evaluate.

6.6. Summary

In this chapter, we introduced a new algorithm: Conflict-Based Increasing Cost

Search (CBICS). In the process, we introduced several new concepts. We introduced cost

constraints for restricting the path costs of agents. We introduced conjunctive splitting

using novel cost-conditional motion constraints. The theory for conjunctive splitting relies

on novel analysis of bi-connected bicliques (BBC). We introduced the novel algorithm

Pairwise Constraint Search (PCS), an extension of mutex propagation which performs

analysis of BBCs to produce cost-conditional motion constraints.

We developed theory for the computational complexity, completeness and op-

timality of CBICS and PCS. We developed enhancements for CBICS, namely, prepro-

cessing costs (PCST) and preprocessing constraints (PCON) and tested their effectiveness.

Finally, we provided an empirical comparison between CBS and CBICS and found that

CBICS has distinct advantages in certain types of maps.
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7. Revisiting Our Motivating Examples

In Chapter 1 we introduced the challenging warehouse automation and airport

surface operations (ASO) domains. We now revisit these examples, showcase experi-

ments on problem instances inspired by these domains and discuss how solving them

in General MAPF settings improves state-of-the-art.

7.1. The Warehouse Domain

In Chapter 1 we stated: Assuming that robots are capable of turning to arbitrary

angles, paths that include non-Cardinal directions could result in significant cost savings over

solutions that allow Cardinal angles only. Figure 7.1 shows two example paths, Figure

7.1(a) shows a path which is restricted to Cardinal directions only (a 4-neighbor grid)

and Figure 7.1(b) shows a path which uses a 16-neighbor grid. Our hypothesis is that

higher-connected grids will allow shorter paths and cost savings in general, but due to

(a) (b)(b)

Figure 7.1.: An example of (a) a path which uses actions on a 4-neighbor grid and (b) a
path which uses actions on a 16-neighbor grid.
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the higher branching factors they may require an increase in computation time. To test

this hypothesis, we ran a set of experiments, comparing both the runtimes and quality

(in terms of path length) of solutions.

For our first test, we set up experiments for four warehouse maps and recorded

the success rate where the solver was able to find a solution in under thirty seconds for

specific numbers of agents. Figures 7.2, 7.3 and 7.4 show the results.

We see that CBICS is generally more performant than CBS+MP in warehouse-

10-20-10-2-1 in all settings, but is dominated by CBS+MP otherwise. This suggests

that CBICS is sensitive to both map size and corridor widths. This same phenomenon

was discussed in Chapter 6. However, it is clear that CBS with biclique constraints

is superior to the other approaches in all cases, though bicliques are not useful in 4-

neighbor grids as discussed in Chapter 5.
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Figure 7.2.: Success rates of CBS and CBICS for warehouse benchmark problems on
4-neighbor grids.
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Figure 7.3.: Success rates of CBS and CBICS for warehouse benchmark problems on
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Figure 7.4.: Success rates of CBS and CBICS for warehouse benchmark problems on
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Map Agents
Solution Cost Runtime (sec)

4-neighbor 8-neighbor 16-neighbor 4-neighbor 8-neighbor 16-neighbor
warehouse-10-20-10-2-1 30 2,391 (100%) 2,291 (95%) 2,259 (94%) 10.7 (100%) 15.7 (147%) 20.0 (187%)
warehouse-10-20-10-2-2 40 4,057 (100%) 3,751 (92%) 3,653 (90%) 11.2 (100%) 11.0 (98%) 16.4 (146%)
warehouse-20-40-10-2-1 30 5,225 (100%) 5,043 (96%) 5,094 (96%) 4.2 (100%) 9.4 (224%) 14.7 (350%)
warehouse-20-40-10-2-2 60 10,590 (100%) 9,889 (92%) 9,596 (91%) 16.2 (100%) 17.2 (106%) 18.5 (114%)

Table 7.1.: Average solution cost and runtime for warehouse benchmarks with varying
grid connectivity.

Table 7.1 shows mean solution costs and mean runtimes for the warehouse

benchmarks. Each column shows a percentage compared to the results for 4-neighbor

grids. Our hypothesis from Chapter 1 is correct: paths are shorter when agents are

planned on grids that allow more direct movement toward the goal. In Table 7.1 we

see that with the higher-neighbor grids, paths in warehouses with corridor widths of 1

(warehouse-10-20-10-2-1 and warehouse-20-40-10-2-1) show at least a 4% reduction in so-

lution cost and paths in warehouses with corridor widths of 2 (warehouse-10-20-10-2-2

and warehouse-20-40-10-2-2) show at least an 8% reduction in solution cost on average.

These reduced costs could mean significant savings in terms of saved time and energy

expenditures for full-time operations.

Although planning in the grids with higher branching factors yields lower cost

solutions, computing these solutions requires more computation time. The mean run-

Map Agents
Optimal Solution Cost Sub-optimal Solution Cost

4-neighbor 8-neighbor 16-neighbor 4-neighbor 8-neighbor 16-neighbor
warehouse-10-20-10-2-1 30 2,391 (100%) 2,291 (95%) 2,259 (94%) 2,476 (104%) 2,371 (99%) 2,339 (98%)
warehouse-10-20-10-2-2 40 4,057 (100%) 3,751 (92%) 3,653 (90%) 4,115 (101%) 3,801 (94%) 3,719 (92%)
warehouse-20-40-10-2-1 30 5,225 (100%) 5,043 (96%) 5,094 (96%) 5,311 (102%) 5,115 (98%) 5,189 (99%)
warehouse-20-40-10-2-2 60 10,590 (100%) 9,889 (92%) 9,596 (91%) 10,721 (101%) 10,001 (94%) 9,766 (92%)

Table 7.2.: Average optimal and sub-optimal solution costs for warehouse benchmarks
with varying grid connectivity.

Map Agents
Runtime for Optimal (sec) Runtime for Sub-optimal (sec)

4-neighbor 8-neighbor 16-neighbor 4-neighbor 8-neighbor 16-neighbor
warehouse-10-20-10-2-1 30 10.7 (100%) 15.7 (147%) 20.0 (187%) 4.0 (37%) 9.7 (91%) 13.7 (128%)
warehouse-10-20-10-2-2 40 11.2 (100%) 11.0 (98%) 16.4 (146%) 3.6 (32%) 5.0 (45%) 6.1 (54%)
warehouse-20-40-10-2-1 30 4.2 (100%) 9.4 (224%) 14.7 (350%) 3.0 (71%) 8.6 (204%) 12.5 (298%)
warehouse-20-40-10-2-2 60 16.2 (100%) 17.2 (106%) 18.5 (114%) 8.3 (64%) 16.7 (103%) 16.5 (102%)

Table 7.3.: Average runtime for warehouse benchmarks with varying grid connectivity.
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times in Table 7.1 for 8- and 16-neighbor grids show that up to 3.5×more computation

is required for these solutions. This leads us to our next conjecture which is (as we

showed in Section 4.6.4), running sub-optimal search in grids with high branching

factors can yield lower-cost solutions in less time than running optimal search on 4-

neighbor grids. The results for solution costs are shown in Table 7.2, and runtimes are

shown in Table 7.3. All percentages shown in parenthesis are relative to optimal costs

and runtimes in optimal 4-neighbor settings.

The average sub-optimal results appear to inflate the costs by about 1-4% when

compared to their optimal counterparts. However, in all cases, the sub-optimal solu-

tions are better than for optimal 4-neighbor grids. The runtimes are still affected by the

corridor width. In corridors with a width of 1, (with the exception of warehouse-10-20-

10-2-1 in 8-neighbor grids) we see that even when we plan sub-optimally, the average

runtimes are not better than planning optimally in 4-neighbor grids. This is due to

the fact that in corridors with a width of 1, agents are forced to use cardinal-direction

actions only for a significant portion of their path, regardless of the grid connectivity.

In benchmarks with a corridor width of two, however, the cost savings is up to

8% and the runtime is reduced by as much as 50%. For example, in warehouse-10-20-

10-2-2, 16-connected grids, we see a reduction of cost by 8% and a runtime which is

only 54% of the counterpart in optimal 4-neighbor grids. In warehouse-20-40-10-2-2, the

solution costs were improved by up to 8% and the runtimes were only increased by

a fraction of a second. These results occur because the wider corridor widths are less

congested and allow the agents to utilize non-Cardinal movements in the corridors.

Overall, our hypothesis from Chapter 1 is correct: paths are shorter when

agents are planned on grids that allow more direct movement toward the goal. Fur-

thermore, we have shown empirically that running sub-optimally in grids with higher

connectivity can reduce both the runtime and the solution costs in specific settings.
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7.2. The Airport Surface Operations Domain

We now analyze the performance of MAPF algorithms in the ASOAgent do-

main. Figure 7.5 shows an aerial view of Edmonton International Airport (YEG). Our

objective is to plan routes from gates to one of the two runways and vice versa. The

inset on Figure 7.5 measures the distance between the two ends of the runways to be

over 5km. Aircraft typically taxi on the tarmac using lane lines as shown in Figure

7.6. We manually constructed a directed graph abstraction from the satellite image by

labeling each lane line intersection with a vertex number as shown in Figure 7.6. Then

we connected the vertices with edges as shown in Figures 7.7 and 7.8.

Figure 7.5.: Edmonton International Airport: View from satellite
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Figure 7.6.: Edmonton International Airport: Closeup of tarmac lane lines with num-
bered intersections
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Figure 7.7.: Edmonton International Airport: View in simulation.
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Figure 7.8.: Edmonton International Airport: Closeup of tarmac graph in simulation.

For the simulation, in the directed graph, we modeled two co-located vertices

at each gate gate vertices, for example 42-in and 42-out, such that one vertex is connected

to a directed edge leading into the gate and one vertex is connected to the directed edge

leading out of the gate. There is no edge connecting the two co-located gate vertices.

Thus, once an aircraft enters a gate it cannot leave (until another planning cycle). This

prevents the search from trying to temporarily "tuck" an aircraft into an arbitrary gate,

to let other aircraft pass by. If an aircraft pulls into a gate, it must remain there.

There are also directed edges leading into the entrance of a runway, and di-

rected edges leading out of the exits of a runway and entrances are not connected to

the exits. This discourages the search from arbitrarily moving agents onto the runway

in order to let another agent pass by. Additionally, agents disappear once arriving at

their respective goals to represent that they have taken off or parked, respectively.

Figure 7.7 shows the full scale of the simulation environment. Figure 7.8 shows

a close up of a section near the center gate area. Edge weights are modeled as the

length of the edge to the nearest meter. Aircraft are modeled as circles. Our simulation
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allows an arbitrary radius for each aircraft, but our experiments were run with a radius

of 10 meters.

Figure 7.9 shows the performance of CBS and CBICS variants on the SOC do-

main. This domain is challenging for MAPF algorithms. This is due to the extensive

use of one-lane corridors and tightly congested intersection areas. CBS+BC shows the

best overall performance with the lowest runtimes and highest success rate. All of

CBS+BC+MP, and the CBICS variants have a very low number of high-level expan-

sions when compared to CBS+BC. This is because the former three rely on continuous-

time mutex propagation, which is a computationally expensive routine. In spite of the

relatively high node count produced by CBS+BC, the nodes are much less expensive

to evaluate, and solutions can be found quicker on average.

All of the algorithms are unable to solve all 25 problem instances for more than

three agents. We conjecture that this difficulty arises due to fixed wait times. Because

of the abundant one-lane corridors in this scenario, often the only recourse of action

available to the agents is to wait at the start location for a significant amount of time

for other agents to clear the corridors. We believe that allowing arbitrary wait times by

converting the low-level to a SIPP-based algorithm would help solve these instances

much faster. However, we leave this for future work.

7.3. Summary

In this chapter, we revisited the motivating examples from Chapter 1, namely:

warehouse automation and airport surface operations (ASO). We showed that con-

verting the warehouse domain from a unit-cost to a non-unit cost one, we can improve

overall solution costs. Optimal solutions take longer, but sub-optimal ones can take

less time depending on the configuration but always yield cost improvements. The

ASO domain remains a challenge due to the very congested nature of the graph, it

remains future work to investigate computing arbitrary wait times for aircraft at their

gates.
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8. Summary

This thesis focused on Multi-Agent Pathfinding (MAPF) in continuous time

domains (General MAPF). In Chapter 1 we introduced motivating examples and an

overview of this thesis. In Chapter 2 search problems were explained, MAPF was de-

fined and prior work was reviewed and categorized. A novel definition of General

MAPF and novel concepts for it were presented in Chapter 3. Chapters 4 and 5 re-

viewed existing work and introduced novel extensions for the Increasing Cost Tree

Search (ICTS) and Conflict-Based Search (CBS) algorithms for General MAPF. Chap-

ter 6 introduced a new algorithm, Conflict-Based Increasing Cost Search (CBICS) for

General MAPF that combines the strengths of ICTS and CBS.

8.1. Summary of Contributions

At the beginning of the work represented by this thesis, search-based solutions

geared for General MAPF were relatively sparse: no formulation of optimal search-

based algorithms were known and no formal definition of General MAPF existed.

In Sections 1.1.1 and 1.1.2, we introduced two motivating examples: The ware-

house domain, in which we conjectured that although treatment as a Classic MAPF

problem was sufficient, treatment as a General MAPF problem could yield more ef-

ficient plans in terms of time and fuel. Also, the airport surface operations domain,

which exhibits non-uniformly weighted edges and therefore cannot be fit into a Clas-

sic MAPF paradigm without considerable changes to the planning graph.

We have provided extensive background information on MAPF, including a

list of MAPF problem variants in Section 2.3.4 and variations on cost and movement
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for traditional MAPF in Section 2.3.5. We reviewed current and prior work on the

MAPF problem and provided a novel taxonomy of various algorithms in Section 2.4.

We provided pseudocode for important sub-routines and reviewed other techniques

related to the MAPF problem throughout Chapter 2.

We provided a new formal definition of General MAPF in Section 3.1 which

allows for a wider range of applications by allowing actions of arbitrary duration and

velocity; and agents of arbitrary size and shape. Because of this, conflict detection

takes a considerable amount of extra attention. We provided a short survey of conflict

detection techniques in Section 3.2, including extended derivations in Appendix A.

We explained the concept of durative conflicts in Section 3.4. We provided

a new analysis of completeness for General MAPF in Section 3.3 and a new approach

for guaranteeing completeness for MAPF in general called temporally-relative duplicate

pruning (TRDP) in Section 3.3.1 with detailed proofs in Appendix B. We proved that

completeness can be guaranteed in General MAPF, assuming action durations are ra-

tional and temporally-relative duplicate pruning is performed. Finally, in Section 3.4.2

we showed that allowing arbitrary wait times yields multiple benefits, including bet-

ter cost quality for solutions, exponentially less work, and may allow solvability when

fixed wait actions will not.

In Section 3.5 we provided a new statistic for describing the ratio of equivalent-

cost alternate paths in a General MAPF domain which is useful in determining whether

to use a conflict avoidance table with dynamically centralized algorithms.

In Section 4.1 we explained the Increasing-Cost Tree Search Algorithm (ICTS).

We presented the first proofs for completeness and optimality of ICTS in Section 4.2.

We introduced novel extensions for General MAPF domains in Section 4.3. These exten-

sions are general, and allow ICTS to be used with virtually any General MAPF instance.

We showed that it has better performance than multi-agent A* and comparable perfor-

mance to CBS in many settings in Section 4.6.

We introduced two new bounded sub-optimal variants of ICTS: ε-ICTS and w-

ICTS in Section 4.4. We showed that these enhancements allow significant performance
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improvements over optimal ICTS without a significant impact on solution quality in

Section 4.6.

We explained the Conflict-Based Search (CBS) algorithm in Section 5.1. We ex-

plained various conflict types in Section 5.2.1 and conflict symmetries in Section 5.2.2.

In Section 5.3 we highlighted how conflicts differ in General MAPF domains and spe-

cific approaches to deal with them, using appropriate constraints in CBS. We have

defined the notion of correctness for constraint sets in CBS and the motivation for gen-

erating large sets of constraints for CBS in Section 5.3.2.

We introduced a novel approach to generating large sets of constraints that

are guaranteed to be correct using analysis with bicliques and bipartite conflict graphs

in Section 5.4. Additionally, we provided a new technique for more powerful con-

straint generation using time-annotated bicliques. We introduce three approaches to bi-

clique constraint generation and in Section 5.4.5 show that biclique constraints domi-

nate other classic approaches to constraint generation in terms of reducing the amount

of work performed and runtime necessary to find solutions.

In Section 5.5 we provide a new algorithm for performing mutex propagation in

General MAPF domains. This allows more effective symmetry breaking in the case

of conflict symmetries. We discussed options for low-level search routines in General

MAPF in Section 5.6 and provided novel analysis for the adaptation of high-level heuris-

tics for General MAPF domains in Section 5.7.1. In Section 5.7.3 we empirically com-

pare CBS with constraints built using mutex propagation and constraints built with

bicliques and find that CBS with bicliques dominates generally, with exceptions for

some specific cases.

In Section 5.8 we explored two new approaches to sub-optimal CBS: constraint

layering and conditional constraints. The former allows refinement of solutions which

can make the algorithm faster. The latter works by adding extraneous constraints to

avoid conflicts and relaxing them as necessary to avoid incompleteness. Our results

in Section 5.10.4 show that conditional constraints can boost performance significantly

without significantly degrading solution quality. Finally, we provided new theoreti-
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cal analysis for the computational complexity, completeness and optimality of CBS in

General MAPF domains in Section 5.11.

Finally, the bulk of this work culminated in the formulation of a novel algo-

rithm: Conflict-Based Increasing Cost Search in Chapter 6. Our new formulation of

the high-level search of CBICS in Section 6.2 introduced cost constraints for restrict-

ing the path costs of agents and conjunctive splitting using novel cost-conditional motion

constraints. The theory for conjunctive splitting relies on novel analysis of bi-connected

bicliques (BBC) and the novel algorithm Pairwise Constraint Search (PCS), an extension

of mutex propagation which performs analysis of BBCs to produce cost-conditional

motion constraints explained in Section 6.3.

We explained theory for the computational complexity, completeness and op-

timality of CBICS and PCS in Section 6.4. In Section 6.4.1 we explained enhancements

for CBICS, namely, preprocessing costs (PCST) and preprocessing constraints (PCON) and

tested their effectiveness in Section 6.5.1. Finally, we provided an empirical comparison

between CBS and CBICS in Section 6.5.2 and found that CBICS has distinct advantages

in certain types of maps.

All of these contributions are novel to the best of our knowledge. This research

contributes scientific knowledge of MAPF and MAPF algorithms to allow solutions for

more realistic real-world scenarios where previous algorithms could not.

8.2. Open Questions and Future Work

While the contributions of this thesis are a significant start, we believe we have

only scratched the surface. We still have many open questions and unfinished work.

8.2.1. Open Questions

It has been shown that feasible solutions to Classic MAPF can be found in

polynomial time [97]. An answer to the question of whether solving General MAPF

instances is tractable is an open question.
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Currently, it is difficult to detect conflict symmetries in General MAPF without

performing a computationally expensive search like PCS. While detection of conflict

symmetries in Classic MAPF is computationally efficient due to the uniform nature

of grid vertices [113, 111, 112], such detection mechanisms remain elusive in General

MAPF, perhaps because uniform spacing of vertices is not certain with all problem

instances.

8.2.2. Future Work

For future work, there are several avenues. Significant successes have been

achieved for Classic MAPF by hybridizing reduction-based solvers such as CSP [57],

MIP [100] and SAT [179] with concepts from CBS and ICTS, however, further work is

required to generalize these hybrid approaches for General MAPF.

At the end of Chapter 6 we saw that the airport surface operations domain

continues to be a significant challenge. We conjecture that adding arbitrary wait times

to the existing techniques will help immensely. Especially the technique of using SIPP

with CBS [6] could be combined with biclique constraints and mutex propagation in

CBS and possibly CBICS.

We discovered that the mechanism used to drive up costs in CBICS which in-

forms pruning and heuristics could also be applied to ICTS to inform both pruning

and possible novel ICTS heuristics. The theory behind Temporally Relative Duplicate

Pruning (TRDP) suggests that it can be applied to algorithms like CBICS, CBS and ICTS

with beneficial results. The details of how to implement TRDP in these algorithms re-

mains future work.

Finally, application of General MAPF algorithms for execution on robots in

General MAPF domains will require further work on online MAPF [182, 120] and ex-

tensions to the MAPF-POST algorithm [75] for General MAPF.

The work covered by this thesis lays a solid foundation for all of this future

work.

199



Bibliography

[1] Airports Council International. 2017 Aircraft Movements – Annual Traffic Data

– ACI World. https : / / aci . aero / data - centre / annual - traffic - data /

aircraft- movements/2017- aircraft- movements- annual- traffic- data/.

[Online; accessed 2-January-2020]. 2017.

[2] S Akishita, S Kawamura, and K Hayashi. “Laplace potential for moving obsta-

cle avoidance and approach of a mobile robot”. In: Japan-USA Symposium on

flexible automation, A Pacific rim conference. 1990, pp. 139–142.

[3] Faten Aljalaud and Nathan R Sturtevant. “Finding Bounded Suboptimal Multi-

Agent Path Planning Solutions Using Increasing Cost Tree Search”. In: Sixth

Annual Symposium on Combinatorial Search. 2013.

[4] Fadi A Aloul, Bashar Al Rawi, and Mokhtar Aboelaze. “Identifying the shortest

path in large networks using Boolean satisfiability”. In: 2006 3rd International

Conference on Electrical and Electronics Engineering. IEEE. 2006, pp. 1–4.

[5] Ofra Amir, Guni Sharon, and Roni Stern. “Multi-Agent Pathfinding as a Com-

binatorial Auction.” In: AAAI Conference on Artificial Intelligence. 2015, pp. 2003–

2009.

[6] Anton Andreychuk et al. “Multi-Agent Pathfinding with Continuous Time”. In:

International Joint Conference on Artificial Intelligence. 2019, pp. 39–45.

[7] Franklin Antonio. “Faster line segment intersection”. In: Graphics Gems III (IBM

Version). Elsevier, 1992, pp. 199–202.

200

https://aci.aero/data-centre/annual-traffic-data/aircraft-movements/2017-aircraft-movements-annual-traffic-data/
https://aci.aero/data-centre/annual-traffic-data/aircraft-movements/2017-aircraft-movements-annual-traffic-data/


[8] Francisco Javier Pulido Arrebola. “New Techniques and Algorithms for Multi-

objective and Lexicographic Goal-Based Shortest Path Problems”. PhD thesis.

Universidad de Málaga, 2015.

[9] Dor Atzmon, Amit Diei, and Daniel Rave. “Multi-Train Path Finding”. In: Inter-

national Symposium on Combinatorial Search. 2019, pp. 125–129.

[10] Dor Atzmon et al. “Conflict-Free Multi-Agent Meeting”. In: Proceedings of the In-

ternational Conference on Automated Planning and Scheduling. Vol. 31. 2021, pp. 16–

24.

[11] Dor Atzmon et al. “Probabilistic robust multi-agent path finding”. In: Proceed-

ings of the International Conference on Automated Planning and Scheduling. Vol. 30.

2020, pp. 29–37.

[12] Dor Atzmon et al. “Robust Multi-Agent Path Finding”. In: International Confer-

ence on Autonomous Agents and Multiagent Systems. 2018, pp. 1862–1864.

[13] Dor Atzmon et al. “Robust Multi-Agent Path Finding and Executing”. In: Jour-

nal of Artificial Intelligence Research 67 (2020), pp. 549–579.

[14] Manlio Bacco et al. “Smart farming: Opportunities, challenges and technology

enablers”. In: 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT

Tuscany). IEEE. 2018, pp. 1–6.

[15] Max Barer et al. “Suboptimal Variants of the Conflict-Based Search Algorithm

for the Multi-Agent Pathfinding Problem”. In: International Symposium on Com-

binatorial Search. 2014, pp. 961–962.

[16] Laura Barnes, MaryAnne Fields, and Kimon Valavanis. “Unmanned ground ve-

hicle swarm formation control using potential fields”. In: Control & Automation,

2007. MED’07. Mediterranean Conference on. IEEE. 2007, pp. 1–8.

[17] Roman Barták, Ji?í Švancara, and Marek Vlk. “A Scheduling-Based Approach

to Multi-Agent Path Finding with Weighted and Capacitated Arcs”. In: Interna-

tional Conference on Autonomous Agents and Multiagent Systems. 2018.

201



[18] Roman Barták et al. “Modeling and solving the multi-agent pathfinding prob-

lem in picat”. In: 2017 IEEE 29th International Conference on Tools with Artificial

Intelligence (ICTAI). IEEE. 2017, pp. 959–966.

[19] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obsta-

cles for real-time multi-agent navigation”. In: International Conference on Robotics

and Automation. IEEE. 2008, pp. 1928–1935.

[20] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. “Multi-agent path

planning with multiple tasks and distance constraints”. In: Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 953–959.

[21] Zahy Bnaya and Ariel Felner. “Conflict-oriented windowed hierarchical coop-

erative A*”. In: International Conference on Robotics and Automation. IEEE. 2014,

pp. 3743–3748.

[22] Adi Botea, Davide Bonusi, and Pavel Surynek. “Solving Multi-Agent Path Find-

ing on Strongly Biconnected Digraphs”. In: Journal of Artificial Intelligence Re-

search (2018), pp. 273–314.

[23] Adi Botea et al. “Pathfinding in games”. In: Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik. 2013.

[24] Eli Boyarski et al. “Don’t Split, Try To Work It Out: Bypassing Conflicts in

Multi-Agent Pathfinding”. In: International Conference on Automated Planning and

Scheduling. 2015, pp. 47–51.

[25] Eli Boyarski et al. “ICBS: Improved Conflict-Based Search Algorithm for Multi-

Agent Pathfinding.” In: International Joint Conference on Artificial Intelligence. 2015,

pp. 223–225.

[26] Eli Boyarski et al. “Iterative-Deepening Conflict-Based Search.” In: IJCAI. 2020,

pp. 4084–4090.

[27] Jack E Bresenham. “Ambiguities in incremental line rastering”. In: IEEE Com-

puter Graphics and Applications 7.5 (1987), pp. 31–43.

202



[28] Michael Brunner, Bernd Brüggemann, and Dirk Schulz. “Hierarchical rough

terrain motion planning using an optimal sampling-based method”. In: Inter-

national Conference on Robotics and Automation. IEEE. 2013, pp. 5539–5544.

[29] Bernard Chazelle. “Approximation and decomposition of shapes”. In: Algorith-

mic and Geometric Aspects of Robotics 1 (1985), pp. 145–185.

[30] Hsing-Chia Chen and Wen-Hsiang Tsai. “Optimal security patrolling by multi-

ple vision-based autonomous vehicles with omni-monitoring from the ceiling”.

In: Proceedings of 2008 International Computer Symposium, Taipei, Taiwan. 2008.

[31] Jingwei Chen and Nathan R Sturtevant. “Necessary and Sufficient Conditions

for Avoiding Reopenings in Best First Suboptimal Search with General Bound-

ing Functions”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 35. 5. 2021, pp. 3688–3696.

[32] Shushman Choudhury et al. “Efficient large-scale multi-drone delivery using

transit networks”. In: Journal of Artificial Intelligence Research 70 (2021), pp. 757–

788.

[33] Satyendra Singh Chouhan and Rajdeep Niyogi. “DiMPP: a complete distributed

algorithm for multi-agent path planning”. In: Journal of Experimental & Theoreti-

cal Artificial Intelligence (2017), pp. 1–20.

[34] Satyendra Singh Chouhan and Rajdeep Niyogi. “DMAPP: A Distributed Multi-

agent Path Planning Algorithm”. In: Australasian Joint Conference on Artificial

Intelligence. Springer. 2015, pp. 123–135.

[35] Liron Cohen and Sven Koenig. “Bounded Suboptimal Multi-Agent Path Find-

ing Using Highways”. In: International Joint Conference on Artificial Intelligence.

2016, pp. 3978–3979.

[36] Liron Cohen et al. “Improved Solvers for Bounded-Suboptimal Multi-Agent

Path Finding.” In: IJCAI. 2016, pp. 3067–3074.

203



[37] Liron Cohen et al. “Optimal and Bounded Sub-Optimal Multi-Agent Motion

Planning”. In: International Symposium on Combinatorial Search. 2019, pp. 44–51.

[38] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.

[39] Jorge Cortes et al. “Coverage control for mobile sensing networks”. In: IEEE

Transactions on robotics and Automation 20.2 (2004), pp. 243–255.

[40] Michael Cui et al. “Compromise-free Pathfinding on a Navigation Mesh.” In:

IJCAI. 2017, pp. 496–502.

[41] Rina Dechter and Judea Pearl. “Generalized best-first search strategies and the

optimality of A”. In: Journal of the ACM (JACM) 32.3 (1985), pp. 505–536.

[42] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:

Numerische mathematik 1.1 (1959), pp. 269–271.

[43] Kurt Dresner and Peter Stone. “A multiagent approach to autonomous intersec-

tion management”. In: Journal of artificial intelligence research 31 (2008), pp. 591–

656.

[44] Eva Dyllong and Cornelius Grimm. “Verified Adaptive Octree Representations

of Constructive Solid Geometry Objects.” In: Citeseer.

[45] Stefan Edelkamp and Stefan Schroedl. Heuristic search: theory and applications.

Elsevier, 2011.

[46] Esra Erdem et al. “A General Formal Framework for Pathfinding Problems with

Multiple Agents.” In: AAAI Conference on Artificial Intelligence. 2013.

[47] Michael Erdmann and Tomas Lozano-Perez. “On multiple moving objects”. In:

Algorithmica 2.1-4 (1987), p. 477.

[48] Christer Ericson. Real-time collision detection. CRC Press, 2004.

[49] James P Evans and Ralph E Steuer. “A revised simplex method for linear mul-

tiple objective programs”. In: Mathematical Programming 5.1 (1973), pp. 54–72.

204



[50] Ariel Felner, Richard E Korf, and Sarit Hanan. “Additive pattern database heuris-

tics”. In: Journal of Artificial Intelligence Research 22 (2004), pp. 279–318.

[51] Ariel Felner et al. “Adding Heuristics to Conflict-Based Search for Multi-Agent

Path Finding”. In: International Conference on Automated Planning and Scheduling.

2018, pp. 83–87.

[52] Ariel Felner et al. “Search-Based Optimal Solvers for the Multi-Agent Pathfind-

ing Problem: Summary and Challenges”. In: International Symposium on Combi-

natorial Search. 2017, pp. 29–37.

[53] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments us-

ing the relative velocity paradigm”. In: International Conference on Robotics and

Automation. IEEE. 1993, pp. 560–565.

[54] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using

velocity obstacles”. In: The International Journal of Robotics Research 17.7 (1998),

pp. 760–772.

[55] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using

velocity obstacles”. In: The International Journal of Robotics Research 17.7 (1998),

pp. 760–772.

[56] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. “Informed

RRT*: Optimal sampling-based path planning focused via direct sampling of an

admissible ellipsoidal heuristic”. In: International Conference on Intelligent Robots

and Systems. IEEE. 2014, pp. 2997–3004.

[57] Graeme Gange, Daniel Harabor, and Peter J Stuckey. “Lazy CBS: Implict Conflict-

Based Search Using Lazy Clause Generation”. In: International Conference on Au-

tomated Planning and Scheduling. 2019, pp. 155–162.

[58] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29. W.H.

Freeman, New York, 2002.

205



[59] J. Gaschnig. “A Problem Similarity Approach to Devising Heuristics: First Re-

sults”. In: Readings in Artificial Intelligence. 1981.

[60] Robert Ghrist, Jason M O’Kane, and Steven M LaValle. “Computing Pareto opti-

mal coordinations on roadmaps”. In: The International Journal of Robotics Research

24.11 (2005), pp. 997–1010.

[61] Elmer G Gilbert and SM Hong. “A new algorithm for detecting the collision

of moving objects”. In: International Conference on Intelligent Robots and Systems.

IEEE. 1989, pp. 8–14.

[62] Kalin Gochev et al. “Path Planning with Adaptive Dimensionality.” In: Interna-

tional Symposium on Combinatorial Search. AAAI Press, 2011.

[63] M. Goldenberg et al. “Enhanced Partial Expansion A*”. In: Journal of Artificial

Intelligence Research (JAIR) 50 (2014), pp. 141–187.

[64] Oded Goldreich. “Finding the shortest move-sequence in the graph-generalized

15-puzzle is NP-hard”. In: Studies in Complexity and Cryptography. Miscellanea on

the Interplay between Randomness and Computation. Springer, 2011, pp. 1–5.

[65] Ofir Gordon, Yuval Filmus, and Oren Salzman. “Revisiting the Complexity Anal-

ysis of Conflict-Based Search: New Computational Techniques and Improved

Bounds”. In: arXiv preprint arXiv:2104.08759 (2021).

[66] Pierre Hansen. “Bicriterion path problems”. In: Multiple criteria decision making

theory and application. Springer, 1980, pp. 109–127.

[67] Daniel Damir Harabor and Alban Grastien. “Online Graph Pruning for Pathfind-

ing On Grid Maps.” In: AAAI Conference on Artificial Intelligence. 2011.

[68] TE Harris and FS Ross. Fundamentals of a method for evaluating rail net capacities.

Tech. rep. RAND CORP SANTA MONICA CA, 1955.

[69] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the

heuristic determination of minimum cost paths”. In: IEEE transactions on Sys-

tems Science and Cybernetics 4.2 (1968), pp. 100–107.

206



[70] Mark C Hendricks. Rotated Ellipses And Their Intersections With Lines. 2012.

[71] Patrick Chisan Hew. “The length of shortest vertex paths in binary occupancy

grids compared to shortest r-constrained ones”. In: Journal of Artificial Intelli-

gence Research 59 (2017), pp. 543–563.

[72] Jörg Hoffmann. “Where ’ignoring delete lists’ works: local search topology in

planning benchmarks”. In: Journal of Artificial Intelligence Research 24 (2005),

pp. 685–758.

[73] Robert Holte et al. “Speeding Up Problem Solving by Abstraction: A Graph

Oriented Approach”. In: Artificial Intelligence Journal (1996).

[74] Wolfgang Hönig et al. “Multi-agent path finding with kinematic constraints”.

In: Twenty-Sixth International Conference on Automated Planning and Scheduling.

2016.

[75] Wolfgang Hönig et al. “Persistent and robust execution of mapf schedules in

warehouses”. In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 1125–1131.

[76] Shuli Hu et al. “Jump Point Search with Temporal Obstacles”. In: Proceedings of

the International Conference on Automated Planning and Scheduling. Vol. 31. 2021,

pp. 184–191.

[77] Taoan Huang, Bistra Dilkina, and Sven Koenig. “Learning to Resolve Conflicts

for Multi-Agent Path Finding with Conflict-Based Search”. In: AAAI Conference

on Artificial Intelligence. 2021.

[78] Yong K Hwang and Narendra Ahuja. “Gross motion planning – a survey”. In:

ACM Computing Surveys (CSUR) 24.3 (1992), pp. 219–291.

[79] Terry Jameson. A Fuel Consumption Algorithm for Unmanned Aircraft Systems.

Tech. rep. DTIC Document, 2009.

[80] M.R. Jansen and N.R. Sturtevant. “Direction maps for cooperative pathfinding”.

In: Artificial Intelligence and Interactive Digital Entertainment. 2008.

207



[81] Pablo Jiménez, Federico Thomas, and Carme Torras. “3D collision detection: a

survey”. In: Computers & Graphics 25.2 (2001), pp. 269–285.

[82] Pablo Jiménez, Federico Thomas, and Carme Torras. “3D collision detection: a

survey”. In: Computers & Graphics 25.2 (2001), pp. 269–285.

[83] Berit Johannes. “Scheduling parallel jobs to minimize the makespan”. In: Journal

of Scheduling 9.5 (2006), pp. 433–452.

[84] Omri Kaduri, Eli Boyarski, and Roni Stern. “Algorithm selection for optimal

multi-agent pathfinding”. In: Proceedings of the International Conference on Auto-

mated Planning and Scheduling. Vol. 30. 2020, pp. 161–165.

[85] Omri Kaduri, Eli Boyarski, and Roni Stern. “Experimental Evaluation of Clas-

sical Multi Agent Path Finding Algorithms”. In: Proceedings of the International

Symposium on Combinatorial Search. Vol. 12. 1. 2021, pp. 126–130.

[86] Sertac Karaman and Emilio Frazzoli. “Incremental sampling-based optimal mo-

tion planning”. In: Robotics: Science and Systems. 2010.

[87] Narendra Karmarkar. “A new polynomial-time algorithm for linear program-

ming”. In: Proceedings of the sixteenth annual ACM symposium on Theory of com-

puting. 1984, pp. 302–311.

[88] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high- di-

mensional configuration spaces”. In: IEEE transactions on Robotics and Automa-

tion 12.4 (1996), pp. 566–580.

[89] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile

robots”. In: Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[90] Mokhtar M. Khorshid, Robert C. Holte, and Nathan R. Sturtevant. “A

Polynomial-Time Algorithm for Non-Optimal Multi-Agent Pathfinding”. In: In-

ternational Symposium on Combinatorial Search. 2011.

208



[91] Stefan Kiel, Wolfram Luther, and Eva Dyllong. “Verified distance computa-

tion between non-convex superquadrics using hierarchical space decomposi-

tion structures”. In: Soft Computing 17.8 (2013), pp. 1367–1378.

[92] Stephen Kloder and Seth Hutchinson. “Path planning for permutation-invariant

multirobot formations”. In: IEEE Transactions on Robotics 22.4 (2006), pp. 650–

665.

[93] Sinan Kockara et al. “Collision detection: A survey”. In: Systems, Man and Cy-

bernetics, 2007. ISIC. IEEE International Conference on. IEEE. 2007, pp. 4046–4051.

[94] Sinan Kockara et al. “Collision detection: A survey”. In: 2007 IEEE International

Conference on Systems, Man and Cybernetics. IEEE. 2007, pp. 4046–4051.

[95] Andrew Kopeikin et al. “Unmanned aircraft system swarm for radiological and

imagery data collection”. In: AIAA Scitech 2019 Forum. 2019, p. 2286.

[96] Richard E Korf. “Depth-first iterative-deepening: An optimal admissible tree

search”. In: Artificial intelligence 27.1 (1985), pp. 97–109.

[97] Daniel Martin Kornhauser, Gary L Miller, and Paul G Spirakis. “Coordinating

pebble motion on graphs, the diameter of permutation groups, and applica-

tions”. MA thesis. M. I. T., Dept. of Electrical Engineering and Computer Sci-

ence, 1984.

[98] Aaron R Kraft. “Abstraction Hierarchies for Multi-Agent Pathfinding”. PhD

thesis. University of Denver, 2017.

[99] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach

to single-query path planning”. In: Robotics and Automation, 2000. Proceedings.

ICRA’00. IEEE International Conference on. Vol. 2. IEEE. 2000, pp. 995–1001.

[100] Edward Lam et al. “Branch-and-cut-and-price for multi-agent pathfinding”. In:

International Joint Conference on Artificial Intelligence. 2019, pp. 1289–1296.

[101] Jean-Claude Latombe. Robot motion planning. Vol. 124. Springer Science & Busi-

ness Media, 2012.

209



[102] Steven M LaValle. “Rapidly-exploring random trees: A new tool for path plan-

ning”. In: (1998).

[103] Steven M LaValle and Seth A Hutchinson. “Optimal motion planning for mul-

tiple robots having independent goals”. In: IEEE Transactions on Robotics and

Automation 14.6 (1998), pp. 912–925.

[104] Hak-Tae Lee and Thomas F Romer. “Automating the process of airport surface

node-link model generation”. In: Journal of Guidance, Control and Dynamics 34.4

(2011).

[105] Kian Seng Lee et al. “Autonomous patrol and surveillance system using un-

manned aerial vehicles”. In: 2015 IEEE 15th International Conference on Environ-

ment and Electrical Engineering (EEEIC). IEEE. 2015, pp. 1291–1297.

[106] Louise Leenen, Johannes Vorster, and Hermanus le Roux. “A constraint-based

solver for the military unit path finding problem”. In: Proceedings of the 2010

spring simulation multiconference. 2010, pp. 1–8.

[107] Jiaoyang Li et al. “Disjoint Splitting for Multi-Agent Path Finding with Conflict-

Based Search”. In: International Conference on Automated Planning and Scheduling.

2019, pp. 279–283.

[108] Jiaoyang Li et al. “Improved Heuristics for Multi-Agent Path Finding with

Conflict-Based Search.” In: IJCAI. Vol. 2019. 2019, pp. 442–449.

[109] Jiaoyang Li et al. “Lifelong multi-agent path finding in large-scale warehouses”.

In: arXiv preprint arXiv:2005.07371 (2020).

[110] Jiaoyang Li et al. “Multi-Agent Pathfinding for Large Agents”. In: AAAI Confer-

ence on Artificial Intelligence. 2019, pp. 7627–7634.

[111] Jiaoyang Li et al. “New Techniques for Pairwise Symmetry Breaking in Multi-

Agent Path Finding”. In: International Conference on Automated Planning and

Scheduling. 2020, pp. 6087–6095.

210



[112] Jiaoyang Li et al. “Pairwise symmetry reasoning for multi-agent path finding

search”. In: Artificial Intelligence (2021), p. 103574.

[113] Jiaoyang Li et al. “Symmetry-Breaking Constraints for Grid-Based Multi-Agent

Pathfinding”. In: AAAI Conference on Artificial Intelligence. 2019, pp. 6087–6095.

[114] Yandong Liu et al. “A novel swarm robot simulation platform for warehous-

ing logistics”. In: 2017 IEEE International Conference on Robotics and Biomimetics

(ROBIO). IEEE. 2017, pp. 2669–2674.

[115] Leonardo Lozano and Andrés L Medaglia. “On an exact method for the con-

strained shortest path problem”. In: Computers & Operations Research 40.1 (2013),

pp. 378–384.

[116] Tomas Lozano-Perez. “Spatial planning: A configuration space approach”. In:

Autonomous robot vehicles. Springer, 1990, pp. 259–271.

[117] Hang Ma. “A Competitive Analysis of Online Multi-Agent Path Finding”. In:

Proceedings of the International Conference on Automated Planning and Scheduling.

Vol. 31. 2021, pp. 234–242.

[118] Hang Ma and Sven Koenig. “Optimal target assignment and path finding for

teams of agents”. In: International Conference on Autonomous Agents and Multia-

gent Systems. International Foundation for Autonomous Agents and Multiagent

Systems. 2016, pp. 1144–1152.

[119] Hang Ma, TK Satish Kumar, and Sven Koenig. “Multi-agent path finding with

delay probabilities”. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence. Vol. 31. 1. 2017.

[120] Hang Ma et al. “Lifelong multi-agent path finding for online pickup and deliv-

ery tasks”. In: arXiv preprint arXiv:1705.10868 (2017).

[121] Hang Ma et al. “Multi-Agent Path Finding with Deadlines”. In: International

Joint Conference on Artificial Intelligence. 2018, pp. 417–423.

211



[122] Hang Ma et al. “Overview: Generalizations of multi-agent path finding to real-

world scenarios”. In: arXiv preprint arXiv:1702.05515 (2017).

[123] David R Mazur. “Combinatorics : A Guided Tour”. In: (2010).

[124] Justin V Montoya et al. “Analysis of airport surface schedulers using fast-time

simulation”. In: 2013 Aviation Technology, Integration, and Operations Conference.

2013, p. 4275.

[125] Edward F Moore. “The shortest path through a maze”. In: Proc. Int. Symp. Switch-

ing Theory, 1959. 1959, pp. 285–292.

[126] Matthew Moore and Jane Wilhelms. “Collision detection and response for com-

puter animation”. In: ACM Siggraph Computer Graphics. ACM. 1988.

[127] Jonathan Morag et al. “Studying Online Multi-Agent Path Finding”. In: Pro-

ceedings of the International Symposium on Combinatorial Search. Vol. 12. 1. 2021,

pp. 228–230.

[128] Robert Morris et al. “Planning, scheduling and monitoring for airport surface

operations”. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelli-

gence. 2016.

[129] Robert Morris et al. “Self-driving aircraft towing vehicles: A preliminary re-

port”. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence.

2015.

[130] John M Mulvey. “A classroom/time assignment model”. In: European Journal of

Operational Research 9.1 (1982), pp. 64–70.

[131] Bernhard Nebel. “On the computational complexity of multi-agent pathfinding

on directed graphs”. In: Proceedings of the International Conference on Automated

Planning and Scheduling. Vol. 30. 2020, pp. 212–216.

[132] Jerzy Neyman and Egon S Pearson. “The testing of statistical hypotheses in

relation to probabilities a priori”. In: Mathematical Proceedings of the Cambridge

Philosophical Society. Vol. 29. Cambridge University Press. 1933, pp. 492–510.

212



[133] Van Nguyen et al. “Generalized target assignment and path finding using an-

swer set programming”. In: Twelfth Annual Symposium on Combinatorial Search.

2019.

[134] T Alastair J Nicholson. “Finding the shortest route between two points in a

network”. In: the computer journal 9.3 (1966), pp. 275–280.

[135] Nils J Nilsson. A mobile automaton: An application of artificial intelligence tech-

niques. Tech. rep. SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL IN-

TELLIGENCE CENTER, 1969.

[136] Carole Nissoux, Thierry Siméon, and J-P Laumond. “Visibility based proba-

bilistic roadmaps”. In: International Conference on Intelligent Robots and Systems.

Vol. 3. IEEE. 1999, pp. 1316–1321.

[137] Colm Ó’Dúnlaing and Chee K Yap. “A "retraction" method for planning the

motion of a disc”. In: Journal of Algorithms 6.1 (1985), pp. 104–111.

[138] Luigi Palmieri, Sven Koenig, and Kai O Arras. “RRT-based nonholonomic mo-

tion planning using any-angle path biasing”. In: International Conference on

Robotics and Automation. IEEE. 2016, pp. 2775–2781.

[139] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-

gorithms and complexity. Courier Corporation, 1998.

[140] Judea Pearl and Jin H Kim. “Studies in semi-admissible heuristics”. In: IEEE

transactions on pattern analysis and machine intelligence 4 (1982), pp. 392–399.

[141] Jufeng Peng and Srinivas Akella. “Coordinating multiple robots with kinody-

namic constraints along specified paths”. In: Journal of Artificial Intelligence Re-

search 24.4 (2005), pp. 295–310.

[142] Paul A Peterson and Michael C Loui. “The general maximum matching algo-

rithm of Micali and Vazirani”. In: Algorithmica 3.1 (1988), pp. 511–533.

213



[143] Mike Phillips and Maxim Likhachev. “Sipp: Safe interval path planning for dy-

namic environments”. In: International Conference on Robotics and Automation.

IEEE. 2011, pp. 5628–5635.

[144] Andrew B Philpott. “Continuous-time shortest path problems and linear pro-

gramming”. In: SIAM journal on control and optimization 32.2 (1994), pp. 538–552.

[145] Poom Pianpak et al. “A distributed solver for multi-agent path finding prob-

lems”. In: Proceedings of the First International Conference on Distributed Artificial

Intelligence. 2019, pp. 1–7.

[146] Francisco-Javier Pulido, Lawrence Mandow, and José-Luis Pérez-de-la Cruz.

“Dimensionality reduction in multiobjective shortest path search”. In: Comput-

ers & Operations Research 64 (2015), pp. 60–70.

[147] Daniel Ratner and Manfred Warmuth. “The (n2- 1)-puzzle and related reloca-

tion problems”. In: Journal of Symbolic Computation 10.2 (1990), pp. 111–137.

[148] Jingyao Ren et al. “MAPFAST: A Deep Algorithm Selector for Multi Agent Path

Finding using Shortest Path Embeddings”. In: arXiv preprint arXiv:2102.12461

(2021).

[149] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. “Multi-objective

Conflict-based Search Using Safe-interval Path Planning”. In: arXiv preprint

arXiv:2108.00745 (2021).

[150] Aristides AG Requicha and Herbert B Voelcker. “Constructive solid geometry”.

In: (1977).

[151] Nicolas Rivera, Carlos Hernández, and Jorge A Baier. “Grid Pathfinding on the

2k Neighborhoods.” In: AAAI Conference on Artificial Intelligence. 2017, pp. 891–

897.

[152] Juan Jesús Roldán-Gómez, Eduardo González-Gironda, and Antonio Barrien-

tos. “A survey on robotic technologies for forest firefighting: Applying drone

214



swarms to improve firefighters’ efficiency and safety”. In: Applied Sciences 11.1

(2021), p. 363.

[153] Malcolm Ryan. “Constraint-Based Multi-Robot Path Planning”. In: International

Conference on Robotics and Automation. IEEE. 2010, pp. 922–928.

[154] Lorenzo Sabattini, Cristian Secchi, and Cesare Fantuzzi. “Arbitrarily shaped

formations of mobile robots: artificial potential fields and coordinate transfor-

mation”. In: Autonomous Robots 30.4 (2011), p. 385.

[155] Qandeel Sajid, Ryan Luna, and Kostas E Bekris. “Multi-Agent Pathfinding with

Simultaneous Execution of Single-Agent Primitives.” In: International Sympo-

sium on Combinatorial Search. 2012.

[156] Guillaume Sartoretti et al. “Primal: Pathfinding via reinforcement and imita-

tion multi-agent learning”. In: IEEE Robotics and Automation Letters 4.3 (2019),

pp. 2378–2385.

[157] Jürgen Scherer et al. “An autonomous multi-UAV system for search and res-

cue”. In: Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Sys-

tems, and Applications for Civilian Use. 2015, pp. 33–38.

[158] Tomer Shahar et al. “Safe Multi-Agent Pathfinding with Time Uncertainty”. In:

Journal of Artificial Intelligence Research 70 (2021), pp. 923–954.

[159] G. Sharon et al. “Conflict-Based Search For Optimal Multi-Agent Path Finding”.

In: AAAI Conference on Artificial Intelligence. 2012, pp. 563–569.

[160] Guni Sharon et al. “Conflict-Based Search for Optimal Multi-Agent Pathfind-

ing”. In: Artificial Intelligence Journal 219 (2015), pp. 40–66.

[161] Guni Sharon et al. “Pruning techniques for the increasing cost tree search for

optimal multi-agent pathfinding”. In: Fourth Annual Symposium on Combinatorial

Search. 2011.

215



[162] Guni Sharon et al. “The Increasing Cost Tree Search for Optimal Multi-agent

Pathfinding”. In: International Joint Conference on Artificial Intelligence. IJCAI/

AAAI, 2011.

[163] Guni Sharon et al. “The Increasing Cost Tree Search for Optimal Multi-agent

Pathfinding”. In: Artificial Intelligence Journal (2013), pp. 470–495.

[164] David Silver. “Cooperative Pathfinding.” In: Artificial Intelligence and Interactive

Digital Entertainment. 2005, pp. 117–122.

[165] Jerry Slocum and Dic Sonneveld. “The 15 puzzle: how it drove the world crazy”.

In: The puzzle that started the craze of (1880).

[166] JW Smeltink et al. “Optimisation of airport taxi planning”. In: (2003).

[167] Jamie Snape et al. “The hybrid reciprocal velocity obstacle”. In: IEEE Transac-

tions on Robotics 27.4 (2011), pp. 696–706.

[168] Kiril Solovey and Dan Halperin. “K-Color Multi-Robot Motion Planning”. In:

The International Journal of Robotics Research 33.1 (2014), pp. 82–97.

[169] Peng Song and Vijay Kumar. “A Potential Field Based Approach to Multi-Robot

Manipulation”. In: International Conference on Robotics and Automation. Vol. 2.

IEEE. 2002, pp. 1217–1222.

[170] Arvind Srinivasan et al. “Algorithms for Discrete Function Manipulation”. In:

IEEE International Conference on Computer-Aided Design. IEEE. 1990, pp. 92–95.

[171] Trevor Scott Standley. “Finding Optimal Solutions to Cooperative Pathfinding

Problems.” In: AAAI Conference on Artificial Intelligence. 2010, pp. 28–29.

[172] Trevor Scott Standley and Richard E. Korf. “Complete Algorithms for Cooper-

ative Pathfinding Problems.” In: International Joint Conference on Artificial Intelli-

gence. IJCAI/AAAI, 2011.

[173] Roni Stern et al. “Multi-Agent Pathfinding: Definitions, Variants, and Bench-

marks”. In: International Symposium on Combinatorial Search. 2019, pp. 151–159.

216



[174] N. Sturtevant and M. Buro. “Improving collaborative pathfinding using map

abstraction”. In: Artificial Intelligence and Interactive Digital Entertainment. 2006,

pp. 80–85.

[175] N. Sturtevant and R. Jansen. “An analysis of map-based abstraction and refine-

ment”. In: Symposium on Abstraction, Reformulation and Approximation (SARA)

(2007), pp. 344–358.

[176] Avneesh Sud et al. “Real-time path planning in dynamic virtual environments

using multiagent navigation graphs”. In: IEEE transactions on visualization and

computer graphics 14.3 (2008), pp. 526–538.

[177] Pavel Surynek. “A SAT-Based Approach to Cooperative Path-Finding Using

All-Different Constraints.” In: International Symposium on Combinatorial Search.

2012.

[178] Pavel Surynek. “An Optimization Variant of Multi-Robot Path Planning Is In-

tractable.” In: AAAI Conference on Artificial Intelligence. 2010, pp. 1–3.

[179] Pavel Surynek. “Multi-agent path finding with continuous time and geometric

agents viewed through satisfiability modulo theories (SMT)”. In: Twelfth Annual

Symposium on Combinatorial Search. 2019.

[180] Pavel Surynek et al. “Efficient SAT Approach to Multi-Agent Path Finding Un-

der the Sum of Costs Objective”. In: European Conference on Artificial Intelligence.

2016, pp. 810–818.

[181] Richard S Sutton and Andrew G Barto. “Reinforcement learning: An introduc-

tion”. In: Robotica 17.2 (1999), pp. 229–235.
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A. Closed-Form Collision Detection for

Circular Agents

Figure 3.4 shows an example of two-agent motion for fixed velocity (a) and

initial velocity with fixed acceleration (b). Computing the time and duration of con-

flict for two circular agents can be done by solving equations for the squared distance

between agents [48].

A.0.1. Constant Velocity

Given P1 = 〈x1, y1〉, the start position of agent 1, and P2 = 〈x2, y2〉, the start

position of agent 2, velocity vectors V1 = 〈vx1, vy1〉, V2 = 〈vx2, vy2〉, and radii r1, r2

respectively, the location in time of an agent is defined as:

P′ = P + Vt (A.1)

The following equation specifies the squared distance between the centers of

the agents over time:

sqdist(t) = V∆
2t2 + 2V∆ · P∆t + P∆

2 (A.2)

where

P∆ = P1 − P2

V∆ = V1 −V2

222



Via substitution, this equation is simplified to a quadratic equation:

sqdist(t) = at2 + bt + c0 (A.3)

where

a = V∆
2

b = 2V∆ · P∆

c0 = P∆
2

A collision will occur when the squared distance between the agents is less than

or equal to the squared sum of the radii, giving the following inequality.

at2 + bt + c0 ≤ (r1 + r2)
2

Solving the inequality gives the equation for collision between the agent’s edges:

0 ≥ at2 + bt + c0 − (r1 + r2)
2

sqEdgeDist(t) = at2 + bt + c (A.4)

where

c = P2
∆ − (r1 + r2)2

Solving equation A.4 for t will determine the exact times where the squared

distance between agent’s edges is zero – the time when collision occurs. Section A.1

discusses the process for determining the conflict interval for using this equation.
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A.0.2. Initial Velocity with Constant Acceleration

Equation (A.4) can be extended for constant acceleration. Given P1 = 〈x1, y1〉,

the start position of agent 1, and P2 = 〈x2, y2〉, the start position of agent 2, velocity

vectors V1 = 〈vx1, vy1〉, V2 = 〈vx2, vy2〉, acceleration vectors A1 = 〈ax1, ay1〉, A2 =

〈ax2, ay2〉 and radii r1, r2 respectively, the location in time of an agent is defined as:

P′ = P + Vt +
At2

2
(A.5)

The following inequality specifies the collision condition as a quartic equation:

at4 + bt3 + ct2 + dt + e0 ≤ (r1 + r2)
2 (A.6)

where

a = A∆
2

4

b = A∆ · V∆

c = A∆ · P∆ + V∆
2

d = 2V∆ · P∆

e0 = P∆
2

for

P∆ = P1 − P2

V∆ = V1 −V2

A∆ = A1 − A2

which gives the equation for the squared distance between circular edges:
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sqEdgeDist(t) = at4 + bt3 + ct2 + dt + e (A.7)

where

e = P∆
2 − (r1 + r2)2

Again, solving for t will yield the time of collision, which is discussed further

in the next section.

A.1. Computing the Exact Conflict Interval For Circular Agents

The exact conflict interval is determined by solving for the roots of (A.4) or

(A.7) using the quadratic and quartic formulas respectively. These solutions assume

that both agents are at P1 and P2 at the same time. However, if there is an offset in time,

e.g. agent 1 starts moving at time t1 and agent 2 starts moving at time t2, then P∆ must

be adjusted to reflect this offset by projecting the position of the earlier agent to be at

the position when the later agent starts its motion. If the earlier agent were agent 1, the

adjustment would be as follows:

P∆ = P1 + V1(t2 − t1)− P2 (A.8)

Otherwise, the adjustment will be analogously done for agent 2. In the case of

acceleration, the position and velocity must be adjusted (again, assuming agent 1 starts

early) as:

P∆ = P1 + V1(t2 − t1) +
A1(t2 − t1)

2

2
− P2 (A.9)

V∆ = V1 + A1(t2 − t1)−V2 (A.10)
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Figure A.1.: Agents Trajectories and Corresponding Squared Distance Plot

A.1.1. Constant Velocity

For the quadratic form, if the discriminant (b2 − 4ac) is less than zero, V1 and

V2 are parallel and no collision will ever occur. Assuming the discriminant is positive,

the collision interval is defined as the roots of the quadratic formula:

tinterval =
−b±

√
b2 − 4ac

2a
(A.11)

In the case of a double root, the edges of the agents just touch, but no overlap

actually occurs (assuming open intervals). See Figure A.1 for an example of two-agent

motion and the resulting squared-distance plot. When the distance is less than zero,

there is overlap of the agents. Given this interval, it is possible to determine whether

a collision will occur in the future and at what time, or if the agents are currently

colliding.
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A.1.2. Initial Velocity with Constant Acceleration

This case uses the quartic formula to find roots to (A.7). The quartic formula

will yield 4 roots, some of which may be imaginary resulting in 0, 1 or 2 conflict inter-

vals. Imaginary roots will tell us the time(s) at which agents are locally closest together,

but do not actually overlap (local minima). Imaginary roots are always double roots,

and can be discarded. If all 4 roots are imaginary, the agents never overlap. If there is a

double real root, then the two agents touch edges at exactly one point in time, creating

an instantaneous interval.

Because our equation is based on distance, the quartic function will always

be concave up. Hence, the overlapping intervals can only be between roots 1,2 and

3,4. If roots 1,2 and/or 3,4 are real, then the agents continuously overlap between 1,2

and/or 3,4 respectively. Four real roots means that the objects overlap twice, continu-

ously between root pairs 1,2 and 3,4. This is possible because agents may have curved

trajectories. See Figure 3.4 (b) for an example.

A.2. Determining Exact Minimum Delay or Velocity

Adjustment for Conflict Avoidance for Circular Agents

It is often useful, not just to determine if and when agents are going to collide,

but to determine a delay time to avoid collision.

A.2.1. Exact Delay for Constant Velocity

In order to determine the minimum delay required for an agent to avoid con-

flict, we adjust (3) to incorporate δ = t2 − t1, a delay variable, by plugging equation

(A.8) into equation (A.2) to get:

sqEdgeDist(t, δ) = At2 + Btδ + Cδ2 + Dt + Eδ + F (A.12)
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where

A = V∆
2

B = 2(V2
1 −V1 · V2)

C = V1
2

D = 2(P2 · V2 − P2 · V1 + P1 · V2 − P1 · V1)

E = −2(P2 · V1 + P1 · V1)

F = V∆
2 − (r1 + r2)2

Equation (A.12) is the standard form of a conic section. Note that the sign of

both A and C are positive, therefore, this conic section will always be an ellipse, except

for two degenerate cases: (1) agents’ motion is parallel and (2) at least one agent is

waiting in place. Fortunately, both cases are easy to detect and solve. The conversion

of (8) to canonical form for an ellipse will not be covered here, nor is it necessary.

Figure A.2(a) shows an example of agent trajectories, the squared distance plot

(equation (A.4)) when delay = 0, and the resulting elliptical conic section (equation

(A.12)). Note that the horizontal line at δ = 0 passes through the ellipse at the exact

same time points that the squared distance plot does. If agent 1 were to delay by ε, the

horizontal line would move up, resulting in a different collision interval (see Figure

A.2(b)). If agent 2 were to delay by ε, the horizontal line would move down, again

resulting in a different collision interval. The question we want to solve is: what value

of delay will result in no collision? In other words, we want to find the positive value

of δ, such that the radii of the agents just touch, i.e. (A.12) yields a double root. The

targeted delay interval is derived by determining the top and bottom extrema of the

ellipse [70] which is described by:

delayRange = centerδ ±
√

(2BD−4AE)2+4(4AC−B2)(D2−4AF)
2(4AC−B2)

(A.13)
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where centerδ is the y-coordinate of the ellipse center:

centerδ =
BD−2AE
4AC−B2

The collision times of the endpoints of the delayRange (where horizontal lines

touch the top and bottom of the ellipse) are computed via:

collisionTimes =
−B(delayRange)− D

2A
(A.14)

Note that (A.13) is undefined when the discriminant is negative, which can

only happen for a = 0 or c = 0. This can only happen when agents’ motion vectors are

parallel (moving the same or opposite directions) or either agent is waiting in place.

These cases are easy to detect.

When the motion is not of infinite length, i. e. segmented motion, we must

also take into account the beginning and end of the duration of motion. Effectively, we

treat agents as if they appear at their start time and disappear at their end time. When

the movement of agents 1 and 2 start at t1 and t2 and end at t′1 and t′2 respectively, we

measure time relative to t0 = MIN(t1, t2) and tmax = MIN(t′1, t′2). In the case that

δ = t1 − t2 is outside of the range delayRange as calculated via (A.13), no collision

will occur. If either of the collision times (as calculated in (A.14) for each point in

delayRange occur before t0, or after tmax, the delay times need to be re-computed for t0

or tmax as necessary using (A.15). An example where tmax occurs too early is shown by

the vertical dashed line in Figure A.3.

This yields the algorithm detailed in Algorithm A.1 for computing the unsafe

interval for segmented motion. The algorithm is straightforward and utilizes the fol-

lowing additional formulas:

The value of δ, given a time which is derived from (A.12), solved for δ:

δ =
−
√
(Bt + E)2 − 4C(t(At + D) + F) + Bt + E

2C
(A.15)
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Figure A.2.: (a) Agent trajectories, squared distance plot and ellipse showing colli-
sion intervals for Varying delay and (b) the same trajectories where the
red agent is delayed delayed by 0.2 seconds
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, and for the leftmost t coordinate on the ellipse:

minCollisionTime = centert −
√

(2BE−4CD)2+4(4AC−B2)(E2−4CF)
2(4AC−B2)

(A.16)

where centert is BE−2CD
4AC−B2

At Algorithm A.1, lines 5-9 check the actual delay (δ = t2− t1) between the

two agents against the unsafe delay range per equation (A.13). If there is no collision

(e.g. in the case of parallel movement) or δ does not fall inside the unsafe range, no

collision will occur. Lines 10-23 compute the unsafe time interval per equation (A.14)

and then adjust the endpoints accordingly per t0 and tmax using equation (A.15).

The final result is the adjusted unsafe interval for agent 1. This interval can

now be used to instruct agent 1 not to start execution of its action inside the interval

(e.g. by starting its action sooner or later). Note that the unsafe interval for agent 2 is

the negated interval for agent 1 – [-range[2],-range[1]].
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Figure A.3.: An example where the maximum delay time happens after the first agent
arrives at its destination.
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Algorithm A.1. Unsafe Interval Computation for Segmented Motion

1: INPUT: P1,P2,V1,V2,t1,t2,t1’,t2’,r1,r2
2: t0=MAX(t1,t2)
3: tmax←MIN(t1’,t2’)
4: δ=t2-t1
5: // Execute equation (A.13) to get unsafe delay range
6: range←delayRange(P1,P2,V1,V2,r1,r2)
7: if range=∅ or range[1]> δ or range[2]< δ then
8: return NO COLLISION
9: // Execute equation (A.14) to get unsafe time range

10: collisionTimes←delayTimes(P1,P2,V1,V2,r1,r2)
11: minCollisionTime←MIN(collisionTimes)
12: maxCollisionTime←MAX(collisionTimes)
13: // Truncate delay for motion time segments
14: if minCollisionTime<t0 then
15: // Get delay for t0 via (A.15)
16: range[1]←delayAtTime(P1,P2,V1,V2,r1,r2,t0)
17: if maxCollisionTime<t0 then
18: // Get delay for tmax via (A.15)
19: range[2]←delayAtTime(P1,P2,V1,V2,r1,r2,t0)
20: // Return the unsafe interval by adding the delay to the start time
21: return [t0+range[1],MIN(tmax,t0+range[2])]

A.2.2. Exact Delay for Initial Velocity with Constant Acceleration

The equivalent conic equation for 4th order bivariates is called a quartic plane

curve. A closed-form solution for unsafe intervals is still an open question. However,

an interative solution has been formulated for the constant velocity case which is gen-

eralizable to this case [6].

The algorithm starts by evaluating (A.7) at t0, retrieving an initial upper bound

from the interval which is closest to and greater than t0. Then performs a binary search,

from both ends of the interval until the interval is determined within a predetermined

accuracy threshold. Binary search is a well known algorithm and will not be repeated

here.
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A.2.3. Minimum Velocity Change for Constant Velocity

In order to determine the minimum velocity change necessary to avoid collision

for segmented motion, a VO is created as shown in Figure A.4 which is similar to Figure

3.6, but with motion segments added. Motion segments are shown as dotted arrows

with large points at the beginning and end of the segment. Velocities that lie on the

segment are the only valid choices, hence a velocity that lies just outside of the VO as

shown in diagram (b) is desirable for determining the minimum necessary change to

avoid collision. There may be kinematic constraints on agents, such as a maximum

velocity.

The following steps can be undertaken to determine the appropriate action for

the agent, which may result in the agent waiting in place or using a new velocity:

1. Detect if a collision will occur inside the segments. This can be done via equation

(A.4). We immediately return ∅ if no collision will occur.

2. Construct a VO, then compute a new velocity that lies on the segment and inter-

sects with the edges of the VO as shown in Figure A.4 (b) for agent A. Ths can be

done using a formula for the line intersection point [7] of the motion vector and

both of the VO tangent lines.

(a)

−→
VA

−→
VB

A

B

(b)

A

VO

B
r A
+

r B

Figure A.4.: Velocity Obstacle (VO) construction based on (a) two agents moving on
edges. (b) The minimum change for safe velocity is determined by the
intersection points of the edge and the velocity obstacle.
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• Return new velocity if either of the velocities at the intersection points are

kinematically feasible.

3. Construct and check a VO for a new velocity for agent B.

• Return new velocity if either of the velocities at the intersection points are

kinematically feasible.

4. If the current state of the agent will allow it to wait in place, compute the delay

using Algorithm A.1.

• Return original velocity and new delay.

5. Otherwise, return NO SOLUTION

A.2.4. Summary

We provided derivations for computing the exact interval of collision between

two agents with constant velocity or intial velocity with constant acceleration. We

have additionally derived a formulation for computing unsafe intervals (the range of

start times in which agents come into collision) for two circular agents with constant

velocity and differing start times. An algorithm was then shown for computing the

unsafe intervals in the case of segmented motion. Finally, an algorithm for computing

safe velocities and delay times was outlined.
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B. Proofs for Temporally-Relative

Duplicate Pruning

Recall from Section 3.3.1 that the motivation for temporally-relative duplicate

pruning is to ensure completeness in MAPF and MAPFQ. We now introduce a novel

proof of completeness for the case when no solution exists for MAPF and MAPFQ

based on temporally-relative duplicates. Later in this section, we extend this proof for

CBICS.

Recall that temporally-relative duplicate pruning removes successors during

expansion which have been visited before in a temporally relative sense. The pro-

cedure adjusts joint successor states S′∈S′ of S to be temporally-relative ∆t(S′), then

compares them to temporally-relative states in Π(S). Any member of ∆t(S′) that is

identical to any member of ∆t(Π(S)) is pruned from the search.

Temporally-relative duplicate pruning in MAPF and MAPFQ has two effects:

1. It renders the search space finite.

2. It eliminates sub-optimal solutions from consideration in the search.

These claims do not generally hold for MAPFR. However, we show that elim-

ination of temporally-relative duplicates renders MAPF and MAPFQ algorithms com-

plete. This is done by proving the two claims above; namely that temporally-relative

duplicate pruning renders the search space finite, guaranteeing termination even when

no solution exists, and that it never eliminates optimal solutions from being found. We

also show why termination cannot be guaranteed in MAPFR in the case that a solution

does not exist.
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Assumption B.0.1. G, the graph for motion planning MAPF agents is finite.

Observation B.0.2. Because G is finite, the single-agent branching factor is also finite.

Observation B.0.3. Because G is finite, arbitrary wait times are not allowed – only fixed

duration wait actions.

Assumption B.0.4. k, the number of agents is finite.

Observation B.0.5. Because the single-agent branching factor is finite, and k is finite, the

multi-agent branching factor is finite.

Observation B.0.6. Even if the graph G is finite, MAPF and MAPFQ have infinite state

spaces due to the time dimension. The time domain for MAPF is Z+ which is countably infinite

and the time domain for MAPFQ is Q+ which is also countably infinite.

Observation B.0.7. The search spaces for MAPF and MAPFQ (without temporally-relative

duplicate pruning) are infinite. For example it is possible for agents to wait in place at their

start location forever without coming into conflict.

Lemma B.0.8. Eliminating temporally-relative duplicates renders the search space for MAPF

and MAPFQ finite.

Proof. Let W be the set of edge weights for E: W={∀e ∈ E; w(e)}.

The domain of s.t for the search space is finite iff each π∈Π is finite in length.

Finite-length paths however, cannot be guaranteed without augmentation per Obser-

vation B.0.7. But the domain of temporally-relative times ∆t(S).t is finite. Per the

definition of joint actions, each a∈A has temporal overlap with all other actions in A,

therefore each s.t in ∆t(S).t can be no larger than the largest value in W. Thus, the

upper bound on the size of the domain of each s.t in ∆t(S).t is defined as

Dt=
MAX(W)

GCD(W)

, the largest value in W divided by the greatest common denominator (GCD) of W. For

example, given W={.2, .5, 4} the GCD is .1 and the largest value is 4, hence the size of
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the domain for each s.t is 40. Note that the GCD is not defined for irrational numbers,

hence this result is not generally valid for MAPFR. The upper bound on DT, the size of

the domain of ∆t(S).t is the total number of k-length strings over Dt,

DT=Dt
k

. This is because for a multi-agent state, each agent can take on any temporally-relative

value in Dt. DT is a finite value. In our example, Dt is 40 and for k=3 DT=403. Note,

DT=1 for MAPF.

Concerning the domain of S.v, the possible vertex locations of the agents, the

total number of valid configurations is the total number of k-permutations of vertices

in the graph

DV=
|V|!

(|V| − k)!

which is O(|V|k), a finite value.

There are only DV DT ways to arrange agents and temporally-relative times.

This is a finite value. Thus removing temporally-relative duplicates ensures that the

search space is finite.

We now show that no optimal solution is removed by temporally-relative du-

plicate pruning.

Lemma B.0.9. No optimal solution exists to a MAPF or MAPFQ instance such that a temporal-

ly-relative state is visited twice.

Proof. Let Π=[S0, .., Sd] be a solution of length d from start to goal for k agents.

Recall from Section 3.3.2 that in MAPFQ it is possible for a set of vertices to be

repeated more than once in Π in optimal solutions. However, the relative times of the

single agent states in a joint state must be unique, which is proved as follows:

Assume that some temporally-relative joint state ∆t(S) is visited twice in ∆t(Π),

once at index i and again at index j. Π cannot be an optimal solution because the con-

catenation of Π[0,i) + Si + Π(j,d] (after updating times in Π(j,d] by subtracting Sj.t− Si.t)
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is a solution with contiguous paths from start to goal which is shorter than Π. Hence,

in MAPFQ any Π that visits the same temporally-relative joint state twice cannot be a

shortest path.

The question of completeness and optimality ultimately depends on the spe-

cific design of MAPF algorithms. However, we can now show that temporally-relative

duplicate pruning, cannot preclude a MAPF algorithm from being optimal and com-

plete.

Theorem B.0.10. Eliminating temporally-relative duplicates cannot preclude completeness

and optimality in MAPF and MAPFQ.

Proof. For completeness, we must show two things: That an algorithm will terminate if

no solution exists, and that if a solution exists, it will not be eliminated by temporally-

relative duplicate pruning.

Per Lemma B.0.8, with elimination of temporally-relative duplicates there is a

finite search space in MAPF and MAPFQ. Therefore, in the case that no solution to the

problem exists, eventually, the search space will be explored completely. Therefore, the

algorithm is guaranteed to terminate.

Per Lemma B.0.9, no optimal solution can ever be eliminated by temporally-

relative duplicate pruning. Although some sub-optimal solutions may be eliminated,

optimal solutions will remain. Furthermore, if at least one solution exists for a problem

instance, at least one of them must be an optimal solution. Therefore, temporally-

relative duplicate pruning cannot preclude completeness nor optimality.
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C. Proofs for PCS

In this appendix, we prove the following properties of PCS:

1. PCS is guaranteed to return a set of context-optimal paths in P. Context optimal

means that PCS returns a set of feasible lowest-cost joint state paths, which con-

form to motion and cost constraints.

2. PCS is guaranteed to terminate in the case that no such paths exist.

3. PCS is guaranteed to compute valid sets of cost-conditional motion constraints.

PCS Proof Part 1: Guarantees when a solution exists

For proving (1), we show that costs must increase toward optimal costs. Then

we show that PCS will never prune a joint state that belongs to an optimal solution.

Then we show that PCS will never prune a context-optimal path. Finally, that PCS will

not violate motion constraints nor cost constraints.

Lemma C.0.1. After a finite number of expansions in PCS, the quantity g(S) is guaranteed

to increase.

Proof. Because all edge weights in G have positive values and waiting at the goal has

no cost, for si, sj∈S at least one of their respective successors s′i or s′j is guaranteed to

have increased cost: g(s′i)≥g(si) and g(s′j)≥g(sj) s.t. g(s′i)+g(s′j) > g(si)+g(sj). There-

fore, g(S′)>g(S) for all S′∈S′ where S′ is the set of all successors of S (See Algorithm

2.2). Because OPEN is ordered by g-cost, g(S) is guaranteed to never decrease. Be-

cause the branching factor is finite, g(S) is guaranteed to increase after a finite number

of iterations (if a feasible solution is not found first).
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We have established that costs are guaranteed to increase in PCS, an essential

part of making progress toward optimal solutions. We now show that if any optimal

solutions exist, PCS will find them. First, we show that pruning in PCS retains optimal

solutions.

Lemma C.0.2. For any problem instance in IL-ADM, PCS will not prune any joint state be-

longing to the set of all context-optimal paths.

Proof. There are two reasons that states are pruned in PCS: (1) Temporally-relative du-

plicate pruning (see Algorithm 2.2 lines 16-25). (2) Pruning when individual f-costs are

above ri.ub and rj.ub respectively (See Algorithm 6.2 line 41).

(1) Per Lemma B.0.9 no joint state belonging to a lowest-cost solution can be

eliminated by temporally-relative duplicate pruning. However, as noted in Section

3.3.3 this does not apply to PCS because it operates on a subset of agents. Essentially,

temporally-relative duplicate pruning could remove a joint state belonging to a lowest-

cost solution if applied in the context of a subset of agents due to the influence of

agents outside the subset. Therefore no pruning is allowed until after the last constraint

time (See Algorithm 2.2 line 16) in order to ensure that no outside agents influence is

disregarded in the context of PCS.

We can show this is correct. By contradiction, assume that some temporally-

relative duplicate is pruned in PCS and it eliminates a lowest-cost solution in the con-

text of all agents. It must be the case that a context-sub-optimal path is required by

agents i and j (because temporally-relative duplicate pruning will never prune joint

states from lowest-cost solutions per Lemma B.0.9). Setting cost constraints aside, the

only reason that a context-sub-optimal path would be needed, is to avoid another agent

from the larger context. However, if no motion constraint exists, it must be that either

(I) no other agent has a conflict with agent i nor agent j or (II) such a conflict has not

been discovered yet in the high-level search. Case (I) contradicts our assumption – if

there is no conflict with another agent, temporally-relative duplicate pruning in PCS

cannot preclude a context-optimal solution from being found. Case (II) will be resolved
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only by the high-level detecting a conflict and re-engaging PCS for a new node with a

motion constraint for the conflict. Hence, temporally-relative duplicate pruning after

the last constraint time cannot preclude an optimal solution from being found.

Additionally, context-sub-optimal solutions need to be allowed when any of the

cost lower bounds are are greater than the lowest possible cost combination. Therefore

temporally-relative pruning is only allowed when f-costs are above the lower bounds

in addition to the maximum motion constraint time (See Algorithm 2.2 line 16). Be-

cause f-costs are computed using an admissible heuristic, no joint state whose true

f-cost is below the lower bound cost constraint can ever be pruned. Thus no context-

sub-optimal solution is precluded unless its actual cost is above the lower bound cost

constraints.

(2) is correct because in the case of an infinite ri.ub and rj.ub no pruning occurs.

In the case ri.ub or rj.ub is finite, pruning states which have f-costs over these upper

bounds respectively will not remove any lowest-cost path whose actual cost is in the

intervals ri and rj because the f-costs are computed using an admissible heuristic.

Note that Lemma C.0.2 still holds in the case of an inconsistent heuristic. Be-

cause OPEN is ordered by g-cost, re-expansions can never occur. F-costs are only used

to prune, hence, because inconsistent heuristics are admissible, a lowest-cost path is

still guaranteed not to be pruned.

Lemma C.0.3. For any problem instance in IL-ADM, PCS will not return any paths in P which

violate motion constraints or are infeasible.

Proof. PCS cannot return paths in P which violate motion constraints because TIME-

AWAREJOINTEXPANSION does not generate any single-agent states which violate mo-

tion constraints (See Algorithm 2.2 lines 5, 8).

PCS cannot return paths in P which are infeasible because infeasible solutions

are not allowed in P based on goal criteria (see Algorithm 6.2 line 30). States are marked

as infeasible if the constituent actions are infeasible when generated (see Algorithm 2.2

line 13) or if all of their parents are infeasible. This is ensured by first marking children
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of infeasible joint states as infeasible (see Algorithm 12) and replacing infeasible joint

states in OPEN with any duplicates that are feasible (see Algorithm 44).

Let Π∗c be the set of context-optimal joint state paths. There are two attributes

for parents of a joint state which must be considered, namely, the parent’s f-cost, and

the parent’s feasibility. If the parent’s f-cost is greater than c(Π∗c ) it will never be ex-

panded. Let S the set of all parents of S′ with f-cost less than or equal to c(Π∗c ). The

f-cost of S′ is also less than or equal to c(Π∗c ).

If the constituent actions of S′ are infeasible, it will always be marked infeasible.

Otherwise there are three cases that determine if it is marked feasible:

1. All S ∈ S are feasible.

2. All S ∈ S are infeasible.

3. At least one S ∈ S is feasible.

Case 1: S′ will be marked feasible as soon as it is generated and will never

change to infeasible.

Case 2: S′ will be marked infeasible as soon as it is generated and will never

change when it is revisited via a different parent.

Case 3: S′ must eventually be marked feasible, otherwise, any optimal solution

containing S′ could be omitted from P, or some motion constraint M could be erro-

neously generated for actions terminating or originating from S′. This is the main part

that needs to be proven.

If S′ is initially marked feasible when it is generated, it will never change to

infeasible. If S′ is initially marked infeasible when it is generated, it is guaranteed

to eventually be marked feasible. By contradiction, assume S′ is not marked feasible

before PCS terminates. It must be that S′ was never visited via a feasible parent in S.

S′ could not have been pruned because per Lemma C.0.2, S′ never would have been

generated in the first place if it falls under the criteria of a temporally-relative duplicate,

and pruning by f-cost violates our assumptions about S. Another possibility is that
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some h(S)∈S is never expanded, but this violates our assumptions about the f-cost of

S as well, since per Lemma C.0.4 all S would be expanded. If h(S) under-estimates the

cost to the goal, there are two possible outcomes: (I) it visits or generates a child at S′.V

with a different time and g-cost than S′ or (II) it visits S′. (I) violates our assumptions

about S, since S is not actually a parent of S′ in this case. In case (II) S′ will be set to

feasible, contradicting our assumption.

Based on Algorithm 6.2 line 30, PCS will include paths in P for all joint-states

that satisfy the goal conditions which are marked feasible, and these are guaranteed to

have a traceable path back to the root joint state with only feasible actions. Addition-

ally, no action for any path in P can contain single-agent actions which are blocked by

motion constraints.

Lemma C.0.4. For any problem instance in IL-ADM, PCS will find all context-optimal paths

with unique cost combinations if any exist.

Proof. Let Π∗
c={Π∗1={πi, πj}, .., Π∗n{πi, πj}} be the set of all context-optimal paths for

a two-agent MAPF instance. Let S∗ be the last state that was expanded in Π∗. By

contradiction, if PCS did not find any Π∗, it must be that:

(1) the successor S′∗∈Π∗ of S∗ was not generated or

(2) S′∗was never considered for expansion (i.e., never came to the top of OPEN).

We can rule out (1) because there is a finite branching factor, and PCS generates

all successors, (Algorithm 2.2, lines 5-8) S′∗ is guaranteed to be generated. Additionally,

S′∗ cannot have been pruned Per lemma C.0.2. We can also rule out (2) because f-costs

are computed using an admissible heuristic, therefore no S′ having f ∗(si)≤ri.ub or

f ∗(sj)≤rj.ub where f ∗=c∗ will ever be omitted from OPEN. Additionally, because costs

are non-decreasing per Lemma C.0.1, S′∗ will eventually arrive at the top of OPEN and

because PCS will continue performing expansions until all joint states in open with

f-cost less than or equal to c∗ are expanded (See Algorithm 6.2 lines 30 and 9) S′∗ is

guaranteed to be expanded because g(S′∗)≤c∗. Otherwise, a feasible path must not

exist.
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Lemma C.0.5. PCS will not include any solution in P which violates cost constraints.

Proof. PCS cannot include a solution in P which violates cost constraints because the

criteria for adding a solution to P ensures that cost constraints are met (see Algorithm

6.2 lines 28, 30).

Theorem C.0.6. For any problem instance in IL-ADM, PCS returns all cost-combination-

unique, context-optimal paths in P.

Proof. Per Lemma C.0.2 no joint state in a lowest-cost solution will ever be pruned.

Per Lemma C.0.3 no infeasible solution can be included in P. Per Lemma C.0.4 P will

include all context-optimal solutions. Per Lemma C.0.5 no solution in P can violate the

cost constraints.

It does not matter whether PCS uses an consistent heuristic or not, as long as

the heuristic is admissible, the guarantees hold.

PCS Proof Part 2: Guarantees when no solution exists

Recall the two parts to completeness are guaranteed termination when a solu-

tion exists and when no solution exists. Part 1 showed that PCS will find solutions if

they exist and terminate. We now show the second part of completeness.

Theorem C.0.7. PCS is complete for MAPF and MAPFQ in IL-ADM.

Proof. Per Theorem C.0.6 PCS is guaranteed to find solutions if any exist, subject to

constraints. This satisfies the first requirement for completeness.

One of two cases guarantee termination in the case that no solution exists: (1)

When both lbi.ub and lbj.ub are finite, PCS will never add states violating either of these

cost bounds to OPEN, thus the search space is rendered finite because costs are guar-

anteed to increase per Lemma C.0.1. The g-cost for agent j or the g-cost for agent j or

both increase with every expansion, eventually reaching lbi.ub and/or lbj.ub. (2) when

either lbi.ub and lbj.ub are infinite, because PCS performs temporally-relative duplicate

244



pruning when f-costs are above the lower cost bounds and when S.t is greater than the

maximum motion constraint time. Per Lemma B.0.8, the search space is rendered finite

by the use of temporally-relative duplicate pruning. Guaranteeing that the search will

terminate.

Thus, PCS is guaranteed to terminate whether a solution to IL-ADM exists or

not.

PCS Proof Part 3: Guarantees on valid motion constraint sets

We start by showing that PCS generates valid motion constraint sets. Recall

that “valid” means any action ai blocked by a cost-conditional motion constraint mi

conflicts with all actions available to the second agent at the same time. This is the

mutually-disjunctive property. Because a potentially large set of actions could be used

by agent j, we restrict the set based on f-costs. For a complete proof, we must show

two things: (1) that the pair of agents’ conflicting actions is computed correctly and (2)

that the cost limit mi.c used to restrict the set is correct.

For the following two lemmas let ai (resp. aj) be an action for agent i composed

of (si, s′i). Let Aj be the set of all actions available to agent j that have time overlap

with ai (i.e., in the range [si.t, s′i.t]). Let Ac
j⊆Aj be the set of actions such that ∀aj∈Aj,

aj either directly conflicts with ai or is marked infeasible due to having all infeasible

parents. Let Aj=Aj\Ac
j be the set of non-conflicting actions. Let Bc

i and Bc
j be the sets

of valid motion constraints in the sense that all mi∈Bc
i are mutually disjunctive with

all mj∈Bc
j (equivalently all mi.a conflict with all mj.a and vice-versa) in the same time

frame.

Lemma C.0.8. PCS is guaranteed to compute a set of valid motion constraints.

Proof. Because PCS initializes a motion constraint mi when its constituent action ai is

in direct conflict with some action for agent j or its parents had conflicts (marked with

f easible= f alse), it will never omit a possible motion constraint from consideration (see

Algorithm 2.2 lines 12 and 30 and Algorithm 6.2 line 18.
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When f (s′i)≤ri.ub and respectively for s′j, successors are added to open (see

Algorithm 6.2 lines 40 and 46), therefore only mi with f (mi.a=ai)≤ri.ub will be consid-

ered as a possible motion constraint. When f (ai)= f ∗(ai), ai is guaranteed to be on a

path within the cost range ri. Thus mi is guaranteed to be mutually disjunctive (and

thus a member of Bc
i ) because PCS is guaranteed to expand and perform conflict checks

with all aj with cost ≤rj.ub.

However, when the f-cost is under-estimated, that is, f (ai)< f ∗(ai) and its true

f-cost is greater than ri.ub, ai is not on a path in the cost range ri. In this case, it is

possible that some prefix path through ai was not expanded in the search. Therefore,

it is possible that some parent of ai does not conflict with a parent of aj, hence mi with

mi.a=ai would not be mutually conflicting with Aj in the right time frame, hence not a

member of Bc
i .

Therefore, PCS eliminates any m such that f (m.a)< f ∗(m.a) by computing the

sets Bi and Bj (see Algorithm 6.2 lines 32-38) which include all infeasible actions in

paths with costs in ri and rj respectively. Thus Bi (resp. Bj) contains only infeasible

actions with f (ai)= f ∗(ai). Bc
i (resp. Bc

j ) is a subset of Bi because Bi may contain infea-

sible actions that are not mutually disjunctive. Because all actions in Mi are mutually

disjunctive with those in Mj, then Bc
i =Mi∩Bi. Because PCS computes this intersection

(see Algorithm 6.2 lines 10 and 11) only valid motion constraints are returned.

Now that we have shown that the correct set of motion constraints is computed,

we must show that the cost limits mi.c are correct. That is, for each mi in the set Bc
i ,

mi.c is set such that it will be turned off if a path found for agent j could contain an

action that does not conflict with mi.a. Otherwise, mi could block an action in a feasible

solution, resulting in incompleteness or sub-optimality.

Lemma C.0.9. PCS is guaranteed to compute correct cost limits for cost conditional motion

constraints.
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Proof. The cost range for a constraint which blocks ai is:

F(Ac
j ) = F(Aj)\F(Aj)

Thus F(Ac
j ) is the entire conflicting cost range minus the non-conflicting cost

range. In Algorithm 6.2, the upper bound on this range is computed on line 21 (for

F(Aj)) and line 24 subtracts lower bound (for F(Aj)).

The exact valid cost range is F∗(Ac
j ) where F∗ is a perfect cost range, computed

using a perfect heuristic. In this case, mi.c=F∗(Ac
j ).ub, therefore, if rj.ub≤F∗(Ac

j ).ub

(which causes mi to be “turned on”, blocking ai) no aj∈Aj can be expanded by PCS

(since the f-costs for these actions are higher than rj.ub), hence no feasible solution will

be blocked. Conversely, when rj.ub>F∗(Ac
j ).ub (causing mi to be “turned off”) aj∈Aj

will be expanded and mi (being turned off) will not block any feasible solution.

In the case that single-agent heuristics are admissible but under-informed

F(Ac
j ).ub≤F∗(Ac

j ).ub. Because ∀aj∈Aj, f (aj)/∈F∗(Ac
j ) it follows that ∀aj∈Aj,

f (aj)/∈F(Ac
j ). Still, no aj∈Aj can be expanded when mi is turned on since the f-costs for

these actions are higher than rj.ub. This may result in some aj∈Aj not being expanded

when mi is turned off, but it still cannot lead to blocking a feasible solution.

Theorem C.0.10. PCS is guaranteed to compute valid cost-conditional motion constraints.

Proof. Per Lemma C.0.8 PCS computes the correct (mutually disjunctive) set of mo-

tion constraints and per Lemma C.0.9 the cost conditions of the motion constraints are

guaranteed to only be turned on when they cannot block a feasible solution. Therefore

PCS computes valid cost-conditional motion constraints.
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