884,961 research outputs found

    Un modelo integrado para el enrutamiento de aeronaves y la programación de la tripulación: Relajación lagrangiana y algoritmo metaheurístico

    Full text link
    [EN] Airline optimization is a significant problem in recent researches and airline industryl as it can determine the level of service, profit and competition status of the airline. Aircraft and crew are expensive resources that need efficient utilization. This paper focuses simultaneously on two major issues including aircraft maintenance routing and crew scheduling. Several key issues such as aircraft replacement, fairly night flights assignment and long-life aircrafts are considered in this model. We used the flight hours as a new framework to control aircraft maintenance. At first, an integrated mathematical model for aircraft routing and crew scheduling problems is developed with the aim of cost minimization. Then, Lagrangian relaxation and Particle Swarm Optimization algorithm (PSO) are used as the solution techniques. To evaluate the efficiency of solution approaches, model is solved with different numerical examples in small, medium and large sizes and compared with GAMS output. The results show that Lagrangian relaxation method provides better solutions comparing to PSO and also has a very small gap to optimum solution.[ES] La optimización de aerolíneas es un problema importante en investigaciones recientes e industria de aerolíneas, ya que puede determinar el nivel de servicio, el beneficio y el estado de competencia de la aerolínea. Las aeronaves y la tripulación son recursos costosos que necesitan una utilización eficiente. Este artículo se centra simultáneamente en dos cuestiones principales, incluyendo el enrutamiento de mantenimiento de aeronaves y la programación de la tripulación. En este modelo se consideran varios temas clave, como el reemplazo de aeronaves, la asignación de vuelos nocturnos y los aviones envejecidos. Usamos las horas de vuelo como un nuevo marco para controlar el mantenimiento de las aeronaves. Al principio, se desarrolla un modelo matemático integrado para el enrutamiento de aeronaves y los problemas de programación de la tripulación con el objetivo de la minimización de costos. A continuación, se utilizan como técnicas de solución la relajación lagran-giana y el algoritmo “Particle Swarm Optimization” (PSO). Para evaluar la eficiencia de los en-foques de la solución, el modelo se resuelve con diferentes ejemplos numéricos en tamaños pequeños, medianos y grandes y se compara con la salida GAMS. Los resultados muestran que el método de relajación lagrangiana proporciona mejores soluciones en comparación con PSO y también tiene una pequeña diferencia para una solución óptimaMirjafari, M.; Rashidi Komijan, A.; Shoja, A. (2020). An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm. WPOM-Working Papers on Operations Management. 11(1):25-38. https://doi.org/10.4995/wpom.v11i1.12891OJS2538111Al-Thani, Nayla Ahmad, Ben Ahmed, Mohamed and Haouari, Mohamed (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem, Transportation Research Part C: Emerging Technologies, Volume 72, Pages 29-44. https://doi.org/10.1016/j.trc.2016.09.004Azadeh, A., HosseinabadiFarahani, M., Eivazy, H., Nazari-Shirkouhi, S., &Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling, Applied Soft Computing, Volume 13, Pages 158-164. https://doi.org/10.1016/j.asoc.2012.08.012Barnhart C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities, Manufacturing & Service Operations Management, 6(1):3-22, 47, 69, 141, 144. https://doi.org/10.1287/msom.1030.0018Basdere, Mehmet and Bilge, Umit (2014). Operational aircraft maintenance routing problem with remaining time consideration, European Journal of Operational Research, Volume 235, Pages 315-328. https://doi.org/10.1016/j.ejor.2013.10.066Bazargan, Massoud (2010). Airline Operations and scheduling second edition, Embry-Riddle Aeronautical University, USA, Ashgate publishing limite.Belien, Jeroen, Demeulemeester, Eric and Brecht (2010). Integrated staffing and scheduling for an aircraft line maintenance problem, HUB RESEARCH PAPER Economics & Management.Ben Ahmed, M., Zeghal Mansour, Farah and Haouari, Mohamed (2018). Robust integrated maintenance aircraft routing and crew pairing, Journal of Air Transport Management, Volume 73, Pages 15-31. https://doi.org/10.1016/j.jairtraman.2018.07.007Ben Ahmed, M., Zeghal Mansour, F., Haouari, M. (2017). A two-level optimization approach for robust aircraft routing and retiming, Computers and Industrial Engineering, Volume 112, Pages 586-594. https://doi.org/10.1016/j.cie.2016.09.021Borndorfer, R., Schelten, U., Schlechte, T., Weider, S. (2006). A column generation approach to airline crew scheduling, Springer Berlin Heidelberg, Pages 343-348. https://doi.org/10.1007/3-540-32539-5_54Clarke, L., E. Johnson, G. Nemhauser, Z. Zhu. (1997). The Aircraft Rotation Problem. Annals of Operations Research, 69, Pages 33-46. https://doi.org/10.1023/A:1018945415148Deveci, Muhammet and ÇetinDemirel, Nihan (2018). Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering, Volume 115, Pages 389-406. https://doi.org/10.1016/j.cie.2017.11.022Dozic, S., Kalic, M. (2015). Three-stage airline fleet planning model, J. Air Transport. Manag, 43, Pages 30-39. https://doi.org/10.1016/j.jairtraman.2015.03.011Eltoukhy, A.E., Chan, F.T., Chung, S. (2017). Airline schedule planning: a review and future directions, Ind. Manag. Data Syst, 117(6), Pages 1201-1243. https://doi.org/10.1108/IMDS-09-2016-0358Feo, T. A., J. F. Bard. (1989). Flight Scheduling and Maintenance Base Planning. Management Science, 35(12), Pages 1415-1432. https://doi.org/10.1287/mnsc.35.12.1415Goffin, J. L. (1977). On the convergence rates of subgradient optimization methods. Math. Programming, 13, Pages 329-347. https://doi.org/10.1007/BF01584346Gopalakrishnan, B., Johnson, E. L (2005). Airline crew scheduling, State-of-the-art. Ann. Oper. Res, 140(1), Pages 305-337. https://doi.org/10.1007/s10479-005-3975-3Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum SpanningTrees. Operations Research, 18, 1138-1162. https://doi.org/10.1287/opre.18.6.1138Held, M. Wolfe, P., Crowder, H. D. (1974). Validation of subgradient optimization, Math. Programming, 6, 62-88. https://doi.org/10.1007/BF01580223Jamili, Amin (2017). A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management, Volume 58, Pages 21-30. https://doi.org/10.1016/j.jairtraman.2016.08.008Jiang, H., Barnhart, C. (2009) Dynamic airline scheduling, Transport. Sci, 43(3), Pages 336-354. https://doi.org/10.1287/trsc.1090.0269Kasirzadeh, A., Saddoune, M., Soumis, F. (2015). Airline crew scheduling: models, algorhitms and data sets, Euro Journal on Transportation and Logistics, 6(2), Pages 111-137. https://doi.org/10.1007/s13676-015-0080-xLacasse-Guay, E., Desaulniers, G., Soumis, F. (2010). Aircraft routing under different business processes, J. Air Transport. Manag, 16(5), Pages 258-263. https://doi.org/10.1016/j.jairtraman.2010.02.001Muter, İbrahim, Birbil, Ş. İlker, Bülbül, Kerem, Şahin, Güvenç,Yenigün, Hüsnü, Taş,Duygu andTüzün, Dilek (2013). Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, Volume 40, Issue 3, Pages 815-830. https://doi.org/10.1016/j.cor.2010.11.005Saddoune, Mohammed, Desaulniers, Guy, Elhallaoui, Issmail and François Soumis (2011). Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, Volume 212, Pages 445-454. https://doi.org/10.1016/j.ejor.2011.02.009Safaei, Nima and K.S.Jardine, Andrew (2018). Aircraft routing with generalized maintenance constraints, Omega, Volume 80, Pages 111-122. https://doi.org/10.1016/j.omega.2017.08.013Shao Shengzhi (2012). Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry, Faculty of the Virginia Polytechnic Institute and State University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering.Shao, S., Sherali, H.D., Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, crew pairing problem, Transport. Sci, 51(1), Pages 233-249. https://doi.org/10.1287/trsc.2015.0623Sherali, H.D., Bish, E.K., Zhu, X. (2006). Airline fleet assignment concepts, models and algorithms, Eur. J. Oper. Res, 172(1), Pages 1-30. https://doi.org/10.1016/j.ejor.2005.01.056Warburg, V., Hansen, T.G., Larsen, A., Norman, H., Andersson, E. (2008). Dynamic airline scheduling: an analysis of potentials of refleeting and retiming, J. Air Transport. Manag. 14(4), Pages 163-167. https://doi.org/10.1016/j.jairtraman.2008.03.004Yan, C. and Kung, J. (2018). Robust aircraft routing, Transport. Sci, 52(1), Pages 118-133. https://doi.org/10.1287/trsc.2015.0657Yen, J.W., Birge, J.R., (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, Volume 40, Pages 3-14. https://doi.org/10.1287/trsc.1050.0138Yu, G. (1998). Operation Research in the Airline Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-5501-8Zeren, Bahadir and Ozkol, Ibrahim (2016). A novel column generation strategy foe large scale airline crew pairing problems, Expert system with applications, Volume 55, Pages 133-144. https://doi.org/10.1016/j.eswa.2016.01.045Zhang, Dong, Lau, H.Y.K. Henry and Yu, Chuhang (2015). A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems, Computers and Industrial Engineering, Volume 87, Pages 436-453. https://doi.org/10.1016/j.cie.2015.05.03

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Henry Ford vs. assembly line balancing

    Get PDF
    Ford’s Assembly Line at Highland Park is one of the most influential conceptualizations of a production system. New data reveal Ford’s operations were adaptable to strongly increasing and highly variable demand. These analyses show Ford’s assembly line was used differently than modern ones and their production systems were more flexible than previously recognized. Assembly line balancing theory largely ignores earlier practice. It will be shown that Ford used multiple lines flexibly to cope with large monthly variations in sales. Although a line may be optimized to yield lowest cost production, systems composed of several parallel lines may yield low cost production along with output and product flexibility. Recent research on multiple parallel lines has focussed on cost effectiveness without appreciating the flexibility such systems may allow. Given the current strategic importance of flexibility it should be included in such analyses as an explicit objective

    IT integration, operations flexibility and performance: an empirical study

    Get PDF
    Purpose: This study examines the relationship between IT implementation and performance with manufacturing flexibility based on a sample drawn from a set of manufacturing firms. Design/methodology/approach: The relationships were analyzed using structural equations modelling (SEM) using EQS 6.2 software. Previously, an explanatory factor analysis confirmed one-dimensionality of the scales, Cronbach’s alpha was calculated to evaluate its internal consistency and a confirmatory factor analysis was run to observe scales’ validity. Findings: This research proves a significant positive and direct effect of IT implementation on operations performance with 4 out of 6 flexibility dimensions (Machine, Labour, Material handling and Volume). Mix and Routing flexibility dimensions show no significant impact on firm performance. Research limitations/implications: It is necessary to be cautious when generalizing this findings these findings, as service firms were not part of the sample even when statistical results prove robustness suggesting that the findings are quite reliable. Some flexibility dimensions show no significant impact in performance (Routing and Mix flexibility). This is consistent with the fact that these flexibility dimensions act as variability absorbers within the manufacturing process. Future research lines: Future studies can focus on determining further internal and environmental factors that affect operations flexibility according to specific sector characteristics. Originality/value: This research proves a significant positive and direct effect of IT implementation on operations performance. Results show not only the links between IT implementation and operations performance, but also the magnitude of every impact. The model considers IT integration as the degree of alignment that existing technology resources in a firm have with the business strategy, in terms of importance and support for this strategyPeer Reviewe

    Optimization of roughing operations in cnc machining for rapid manufacturing processes

    Get PDF
    This paper presents a method for optimizing roughing operations in CNC machining particularly for parts production through a subtractive rapid manufacturing process. The roughing operation in machining is primarily used to remove the bulk of the material and to approximately shape the workpiece towards the finish form. The manufacturing process described utilizes a 3-axis CNC machine with an indexable 4th axis device that is used to hold and rotate the workpiece. The method used is derived from the multiple approaches in roughing operations that differ in the number and the angle of the orientations. Most of the machining parameters are generalized throughout the process to allow some automation in generating the machining program. Overall, the performance of each of the approaches is evaluated based on the lowest machining time to produce the part
    corecore