1,107 research outputs found

    Wind Power Integration Control Technology for Sustainable, Stable and Smart Trend: A Review

    Get PDF
    The key to achieve sustainable development of wind power is integration absorptive, involving the generation, transmission, distribution, operation, scheduling plurality of electric production processes. The paper based on the analyses of the situation of wind power development and grid integration requirements for wind power, summarized wind power integration technologies' development, characteristics, applicability and trends from five aspects, grid mode, control technology, transmission technology, scheduling, and forecasting techniques. And friendly integration, intelligent control, reliable transmission, and accurate prediction would be the major trends of wind power integration, these five aspects interactive and mutually reinforcing would realize common development both grid and wind power, both economic and ecological

    Optimized Weight Point ADF using SOS Algorithm

    Get PDF
    Active dc filter (ADF) has become the most viable alternatives for the compensation of the harmonics in the power system analysis. These filters are capable enough to minimize the total harmonic distortion (THD) and provide compensation towards the power quality issues appearing in the transmission system. A simulated model of a HVDC system is designed in MATLAB and the disturbance is injected in the form of load change and the controller efficacy is checked. This paper basically deals with the operational characteristics of the active filter for specific voltage rating irrespective of load and used to reduce harmonics present in the output voltage of the HVDC converter when cascaded with the inverter. The gains of the ADF are optimized with Symbiotic Organism Search Optimization (SOS) with THD as a constraint

    A TWELVE-PULSE LOAD COMMUTATED CONVERTER DRIVE SYSTEM WITH VSI FOR STARTING UP AND ACTIVE POWER FILTERING IN AN LNG APPLICATION

    Get PDF
    Variable Frequency Drives (VFDs) are an integral component of the industry in today’s age. VFDs provide a great range of control for electrical machines, and can be integrated in a variety of applications to meet the desired objectives of operation with improved reliability and efficiency. This thesis presents the Load-Commutated Converter (LCC) drive, which belongs to the Current Source Converter (CSC) based drive system family. Such drives are widely used in high power applications, due to power handling capabilities and the maturity of the drive system. The application under study is that of a helper/starter motor for a turbine compressor in a Liquefied Natural Gas (LNG) plant. Primarily, the thesis presents real-life scenarios of drive system operation such as constant/variable speed operation at constant/varying torque. The respective controllers for the LCC drive are presented alongside their results. In addition to simulating the drive system in this LNG application, current harmonic mitigation measures are presented in this study. The typical converter topology presented in this thesis is the 12-pulse type, however comparisons with different topologies (6, 18, and 24-pulse) have also been presented. Finally, a dual-purpose external Voltage Source Inverter (VSI) is used both as a starter and an Active Power Filter (APF), therefore addressing the issues of drive/load induced harmonics and LCC starting. As a conclusion, a controlled LCC drive model is simulated in SIMULINK to emulate the drive operation in actual plant conditions. The controlled drive is further studied for the presence of harmonics and their subsequent mitigation, by using passive as well as active power filters. The results obtained present the adequacy of the control system as well as the efficacy of the filters used for harmonics mitigation. Future work revolves around improving the efficiency of the APF, and the drive control system to be more robust and reliable. The system can further be investigated for enhancements as per operational requirements

    New techniques to improve power quality and evaluate stability in modern all-electric naval ship power systems

    Get PDF
    This dissertation focuses on two crucial issues in the design and analysis of the power electronic systems on modern all-electric naval ships, i.e., power quality control and stability evaluation. It includes three papers that deal with active power filter topology, active rectifier control, and impedance measurement techniques, respectively. To mitigate harmonic currents generated by high-power high-voltage shipboard loads such as propulsion motor drives, the first paper proposes a novel seven-level shunt active power filter topology, which utilizes tapped reactors for parallel operations of switching devices. The multi-level system has been implemented in both regular digital simulation and real-time digital simulator for validation. In the second paper, a harmonic compensation algorithm for three-phase active rectifiers is proposed. Based on the theory of multiple reference frames, it provides fast and accurate regulation of selected harmonic currents so that the rectifier draws balanced and sinusoidal currents from the source, even when the input voltages are unbalanced and contain harmonics. Extensive laboratory tests on a 2 kW prototype system verifies the effectiveness of the proposed control scheme. The last paper presents a new technique for impedance identification of dc and ac power electronic systems, which significantly simplifies the procedure for stability analysis. Recurrent neural networks are used to build dynamic models of the system based on a few signal injections, then the impedance information can be extracted using off-line training and identification algorithms. Both digital simulation and hardware tests were used to validate the technique --Abstract, page iv

    A survey of differential flatness-based control applied to renewable energy sources

    Get PDF
    Conference ProceedingsThis paper presents an overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources. Several sources are considered in the study (biomass, wind, solar, hydro and geothermal). Different control methods applied to their control are cited, alongside some previous applications. Hence, it further elaborates on the adoptive control principles, of which includes; Load ballast control, dummy load control, proportional integral and derivative (PID) control, proportional integral (PI) control, pulse-width modulation (PWM) control, buck converter control, boost converter control, pitch angle control, valve control, the rate of river flow at turbine, bidirectional diffuser-augmented control and differential flatnessbased controller. These control operations in renewable energy power generation are mainly based on a steady-state linear control approach. However, the flatness based control principle has the ability to resolve the complex control problem of renewable energy systems while exploiting their linear properties. Using their flatness properties, feedback control is easily achieved which allows for optimal/steady output of the system components. This review paper highlights the benefits that range from better control techniques for renewable energy systems to established robust grid (or standalone generations) connections that can bring immense benefits to their operation and maintenance costs

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Efficacy of Smart PV Inverter as a Strategic Mitigator of Network Harmonic Resonance and a Suppressor of Temporary Overvoltage Phenomenon in Distribution Systems

    Get PDF
    The research work explores the design of Smart PV inverters in terms of modelling and investigates the efficacy of a Smart PV inverter as a strategic mitigator of network harmonic resonance phenomenon and a suppressor of Temporary Overvoltage (TOV) in distribution systems. The new application and the control strategy of Smart PV inverters can also be extended to SmartPark-Plug in Electric Vehicles as the grid becomes smarter. As the grid is becoming smarter, more challenges are encountered with the integration of PV plants in distribution systems. Smart PV inverters nowadays are equipped with specialized controllers for exchanging reactive power with the grid based on the available capacity of the inverter, after the real power generation. Although present investigators are researching on several applications of Smart PV inverters, none of the research-work in real time and in documentation have addressed the benefits of employing Smart PV inverters to mitigate network resonances. U.S based standard IEEE 519 for power quality describes the network resonance as a major contributor that has an impact on the harmonic levels. This dissertation proposes a new application for the first time in utilizing a Smart PV inverter to act as a virtual detuner in mitigating network resonance. As a part of the Smart PV inverter design, the LCL filter plays a vital role on network harmonic resonance and further has a direct impact on the stability of the controller and rest of the distribution system. Temporary Overvoltage (TOV) phenomenon is more pronounced especially during unbalanced faults like single line to ground faults (SLGF) in the presence of PV. Such an abnormal incident can damage the customer loads. IEEE 142-“Effective grounding” technique is employed to design the grounding scheme for synchronous based generators. The utilities have been trying to make a PV system comply with IEEE 142 standard as well. Several utilities are still employing the same grounding schemes even now. The attempt has resulted in diminishing the efficacy of protection schemes. Further, millions of dollars and power has been wasted by the utilities. As a result, the concept of effective grounding for PV system has become a challenge when utilities try to mitigate TOV. With an intention of economical aspects in distribution systems planning, this dissertation also proposes a new application and a novel control scheme for utilizing Smart PV/Smart Park inverters to mitigate TOV in distribution systems for the first time. In other words, this novel application can serve as an effective and supporting schema towards ineffective grounding systems. PSCAD/EMTDC has been used throughout the course of research. The idea of Smart inverters serving as a virtual detuner in mitigating network harmonic resonance and as a TOV suppressor in distribution systems has been devised based on the basic principle of VAR injection and absorption with a new control strategy respectively. This research would further serve as a pioneering approach for researchers and planning engineers working in distribution systems

    Microgrids:experiences, barriers and success factors

    Get PDF
    Although microgrids have been researched for over a decade and recognized for their multitude of benefits to improve power reliability, security, sustainability, and decrease power costs for the consumer, they have still not reached rapid commercial growth. The main aim of this research is to identify the common barriers and ultimate success factors to implementing a microgrid in the real world. We found that microgrids vary significantly depending on location, components, and optimization goals, which cause them to experience different types of challenges and barriers. However, the most common barriers were identified and grouped into four categories: technical, regulatory, financial, and stakeholder, based on the literature and overlying patterns recognized amongst the thirteen case studies. The most common technical barriers include problems with technology components, dual-mode switching from grid-connected to island mode, power quality and control, and protection issues. There is extensive research on how to overcome these issues, so technical solutions are becoming available yet case specific. Regulatory barriers exist due to interconnection rules with the main grid and the prohibition of bi-directional power flow and local power trading between microgrid and the main network. The latter issue is the barrier experienced most often and has only recently been addressed, so solutions need further research. The main financial barrier is still the burden of high investment and replacement costs of the microgrid. This can be resolved with proper market support in the short term and might naturally resolve itself through learning over the long run. Lastly, stakeholder barriers include issues with conflicting self-interest and trust, and having the expertise to manage operations. These stakeholder barriers are not yet addressed in the literature and need to be further researched
    corecore