3,639 research outputs found

    Organic Bioelectronics Development in Italy: A Review

    Get PDF
    In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions

    Ancient and historical systems

    Get PDF

    Circuit design in complementary organic technologies

    Get PDF

    The 2021 flexible and printed electronics roadmap

    Get PDF
    This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1–9), fabrication techniques (sections 10–12), and design and modeling approaches (sections 13 and 14) essential to the future development of new applications leveraging flexible electronics (FE). The interdisciplinary nature of this field involves everything from fundamental scientific discoveries to engineering challenges; from design and synthesis of new materials via novel device design to modelling and digital manufacturing of integrated systems. As such, this roadmap aims to serve as a resource on the current status and future challenges in the areas covered by the roadmap and to highlight the breadth and wide-ranging opportunities made available by FE technologies

    Electronic and spintronic devices using two-dimensional materials

    Get PDF
    179 p. El contenido del capítulo 8 está sujeto a confidencialidadEver since in 2004 atomically-thin two-dimensional van der Waals materials became available to the scientific community, at the reach of manual microexfoliation techniques, their implementation in novel device structures and concepts promised disruptive new applications and motivated research in a vast range of fields.Confined to the thinnest possible thickness, electrons in these materials exhibit a plethora of electronic properties, from semiconducting MoS2, to superconductor NbSe2, dielectric BN, and, jack-of-all trades, graphene.In this thesis, we explore fundamental and applied aspects of chemical vapor deposition (CVD) graphene, MoS2, and WSe2 using electronic device structures that use them as transporting channel, namely field-effect transistors (FETs), Hall bars, and diodes.MoS2 is a n-type semiconducting 2D vdW that complements one of the weak aspects of graphene-based transistors, which is the small ratio between the maximum current output and of the minimum current output of the transistors. Using MoS2 we identify an electron doping constraint for performing stable magnetotransport measurements, and we investigate the origins of the strong current fluctuations of the FETs. We study the low-frequency noise (LFN) of the current output of devices made with different layer thicknesses, and use the strong light-matter interactions of MoS2 to employ photodoping techniques together with the electrostatic gating to dope the channel. By converging all these conditions, we are able to discern the mechanism behind the different types of LFN noise reported in literature for MoS2, while at the same time identifying a LFN crossover driven by photodoping.With p-type semiconducting WSe2 we optimize the electron and hole transport properties of ambipolar FETs by considering BN as a top and bottom interface substrate and encapsulation layer, respectively. By doing so, we areable to address to some extent the strong hysteretic effects that adversely affect the operation of WSe2 FETs on oxide substrates, and improve the overall device performance.The versatility of CVD graphene allows us to do both applied and fundamental studies, both related to spintronics and electronics.The unique properties of graphene make it a core material in the search of full-electrical approaches to generate, transport, and detect spin currents without the use of magnetic elements. Using a Hall-bar shaped sample, non-local signals in graphene have been demonstrated to be associated with spin transport. In our case, we use the large area availability of CVD graphene to study non-local effects in an unlikely scenario for the transport of spins. We study the non-local signals of millimeter sized Hall-bars of CVD graphene, and by doing a systematic study as a function of device scale, from macro-to-microscale we identify a mechanism that cannot be connected with spin diffusion that also leads to large signals. By evaluating the microscopic details of the samples, and the different effects observed, we propose a mechanism mediated by grain boundaries to drive such effects.In a more applied manner, we use CVD graphene for two other types of devices. First, we study the use of graphene as an electrode material for lateral and vertical field-effect transistors that operate using organic channels, and determine that the low density of states of graphene allows for unscreened electric fields to reach the organic layer and enable the transistor operation in the vertical geometry.The second applied study is the large-scale fabrication of diodes using CVD graphene. Benefiting from the ultra-thin cross section of graphene, and using a lateral geometry we demonstrate the reliable fabrication of lateral metal/insulator/graphene diodes. The time constants determined from the direct-current analysis place the operation of the fabricated devices in the THz range. Additionally, the material combination considered enabled large current densities based on field-emission processes.CICnanoGUNE : nanoscience cooperative research cente

    Development of nanosecond range light sources for calibration of astroparticle cherenkov detectors

    Get PDF
    In this thesis the development of light emitting diodes (LED) is reviewed. The emphasis is put on devices emitting at the blue region of the spectrum. The physical characteristics of these devices are considered. The main interest is based around the ability of blue LEDs to generate nanosecond range optical flashes. The fast pulsing electronic circuits capable of driving the devices are also reviewed. These are complemented by the potentially exploitable techniques that could provide further benefits for required fast optical pulse generation. The simple, compact and inexpensive electronic oscillator for producing nanosecond range pulses is developed. The circuitry is adapted for generation of pulses necessary to switch on and assist with the turn off of blue InGaN based LEDs. The resulting nanosecond range blue optical pulses are suitable for, but not limited to, the calibration of scintillation counters. These devices used in neutrino detection experiments could provide a better understanding of cosmology and particle physics

    Thin‐Film Transistors for Large Area Opto/Electronics

    No full text
    The present work addresses several issues in the field of organic and transparent electronics. One of them is the prevailing high power consumption in state-of-the-art organic field-effect transistors (OFETs). A possible solution could be the implementation of complementary, rather than unipolar logic, but this development is currently inhibited by a distinct lack of high performance electron transporting (n-channel) OFETs. Here, the issue is addressed by investigating a series of solution processable n-channel fullerene molecules in combination with optimized transistor architectures. Furthermore, the trend towards complementary circuit design could be facilitated by employing ambipolar organic semiconductors, such as squaraine molecules or polymer/fullerene blends. These materials can fill the role of p- or n-channel semiconductors and enable the facile implementation of power saving complementary-like logic, eliminating the cost-intensive patterned deposition of discrete p-and n-channel transistors. Alternatively, a patterning method for organic materials adapted from standard photolithography is discussed. Furthermore, ambipolar FETs are found to be capable of light sensing at wavelength of 400-1000 nm. Hence their use in low-cost, organic based optical sensor arrays can be envisioned. Another strategy to reduce the power consumption and operating voltages of OFETs is the use of ultra-thin, self-assembled molecular gate dielectrics, such as alkyl-phosphonic acid molecules. Based on this approach solution processed n- and p-channel OFETs and a complementary organic inverter circuit are demonstrated, which operate at less than 2 Volts. Finally, transparent oxide semiconductors are investigated for use in thin-film transistors. Titanium dioxide (TiO2) and zinc oxide (ZnO) films are deposited by means of a low-cost large area compatible spray pyrolysis technique. ZnO transistors exhibit high electron mobility of the order of 10 cm2/Vs and stable operation in air at less than 2 Volts. These results are considered significant steps towards the development of organic and transparent large-area optoelectronics

    Development and design of polymer circuits based on polymer thin-film transistors

    Get PDF
    Before 1870, Britain had been able to rely on naval and financial strength to protect her empire where necessary until such time as the expected separation of the settlement colonies into independent polities occurred. However, a series of changes in geopolitics, and in naval technology had undermined this security and had resulted in an increased awareness in military, naval, colonial and imperial circles - among those characterised as "Jingoes" - of the dangers to which the empire was exposed. Spurred on by the Balkan crisis of 1876-78, a far more active approach was taken to war planning, which resulted in a more integrated approach to imperial defence under Lord Carnarvon. It is also posited that Gladstone's Bulgarian agitation and the struggle between Disraeli, Derby and Salisbury over the correct response to the Balkan crisis destroyed the confidence of many colonial, imperial, naval and military figures in elected politicians and thus encouraged the disobedience of Lytton and Frere. Disasters at Isandlwana and Kabul however discredited the defence establishment and allowed a programme of anti-imperialist reaction to emerge, under the leadership of Gladstone. The subsequent working out of this policy caused such disquiet that Gladstone's cabinet was to break up over imperial defence issues and resulted in the commitment of Britain to a more positive espousal of imperial virtue and a determination to see the empire as an asset and defend it accordingly. Thus, within the period 1870- 1885, Britain underwent a revolution in Imperial policy, from a rejection of empire, to a virtuous acceptance of it
    corecore