8 research outputs found

    Towards Migrating Security Policies along with Virtual Machines in Cloud

    Get PDF
    Multi-tenancy and elasticity are important characteristics of every cloud. Multi-tenancy can be economical; however, it raises some security concerns. For example, contender companies may have Virtual Machines (VM) on the same server and have access to the same resources. There is always the possibility that one of them tries to get access to the opponent's data. In order to address these concerns, each tenant in the cloud should be secured separately and firewalls are one of the means that can help in that regard. Firewalls also protect virtual machines from the outside threats using access control lists and policies. On the other hand, virtual machines migrate frequently in an elastic cloud and this raises another apprehension about what happens to the security policies that are associated with the migrated virtual machine. In this thesis, we primarily contribute by proposing a novel framework that coordinates the mobility of the associated security policies along with the virtual machine in Software-Defined Networks (SDN). We then design and develop a prototype application called Migration Application (MigApp), based on our framework that moves security policies and coordinates virtual machine and security policy migration. MigApp runs on top of SDN controllers and uses a distributed messaging system in order to interact with virtual machine monitor and other MigApp instances. We integrate MigApp with Floodlight controller and evaluate our work through simulations. In addition, we prepare a test-bed for security testing in clouds that are based on traditional networks. We focus on virtual machine migration and use open-source utilities to equip this test-bed. We design an architecture based on GNS3 network emulator in order to provide a distributed testing environment. We then propose a virtual machine migration framework on Oracle VirtualBox; and finally, we enrich the security aspect of framework by adding firewall rule migration and security verification mechanisms into it

    TRIIIAD: Uma Arquitetura para Orquestração Automônica de Redes de Data Center Centrado em Servidor.

    Get PDF
    sta tese apresenta duas contribuições para as redes de data center centrado em servidores. A primeira, intitulada Twin Datacenter Interconnection Topology, foca nos aspectos topológicos e demostra como o uso de Grafos Gêmeos podem potencialmente reduzir o custo e garantir alta escalabilidade, tolerância a falhas, resiliência e desempenho. A segunda, intitulada TRIIIAD TRIple-Layered Intelligent and Integrated Architecture for Datacenters, foca no acoplamento entre a orquestração da nuvem e o controle da rede. A TRIIIAD é composta por três camadas horizontais e um plano vertical de controle, gerência e orquestração. A camada superior representa a nuvem do data center. A camada intermediária fornece um mecanismo leve e eficiente para roteamento e encaminhamento dos dados. A camada inferior funciona como um comutador óptico distribuído. Finalmente, o plano vertical alinha o funcionamento das três camadas e as mantem agnósticas entre si. Este plano foi viabilizado por um controlador SDN aumentado, que se integrou à dinâmica da orquestração, de forma a manter a consistência entre as informações da rede e as decisões tomadas na camada de virtualizaçã

    A decision framework to mitigate vendor lock-in risks in cloud (SaaS category) migration.

    Get PDF
    Cloud computing offers an innovative business model to enterprise IT services consumption and delivery. However, vendor lock-in is recognised as being a major barrier to the adoption of cloud computing, due to lack of standardisation. So far, current solutions and efforts tackling the vendor lock-in problem have been confined to/or are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem existing in the cloud environment. Consequently, customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. The complexity of the service offerings makes it imperative for businesses to use a clear and well understood decision process to procure, migrate and/or discontinue cloud services. To date, the expertise and technological solutions to simplify such transition and facilitate good decision making to avoid lock-in risks in the cloud are limited. Besides, little research investigations have been carried out to provide a cloud migration decision framework to assist enterprises to avoid lock-in risks when implementing cloud-based Software-as-a-Service (SaaS) solutions within existing environments. Such decision framework is important to reduce complexity and variations in implementation patterns on the cloud provider side, while at the same time minimizing potential switching cost for enterprises by resolving integration issues with existing IT infrastructures. Thus, the purpose of this thesis is to propose a decision framework to mitigate vendor lock-in risks in cloud (SaaS) migration. The framework follows a systematic literature review and analysis to present research findings containing factual and objective information, and business requirements for vendor-neutral interoperable cloud services, and/or when making architectural decisions for secure cloud migration and integration. The underlying research procedure for this thesis investigation consists of a survey based on qualitative and quantitative approaches conducted to identify the main risk factors that give rise to cloud computing lock-in situations. Epistemologically, the research design consists of two distinct phases. In phase 1, qualitative data were collected using open-ended interviews with IT practitioners to explore the business-related issues of vendor lock-in affecting cloud adoption. Whereas the goal of phase 2 was to identify and evaluate the risks and opportunities of lock-in which affect stakeholders’ decision-making about migrating to cloud-based solutions. In synthesis, the survey analysis and the framework proposed by this research (through its step-by-step approach), provides guidance on how enterprises can avoid being locked to individual cloud service providers. This reduces the risk of dependency on a cloud provider for service provision, especially if data portability, as the most fundamental aspect, is not enabled. Moreover, it also ensures appropriate pre-planning and due diligence so that the correct cloud service provider(s) with the most acceptable risks to vendor lock-in is chosen, and that the impact on the business is properly understood (upfront), managed (iteratively), and controlled (periodically). Each decision step within the framework prepares the way for the subsequent step, which supports a company to gather the correct information to make a right decision before proceeding to the next step. The reason for such an approach is to support an organisation with its planning and adaptation of the services to suit the business requirements and objectives. Furthermore, several strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contract, selection of vendors that support standardised formats and protocols regarding data structures and APIs, negotiating cloud service agreements (SLA) accordingly as well as developing awareness of commonalities and dependencies among cloud-based solutions. The implementation of proposed strategies and supporting framework has a great potential to reduce the risks of vendor lock-in
    corecore