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Abstract

Towards Migrating Security Policies along with Virtual Machines in Cloud

Sahba Sadri

Multi-tenancy and elasticity are important characteristics of every cloud. Multi-

tenancy can be economical; however, it raises some security concerns. For example,

contender companies may have Virtual Machines (VM) on the same server and have

access to the same resources. There is always the possibility that one of them tries

to get access to the opponent’s data. In order to address these concerns, each tenant

in the cloud should be secured separately and firewalls are one of the means that

can help in that regard. Firewalls also protect virtual machines from the outside

threats using access control lists and policies. On the other hand, virtual machines

migrate frequently in an elastic cloud and this raises another apprehension about

what happens to the security policies that are associated with the migrated virtual

machine.

In this thesis, we primarily contribute by proposing a novel framework that coor-

dinates the mobility of the associated security policies along with the virtual machine

in Software-Defined Networks (SDN). We then design and develop a prototype appli-

cation called Migration Application (MigApp), based on our framework that moves

security policies and coordinates virtual machine and security policy migration. Mi-

gApp runs on top of SDN controllers and uses a distributed messaging system in order
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to interact with virtual machine monitor and other MigApp instances. We integrate

MigApp with Floodlight controller and evaluate our work through simulations.

In addition, we prepare a test-bed for security testing in clouds that are based

on traditional networks. We focus on virtual machine migration and use open-source

utilities to equip this test-bed. We design an architecture based on GNS3 network

emulator in order to provide a distributed testing environment. We then propose a

virtual machine migration framework on Oracle VirtualBox; and finally, we enrich the

security aspect of framework by adding firewall rule migration and security verification

mechanisms into it.
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Chapter 1

Introduction

1.1 Motivation

Cloud computing is currently known as one of the hottest topics not only in computer

science, but also among recent technologies. Nowadays, many companies are adapted

to cloud service model and others are aggressively starting to migrate their operations

into this model. The market for public cloud computing services was $16 billion in

2008, went over $100 billion in 2012 and It is predicted that by 2016 it can exceed

$206 billion [44].

Cloud computing paradigm is perhaps as old as the age of mainframes, when

only big companies and academic centers had access to huge computing power. Over

the time, processors got cheaper and faster which made it possible for many people

around the world to have a personal computer. At the present time, various types of

computers like laptops, tablets, smart phones and etc. with multiple processors are

very common and popular. However, cloud computing also changed along with the

computers during this evolution and turned into a service for companies and even

home users. Fast improvements in computer networks infrastructure and emerging

of virtualization, played the key role in this movement. Versatility of virtualization

technologies and ubiquity of internet had the largest impact on maximizing the pop-

ularity of cloud computing and encouraged companies for adoption. Today, many
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applications, storage services and development environments are available online and

are based on cloud; others are also rapidly joining to this trend and trying to adapt

their services to cloud infrastructures. This cloud-based approach reduces many costs

and leads to a vast spectrum of opportunities and possibilities and expels a lot of dif-

ficulties and headaches from companies. In this approach, companies subscribe to a

service that is offered by a cloud provider. To draw an analogy, a similar approach

has been taken in most traditional utility services like water, electricity, telephony

and etc. which end user (that can be an individual, a company or an organization)

receives the service without concerning about how this service is hosted and provided

to him. User consumes the service and pays a reasonable price for the amount of

consumption. Normally, such a model is significantly cheaper and more convenient

for the user than preparing or producing these by himself.

While, many companies are convinced that using this model has many advantages

and benefits, some concerns and questions exist that need to be addressed by cloud

providers. Like traditional utilities, there should be some standardized factors that

ensure the quality of provided services. For example as users, we need to know that

the water is safe to drink or the voltage of electricity power is always in the accepted

range and doesn’t hurt our electrical devices. For example, multi-tenancy which is

a feature in cloud computing that enables different users to share same resources,

can cause some security and privacy problems, as illustrated below. Suppose two

contender companies are using same resources in a data center; Here, Cloud Service

Provider (CSP) should guarantee that customers’ data is confidential and has to

show strong proof for each party that the opponent company cannot access their data.

Generally, there is an agreement between the customer and the provider that indicates
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the rights of each party and specifies fines for each of them, in case that they do not

obey the contents of agreement. CSPs use Service Level Agreement (SLA) in order

to define delivered services, performance measurements, customer responsibilities,

compensations and reimbursement policies, security services and standards, disaster

recovery and finally termination rules [102].

Recently, VM migration in cloud computing has been common within and between

data centers. Basically, VM migration means moving a virtual machine from one host

to another. It is an essential capability that supports service elasticity of a cloud. For

example, it happens frequently that a VM has to move into another cluster within

a data center due to load balancing issues or when a company decides to relocate

its VMs into a larger data center. However, there is always a big concern on what

happens to the security policy associated with the migrated machine. What should be

done for a migrating VM in order to preserve its security and protect it from network

attacks, after migration? This question highlights the importance of research on

VM security during and after migration. In order to study VM migration and its

related security concerns, an implementation of cloud migration is needed. Most

of the current available simulators focus on performance and cost optimization and

emulators that can imitate real services are normally owned by service providers. As

a result, a customized testing environment that focuses on the security and provides

possibility of migration can ease the mentioned research direction.

On the other hand, Software Defined network (SDN) has become one of the hottest

topics in computer networking community lately and has drawn lots of attention from

media and industry as well as academia because of the promising opportunities and

undeniable benefits that it is offering. It is predicted that SDN market will grow
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form $360 million in 2013 to $3.5 billion in 2015 and will exceed $25 billion by 2018

and as SDNcentral reported, the number of registered SDN companies grew from

zero company in 2009 to 225 companies in April 2013 [80]. A significant number of

vendors and famous companies like IBM, Cisco, Oracle and etc. are adapting to SDN

and some others like NEC, Big Switch Networks and etc. started to produce products

specifically for SDN. At the same time there is a big collaboration between academic

institutions and industry leaders to redesign, adapt or invent network protocols in

order to improve SDN and respond the huge demand from the market.

SDN introduces the physical separation of network data plane (aka forwarding

plane) from control plane, and this separation gives possibility of managing multiple

network devices by one controller [24]. SDN controller is directly programmable

and the logic which is presented by the code inside the controller is responsible for

managing the forwarding behavior of switches; therefore the network administrator

can easily apply new changes on network based on business requirements without

touching any switch which facilitates network management in a cost effective way.

This approach enables the controller to manipulate switch flow tables by adding

or removing flows and making a dynamic and flexible provision over data plane.

Forwarding, dropping and modifying packets are examples of actions that flow entries

can perform.

Now that we expressed the importance and significance of SDN and cloud com-

puting, we need to find out whether they can have a synergic collaboration or not.

Fortunately, there is a common concept between these two topics. Thanks to the

virtualization technology, data centers have to deal with numerous VMs that need

to be handled remotely. Sometimes for a better performance, VMs have to migrate
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to other servers. Switches and routers have to be monitored all around the clock.

This is not the whole story, middleboxes are another vital part of each data center

that have to be maintained constantly. Diversity and dispersion of different com-

ponents, introduce an immediate need for a central management unit that can take

care of all elements. Fortunately, SDN is about decoupling control plane and data

plane that steers the concentration of management into a central place rather than

having one control unit per each device. This separation, simplifies the supervision

over the network and brings more flexibility to a data center. The convergence of

cloud computing needs and opportunities which are introduced by SDN, motivate

CSPs to support SDN who are always thirsty to adapt new technologies in the field.

Security concerns are always one of the most important deterrent factors that make

CSPs hesitant to move on. As it has been mentioned earlier, multi-tenancy can raise

security concerns. Firewalling between tenants could be a solution to solve this is-

sue. However, when a VM migrates to another location, all security policies that are

associated with that VM, remain in the first place. Therefore, a security solution

that address this problem in SDN not only solves an issue in its own filed, but also

eliminates a barrier for widespread adoption of SDN by CSPs.

1.2 Objectives

The purpose of this master thesis is first to study cloud computing concepts, security

concern in clouds and data centers, Software-Defined Networks and its importance

for cloud computing, role of firewalls in either domains with particular focus on VM

migration and its security concerns. Then, design and implement of frameworks

and prepare test-beds which their purpose is testing and evaluating VM migration
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procedures as well as firewall rule migration. Finally, produce a framework that

leverages combination of SDN functionalities and cloud computing in order to produce

an effective way of network management, especially from security perspective.

1.3 Contributions

Security policy migration of VMs has been discussed in the literature [89]. Although,

at the time of writing this thesis, there is no implementation of that for SDN. More-

over, many physical devices in traditional networks are turned into software appli-

cations in SDN context and reside on top of controller; therefore, a new design that

is applicable for new context is needed. Our work presents a framework that offers

a solution for a collaboration between hypervisor and controller application firewall

to migrate security context and perform a safe VM migration for both source and

destination data centers as well as the VM. We also prepared a cloud security test-bed

for traditional networks in order to perform VM migration experiments. Therefore,

our main contributions are as follows:

• Design of a novel framework that enables the mobility of security policies during

VMs migration in order to support cloud computing elasticity with an SDN-

based architecture. The framework enables an east-west communication be-

tween management application within and across data centers.

• Implementation of the proposed framework in a prototype application inte-

grated on the top of an existing OpenFlow controller, namely Floodlight.
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• Test and validation of the security policy migration and evaluation of its per-

formance using our framework deployed in a simulation and programming en-

vironment.

• Design and deployment of an architecture that introduces the way to use GNS3

for simulating multiple data center on multiple host machines.

• Design and implementation of a framework for migrating VMs on the test-bed

by improving the features in VirtualBox.

• Design and implementation of a framework to migrate firewall rules in the case

of migration in context of traditional networks.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we provide

background information on cloud computing, Software Defined Networks and security

issues in mentioned paradigms. In Chapter 3, we introduce our novel framework for

migrating security context of virtual machines between SDN data centers and present

our MigApp software. In chapter 4, we introduce and explain the customized test-

bed and firewall rule migration framework in traditional networks, that we used for

testing and verifying the reach-ability of VMs, before and after migration of VM and

firewall rules. Finally in Chapter 5, we summarize the research and suggest future

work directions.
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Chapter 2

Background

This chapter covers some definition of main terms and reviews background knowledge

for our research. We first discuss cloud computing and introduce its components and

then describe security concerns in cloud. Then, we talk about SDN, its evolution

and relation of SDN and cloud computing. We also give explanation about various

controllers and describe the Floodlight [25] controller in detail. Finally, we explain

different firewalls, particularly those who are applied in cloud computing and SDN.

2.1 Cloud Computing

Perhaps the evolving nature of cloud computing is the reason for not having a common

and standard definition for that. However, when we search in the literature, the

NIST definition of cloud computing is the first choice of most researchers. “Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”[72].

In order to have a better understanding of this model, NIST described main

characteristics of cloud computing and categorized it with deployment models and

service models.

Essential Characteristics are elaborated as following [72]:
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• On-demand self-service. Customer is able to manage resources remotely and

automatically without the need to contact CSP.

• Broad network access. Customer access to capabilities through network and

by standard mechanism. This feature has to be platform independent.

• Resource pooling. Sharing of the providers physical and virtual resources

among multiple customers.

• Rapid elasticity. Described as an instant and on-demand possibility of scaling

up and down the computing resources, by the customer.

• Measured service. This characteristic enables pay as you go feature with

providing a complete report of resource usage for both provider and customer.

One important characteristic that is missing in above definition is multi-tenancy

that enables coexistence of different customers’ data on the same storage medium.

This might be implicitly deductible from resource pooling, but we would like to ex-

press this characteristic separately, due to its importance from security perspective

and our research path.

Cloud computing Deployment Models are described as following [72]:

• Private cloud. In this model, there is only one organization that uses and

manages cloud infrastructure. However, it is possible to hand over the respon-

sibility of management and maintenance to a third-party company. This model

gives the highest level of control to organization, especially in terms of the

security.
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• Community cloud. In cases that organizations collaborate on projects or

have shared data, the community model can be deployed to have a shared

infrastructure between collaborative parties.

• Public cloud. An infrastructure that can be managed by any organization

in order to provide services and host for general public consumers. Since this

model is public, control over that is limited and sometimes is partially shifted

to the users for their own security.

• Hybrid cloud. A combination of two or more aforementioned models can

shape a hybrid infrastructure. This is the most complex method of infrastruc-

ture deployment and needs extra effort to make sure there is no security breach

or lack of provision in different parts of infrastructure.

And finally, services are delivered to consumers based on the following Service

Models [72]:

• Software as a Service (SaaS). Customer can access applications that are

running on cloud infrastructure with various interfaces. Microsoft Office Live

and Google Docs are good examples of such services.

• Platform as a Service (PaaS). Provider prepares a development environment

including programming languages, libraries and different tools for customer in

order to develop applications. Examples can be Microsoft Azure and Google

App Engine.

• Infrastructure as a Service (IaaS). In this model, customer is served by

customizable desired resources as processors, memory, network or even security
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appliances. Amazon Elastic Compute Cloud (EC2), Amazon Simple Storage

Service (S3) and RackSpace Cloud servers are examples of this type of service.

Our research is mostly in this scope since network related issues, falls under this

category.

2.1.1 Cloud Security and Security Appliances 1

In fact, cloud computing made an enhancement to the overall security. Concentration

of infrastructure in one location and ease of management and control, separation of

virtual infrastructures and isolation of VMs were major improvements in security

although they were just remedies for mitigation of some attacks. Security is still an

issue, because not only most of the traditional attacks are still applicable, but also

some new cloud-specific attacks manifest. In this part, we strive to categorize cloud-

related security concerns and explain most important ways to protect with special

focus on security appliance’s role.

There is a rich literature on taxonomy of cloud computing security. Gartner [33],

enumerates seven security risks as: 1. Privileged user access 2. Regulatory compliance

3. Data location 4. Data segregation 5. Recovery 6. Investigative support 7. Long-

term viability. CSA [43], defines cloud security in fourteen domains and grouped them

in three sections as illustrated in Table 2.1:

While classification of cloud security concerns looks like an endless effort, it seems

that many of them are inspired from CSA. Eventually, Gonzalez et al. [54], divided

1Note that, cloud computing security is different from cloud-based security services that are also
know as Security as a Service.The latter, is out of the scope of this research.
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i. Cloud Architecture Cloud Computing Architectural Framework

Governance and Enterprise Risk Management
Legal Issues: Contracts and Electronic Discovery

ii. Governing in the Cloud Compliance and Audit Management
Information Management and Data Security
Interoperability and Portability

Traditional Security, Business Continuity-
and Disaster Recovery
Data Center Operations
Incident Response

iii. Operating in the Cloud Application Security
Encryption and Key Management
Identity, Entitlement, and Access Management
Virtualization
Security as a Service

Table 2.1: Cloud Security Domains [43]

cloud security issues into seven categories and then grouped them in three main

domains, with respect to the most important key references (See Figure 2.1).

In order to safeguard a cloud, security should be applied in different layers. Thus,

all dimensions that are shown in Figure 2.1, have to be studied carefully. For instance,

data security can be improved by using stronger encryption techniques, interface

breaches can be mitigated by hardening the code, and compliance issues can be solved

by revising SLAs.

Security appliances that are also known as security middleboxes, are intermediary

network devices that are meant to filter and inspect packets. Firewalls and Intrusion

Prevention System/Intrusion Detection System (IPS/IDS) are common examples of

security appliances that are extensively used in data centers for protecting it at the

network level. In this regard, what type of security appliance will be used in future

of cloud? Physical or Virtual? and the answer based on [69], is a hybrid approach.
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Neither of them are sufficient alone because some virtual traffic is always invisible

from hardware layers and vice versa.

Our goal in this thesis is to study firewalls and security policy migration when a

VM travels from one data center to another. Hence, Figure 2.1 clearly shows how our

work is positioned.

2.1.2 Virtualization

Virtualization refers to the method for simulating software and/or hardware, rather

than using the actual instance. This is performed by creating a layer of abstrac-

tion between layers of software and/or hardware, for the purpose of optimization,

better organization and simplification of interaction between different elements. For

instance, you can represent a single physical resource as multiple virtual (logical)

resources and vice versa. This technique helps to eliminate many limitations in im-

plantation and enables making use of resource in an efficient manner. For example,

a company can put more load on its servers by using virtualization [84][31]. There

are different forms of virtualization that VMware categorized them in five types as

follows [17]: Server Virtualization, Network Virtualization, Desktop Virtualization,

Storage Virtualization and Application Virtualization that all of them are applied in

different layers of cloud computing. Since our research is about VM migration , we

need to consider a type of virtualization that is called full virtualization. In this form,

one or more OSs as well as the applications that are running on top it, shape Virtual

Machine (VM). This OS, which is referred as a guest OS, runs on top virtual hardware

that is provided by hypervisor and is controlled by Virtual Machine Monitor (VMM).

In another word, full virtualization is a technique to simulate an entire hardware for
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a guest OS and applications. Flows of the instructions that traverse among VMs are

provisioned by VMM.

As demonstrated in Figure 2.2, there are two forms of full virtualization. Bare-

metal(aka native) and Hosted. The first one is where the hypervisor layer is exactly

on top of underlying hardware and mostly is using for server virtualization. The

latter is when an OS layer called Host OS, placed between physical hardware and

hypervisor; this approach is regularly applied in desktop virtualization [84]. Full

virtualization imitates the characteristics of the virtual hardware as the physical one,

to the applications; therefore, there is no need to modify applications in order to run

them on a VM.

It is worth-mentioning that vulnerabilities in non-virtualized servers still remain

after virtualization. Moreover, there is possibility of additional attacks that are specif-

ically related to full virtualization characteristics. Hence, attack surface will increase;

however, there are solutions to mitigate them; NIST grouped them as follows: Guest

OS Isolation, Guest OS Monitoring and Image and Snapshot Management [84]. The
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security, is also dependent on securing all the separate components such as physical

hardware, hypervisor, host OS, guest OSs, storage units and applications which is out

of the scope of this thesis. Our focus is on underlying network security, particularly

firewall’s role in protecting VMs. It can be either a physical or virtual firewall. In the

following section we briefly discuss about VM migration and motivations to migrate

a VM, and finally we talk about security concerns and countermeasures that should

be taken into consideration in VM migration process.

2.1.3 VM Migration in clouds and Security Concerns

As it was mentioned in Chapter 1, virtualization is a key element in cloud industry

trend. Data centers that are also known as server farms, require a huge amount of

hardware and infrastructure facilities. On the other hand, due to the fast growing

technologies that data centers are hinged on and customers asking for them, Cloud

Service Providers have to go under major upgrades in every few years. Therefore, data

centers need to make the best use of their facilities and this is exactly where virtual-

ization can inevitably help. Server consolidation is a great example of virtualization

impact on data center efficiency improvement [61].

Hypervisors have different features and capabilities depending on their vendor.

As it has been found in the literature, there are three main features, common be-

tween most of them and according to VMware, which is the leader in virtualization

technology, these features are High Availability (HA), Fault Tolerance (FT) and Live

Migration. The first and the second features are dependent on the last one.

A short description of named features, comes as following:
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• High Availability. A technology that monitors all VMs constantly and in

case of hardware failure, immediately restarts the VMs on another server. This

feature does not transfer the current state of VM and only loads the VM from

the stored image in storage unit [20].

• Fault Tolerance. This technology complements the previous feature. It runs

identical copies of a VM in another place at the same time and in case of failure

in origin location, duplicated VM will continue running without interruption.

This feature is dependent on live migration of VM state [19].

• Live Migration. This feature provides the means, to transfer a VM and its

running state from a server to another in real-time [21].

VM migration can be done in two ways; within a data center or across different

data centers that sometimes are a located in different continents. In addition to the

mentioned motivation for migration that complements other features of hypervisor,

there are more incentives to migrate a VM. One of the main reasons and motivations

for VM migration is load balancing between servers. Sometimes a task needs more

processor power and there are not enough resources available in the server; in this sit-

uation, a migration to another server can solve the problem. Periodical maintenance

is another typical reason for VM migration. Reducing power consumption is always

a desire for data centers. It happens once in a while that many severs have minimum

load and it is possible to shut down or hibernate them while transferring some VMs

to another servers; these migrations can significantly reduce power consumption and

consequently data center cost.

According to [74], virtualization security challenges can be categorized as follows:
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• Inactive VMs. Normally VMs receive daily updates and security patches.

VMs who are offline, are not able to receive those updates and become vulner-

able when they go active. As a result, they turn into security threats for entire

server.

• VM Awareness. All security solutions and appliances are not compatible with

virtualized environment. The hypervisor security is also another concern that

should be taken into consideration.

• VM Sprawl. VMs can be created with a click of a mouse. This is the key

reason of rapid growth of virtualization; however, not only security cannot be

achieved as easy as that, many security weaknesses can easily duplicate and

spread all over the network. Each VM needs a special care and administrator

cannot apply the same solution to all VMs.

• Inter-VM Traffic. Traffic between the VMs is not visible to traditional physi-

cal layer security appliances. Hence, monitoring and management of that traffic

can be performed by an appliance that is integrated into hypervisor.

• Migration. When a VM migrates from one cloud to another, the security

policies that are associated with that VM, remains in the place of origin.

Our contribution in this thesis, is exactly on the migration issue. We strive to

address that by migrating also the security policies along with the migrating VM.
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2.2 Software-Defined Networking

Software-defined network is a new paradigm in computer networks; however, the

idea of programmable network has been around for a long time. Emergence of pro-

grammable networks was due to the need of researchers to deploy new protocols and

ideas into the core network which was monopolized by big network companies such

as Cisco and Juniper. Before manifestation of programmable networks, control and

forwarding layers were tightly coupled to each other and implementations of network

hardware was mostly on Application-Specific Integrated Circuit(ASIC) chips. The

main property of ASIC is ultimate speed but their drawback is non-programmability.

Improvements in x86 processors and popularity of using commodity hardware, encour-

aged network researchers to find a way to decouple control and forwarding layers, in

order to deploy desired architectures and network control capabilities. To achieve

this, various approaches have been taken. Active Network [90], OpenSig [37] and

Juniper SDK [10] are examples of changing the routers in a way to make them pro-

grammable [67]. Software routers and switches that are installed on servers as well

as virtualization technologies, added more flexibility to network architecture; in ad-

dition, test-beds enabled the researchers to perform experiments and verification on

their own prototype environment [67]. Eventually, researchers came up with the idea

of role abstraction in networking which led to emergence of SDN. SDN focuses on

separation of control plane and data plane when the control unit is centralized and

manageable by third party application. In order to program those applications, con-

troller exposes an API; However, programmability in SDN is not limited only to ap-
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plications and the main improvement is that the control units are also programmable

by data plane exposed APIs.
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As it is illustrated in Figure 2.3, there are three tiers in SDN architecture: 1)

Data plane also known as forwarding plane, is the layers that infrastructure and

particularly switches reside there. 2)Control plane is in the middle; controllers that
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have a comprehensive view of the network and are able to control switches are placed

there. 3)Management plane is on the top and applications which are replacements for

many devices in traditional networks such as middleboxes, load-balancers and etc., as

well as some new business and management applications are located on this layer. In

order to make a connection between these layers, different APIs are used to provide

programmable interface. As it is shown in the Figure 2.3, there are three types of

API: 1)Southbound API is provided to make a link between control and forwarding

layers. OpenFlow [71], NETCONF [46] and ForCES [45] are examples of southbound

API. 2)Northbound API exposes an interface to application layer in order to interact

with control plane. REST API is a common example for this type of programming

interface; however, it completely depends on the choice of the vendor who develops the

controller. 3)Eastbound-Westbound API is for making connections between elements

in the same layer. ALTO [55] and Hyperflow [91] are examples of that.

SDN tries to simplify the network architecture and make a flat network with

eliminating many middleboxes and shift their functionality to application layer. In

SDN, switches have forwarding unit and a simple Network Operating System (NOS)

that communicates with controller through API. Although the development of SDN

is mainly due to the emergence of OpenFlow, it must be noted that the original idea

is coming from Ethane [39] project and its predecessor SANE project [40]. These

projects introduced a centralized controller and switches that contain flow tables

and communicate with controller via a secure channel [73]. OpenFlow standardize

the communication between data plane and control plane2. Since OpenFlow is well

supported by ONF, it gained momentum among all APIs and turned into a standard

2OpenFlow uses Transport Layer Security (TLS) with mutual authentication to secure the con-
nection between controller and switches.
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for southbound communications; whereas there is not any commonly accepted API

for northbound yet.

Like any new and evolving paradigm in computer world, there are some security

breaches that are specific to that technology and have to be addressed even though

it does not happen very quickly. Many shortages in design and vulnerabilities unveil

after widespread deployment. Regarding to the shift of the middleboxes from physical

layer to the application layer in SDN architecture, we believe that there is some space

to have a contribution in security with focus on VM migration. In Chapter 3, we

strive to investigate and address one of the security issues in SDN environment when

a VM migration happens.

2.3 Firewalls in Cloud and SDN

As we discussed before and it is shown in Figure 2.1, network security that falls under

architecture domain, can affect cloud security. Firewalling is one of the solutions

that have significant impact on improving network security. Firewall is a security

appliance that filter packets and control incoming and outgoing traffic. Still there

is not enough information that gives us a clear view about firewall. Therefore, it is

needed to go another level deeper and define what are main purposes and benefits

of using these devices on which data centers invest huge amount money on them.

Middleboxes are essential intermediary devices in the network that mainly optimize

performance and security of the network. Some of them such as WAN optimizers

and IDSs specifically focus on one issue; respectively performance and security, and

others can be helpful in both directions (See Figure 2.4).
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The term “middlebox” may mistakenly imply a physical existence of a separate

device whereas, it can be a virtual appliance that is running on a commodity hardware

along with another functionalities or even as a software solution [38]. The authors

in [15] state that security appliances can be distinguished by their types (See Fig-

ure 2.5). Active devices can filter and modify the traffic. Common examples of active

devices are anti-virus, content-filtering device and firewalls. Passive devices basically

monitor the network, make reports and alerts whenever they detect a suspicious activ-

ity; like IDS. Another type of devices are Preventive ones such as IPS or vulnerability

assessment tools that unveil threats before incident occurs. Finally, there are Unified

Threat Management(UTM) devices that integrate multiple security features into one

box.

Knowing the place of firewall among all middleboxes allows higher accuracy in giv-

ing a definition of the firewall. As a result, firewalls are software or hardware compo-

nents, that separate a network into different security levels by enforcing rules. These

rules specify access level as well as limitations of each network entity or program.

According to NIST [83], there are ten different firewall technologies for production

networks and two types for individual hosts and home networks.

• Packet Filtering. Most basic feature on any firewall that specifies ACCEPT

or DROP of a packet, based on information in the header.

• Stateful Inspection. Keep track of connection states in a table called state

table and inspect packets by matching their state with connection state.

• Application Firewalls. Stateful protocol analysis, also known as deep packet

inspection. Allow or deny based on application behavior on the network.
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• Application-Proxy Gateways. Another deep inspection method that act as

a middleman between two hosts and prevents a direct connection.

• Dedicated Proxy Servers. Placed behind firewall because they have very

limited firewalling features and act as an intermediary between firewall and

internal network.

• Virtual Private Networking. Using additional protocols in order to encrypt

and decrypt traffic between two gateways or a host and a gateway.

• Network Access Control. Granting access to a client based on its credential

and health check result.

• Unified Threat Management. Combination of multiple features like fire-

walling and intrusion detection into one system.

• Web Application Firewalls. A special type of application firewall for pro-

tecting web servers.

• Firewalls for Virtual Infrastructure. Software firewalls that can monitor

virtualized network traffic.

While firewalls usually protect network to some extent, still there are some attacks

that can pass through firewall and reach the internal network. In order to protect

the hosts in the network, there are firewalls designed to deploy particularly on host

machines instead of network. Firewalls for individual hosts and home networks are

as following [83]:

• Host-Based Firewalls and Personal Firewalls. Software firewalls that are

installed on OS for servers and personal computers like Windows firewall. They
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can have other capabilities such as logging, intrusion prevention and application

based firewalling.

• Personal Firewall Appliances. Small hardware firewalls that are used in

home or small offices. They have more advanced features than host-based fire-

walls and add another layer of protection.

In a cloud environment there are high capacity storage devices that store cus-

tomers’ information, plenty of high performance servers that handle different tasks

and virtual machines that are running on top of servers. Virtual network inside servers

and sophisticated physical network that connects data center to the world are assets

that should be protected very carefully. Firewalls are always deployed on the front

line of the network in order to safeguard the internal network. In a cloud, network can

be extremely complicated due to the huge number of servers and also virtual machine

which create a combination of virtual and physical traffic. Therefore, firewalling only

on one layer, cannot properly protect all assets. Moreover, virtual traffic is not visible

to physical firewall. Co-tenancy of different customers on the same sever is another

matter of contention because they may be owned by contender companies. Generally,

different VMs in cloud are not considered as trusted to each other and there is a

need for firewalling via VMs. In addition, security demand vary between different

customers and in some cases, customized security services is demanded depend on

the importance of their VMs. Thus, firewalling has to be applied in different layers

from outside of data center to inside by physical firewalls with sophisticated features

and within the virtual instances inside servers by virtual firewalls (or firewall that

comes with hypervisor as a component). In our work, we considered both physical

and virtual firewalls since they share same concepts in terms of access control, appli-
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cation filtering, stateful inspection and other technologies (their difference is mainly

in implementation).

Firewalling in a pure SDN network is shifted to the application layer (See Fig-

ure 2.3). SDN application3 firewalls are similar to virtual firewalls, from implemen-

tation point of view, and are closer to physical firewalls, from the view scope and

functionality perspective. In general, SDN firewalls can rule and protect the por-

tion of the network that is controlled by SDN controller and they follow the main

concepts of firewalling as traditional networks. However, it is very unlikely that we

see a pure SDN data center in future; instead, it is more probable to have a hybrid

architecture which is a combination of traditional network and SDN. Hence, virtual,

physical and SDN firewalls will collaborate and protect the entire architecture. Our

proposed framework in this thesis, focuses on SDN firewall policy migration when a

VM migration happens.

3Here “application” refers to the SDN firewall implementation as an application and should not
be confused with firewalls that control applications
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Chapter 3

Towards Migrating Security Policies of Vir-
tual Machines in Software-Defined Networks

Virtual machine migration is an essential capability that supports cloud service elas-

ticity. However, there is always a big concern on what happens to the security policy

associated with the migrated machine. Recently, Software-Defined Networking (SDN)

has gained momentum in both research and industry. It has shown great potential

to be used in cloud data centers, particularly for inter-domains migration of virtual

machines. In a distributed settings, where more than one physical SDN controller is

used, particularly in different network domains, coordinating security policies during

migration is an important issue. In this chapter, we propose a novel framework, to

be deployed in an SDN environment, that coordinates the mobility of the associ-

ated security policy along with the migrated virtual machine. We implemented our

framework into a prototype application, called MigApp, that runs on top of SDN

controllers. Our application interacts with the virtual machine monitor and other in-

stance of MigApp through messaging system to achieve security migration. In order

to evaluate our framework, we integrate our application with the Floodlight controller

and use it with a simulation environment.
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3.1 Overview

Virtualization technology has become a commonplace in cloud computing data cen-

ters. Specifically, Virtual Machine (VM) technology has recently emerged as an es-

sential building block for such an environment as it allows multiple tenants to share

the same infrastructure. The capability of VM migration brings multiple benefits

such as high performance, improved manageability, and fault tolerance. While this

mobility represents a valuable asset to the cloud computing model, it may introduce

critical security flaws or violate the tenants requirements, if the security policy does

not follow the VM to the destination after migration. Manual reconfiguration of se-

curity policies is not an acceptable solution as it is error prone and is inadequate for

live VM migration. To the best of our knowledge, existing works on VM migration

have not addressed security policy migration in SDN.

In this thesis, we address security policies mobility with VMs in IaaS cloud com-

puting, and demonstrate how to solve security policy migration in SDN-based cloud.

Software-Defined Networking (SDN) is an emerging networking paradigm that aims

at separating the control and data planes while offering logically centralized network’s

intelligence and state [76] that are connected to the forwarding elements at the data

plane. This architecture allows for a dynamic and flexible provisioning over data

plane and facilitates network management in a cost effective way. Particularly, the

network administrator can program and manage multiple network devices based on

business requirements without the need to deal with each network device separately.

At the management plane, the administrator can specify various policies (e.g. quality

of service, security, etc.) that are then used by a set of applications to program the
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controller through a northbound API (e.g. REST API [81]). The controller, pro-

grams the forwarding devices at the data plane through a southbound API. The most

popular protocol that offers an implementation of such an API is OpenFlow [78],

maintained by the Open Networking Foundation (ONF). SDN provides new ways to

solve age-old problems in networking while simultaneously enabling the introduction

of sophisticated capabilities. For instance, GoGrid [23] is an example of IaaS providers

that have adopted an SDN approach to architecture the cloud. The configuration and

control is put into customers’ hands so that they can design their own cloud plat-

form with virtualized services such as firewalls and load balancers, managed using the

management console or a public REST API. In order to deal with security groups,

GoGrid implements security groups as global objects that are automatically synched

across data centers [23]. A recent IDC study [59] projected that the SDN market will

increase from $360 million in 2013 to $3.7 billion in 2016. There are several orga-

nizations worldwide including Google [93], NDDI [96], and GENI [22] running and

testing OpenFlow networks. A significant number of vendors such as HP [57], Cisco

[41], and IBM [58] are contributing by manufacturing SDN-enabling products.

Research initiatives [89, 101, 56, 18] supported by industry acknowledge the chal-

lenge and the importance of security context migration as a part of cloud elasticity

mechanism. Many research initiatives have proposed to leverage the SDN paradigm

to benefit cloud computing environments. Particularly, [70, 32] propose SDN strategy

to enable live and offline migration of VM within and across multiple data centers.

However, the reviewed solutions either circumvent the problem (e.g. using traffic

tunneling techniques) or do not fully address it, if not at all. In this thesis, we de-

sign and implement a framework for migrating security policies along with the VMs
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within the same or between data centers based on SDN. Our solution, as opposed

to vendor-specific ones, is meant to be open source, secure and interoperable with

any SDN controller that provides a REST API and a virtual security appliance such

as a firewall. To coordinate the migration, we propose to use a distributed messag-

ing system, namely RabbitMQ. The latter is based on Advanced Message Queuing

Protocol (AMQP), a highly scalable publish and subscribe message protocol that is

increasingly used in cloud architectures (e.g. VMware vCenter Orchestrator 1). Thus,

our main contributions are as follows:

• Design of a novel framework, namely MigApp, that enables the mobility of

security policies during VMs migration in order to support cloud computing

elasticity with an SDN-based architecture. The framework enables an east-

west communication between management application within and across data

centers.

• Implementation of the proposed framework in a prototype application inte-

grated on the top of an existing OpenFlow controller, namely Floodlight.

• Test and validation of the security policy migration and evaluation of its per-

formance using our framework deployed in a simulation and programming en-

vironment.

This chapter is organized as follows: Section 3.2 briefly describes the most relevant

research initiatives under the discussed topic. Section 3.3 elaborates on the prelimi-

naries of our work notably by describing main SDN concepts and Floodlight controller

as well as the foundation of messaging systems. Section 3.4 is dedicated to detail our

1http://www.vmware.com/support/orchestrator/doc/amqp-plugin-102-release-notes.html

32



proposed approach. Therein, we present the design, implementation, and deployment

of our prototype framework. In order to demonstrate the viability of our framework,

Section 3.5 describes the experimental results that we obtained by deploying our

framework using a simulation environment.

3.2 Related Work

In the context of VM migration in traditional data centers, Tavakoli et al. [89]

proposed a mechanism for VM security context migration based on an extension made

to the virtual machine monitor. However, the approach only deals with hypervisor-

based firewalls and considers a non-SDN context. Recently, a number of research

initiatives [32, 62, 70] have investigated VM migration based on SDN and OpenFlow.

Boughzala et al. [32] proposed an OpenFlow-based infrastructure-as-a-services (IaaS)

middleware solution to interconnect different data centers. This enables inter-domains

VM migration, howbeit, only entries in the flow table of switches are transferred to

re-establish the existing connectivity of the migrating VMs. Similar to us, they used

mininet but for a different purpose which is to evaluate network setup and migration

delay using their solution. Keller et al. [62] propose LIME, an SDN-based approach

for live migration of a network consisting of a group of related VMs along with the

data-plane state. The prototype was implemented on top of a Floodlight controller.

LIME clones one or more switches, and then separately migrates each VM to the

new location. Migrating openflow entries from the source switches and statically

inserting them into the destination switches does not completely solve the problem

for two reasons. First, static insertion of all flow entries contradicts an important SDN

concept, which is to dynamically generate and insert the flow entries by the controller
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at the reception of the first packet of a flow. Second, for the newly incoming flows,

which are different from the static ones, the absence of the adequate policies (specified

at the management plane) may lead the controller’s decisions to violate the security of

these new flows. In contrast to LIME, which focus was solely on network forwarding

state, we propose to migrate the security policy as specified by the VM administrator

(or tenant). CrossRoads [70] is a framework for seamless live and offline VM mobility

across multiple data centers based on SDN. It has been implemented as a module on

top of NOX controller. In order to avoid firewall reconfiguration, CrossRoads uses

a mechanism for tunneling the packets at layer 2. Ghorbani et al. [52] tackles a

different problem than us as it considers the migration of a network of VMs while

preserving some correctness conditions such as preserving bandwidth guarantees and

loop-freedom. Their approach only entails the modification of the forwarding state

using a set of generated OpenFlow instructions sent to the switches at the destination

location.

Gember et al. [51] propose a Software-Defined MiddleBox Networking (SDMBN)

framework, which applies SDN strategy to networks of middleboxes and thus allowing

a fine-grained programmatic control over their states. This solution requires the mod-

ification of middleboxes to expose programmatic interface (southbound API similar

to OpenFlow), a middlebox controller with a northbound API to allow programming

middleboxes, and scenario-specific control applications that orchestrate middlebox

and network changes in tandem. Control applications, such as live migration and

elastic scaling, are enabled by leveraging the proposed northbound API for MBs and

OpenFlow. Koorevaar [64] proposes an approach for leveraging the SDN architecture

for automatic security policy enforcement using (Elastic Enforcement Layer)EEL-
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tags. These tags are added by the hypervisor into the flow of packets emitted by

the VM. They allow identifying the security policies, which actually refer to a chain

of middleboxes to be traversed by the secured traffic. However, the work assumes a

trustful hypervisor and tenants’ traffic isolation, though isolation mechanism was left

out of scope. Similarly, Fayazbakhsh et al. [48] highlight the importance of having

flow tracking capability in order to ensure consistent policy enforcement for security

middleboxes. They propose a SDN-based architecture called FlowTags where tags are

embedded inside outgoing packets headers for policy enforcement. Works proposing

insertion of tags within the packet for policy enforcement suffer from security prob-

lems as they are prone to malicious packets injection and does not consider attacks

against packets integrity or packet authenticity. Although tenants’ traffic isolation is

proposed, the isolation mechanism was left out of scope.

Williams et al. [100] propose VirtualWire, a system that exposes to the cloud

tenant an interface to create logical network topologies in which VMs can be live

migrated within or between clouds. [87] propose an implementation of an elastic IP

and security group service, similar to the Amazon EC2 services, using the OpenFlow

protocol and the OpenNebula system. The implementation relies on the integration

of an OpenFlow controller (NOX) with the EC2 server.

With respect to the related works, only few works consider security policy migra-

tion in the cloud context that makes room for us to discuss more on this matter.
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3.3 Preliminaries

In this section, we briefly describe the background by presenting the main SDN con-

cept, the Floodlight controller and its architecture, and distributed messaging sys-

tems, particularly RabbitMQ.

3.3.1 SDN and Floodlight Controllers

In an SDN architecture, control plane of network devices are brought “outside the

boxes” and are logically centralized to facilitate configuration and management. Pro-

gramming network devices is achieved by exchanging control messages between the

controller and the switches. OpenFlow is an open standard network protocol that

implements such control messages and provides a packet-forwarding abstraction to

the controller for managing the behavior of network devices [71]. The controller in-

structs the data plane on how to act on the incoming traffic flows. On the other side,

switches inquire the controller’s decision about a new incoming flow, inform about

the occurrence of network events, or send statistics about the received traffic. When

switches on a given network path receive the controller’s decision as a set of flow

rules, they update their flow tables with these entries in order to act on subsequent

packets of the flow. In such a setting, security policies specified (programmed) at the

management plane are applied by the controller at the switch level.

Floodlight [25] is a Java-based open source SDN controller initially developed

by Big Switch Networks and currently supported by a community of developers. A

number of module applications can be developed and compiled within Floodlight in

order to perform additional functionalities. These modules make use of the Flood-

36



Ja
v
a 

C
o
n
tr

o
ll

er
 

A
P

I

MigApp

(python)

Circuit 

Pusher

(python)

OpenStack 

Quantum Plugin

(python)

Firewall

REST Applications

Floodlight Controller

Core  Services 

OpenFlow Services 

Module Applications

Static Flow 

Entry Pusher

..
.

OpenFlow

REST API

OpenFlow

 Switches

Figure 3.1: Architecture of SDN and Floodlight Controller with our MigApp

37



light API to communicate with the controller. An example of a module applications

is the “Floodlight Firewall” [97]. Floodlight exposes its own REST API as well as the

one of its modules for northbound communication with REST applications. REST

stands for REpresentational State Transfer and it an architectural style for designing

networked applications for distributed systems that runs over web. REST offers a

general interface, scalable component interactions, and an independent components

deployment while reducing latency, enforcing security and encapsulating legacy sys-

tems. It allows developing applications in any programming language (Java, python,

etc.) that communicate with the controller and its modules in a standard way. Figure

3.1 illustrates the SDN architecture composed of separated data and control planes

as well as the management plane. It also shows the relationship among the Flood-

light controller, the applications modules compiled with Floodlight, and the REST

applications. Once the controller is running, the modules running within it expose

their REST API via a specific REST port to the management plane. Thus, any man-

agement application can send HTTP REST commands through the listening REST

port in order to retrieve information and invoke services from the controller or the

supervised network. In this context, we built our MigApp as a REST application

that uses REST API to retrieve and update information stored by the firewall mod-

ule and to retrieve the network state. The firewall keeps the specified Access Control

List (ACL) in a dedicated Floodlight storage that is consulted by the controller to

take decisions on newly incoming flows. The rules conditions in the Floodlight fire-

wall module matches a set of fields to their values, including switch id, the receiving

switch port, the source and destination MAC and IP, the protocol with the source

38



and destination ports and a priority number. The matched ACL rule with the highest

priority determines the action (allow/deny) to be taken on the flow.

3.3.2 Distributed Messaging System

In our solution, there is a need for a mechanism to coordinate the communication

between the involved parties so that control messages and security policies can be

exchanged. Constraints such as security, reliability, and performance have to be

considered while selecting the right mechanism.

To this end, we opt for a distributed messaging system based on the Advanced

Message Queuing Protocol (AMQP). Interesting features of the AMQP protocol are

that all resources used for storing messages are dynamically created and destroyed

by clients as they need them, there is no need for static pre-configuration, and there

is a number of free client libraries available in various programming languages. We

chose RabbitMQ [79], an open source broker implementation of the AMQP protocol.

RabbitMQ is installed and used by clients on existing cloud services such as Amazon

EC2 [28]. RabbitMQ is a message broker that basically accepts messages from a client

program, called a producer, and store the messages in a queue that works as a mailbox

inside the server. Other client programs, called consumers, wait to receive messages

from the queue. The queue can store any number of messages and it is substantially

an infinite buffer, which can run up to almost 30000 messages per second depending

on the properties of the message. Many producers can send messages to one queue.

On the other hand, many consumers can receive messages from one queue. A nice

characteristic of such system is that the producer, consumer, and the broker do not
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have to necessarily reside on the same machine. In fact, as distributed applications,

they are scattered around different machines.

In RabbitMQ, the producer do not send messages directly to queues but to a

specific entity called exchange, which receives and pushes them to queues. Thus,

one needs to first create an exchange, then creates the queues, and finally binds

the exchange to the queue. A binding is a relationship between an exchange and

a queue which means that the queue is interested in messages from that particular

exchange. The exchange must know what to do with a received message: either

to append it to a specific or multiple queues, or even to discard it. The fate of a

message is determined according to the exchange type, which can be direct, topic,

headers or fanout. Moreover, among various messaging patterns, the Publish-and-

Subscribe is one of the most used pattern in which messages can be received by

multiple consumers with a fanout exchange that broadcasts produced messages to

all subscribers. On the other hand, in some cases, the consumers are supposed to

selectively receive some messages. It means that one message should be delivered to a

specific consumer, whereas another message is destined for another consumer, and so

on. In this scenario, the direct exchange will be used in addition to an extra routing

key parameter that determines which consumer will receive which message. In our

case, we use this latter exchange type so that any party only receives the messages

intended to it.

With respect to server’s deployment, a RabbitMQ broker can be deployed in a

centralized settings where multiple clients connect to the same server. However, it is

also possible to use a distributed architecture, where multiple brokers are clustered

and federated in order to ensure scalability and reliability of the messaging service
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and to interconnect multiple administrative domains. Particularly, a shovel may

be used to link multiple RabbitMQ brokers across the Internet and provide more

control than federation. The latter deployment enables dealing with inter data center

security rules migration. With respect to security, RabbitMQ supports encrypted SSL

connection between the server and the client and has pluggable support for various

authentication mechanisms. Thus, these specific features enable to strengthen the

security of our framework by only allowing authorized MigApps and hypervisors to

produce and consume messages and protecting the underlying communications. In

the next section we discuss our approach in more details.

3.4 Approach

In this section, we describe our framework that enables security policies to accompany

the corresponding virtual machines during their migration. We assume cloud data

centers deployed according to the SDN strategy. In such a setting, an SDN controller

(or multiple controllers such as in Onix [65] and HyperFlow [92]) is in charge of

controlling and configuring a set of OpenFlow-enabled switches. In the following, we

detail the design, implementation, and deployment of our framework.

3.4.1 MigApp Design

In order to address the need for security rules migration, we designed our solution as

a distributed REST application that communicates with other MigApp instances and

the hypervisor through a distributed messaging system, namely RabbitMQ. MigApp

uses the REST API of Floodlight and its modules, particularly the firewall module,
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in order to retrieve the matching ACL rules at the source of the migration or to

update them at the destination. In our migration scenario, MigApp at the source of

migration receives a request from hypervisor and starts a communication with the

peer application that resides at the destination side. The source MigApp, identifies

the rules whom correspond to the migrating VM, from the source firewall. Then,

the two MigApps exchange the rules while coordinate the migration of VM through

communication with hypervisors. This supervision ensures that the VM does not

start running at the destination before the rules migration. At the end, the source

MigApp deletes unnecessary rules and sends a message to the hypervisor in order to

let the VM running at the destination place. As far as the communication through

messaging is concerned, we designed various types of structured messages that contain

the information needed for successfully coordinating the firewall rules migration. Each

type of message is associated with a numerical identifier that identifies the message

purpose. A message is structured as follows:

{ MsgType: <number>,

Sender:<Sender_IP>,

MigVM:<VM_IP>,

Src:<MigApp_src_IP>,

Dst:<MigApp_dst_IP>,

Data:<Policies>

}

such that “MsgType” is the type of message provided in numerical format, “Sender”

is the sender of the message (could be the hypervisor or any MigApp instance),

“MigVM” is the identification of the migrating VM (usually the IP), “Src” is the IP
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of the MigApp source, “Dst” is the IP of the MigApp destination, and “Data ” is

either empty or contains the migrated rules. In the following, we describe the most

important messages:

• Migration Request (type = 100): It is send by the hypervisor to request security

policy migration for a particular VM. The message is destined to the MigApp

related to the controller supervising the identified switch to which the migrating

VM is attached at the source location.

• Migration Acknowledge (type = 101): It is sent from MigApp at source to the

hypervisor to notify about the successful completion of firewall rules transfer.

In case of failure, message type 109 is sent instead.

• Firewall Rules (type = 200): This message includes the firewall rules matching

with the migrating VM to be sent to the destination MigApp from the source

MigApp.

• Firewall Acknowledge (type = 201): It is sent from MigApp at the destination

to the one at source indicating that the firewall rules have been received. At

this time MigApp at destination can apply the received rules. In case of failure,

message type 209 is sent instead.

• Detached (type = 300): It is used by the hypervisor to inform the MigApp at

source that the execution of the migrating VM has been successfully suspended

at the source location. This will trigger the deletion of the ACL at source that

will not be used any more.
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• Detached Acknowledge (type= 301): It is sent from source MigApp to the hy-

pervisor at source location to acknowledge the successful deletion of unused

firewall rules. VM migration triggers upon receiving this message. In case of

failure, message type 309 is sent instead.

• Attach (type = 400): This message is sent from destination MigApp to the hy-

pervisor at the destination location to inform that firewall rules of the migrating

VM have been safely handled, and that the VM can be securely attached to the

destination switch.

As a natural choice of a data structure to transfer the aforementioned messages,

we selected the JavaScript Object Notation (JSON) [9]. The latter is a text-based

language-independent open standard used to transmit structured data over network

connection. JSON can be built using two structures: unordered set of name/value

pairs (objects) or an ordered list of values (arrays), separated by commas.

As mentioned earlier, we defined at the RabbitMQ broker side a queue per con-

troller and a queue per hypervisor such that each entity may publish in any queue

but may only receive from its own queue the messages that were specifically intended

to it.

3.4.2 Implementation

We implemented MigApp using Python. The main program implements the core

message processing function, which is responsible for identifying the received message

and performing a set of proper actions, based on the message type. The algorithm

corresponding to ProcessMessages is listed in Algorithm 1. It makes use of various

functions dedicated for specific purposes. MigApp may receive messages from the
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hypervisor through a dedicated exchange binding that triggers policy rules migra-

tion. It may also receive from other MigApp instances messages to coordinate the

transfer of firewall rules. Thus, function ReceiveMsg is an implementation of the

RabbitMQ client that allows receiving messages from a specific exchange binding. A

dual function, namely SendMsg, takes a message and the destination exchange bind-

ing as parameters and then sends the message to its destination through the exchange

binding.

Algorithm 1 Message Processing

1: procedure ProcessMessages

2: msg ← ReceiveMsg() ⊲ message reception
3: type ← GetType(msg) ⊲ message type
4: src ← GetSrc(msg) ⊲ source MigApp
5: dst ← GetDst(msg) ⊲ destination MigApp
6: VM IP ← GetVM(msg) ⊲ migrating VM IP
7: if type == 100 then
8: migrules ← MatchRules(VM IP)
9: req ← BuildMsg(200,VM IP,src,dst,migrules)
10: SendMsg(req,dst)
11: else if type == 200 then
12: rcvdrules ← GetData(msg) ⊲ extract received rules
13: WriteRules(rcvdrules)
14: req ← BuildMsg(201,VM IP,src,dst,‘’)

SendMsg(req,src) ⊲ send migack to src
15: else if type == 201 then
16: req ← BuildMsg(101,VM IP,src,dst,‘’)
17: SendMsg(req, hyper)
18: else if type == 300 then
19: DelRules(VM IP)
20: req ← BuildMsg(301,VM IP,src,dst,‘’)
21: SendMsg(req, hyper)
22: end if
23: end procedure
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We also implemented specific functions in order to interact with the firewall mod-

ule via the REST API. The first function, namely M atchRules, takes as parameter

the IP of the migrating VM and reads the rules from the Floodlight storage at the

source and returns a set of matched rules to be migrated to the destination. In or-

der to find the actual migrating rules, we match the host IP (or MAC) with source

and destination (IP or MAC) fields in the rules. For the case of an exact match, we

migrate the rule as it is. For instance, the following rule will migrate:

swid = 1, src = VM IP, dst = otherVM → allow, where VM IP is the IP value of

the migrating VM and otherVM is the IP of another VM.

With respect to rules with wildcards (or a subnet) used in one of the IP fields, if

the VM IP is included within the mentioned subnet, we only migrate an instance of

the rule by replacing the wildcard (or the intersecting subnet) with the VM IP value

of the migrating VM. For instance, the following rule such that VM IP ∈ Sub1:

swid = 1, src = Sub1, dst = otherVM → allow, will be transformed into swid =

1, src = VM IP, dst = otherVM → allow and then migrated. Finally, a rule with

a wildcards or a subnet at the source (or destination) field and the exact IP of the

migrating VM at the destination (or source) field will be migrated as it is.

The second function, namely W riteRules, takes the incoming rules and update

the Floodlight storage at the destination. In order to apply the received firewall rules

at the destination Floodlight storage, we need to precess them before actually writing

them. Once the rules are received, we keep their relative order as defined by their

priority levels, but modify these priorities so that we avoid conflicting with existent

rules. We refer the reader to a broad range of research works on the detection and

resolution of firewall rules conflicts [27, 26]. We also modify in the rules the old values
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Algorithm 2 Migrate Host

1: procedure MigrateHost(VM IP,switch)
2: set(TimeOut) ⊲ set reception timeout
3: type ← 100
4: req ← BuildMsg(type,VM IP,src,dst,‘’) ⊲ build message
5: SendMsg(req,src)
6: msg ← ReceiveMsg()
7: while msg 6= Null or ¬ is(TimeOut) do
8: if msg 6= Null then
9: type ← GetType(msg) ⊲ message’s type
10: if type = 101 then
11: type ← 300
12: msg ← BuildMsg(type,VM IP,src,dst,‘’)
13: DetachHost(VM IP)
14: SendMsg(msg, src)
15: else if type = 301 then
16: AttachHost(VM IP,switch)
17: Break
18: end if
19: msg ← Null
20: end if
21: msg ← Receive

22: end while
23: end procedure
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of switchid and src-inport with the new values that correspond to the configuration

at the destination. Finally, DelRules is used to delete the rules from the firewall if the

rules do not concern any host under the supervision of the source controller. In order

to get such an information, MigApp interacts with the Floodlight device manager

module through the REST API. Furthermore, a Python program named BuildMsg is

responsible of preparing the content of the messages in JSON format for being sent to

the receiver exchange binding. Finally, we implemented some utility functions such

as GetType, GetSrc, GetDst, etc. in order to read specific parts of the messages and

returns the needed information in the needed format.

Algorithm 2 lists a pseudocode of the function that should be implemented by the

hypervisor (or the VMM) in order to interact with our MigApp. Note that AttachHost

and DetachHost functions refer to the function of attaching the migrating VM to and

detaching it from the switch port, respectively.

3.4.3 Deployment

We proposed a novel firewall rule migration framework, namely MigApp, that we

believe can be used with any SDN controller that offers a firewall module and a

REST API, with minor changes. Our framework uses REST API to communicate

with the controller security applications and transfers the rules and policies that

match with the migrated VM into the destination controller. This controller can be

local or remote depending on the migration process. The entire process is triggered

by the hypervisor or any higher privileged software or system that is responsible for

VM migration. Hence, our solution requires to add into it a module to communicate

using the RabbitMQ server. Figure 3.2 illustrates the deployment of our solution.
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It also illustrates the messages exchanged between different entities involved in the

migration of the security rules. A message is denoted by a directed arrow labeled

with the order of precedence of the message and the type of message, separated by a

colon.

3.5 Experiments

In the following, we describe the performed experiments using MigApp and the ob-

tained results.

3.5.1 Setup Environment

In order to test our framework, we used a custom Mininet [66] forked from the main

source code by Big Switch Networks and deployed in an Ubuntu virtual machine.

Mininet is a SDN emulator that we use for simulating the data plane. As it is

shown in Figure 3.3, we created a topology in Mininet 1.0.0 that consists of a set

of Open vSwitch [13] instances that are supporting OpenFlow 1.1.0 [77]. We omit

the RabbitMQ servers as they were explained earlier. The used Mininet version has

two added functions that enable attach and detach of a host; therefore mobility of a

host is simulated by detaching from source switch and attaching it to the destination

switch. To do so, we modified mininet code in order to play the role of hypervisors by

implementing Algorithm 2 as a Python function named M igrateHost. Each simulated

host is a process that is created in a different name space [66]. We set up the entire

test environment on a PC with an Intel Core i7 3.4 GHz processor with 16 Gbytes of

RAM. We also used Eclipse Juno Service Release 2 for running different Floodlight
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controllers on different ports. For firewall testing, we used Nmap 6.25, a port scanner

that shows status of each port from the view of outsider. We also used Netcat 1.10,

a great tool for many network testing purposes like opening TCP or UDP ports.

Finally, Wireshark 1.4.6.is a packet analyzer used for capturing packets and studying

packets in different switch ports.
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Figure 3.3: Testing Environment (VM1 is the Migrating VM)

3.5.2 Running Scenario

Our test-bed has three separate domains such that each of them is controlled by at

least a single controller. We assume two data centers, each of which has a Floodlight
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controller and a MigApp installed on the same server. In the simplest scenario, we

considered a single VM migration (VM1) from data center 1 to data center 2. As it

is shown in Figure 3.3, access to VM1 can happen from each of the three domains.

VM2 is in the same data center as VM1 before migration; VM3 and VM4 are in the

destination data center. Thus, after migration VM1 would be in the same location as

VM3 and VM4. We consider VM5, a host that is neither in source nor in destination

data centers that can be considered as a host connected to the Internet. All the VMs

and switches are simulated by Mininet who has a migration module and switches

are connected to the Floodlight controllers, which are running on different ports.

Each controller has a separate MigApp connected to it through REST API. Both

MigApps use a single messaging server on the same machine. Each MigApp has its

own messaging queue within RabbitMQ server. Running scenario starts by a Python

script that has the customized topology of Figure 3.3. Then, we set ACL rules on

all firewalls using REST API and enable them. For testing firewalls, we leverage the

capability offered by Mininet to run other programs to test services like a web service

on VM1. We used Netcat to reach this service from other VMs. Wireshark has been

used on port e1 of switch S1, where VM1 is attached, and on each port connecting the

other VMs. This is for the purpose of capturing all packets that are sent from other

VMs and received by VM1. This firewall testing is performed both before and after

migration. Firewall rules and Wireshark usage are discussed in details in the next

section. Migration is triggered from Mininet CLI by user intervention by passing IP

of the migrating VM and the destination switch as parameters to our implemented

CLI function M igrateHost.
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3.5.3 Experimental Results

Testing Security Policy Migration

We validated the correctness of our migration application MigApp by testing the

firewall rules before and after migration. To this end, we used Nmap port scanner to

scanned VM1 ports from each of the other VMs before migration and then we saved

the obtained results. We repeated the same test after migrating VM1 and compared

both scans. We achieved completely identical results, implying that all VM1 ports

that were open before migration for a specific VM, remained open after migration,

same as filtered or closed ones. For example, VM2 was supposed to have a SSH access

in addition to a HTTP access (which all VMs had) to VM1; Nmap results show that

VM2 has SSH as well as HTTP access to VM1 after migration. This shows that

MigApp correctly migrated the firewall rules. To have a stronger proof, we went one

step further and performed a more detailed assessment using Netcat and Wireshark.

We opened ten important ports namely FTP, SSH, Telnet, SMTP, DNS, HTTP,

POP3, HTTPS, IMAP, HTTP-proxy on VM1 using Netcat and tried to connect and

send arbitrary data to VM1 from each of other VMs. We did not have any control

on data but we made sure that each VM sends data to all ten ports. In order to have

a better understanding, we mention a subset of firewall rules and briefly explain the

granted access to each VM in order to communicate with VM1.

All VMs should have access to port 80 (HTTP). VM2, VM3, VM4 and VM5

respectively should only have access to port 22 (SSH), port 443 (HTTPS), port 21

(FTP) and port 8080 (HTTP-proxy). All other ports on VM1 have to be filtered for

other VMs; therefore, each VM can have HTTP access other than one port access
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specific to that VM. Figure 3.4 and Figure 3.5 demonstrate all TCP communications

with VM1 respectively before and after migration. The X axes in the charts indicate

open ports on VM1 to which we sent random data from the other VMs and Y axes

indicates the number of exchanged bytes between VM1 and the contacting VMs.

Since we sent random data from each VM, the number of bytes received in VM1

differs for each of them but as it was expected, only those who were allowed reached

to VM1. Comparing the charts before and after migration shows that in either cases,

the same ports have received data from a specific VM. This results testify that all

previous access grants and filtration of banned ports are preserved after migration.

Measuring and Evaluating MigApp Overhead

The major time-consuming part of the framework is transferring the policies from

source to destination of migration. This constraint can be affected by network band-
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width, messaging server response time and some other factors that are out of the scope

of this dissertation. Reading the firewall rules and matching them with the migrating

VM (i.e. Read/Match) are the most time-consuming functions at the source of migra-

tion, whereas, processing the received rules and applying them (i.e. Process/Write)

are the functions that adds most of the overhead at the destination. Thus, we mea-

sured and evaluated the overhead of these two functions using our test-bed after

increasing the number of transferred rules. Figure 3.6 reports on the performance

results. The latter illustrates the execution time of the mentioned functions for an

increased number of rules. As indicated in Figure 3.6, for 500 rules, Read/Match

requires less than 0.14 seconds, whereas Process/Write needs less than 1.2 seconds,

which brings the total overhead to less than 1.29 seconds. Finally, one can notice

that the trend of the execution time grows smoothly.
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3.6 Summary

In this chapter, we presented a novel and flexible framework for migrating firewall

policies with the corresponding VMs in order to support the elasticity of cloud services

in an SDN context. Our framework coordinates the migration of the policies based on

a reliable open source distributed messaging system, namely RabbitMQ. The latter

is based on AMQP, a highly scalable publish and subscribe message protocol that is

increasingly used in cloud architectures (e.g. VMware vCenter Orchestrator 2).

Our framework enables cooperation between SDN security applications that run

on top of the controller and hypervisor responsible of the VM migration. This pro-

visioning improves the security of the migrating VM within the same or between

different data centers. This framework requires a minor modification of the hyper-

visor responsible for the VM migration so that it triggers policy migration through

the RabbitMQ messaging system. We designed and implemented our framework as

a distributed REST application called MIGAPP, on top of the Floodlight controller

2http://www.vmware.com/support/orchestrator/doc/amqp-plugin-102-release-notes.html
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and we tested our prototype in a simulation and programming environment. We de-

signed and performed experiments and showed that our approach is performing as

expected since the same network services were accessible before and after migration.

We also measured and evaluated the overhead introduced by our MigApp and con-

cluded that the process introduces acceptable delays when the number of rules are

increased. Future work can be developing a comprehensive application for various

SDN controllers; however this is not achievable until the controller is not equipped

with a security module or application. As an extension to this work, we can consider

migration of QoS or even load-balancing rules with VM.
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Chapter 4

Customized Test-bed for Testing Migration
Security in Cloud

In Chapter 3, we presented a framework and a prototype application to migrate

security policies in SDN context. In order to test the viability of our prototype

application, we used Mininet which is a well-known simulator for SDN. Although

there are many simulators for traditional networks and clouds, most of them are

focused on performance and cost assessments. In this chapter, we strive to prepare a

testing environment that supports VM migration and focuses on security assessments.

4.1 Overview

Cloud computing is widely deployed all over the globe and its popularity is growing

due to the benefits that it offers to both service providers and users. As the rate of

adaption to the cloud increases day by day, cloud security is growing more important.

Multi-tenancy is one of the main points of concern in cloud. Migrations are essential

for cloud elasticity and security of data center and VMs should be preserved during

and after migrations. There are many other examples that highlights the importance

of security researches in cloud.

In order to conduct a research, a test environment is a must for researchers.

Benchmarking an application performance, testing the compatibility of a new protocol
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or analyzing the security of a new feature, all are examples that need a test-bed for

evaluation. On the other hand, testing security on real world cloud environments is

not a good idea. First of all, a real cloud needs a huge amount of money and time to

deploy and it may not be safe to conduct a security testing on a production network.

Further, running multiple tests may need reconfiguration of the entire network that

apparently takes more time in a real network. Thus, simulation environments are

a good alternative for real employments, because they are cost effective, safe and

flexible.

To model a real network behavior, there are two ways that are known as Simulation

and Emulation and each one has pros and cons. A network simulator is usually a piece

of software that models network entities and the interactions between them, by using

mathematical formulas. Simulators are typically used in research for studying and

predicting network behavior and performance analysis. Most of the simulators model

network devices, links between them and generate network traffic within the same

program. Discrete-event simulation that models system operations as a sequence of

events in time, is widely used in network simulators. Another way of simulation is

using Markov chain which is less precise but faster than discrete-event simulations.

There are many commercial and open-source network simulators with various features.

For instance OPNET [14] is a commercial simulator with GUI, NS2/NS3 [47][12]

are open-source simulators that accepts scripts as input for network parameters and

NetSim [11] is another example. 1.

A network emulators is a piece of software or hardware to test and study a net-

work that imitates the behavior of a production network. Emulators normally do

1A list of popular network simulators can be found at: http://www.idsia.ch/ an-
drea/sim/simnet.html
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Net. Simulator Net. Emulator Actual Network
Modeling/deployment Time very fast fast slow
Deployment Difficulty very easy moderately easy hard
Cost cheap moderately expensive expensive
Real Services No Yes Yes

Table 4.1: Comparison between Network Simulation,Emulation and Actual deployment

not simulate endpoints such as computers; and therefore, computers or any type of

traffic generator can be attached to emulated network. Normally, in emulation actual

firmware is running on general purpose hardware. As a result, it is possible to run

live applications and services on an emulated network which usually is not feasible

in a simulation. Hardware-based network emulators are more expensive and more

accurate than software-based ones and are commonly used by service providers and

network equipment manufacturers. Dynamips [49] is a free emulator for routers and

QEMU [29] is an open-source hypervisor that can be used as a machine emulator.

Although, both simulators and emulators are applied for testing network perfor-

mance, they are used for different purposes based on the capabilities that each of

them offers. For example, simulators are good for scalability and performance tests

while emulators can be used to test network applications and real services. Never-

theless, both simulators and emulators are crucial in network research. See Table 4.1

for a comparison between using network simulators, network emulators and actual

deployment.

Network and cloud simulation has been around for a while. However, most of the

network simulators are not capable of cloud modeling. On the other hand, most of

the existing cloud simulators focus on performance benchmarking, cost effectiveness

evaluations and power consumption assessments. Hence, majority of them lack in
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modeling security boxes such as firewall, IPS and security services like VPN. Fur-

thermore, in some experiments a real running VM and actual services who imitate

the behavior of a real network are necessary. At the time of writing this thesis, there

is no free cloud simulator available, who mimics middleboxes and real services in

simulations. Hence, we decided to prepare a distributed test-bed based on GNS3

that is mainly a network simulator. In order to use GNS3 for cloud, we introduce an

architecture that models the deployment of standard data centers in a small scale but

with real running services and security features. We also equip the test-bed with a

set of free network and testing utilities that facilitate many experiments. In addition,

we focus on VM migration in cloud and first design a migration framework and then

improve it to a security preserving migration framework. In summary, contributions

of this chapter are:

• Design and deployment of an architecture that introduces the way to use GNS3

for simulating multiple data center on multiple host machines.

• Design and implementation of a framework for migrating VMs on the test-bed

by improving the features in VirtualBox.

• Design and implementation of a framework to migrate firewall rules in the case

of migration.

The remainder of this chapter is organized as follows: Section 4.2 describes the

related work, other projects that have been done with GNS3 and a comparison of

well-known simulation solutions. In section 4.3 we elaborate on the preliminaries of

this work and introduce main software programs that are used in test-bed prepa-

ration. In section 4.4 we describe the test-bed components and setup environment.
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Section 4.5 explains the migration framework design and its implementation on Virtu-

alBox. Section 4.6 and section 4.7 discusses some use cases and clarifies the limitations

and shortages of the test-bed, respectively. Finally, in section 4.8 we summarize the

chapter and talk about future work.

4.2 Related Work

Simulations have been widely used in computer world and there is a large number of

open-source and commercial network simulators available. NS-2 [47] and OPNET [14]

are well-known discreet-event simulators that are used both in academia and industry.

First one is open-source and the latter is a commercial simulator. Both are capable

of simulating stateless firewalls and neither of them can simulate IPS. OPNET is not

for cloud simulation and NS-2 need an extension for that purpose.

Cisco Packet Tracer [5] and Boson NetSim [2] are proprietary network simulators

that their main objective is exam preparation and to facilitate the training with Cisco

devices. Packet Tracer does not support firewall and other middleboxes however,

Boson Netsim is capable of simulating firewall, IPS and some other advanced devices.

Kliazovich et al. [63] presented Greencloud which is packet-level simulator, as an

extension for NS-2. However, Greencloud focus is on energy consumption in cloud

communications and can not be used for security experiments. Nez et al. [75] pre-

sented iCanCloud that is a cloud simulator, developed on OMNeT++ [95] platform.

The main focus of iCanCloud is on predicting the trade-offs between cost and perfor-

mance of a given set of applications executed in a specific hardware, and then provide

information about costs to the users.
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CloudSim [36] is a mature JAVA-based simulator that supports modeling and

simulation of large scale cloud computing data centers. CloudSim adds a layer on

top of GridSim [34] in order to offer the ability to simulate clouds; however, the

latest version is re-implemented the kernel and it does not rely on GridSim anymore.

CloudSim is a generalized simulation framework but it does not simulate middleboxes

at the time of writing this thesis.

SupernaNET [16] and EstiNet Network Simulation Cloud [7] are proprietary cloud

and network simulators. SupernaNET is built as a VMware appliance and its focus is

on addressing interoperability, management and network security challenges in cloud.

EstiNet Network Simulation Cloud runs on top of the Openstack system software and

can be used to construct a private network simulation cloud located in the laboratory

for research purpose, or an enterprise to execute the simulation tasks.

GNS3 [8] is an open-source simulator that is similar to Boson NetSim and its main

use is for training and certification preparation. Although, GNS3 does not have limi-

tations of Boson NetSim; for instance, GNS3 supports Virtualbox to run desktop and

server operating systems and also is able to simulate devices from multiple vendors.

The fact that its source-code is available is another advantage which makes it pos-

sible for researchers to add features on top of it. A summary of different simulation

solution is depicted in Table 4.2.

GNS3 WorkBench [99] and Live Raizo [94] are two ready-to-use testing environ-

ments that are prepared based on GNS3. The first one is a Linux VM with GNS3

that includes installed VPCS and a collection of exercises and labs. The goal of

this appliance is preparing an easy-to-use environment for beginners who wants to

discover GNS3 and its possibilities. The latter is a Live Linux Debian that simu-
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Packet-Tracer [5]    #G#

OPNET [14]   G# G# ##

SupernaNET [16]   − − # − − −

CloudSim + EMUSIM [36][35] #   #  G#

NS-2 + GreenCloud [47][63]    #  # ##

Boson NetSim [2]   G#    

EstiNet [7]   − − − − −

GNS3 [8]  #   G#      

Table 4.2: A comparison of Network and Cloud Simulators. Key:  (offers the benefit);
G# (almost offers the benefit); # (offers partial benefit); blank (benefit not offered); −(No
Information Available).

lates networks and system administration experiments. Live Raizo contains GNS3,

VirtualBox, QEmu, VPCS and multiple Linux VirtualBox guests. It also includes

minicom, Wireshark, as well as DHCP, DNS, FTP, TFTP and SSH servers. This

training appliance is used by the CFA UTEC training centre in Seine et Marne in

France for networking and Linux administration classes.

4.3 Preliminaries

In this section we introduce different software programs that are used to make the

test bed. Hardware that was used in setup environment is explained in 4.4.
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4.3.1 GNS3

Graphical Network Simulator (GNS3) [8] is an open-source software that prepares

the environment for emulating Cisco and Juniper routers in a simulated network.

Dynamips, Oracle VirtualBox [98] and Qemu are three main back-end components

that GNS3 use them to emulate different network OSes 2. GNS3 acts as a front-end

system with a GUI that enables the user to make arbitrary network. GNS3 is mainly

used for training purpose and network labs. We use GNS3 as the base layer of our

cloud test-bed.

4.3.2 VirtualBox

VirtualBox [98] is a free x86 and AMD64/Intel64 virtualization software. It is used

in GNS3 for emulating Juniper JunOS. We use VirtualBox to make VMs in our cloud

environment and benefit from features that VirtualBox offers for migration to make

a test-bed for VM migration in a simulated data center environment.

4.3.3 Wireshark

Using a tool to capture and analyze packets is a must in network and security re-

searches. Wireshark [42] is an open-source, multi platform network packet analyzer

that can perform a live capture of network traffic. Captured traffic can be saved and

analyzed offline. Wireshark can be used with GNS3 to analyze the packets that pass

through each interface. Interface can be a network device port or even a host NIC.

Wireshark offers various filters that we use them frequently in our tests.

2Visit the following URL for a list of network OSes that can be emulated by GNS3:
http://www.gns3.net/hardware-emulated/
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4.3.4 TFTP/SFTP Server

Trivial File Transfer Protocol (TFTP)3 [86] is a protocol to transfer files and is sup-

ported by many commercial routers and firewalls in order to read/write configuration

data from/to their flash memory. We use a TFTP server in source, to read firewall

configuration and extract the rules that has to be migrated and another server in

destination to insert the rules into firewall.

4.4 Test-Bed Description

In this section we explain our test-bed architecture, environment setup and network

design for two data center with 3-tier deployment model. We also introduce some

tools as well as optional software applications that can facilitate network configuration

and tests.

4.4.1 Test-bed Architecture

Nowadays, cloud management systems are common to manage different data centers.

The main concept behind such software, is having a global real-time view of all the

network and resources in every data center which is owned by one entity (one or group

of collaborating organizations). With such software, global administrative tasks can

be done with a clear vision on the entire cloud system. In addition, the resources

can be distributed more efficiently and evenly between VMs. As it mentioned earlier

in 4.1, there is no simulator available (at the time of writing this thesis) which provides

such view and administrative features. The reason is clear! Because these systems

3SSH File Transfer Protocol(SFTP)[50] offers the security option for file transfer protocol.
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consist of various services and in order to imitate a service we need to emulate things.

At the time of writing this dissertation, no such emulator is available publicly. Hence,

we used some open-source projects to build up the cloud test-bed architecture and

implemented a sample base topology for performing cloud related experiments. Some

examples of possible experiments that can be done on this test-bed are introduced

in 4.6.

In our test-bed architecture (depicted in Figure 4.1), GNS3 plays the role of

cloud management system who has a global view of the network. All of the network

devices and the links between them, are provided by GNS3. VirtualBox, which is

a virtualization software, plays the role of hypervisor in cloud systems. As long as

we target security testings in our research and this test-bed is actually prepared to

host security experiments, we need another element which is missing in VirtualBox.

In data centers, multi-tenancy is a matter of concern and this means that there

should exist a firewall between different VMs. Moreover, some type of VMs contain

more sensitive information (i.e. data-base VMs) than the others (i.e. web-server

VM). Thus, a distributed firewall should be placed between VMs. We use a physical

firewall/router to perform this task (since virtual firewalls are not supported in GNS3)

and steer all the traffic between VMs to the firewall. However, using a firewall/router

instead of a switch raise some questions that need elaboration. First , Can we use

firewall/routers instead of switches? Actually, switches in data center are normally

working in network layer or even higher in application layer. Packet inspections and

firewalling are very common feature in most of today commercial switches. So, the
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answer is absolutely yes 4. Second question that may come to the mind of reader

is, Why a physical device is used for firewalling between VMs? Isn’t it better to use

a virtual firewall? Virtual and physical firewall do exactly the same thing. One is

inside a box with specialized hardware and does exactly the same job, as the other one

(virtual firewall); although, when it is hardware we can expect faster process. Data

center level hypervisors, usually come with a security package that contains a virtual

firewall in it but since our hypervisor does not have this package, we use a physical

firewall to safeguard inter-VM communications. Final question that a reader may ask

is, What about few number of available ports in a physical firewall? They seem not

to be sufficient for connecting all VMs! That is true. Physical firewalls have a limited

number of ports; however, three internal port would be enough for connecting each

group of VMs to the firewall. We do not need to show all of the VMs in test-bed

(since security is the issue). So, based on the three tier design model that consists

of W eb, Application and Database servers, one VM considered a representative for

each type of virtual server (See Figure 4.2).

As shown in Figure 4.1, Test-bed architecture has three tiers: 1)Physical layer,

2)Simulation layer and 3)Testing layer. Physical layer consists of Host machines

and includes the hardware resources. Each Host plays the role of one data center

in cloud and VMs are residing on storage device of Host machines. Qemuwrapper,

vboxwrapper and dynamips are files that enable the connection of GNS3 with dis-

tributed remote machines. Thus, simulated routers, firewalls and VMs can exist on

different machines. Next layer (S imulation layer) is GNS3 that is the main tier in

4There are features in switches that are not available in firewalls and there are performance
differences which we considered them as negligible for this special test-bed that is meant to handle
security tests
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simulation procedure; GNS3 is able to communicate with all hosts and, like a cloud

management system, has a global view of entire network topology. A simulation can

be carried out completely with the two mentioned layers. Top layer (Testing layer),

whose name can clearly reveal its task, is for experimenting and consists of various

tools such as traffic-generators, packet-sniffers, scanners and other network testing

tools that can be used in conducting various experiments. TFTP server in testing

layer is for communicating with some firewalls and routers in order to access (and

edit) their configurations. VBOX manager and Wireshark were introduced in Sec-

tion 4.3. Many other software applications can also be implemented to conduct a

research or ease the test procedure. For example, a Migrator script can automate the

migration process by detaching the VM from source location and attaching it to the

destination network with respect to all migration procedure conditions (Migration

framework is explained in 4.5). Another application could be an automatic Verifier

application that validates and verifies the correctness of migration with respect to

security preservation aspect in VM migration.

4.4.2 Environment Setup and Network Design

Figure 4.2 demonstrates the network topology of our test-bed implementation. This

test-bed is mainly prepared to do experiments on VM migration scenarios between

two data centers. GNS3 0.8.5 is used for simulating network devices. VMs are created

by VirtualBox 4.2.16. GNS3; VMs of Datacenter_1 are located on Host 1, and VMs

of Datacenter_2 are placed on Host 2. Host 1 and Host 2 are Windows 7 machines

with Intel Core i7 3.4 GHz processor, 16 Gbytes of RAM and Intel Core 2 duo 3 GHz

processor, 4 Gbytes RAM, respectively; they are connected to each other by a CAT
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6 cross cable. Internet in this Setup is a a group of simulated routers; however, it is

possible to connect the network to real internet through a physical router which is

out of the scope of this test-bed implementation. Corp_User and Internet_User are

VMs who are located on other Hosts (with same configurations as Host 2) and are

connected to Host 1 through a campus LAN network.

Each Datacenter has Core, Aggregation and Access layers; which is the well-

known way of data center deployment, nowadays. Each layer has firewall-enabled

routers that are deployed with the identical redundant component for failover cases.

Aggregation and Access firewalls have VPN modules that support site-to-site IPsec

VPN connections. VMS are defined with respect to the well-known 3-tier WEB, AP-

PLICATION and DATABASE service model. Each firewall in access layer, controls

the inter-VM traffic. Corp_Network is a corporation network that has special privi-

leged access to VMs and Internet_User, represents a general user on the internet.

VMs can have arbitrary operating systems.

4.4.3 Optional software and useful tools

Various optional software applications are installed on each Host and VM, that can

be categorized in four groups: 1)Packet generators and network tools 2)Network

scanners 3)Graphical device managers 4)CPU optimizers. A brief introduction of

each application comes as follows:

1. Packet Generators and Network Tools:

• Netcat [53]: A well-known free Unix-based, network utility program that

can read and write data across network connections.
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• hping [82]: A free network security tool that is able to send custom

TCP/IP packets. hping can be used for testing firewall rules and port

scanning.

• Scapy [30]: An open-source packet manipulation program written in

Python. It can be used for crafting packets, scanning, probing, attacks

and some other purposes in order to test network.

2. Network Scanners:

• Nmap [68]: An Open-source tool for exploring networks and security

auditing with a GUI for Windows. Nmap supports many features such as

OS fingerprinting and ping sweeps.

3. Graphical Device Managers: 5

• Cisco ASDM [3]: Cisco Adaptive Security Device Manager (ASDM)

is a GUI appliance management tool that provides means for network

administrator to configure, monitor and troubleshoot Cisco firewalls.

• Cisco SDM [6]: Cisco Router and Security Device Manager (SDM) is a

Web-based management tool for Cisco routers.

• Cisco IPS Manager Express [4]: Cisco IPS Manager Express is a GUI-

based tool for Cisco IPS sensor management.

4. CPU Optimizers:

5All Cisco appliance management tools are only available for Cisco users who have the corre-
sponding hardware and license
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• BES [1]: Battle Encoder Shirase (BES) is a free CPU control tool that

provides the capability of limiting CPU usage of any selected process.

4.5 Migration Framework

Migration of a VM from one physical server to another, can be done in two different

ways. These methods are based on the features that are provided by VirtualBox.

below, each method with its features is explained:

1. Live Migration by Teleporting : Teleporting is a feature of VirtualBox that

enables live migration of a VM state. However, it has some conditions and

limitations that has to be considered. First limitation is that the migration can

be done between two VMs with the same configuration. An important condi-

tion for migration is that both of the VMs has to be running at the migration

moment; this means that a VM in destination of the migration should be run-

ning and ready to receive the running state from source VM. Sending the state

is through a TCP/IP port and it starts from destination side by listening to

the port. Then source VM sends its running state to the listening VM and

stops that process(VM is still running). Whereas teleporting supports multi

platforms, some errors may occur when CPU of the source and the destination

machines have different architectures. Last and the most important condition

for teleporting is a shared storage that keeps both source and destination VMs.

It implies that even though the source and the destination can be two separate

physical machines, they need to have access to a shared storage and both of

the mentioned VMs have to reside on that shared storage device. Access to the
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shared storage can be achieved by implementing Network File System (NFS) or

Server Message Block (SMB)/Common Internet File System (CIFS)6.

Although in many real world data centers, live migration is similar to what

offered by teleporting in VirtualBox, a shared storage between data centers

is not always available. Normally, shared storage is available between servers

that are located within the same data center. Hence, we propose another way

to migrate a VM without having access to a shared storage media by using

snapshots.

2. Migration by Moving Snapshots : Snapshot is another feature that Vir-

tualBox offers for saving and restoring the current state of a running VM. By

default, this feature is not meant to use for VM migration, however we utilize it

in our migration framework. Snapshot is the preservation of the current running

state of a VM. This state can be reverted in future or immediately after taking

the snapshot. When a snapshot is taken, three things are saved to the disk:

• All VM Configurations: A small XML file that contains complete copy

of the VM settings and configurations.

• Hard Disk Image: A file that contains the state of all virtual disks that

are attached to the VM. Note that this file is a differencing image, and is

not the entire virtual hard disk image.

• Memory State: An image from the memory of running VM that can be

as large as the size of VM memory.

6Samba is a free implementation of SMB that can be used for sharing storage in UNIX systems.
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There are two ways for migrating the VM and its state by using snapshots. First

way is freezing the VM in the source location and migrating it to the destination in

one shot. Apparently, it takes quite a long time (depends on the entire VM size) which

may not be acceptable for a VM migration process. In our migration framework, we

leverage snapshot features and move the VM and its state from source to destination

in two steps (See Figure 4.3). In the first step, the source machine sends a copy of VM

virtual hard disk to the destination place. Apparently, sending the virtual hard disk

can take a long time but this is not a problem, because meanwhile, VM is running

in the source location. When VM virtual hard disk is completely received by the

destination, the source machine freezes the VM state by taking a snapshot from the

running VM. As it mentioned earlier, snapshot creates a file that contains differencing

image from the virtual hard disk in addition to two other files that contain VM

configurations and memory state, respectively. In the second step, source machine

sends the snapshot to the destination machine. When the VM snapshot has been

received in the destination location and VM connection to the destination network

established properly, VM starts running and resumes all the processes that were

stopped before migration. At this point, the source storage is allowed to wipe out the

VM. Although the VM transfer is not a live migration, it has a short downtime and

more importantly, it does not need a shared storage between source and destination

machines. All the steps in the migration process can be verified by a tool that

checks the correctness of each step, and either pass or revert the migration process.

An extension to this framework is a security preserved migration framework that is

explained in 4.6.
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4.6 A Case study and other Use Cases

In this section we first discuss about some use cases of our cloud test-bed and then

we study a VM migration case from one data center to another.

Our testing environment has a flexible architecture that enables the user to test

various types of security scenarios for different purposes. For instance, one of the

features that can be added to the test-bed is Network-based IPS 7 devices. IPS is

a security appliance that monitors the network activities and block/stop malicious

activities after detecting them. Many researches can be conducted to evaluate the

impact of using IPS on the performance of data centers and finding methods which

can optimize it. Another possible use case could be testing Site-to-Site or Client-to-

Site VPN from different locations and then investigate how the IPsec connection can

be affected by VM migration or firewall rule changes. Moreover, various scenarios

can be designed to test the compliance of SSL VPN, which is also supported by this

test-bed. It is worth mentioning that, although VPN can significantly improve the

security of a remote connection, misconfiguration of that can backfire and turn VPN

into an attack vector.

Principally, this test-bed architecture can be used as a testing environment in

network and cloud security researches or as a training appliance for security labs and

online classes.
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4.6.1 Case-Study: Firewall Rule Migration and Verification

We now explain the migration case-study (See Figure 4.4). We assume that the mi-

gration can be initiated and controlled by a network admin or an automated program.

This Migrator not only moves the VM, but also is responsible for migrating the firewall

rules. Thus, the security of VM and data centers can be preserved after migration.In

this case study we deploy a typical three-tier cloud of web applications: A web tier

that implements the presentation logic, application server tier that implements the

presentation logic, application server tier that implements the business logic, and a

back-end database tier. A possible implementation would be to deploy a virtual ma-

chine per each tier. The case study consists of two data centers (west and east) as

depicted in Figure 4.4. We suppose that a tenant i has VM instances {Vil}1≤l≤7 such

that Vi1 is a database, {Vi2,Vi3} are application services, and {Vi4,Vi5,Vi6,Vi7} are

web services. The tenant has also specified a firewall policy for each VM group as

follows

1. Web group allow any host to connect on ports 80 (http) and 443 (https),

2. Application group allow only web services to connect to port 8000,

3. Database group allow only application services to connect to port 3306,

4. All the above groups allow the corporation network (CorpNet) to connect on

port 22 (ssh).

7A tutorial for how to install and use IPS in GNS3, is available at:
http://www.brainbump.net/how-to-emulate-cisco-ips/
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The firewall rules before migration are given in Table 4.3. We consider the case where

the virtual machine Vi4 has to be migrated from data center west (DW) to data center

east (DE).

The firewall configurations after a correct migration are given in Table 4.4.

We consider the following three scenarios in order to conduct the test:

• Scenario 1 - Migration Error 1. Rule 2 in vF1 before is deleted from vF1 after

migration but is not added to sF1 after migration.

• Scenario 2 - Migration Error 2. Rule 3 in sF1 that allows access to ssh service

on V i4 from customer network before is not added to sF2 after migration.

• Scenario 3 - Correct Migration. The configurations of all the firewalls are up-

dated correctly.

In order to verify access control preservation after VM migration, we use the approach

that presented by Jarraya et al. [60]. See Appendix A for firewall paths and a subset

of generated CSP constraints.

We test each scenario by scanning the ports of a target VM from all other VMs

and capturing the traffic on the sending as well as on the receiving interfaces. The

goal of this test is to make sure that the new configuration after the VM migration

preserves the security policy. To this end, we used Zenmap8, the windows GUI

for Nmap security scanner, to scan all ports. We also used the Wireshark packet

analyzer in order to compare captured packets from the originated VM/network with

respect to the packets that successfully passed through the firewall and received at

the destination VM.

8http://nmap.org/zenmap/
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Table 4.3: Firewall Policy Before Migration

sF1
1. TCP * * Vi4,Vi5, 80 NEW, Allow

Vi6,Vi7 ESTAB
Vj1

2. TCP * * Vi4,Vi5, 443 NEW, Allow
Vi6,Vi7 ESTAB
Vj1

3. TCP CorpN * Vi1,Vi2, 22 NEW, Allow
Vi3,Vi4, ESTAB
Vi5,Vi6,
Vi7

4. TCP Vi5,Vi6, * Vi2,Vi3 8000 NEW, Allow
Vi7 ESTAB

5. TCP I DW * O DW * NEW, Allow
ESTAB

sF2
1. TCP * * Vk1,Vk2 * NEW, Allow

ESTAB
2. TCP * * Vj2 80 NEW, Allow

ESTAB
3. TCP * * Vj2 443 NEW, Allow

ESTAB
4. TCP I DE * O DE * NEW, Allow

ESTAB
vF1
1. TCP Vi2,Vi3 * Vi1 3306 NEW, Allow

ESTAB
2. TCP Vi4 * Vi2,Vi3 8000 NEW, Allow

ESTAB

3. TCP * * Vi4 80 NEW, Allow

ESTAB

4. TCP * * Vi4 443 NEW, Allow

ESTAB

vF3
1. TCP * * Vj2 80 NEW, Allow

ESTAB
2. TCP * * Vj2 443 NEW, Allow

ESTAB
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Table 4.4: Firewall Policy After Migration

sF1
1. TCP * * Vi5,Vi6, 80 NEW, Allow

Vi7,Vj1 ESTAB
2. TCP * * Vi5,Vi6, 443 NEW, Allow

Vi7,Vj1 ESTAB
3. TCP CorpNet * Vi1,Vi2, 22 NEW, Allow

Vi3,Vi5 ESTAB
Vi6,Vi7

4. TCP Vi5,Vi6, * Vi2,Vi3 8000 NEW, Allow
Vi7,Vi4 ESTAB

5. TCP I DW * O DW * NEW, Allow
ESTAB

sF2
1. TCP * * Vk1,Vk2 * NEW, Allow

ESTAB
2. TCP * * Vj2,Vi4 80 NEW, Allow

ESTAB
3. TCP * * Vj2,Vi4 443 NEW, Allow

ESTAB
4. TCP CorpN * Vi4 22 NEW, Allow

ESTAB

5. TCP I DE * O DE * NEW, Allow
ESTAB

vF1
1. TCP Vi2,Vi3 * Vi1 3306 NEW, Allow

ESTAB
vF3
1. TCP * * Vj2,Vi4 80 NEW, Allow

ESTAB
2. TCP * * Vj2,Vi4 443 NEW, Allow

ESTAB
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Figure 4.5, Figure 4.6, and Figure 4.7 illustrate charts that we acquired from

Wireshark captures at Vi4 after running Nmap port scan from various locations,

with firewalls configuration before migration, after correct migration, and scenario

2, respectively. The X-axis is represents the type of packets who were sent by Zen-

map, where we typically show packets corresponding to the tcp 3-way handshake

(SYN,SYN-ACK,ACK) for the HTTP, HTTPs, and SSH as well as the ones for ICMP

requests. However, we group all the other type of packets under the label “others”.

The Y-axis represents the percentage of packets received by Vi4 per source and per

packet type.

The results of the experiments on the accessible services over the different paths to

Vi4 matches the satisfiability results obtained by verification approach. With respect

to Figure 4.5 and Fig. 4.6, we can observe that the same type of packets is accepted

before and after a correct migration of the rules. The percentage of packets is different

as we did not have control over the number of packets sent by Zenmap. However, we

can compare the verification results and the testing results, by the type of packets.

With respect to chart of Figure 4.7, one can notice that packets of SSH service that

were supposed to be accepted by Vi4 from customer network are being filtered by

the firewall configuration in the erroneous scenario (Scenario 2). In Figure 4.7, the

percentage of received packets which ssh+flag(syn)=1, is 0% (hashed circle area)

compared to the percentage of the same type of packets in Figure 4.5. This confirms

the verification results for scenario 2.

In order to prevent the error cases that mentioned before, we can integrate the CSP

verification method into migration framework. Figure 4.8 shows the VM and Firewall

Migration framework that also verifies the correctness of rule migration. Migration
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Figure 4.6: Percentage of Packets Received by Vi4, per Packet Type and per Source - After
Correct Migration

can only be completed if the it can pass the verification procedure. Migrator can

be an automated program or the procedure can be done manually by a network
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Figure 4.7: Percentage of Packets Received by Vi4, per Packet Type and per Source - the
Erroneous Migration Scenario 2

administrator. A TFTP server can be used in order to read and write the security

configuration from/to Cisco firewalls.

4.7 Limitations

Major limitations include:

(a) The test-bed is using a wide range of applications that should run simultane-

ously. Even though, it is possible to balance the load to some extent by distributing

network devices and VMs on different hosts, the router simulation is a CPU-intensive

procedure which limits the number of simulated router per machine. This number is

directly dependent on the machine CPU and RAM. So as it mentioned before, data

centers can be simulated in a very small scale but capable of running real services.

(b) The migration framework, does not apply to a live migration. Always, there is a

delay between freezing the VM in source and resuming it in destination data center.
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This delay is directly proportional to the size of VM virtual disk and inversely pro-

portional to the source-destination communication speed. A large virtual hard disk,

needs longer time to migrate from the source to the destination. This longer time

creates a bigger differencing image and a bigger differencing image, causes more delay

for resuming VM in the destination.

A possible solution to improve the framework is to send the hard disk differencing

image from the source to destination, after the completion of hard disk transfer with-

out stopping the VM in source location. Another differencing image is being created

from the starting time of sending first differencing image; this cycle can be repeated

a few times. The iterations, decrease the size of differencing image and as a result,

the delay between stopping the VM in the source and resuming it in the destination,

shortens significantly. However, this will increase the total time of the migration from

the moment that migration has been requested by the User.

4.8 Summary

In computer networking researches, a testing environment can help to examine the

correctness and the soundness of a solution or a finding. Simulators and emulators

are affordable software or hardware solutions for modeling a real network and there

are many of them available in open-source and commercial versions. Simulators have

some limitations; for example running a real service is not possible on most of them,

because they are using mathematical formulas to model a network and predict the

behavior and the future state of that network. Thus, simulators are not suitable for

the majority of security testings because security breaches normally exist in applica-

tion layer. Moreover, security services and protocols cannot properly be implemented
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on simulators. Hence, emulators have the advantage of offering real services on a

general purpose hardware in a small scale. There are a few number of mature cloud

simulators that most of them are focused on performance evaluations and energy/cost

assessment. In this chapter, we presented a test-bed for testing security and VM mi-

gration, based on GNS3 network emulator. To this end, we proposed a conceptual

three layer architecture that defines a new way of using GNS3, as a distributed cloud

simulating and testing environment with multiple host machines on the underlying

tier and various network security testing tools on the top layer. We also presented a

framework for migration of VM between hosts who play the role of data centers in the

simulation. Then as a case study, we designed a security-aware extension in order to

migrate the firewall rules that are related to the migrating VM and verified it by CSP

formulas. Finally, we introduced other possible use cases of our test-bed. As a future

work, we are going to use multiple Amazon AWS accounts, as remote infrastructure

through connecting the test-bed to the real internet. By doing this for each simulated

data center, we can distribute the entire network and VMs among instances in one

AWS account. As a result, we would expect a more realistic simulation and a better

performance in larger scales.
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Chapter 5

Conclusion and Future Work

Cloud computing is a fast-developing area that relies on sharing of resources over

a network. While more companies are adapting to the cloud computing and data

centers are growing rapidly, data and network security gain more importance and

still firewalls are the most common means to safeguard the networks for any size.

Whereas today data centers are distributed around the world, VM migration within

and between data centers is inevitable for an elastic cloud. In order to keep the VM

and data centers secure after migration, the VM specific security policies should move

along with the VM as well.

In this thesis, we provided background on different domains such as cloud comput-

ing, Software-Defined Networks and firewalls in cloud environment and we discussed

the VM migration security issues. We investigated the problem in both traditional

and software-defined networks. We presented a novel framework for migration of

the security policies along with virtual machine migration in SDN context. Our

framework migrated the security context through coordinating hypervisor with SDN

security applications that run on top of the controller in a VM migration process.

This provisioning preserved the security of data centers and VM after VM migration.

We also designed and developed MIGAPP, a distributed prototype application for

floodlight SDN controller. This application interacted with the controller through

a REST API and communicated to its peers as well the hypervisors, through Rab-
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bitMQ distributed messaging system. Then we evaluated our application in a SDN

simulation and programming environment. Moreover, in order to simulate migration

we added this functionality to the simulator program. Finally, we measured the ef-

ficiency and the scalability of our application and the results showed an acceptable

trend in time increment that is caused by the number of the rules increase.

In addition, we presented a distributed cloud test-bed, consisting of a GNS3 em-

ulator, VirtualBox and a wide range of security tools that can be used in various

test cases in security labs, online classes and research projects. We also designed a

framework for migrating VirtualBox VMs, between two different machines without a

shared storage.

Future work can be developing a comprehensive application for various SDN con-

trollers. As an extension to this work, we can consider migration of QoS or even

load-balancing rules with VM.
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Appendix A

Firewall paths and CSP constraints

Table A.1 shows the firewall paths before and after migration that has to be traversed

from one zone to reach the migrating VM in the destination location.

In order to verify access control preservation, we first encode each firewall con-

figuration before and after migration, for each scenario, in Sugar syntax. Then, we

generate the needed CSP constraints for being solved with Sugar [88]. Table A.2

depicts a subset of the generated constraints.

Table A.1: Firewall Paths Before and After Migration

Before Mig. After Mig.
Affected Paths

vF1 vF1⊙ sF1⊙ sF2⊙ vF3
vF1⊙ sF1 vF3⊙ sF2

vF1⊙ sF1⊙ vF2 vF3⊙ sF2⊙ sF1⊙ vF2
vF1⊙ sF1⊙ sF2⊙ vF3 vF3
vF1⊙ sF1⊙ sF2⊙ vF4 vF3⊙ sF2⊙ vF4

Non Affected Paths
vF2 vF2
vF4 vF4

vF2⊙ sF1 vF2⊙ sF1
vF4⊙ sF2 vF4⊙ sF2
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Table A.2: A Subset of the Generated CSP Constraints

Firewall Paths CSP Constraints
vF1 C1 = (vF1b ∧ pij ∧ ¬p) ∧ ¬(vF1a ∧ pij)

C2 = (vF1a ∧ pij) ∧ ¬(vF1b ∧ pij ∧ ¬p)
vF1⊙ sF1 C3 = (vF1b ∧ sF1b ∧ sF2b ∧ vF3b ∧ pij ∧ ¬p) ∧ ¬(vF1a ∧ sF1a ∧ sF2a ∧ vF3a ∧ pij ∧ ¬p)
⊙sF2⊙ vF3 C4 = (vF1a ∧ sF1a ∧ sF2a ∧ vF3a ∧ pij ∧ ¬p) ∧ ¬(vF1b ∧ sF1b ∧ sF2b ∧ vF3b ∧ pij ∧ ¬p)

C5 = (vF1b ∧ pkl ∧ p) ∧ ¬(vF1a ∧ sF1a ∧ sF2a ∧ vF3a ∧ pij ∧ p)
C6 = (vF1a ∧ sF1a ∧ sF2a ∧ vF3a ∧ pij ∧ p) ∧ ¬(vF1b ∧ pkl ∧ p)

vF1⊙ sF1 C7 = (vF1b ∧ sF1b ∧ pij ∧ ¬p) ∧ ¬(vF1a ∧ sF1a ∧ pij)
C8 = (vF1a ∧ sF1a ∧ pij) ∧ ¬(vF1b ∧ sF1b ∧ pij ∧ ¬p)

vF3⊙ sF2 C9 = (vF3b ∧ sF2b ∧ pij ∧ ¬p) ∧ ¬(vF3a ∧ sF2a ∧ pij ∧ ¬p)
C10 = (vF3a ∧ sF2a ∧ pij ∧ ¬p) ∧ ¬(vF3b ∧ sF2b ∧ pij ∧ ¬p)
C11 = (vF1b ∧ sF1b ∧ pkl ∧ p) ∧ ¬(vF3a ∧ sF2a ∧ pij ∧ p)
C12 = (vF3a ∧ sF2a ∧ pij ∧ p) ∧ ¬(vF1b ∧ sF1b ∧ pkl ∧ p)
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