21 research outputs found

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    GPU Implementation of extended total Lagrangian explicit (gpuXTLED) for Surgical Incision Application

    Get PDF
    An extended total Lagrangian explicit dynamic (XTLED) is presented as a potential numerical method for simulating interactive or physics-based surgical incisions of soft tissues. The simulation of surgical incision is vital to the integrity of virtual reality simulators that are used for immersive surgical training. However, most existing numerical methods either compromise on computational speed for accuracy or vice versa. This is due to the challenge of modelling nonlinear behaviour of soft tissues, incorporating incision and subsequently updating topology to account for the incision. To tackle these challenges, XTLED method which combines the extended finite element method (XFEM) using total Lagrangian formulation with explicit time integration method was developed. The algorithm was developed and deformations of 3D geometries under tension, were simulated. An attempt was made to validate the XTLED method using silicon samples with different incision configuration and a comparison was made between XTLED and FEM. Results show that XTLED could potentially be used to simulate interactive soft tissue incision. However, further quantitative verification and validation are required. In addition, numerical analyses conducted show that solutions may not be obtainable due to simulation errors. However, it is unclear whether these errors are inherent in the XTLED method or the algorithm created for the XTLED method in this thesis

    Real-time rendering of large surface-scanned range data natively on a GPU

    Get PDF
    This thesis presents research carried out for the visualisation of surface anatomy data stored as large range images such as those produced by stereo-photogrammetric, and other triangulation-based capture devices. As part of this research, I explored the use of points as a rendering primitive as opposed to polygons, and the use of range images as the native data representation. Using points as a display primitive as opposed to polygons required the creation of a pipeline that solved problems associated with point-based rendering. The problems inves tigated were scattered-data interpolation (a common problem with point-based rendering), multi-view rendering, multi-resolution representations, anti-aliasing, and hidden-point re- moval. In addition, an efficient real-time implementation on the GPU was carried out

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore