314 research outputs found

    Error-voltage-based open-switch fault diagnosis strategy for matrix converters with model predictive control method

    Get PDF
    This paper proposes an error-voltage based open-switch fault diagnosis strategy for matrix converter (MC). A finite control set model predictive control (FCS-MPC) method is used to operate the MC. The MC system performances under normal operation and under a single open-switch fault operation are analyzed. A fault diagnosis strategy has also been implemented in two steps. First, the faulty phase is detected and identified based on a comparison of the reference and estimated output line-to-line voltages. Then, the faulty switch is located by considering the switching states of the faulty phase. The proposed fault diagnosis method is able to locate the faulty switch accurately and quickly without additional voltage sensors. Simulation and experimental results are presented to demonstrate the feasibility and effectiveness of the proposed strateg

    An Improved Fault-Tolerant Control Scheme for PWM Inverter-Fed Induction Motor-Based EVs

    No full text
    International audienceThis paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses

    Analysis of vertical strip wound fault-tolerant permanent magnet synchronous machines

    Get PDF
    This paper investigates the behavior of a vector- controlled, fault-tolerant, permanent magnet motor drive system adopting a vertically placed strip winding (VSW) which can limit inter-turn short-circuit (SC) fault current to its rated value regardless of the position in the slot containing the shorted turns. The drives’ dynamic behavior is simulated using a per-phase equivalent circuit model with the winding inductances and resistances analytical calculated based on the machine geometry and fault location. A simplified thermal model is also grafted into the system model to effectively simulate the dynamic behavior of the machine during healthy, inter-turn SC fault and post-fault controlled scenarios. The SC fault current limiting capability, the additional losses and thermal behavior of the winding are studied and compared with conventional winding adopting round conductors winding (RCW). The proposed winding design is verified with Finite Element (FE) analysis and then validated experimentally. Results show that the VSW inherently limits the SC current, reduces its dependence on the position of the fault within the slot but results in an increase in AC losses

    PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control

    No full text
    International audienceThis paper proposes a fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. In a vehicle context, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed. Two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to assess the FTC scheme performance and effectiveness

    Applications of Power Electronics:Volume 1

    Get PDF

    A review of model predictive control strategies for matrix converters

    Get PDF
    Matrix converters are a well-known class of direct AC-AC power converter topologies that can be used in applications in which compact volume and low weight are necessary. For good performance, special attention should be paid to the control scheme used for these converters. Model predictive control strategy is a promising, straightforward and flexible choice for controlling various different matrix converter topologies. This work provides a comprehensive study and detailed classification of several predictive control methods and techniques, discussing special capabilities they each add to the operation and control scheme for a range of matrix converter topologies. The paper also considers the issues regarding the implementation of model predictive control strategies for matrix converters. This survey and comparison is intended to be a useful guide for solving the related drawbacks of each topology and to enable the application of this control scheme to matrix converters in practical applications

    Fault diagnosis and fault tolerant control of multiphase voltage source converters for application in traction drives

    Get PDF
    There is an increasing demand for vehicles with less environmental impact and higher fuel efficiency. To meet these requirements, the transportation electrification has been introduced in both academia and industry during last years. Electric vehicle (EV) and hybrid Electric vehicle (HEV) are two practical examples in transportation systems. The typical power train in the EVs consists of three main parts including energy source, power electronics and an electrical motor. Regarding the machine, permanent magnet (PM) motors are the dominant choice for light duty hybrid vehicles in industry due to their higher efficiency and power density. In order to operate the power train, the electrical machine can be supplied and controlled by a voltage source inverter (VSI). The converter is subjected to various fault types. According to the statistics, 38% of faults in a motor drive are due to the power converter. On the other side, the electrical power train should meet a high level of reliability. Multiphase PM machines can meet the reliability requirements due to their fault-tolerant characteristics. The machine can still be operational with faults in multiple phases. Consequently, to realize a multiphase fault-tolerant motor drive, three main concepts should be developed including fault detection (FD), fault isolation and fault-tolerant control. This PhD thesis is therefore focused on FD and fault-tolerant control of a multiphase VSI. To achieve this research goal, the presented FD and control methods of the power converter are thoroughly investigated through literature review. Following that, the operational condition of the multiphase converter supplying the electrical machine is studied. Regarding FD methods in multiphase, three new algorithms are presented in this thesis. These proposed FD methods are also embedded in new fault-tolerant control algorithms. At the first step, a novel model based FD method is proposed to detect multiple open switch faults. This FD method is included in the developed adaptive proportional resonant control algorithm of the power converter. At the second step, two signal based FD methods are proposed. Fault-tolerant control of the power converter with the conventional PI controller is discussed. Furthermore, the theory of SMC is developed. At the last step, finite control set (FCS) model predictive control (MPC) of the five-phase brushless direct current (BLDC) motor is discussed for the first time in this thesis. A simple FD method is derived from the control signals. Inputs to all developed methods are the five-phase currents of the motor. The theory of each method is explained and compared with available methods. To validate the developed theory at each part, FD algorithm is embedded in the fault-tolerant control algorithm. Experimental results are conducted on a five-phase BLDC motor drive. The electrical motor used in the experimental results has an in-wheel outer rotor structure. This motor is suitable for electric vehicles. At the end of each part, the remarkable points and conclusions are presentedHay una creciente demanda de vehículos con menor impacto ambiental y una mayor eficiencia de combustible. Para cumplir estos requisitos, la electrificación del transporte se ha introducido en la academia y la industria en los últimos años. Vehículos eléctricos y vehículos eléctricos híbridos son dos ejemplos prácticos en los sistemas de transporte. El tren de potencia típico en los vehículos eléctricos se compone de tres partes principales, incluyendo la fuente de energía, la electrónica de potencia y un motor eléctrico. En cuanto a la máquina, de imán permanente motores son la opción dominante para vehículos híbridos ligeros en la industria debido a su mayor eficiencia y densidad de potencia. Con el fin de operar el tren de potencia, la máquina eléctrica se puede suministrar y controlado por un inversor de fuente de tensión. El convertidor se somete a diversos tipos de fallos. Según las estadísticas, 38 % de las fallas en un motor se deben al convertidor de potencia. Por otro lado, el tren de potencia eléctrica debe cumplir con un alto nivel de fiabilidad. Máquinas multifase PM pueden cumplir con los requisitos de fiabilidad debido a sus características de tolerancia a fallos. La máquina puede seguir siendo operativo con fallas en múltiples fases. En consecuencia, para realizar una unidad de motor de alta disponibilidad de múltiples fases, tres conceptos principales deben desarrollarse incluyendo la detección de fallos, el aislamiento de fallas y control tolerante a fallos. Por tanto, esta tesis doctoral se centra en la FD y control tolerante a fallos de un VSI multifase. Para lograr este objetivo la investigación, los productos alimenticios y bebidas y métodos de control que se presentan del convertidor de potencia se investigan a fondo a través de revisión de la literatura. Después de eso, se estudió la condición operativa del convertidor de múltiples el suministro de la máquina eléctrica. En cuanto a los métodos de FD en múltiples fases, tres nuevos algoritmos se presentan en esta tesis. Estos métodos FD propuestas también están integrados en los nuevos algoritmos de control con tolerancia a fallos. En el primer paso, se propone un método FD modelo novela basada detectar fallas múltiples del interruptor abierto. Este método FD está incluido en el algoritmo de control adaptativo desarrollado proporcional resonante del convertidor de potencia. En el segundo paso, se proponen dos métodos FD señal basada. Se discute el control tolerante a fallos del convertidor de potencia con el controlador PI convencional. Además, la teoría de la SMC se desarrolla. En el último paso, el control conjunto finito modelo de control predictivo del motor de cinco fases sin escobillas de corriente continua se discutió por primera vez en esta tesis. Un método FD sencilla se deriva de las señales de control. Las entradas a todos los métodos desarrollados son las corrientes de cinco de fase del motor. La teoría de cada método se explica y se compara con los métodos disponibles. Para validar la teoría desarrollada en cada parte, FD algoritmo está incorporado en el algoritmo de control tolerante a fallos. Los resultados experimentales se llevan a cabo en una unidad de motor BLDC de cinco fases. El motor eléctrico usado en los resultados experimentales tiene una estructura de rotor exterior en las cuatro ruedas. Este motor es adecuado para los vehículos eléctricos. Al final de cada parte, se presentan los puntos notables y conclusione
    corecore