2,820 research outputs found

    Geoinformation, Geotechnology, and Geoplanning in the 1990s

    Get PDF
    Over the last decade, there have been some significant changes in the geographic information available to support those involved in spatial planning and policy-making in different contexts. Moreover, developments have occurred apace in the technology with which to handle geoinformation. This paper provides an overview of trends during the 1990s in data provision, in the technology required to manipulate and analyse spatial information, and in the domain of planning where applications of computer technology in the processing of geodata are prominent. It draws largely on experience in western Europe, and in the UK and the Netherlands in particular, and suggests that there are a number of pressures for a strengthened role for geotechnology in geoplanning in the years ahead

    Geodata

    Get PDF
    Empirical data can be characterized by a precise location in space and time. An estimated 80% of all data holds such a spatio-temporal reference and is termed geodata. This paper starts with the question: What is the additional benefit for socio-economic sciences using geodata and the spatial dimension respectively? In the following a multidimensional approach is chosen to outline the Status Quo of geodata and spatial techniques in Germany. It is particularly the continuously growing amount and the variety of available geodata which is stated. Data security is an issue of high importance when using geodata. Furthermore, the present developments in price and user concepts, accessibility, technical standards and institutionalisation are addressed. A number of challenges concerning the field of geodata are identified including the open access to geodata, data security issues and standardization. The main challenge however seems to be the exchange between the rather segregated fields of geoinformation and the information infrastructure. Furthermore, the census 2011 is identified as a major challenge for the acquisition and management of geodata. Geodata and spatial techniques are a rapidly developing field due to technology developments of data and methods as well as due to recently growing public interest. Their additional be efit for socioeconomic research should be exploited in the future.geodata, geoinformation, Web-GIS, geodata-infrastructure, spatial techniques

    Geoscience after IT: Part L. Adjusting the emerging information system to new technology

    Get PDF
    Coherent development depends on following widely used standards that respect our vast legacy of existing entries in the geoscience record. Middleware ensures that we see a coherent view from our desktops of diverse sources of information. Developments specific to managing the written word, map content, and structured data come together in shared metadata linking topics and information types

    SHEER “smart” database: technical note

    Get PDF
    The SHEER database brings together a large amount of data of various types: interdisciplinary site data from seven independent episodes, research data and those for the project results dissemination process. This concerns mainly shale gas exploitation test sites, processing procedures, results of data interpretation and recommendations. The smart SHEER database harmonizes data from different fields (geophysical, geochemical, geological, technological, etc.), creates and provides access to an advanced database of case studies of environmental impact indicators associated with shale gas exploitation and exploration, which previously did not exist. A unique component of the SHEER database comes from the monitoring activity performed during the project in one active shale gas exploration and exploitation site at Wysin, Poland, which started from the pre-operational phase. The SHEER database is capable of the adoption of new data such as results of other Work Packages and has developed an over-arching structure for higher-level integration

    Geographically Referenced Data for Social Science

    Get PDF
    An estimated 80% of all information has a spatial reference. Information about households as well as environmental data can be linked to precise locations in the real world. This offers benefits for combining different datasets via the spatial location and, furthermore, spatial indicators such as distance and accessibility can be included in analyses and models. HSpatial patterns of real-world social phenomena can be identified and described and possible interrelationships between datasets can be studied. Michael F. GOODCHILD, a Professor of Geography at the University of California, Santa Barbara and principal investigator at the Center for Spatially Integrated Social Science (CSISS), summarizes the growing significance of space, spatiality, location, and place in social science research as follows: "(...) for many social scientists, location is just another attribute in a table and not a very important one at that. After all, the processes that lead to social deprivation, crime, or family dysfunction are more or less the same everywhere, and, in the minds of social scientists, many other variables, such as education, unemployment, or age, are far more interesting as explanatory factors of social phenomena than geographic location. Geographers have been almost alone among social scientists in their concern for space; to economists, sociologists, political scientists, demographers, and anthropologists, space has been a minor issue and one that these disciplines have often been happy to leave to geographers. But that situation is changing, and many social scientists have begun to talk about a "spatial turn," a new interest in location, and a new "spatial social science" that crosses the traditional boundaries between disciplines. Interest is rising in GIS (Geographic Information Systems) and in what GIS makes possible: mapping, spatial analysis, and spatial modelling. At the same time, new tools are becoming available that give GIS users access to some of the big ideas of social science."

    OpenStreetMap: User-Generated Street Maps

    Get PDF

    A Framework to Assess Returns on Investments in the Dryland Systems of Northern Kenya

    Get PDF
    Governments need quantitative assessments of the outcomes of proposed investments so they can weigh the merits of each option. Without these, there is a risk that some proposed changes could in fact reduce rather than increase benefits to the economy and society. At present, there is no definitive framework for assessing the returns to Northern Kenya's predominantly pastoralist land use, nor any prediction of its returns under anticipated climate changes. There is therefore no possibility of comparing returns between this and any alternatives. Flagship projects planned to accelerate economic development in Northern Kenya include an international transport corridor, a resort city and an international airport. In addition, mineral deposits are being discovered, towns are growing across both arid and semi-arid areas, and land speculation is increasing. The county governments are faced with the task of prioritising investments which can do the most to improve living standards for local people. This paper is intended to stimulate and contribute to a discussion of how the returns on land-based investments in the drylands should be evaluated. It presents an assessment framework for weighing the total economic value of the ecosystem services provided by pastoral and mixed land-use systems under anticipated climate changes and variability. The proposed framework draws on contributions from previous research at IIED and by other research partners focusing on ecosystem service assessment in Northern Kenya and surrounding dry regions. The paper reviews the current state of knowledge on the returns from pastoral and other land uses in the region, identifies research gaps and highlights the next steps needed for implementing the framework
    • …
    corecore