134,219 research outputs found

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions

    Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft

    Get PDF
    The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system

    Sequential design of a linear quadratic controller for the Deep Space Network antennas

    Get PDF
    A new linear quadratic controller design procedure is proposed for the NASA/JPL Deep Space Network antennas. The antenna model is divided into a tracking subsystem and a flexible subsystem. Controllers for the flexible and tracking parts are designed separately by adjusting the performance index weights. Ad hoc weights are chosen for the tracking part of the controller and the weights of the flexible part are adjusted. Next, the gains of the tracking part are determined, followed by the flexible controller final tune-up. In addition, the controller for the flexible part is designed separately for each mode; thus the design procedure consists of weight adjustment for small-size subsystems. Since the controller gains are obtained by adjusting the performance index weights, determination of the weight effect on system performance is a crucial task. A method of determining this effect that allows an on-line improvement of the tracking performance is presented in this article. The procedure is illustrated with the control system design for the Deep Space Station (DSS)-13 antenna

    Disturbances monitoring from controller states

    Get PDF
    In this paper, it is proposed to implement a given controller using observer-based structures in order to estimate or to monitor some unmeasured plant states or external disturbances. Such a monitoring can be used to perform in-line or off-line analysis (supervising controller modes, capitalizing flight data to improve disturbance modelling, ...). This observer-based structure must involve a judicious onboard model selected to be representative of the physical phenomenon one want to monitor. This principle is applied to an aircraft longitudinal flight control law to monitor wind disturbances and to estimate the angle-of-attack

    Flutter suppression for the active flexible wing: Control system design and experimental validation AIAA-92-2097

    Get PDF
    The synthesis and experimental validation of a control law for13; an actiqe flutter suppression system for the Active Flexible13; Wing wind-tunnel model is presenied. The design was13; accomplished with traditional root locus and Nyquist methods13; using interactive computer graphics tools and with extensive use13; of simulation-based analysis. The design approach relied on a13; fundamental understanding of the flutter mechanism to13; formulate a simple control law structure. Experimentally, the13; flutter suppression controller succeeded in simultaneous13; suppression of two flutter modes, significantly increasing the13; flutter dynamic pressure despite errors in the design model. The13; flutter suppression controller was also successfully operated in13; combination with a rolling maneuver controller to perform13; flutter suppression during rapid rolling maneuvers

    Autonomous pointing control of a large satellite antenna subject to parametric uncertainty

    Get PDF
    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness

    Application of a Combined Active Control and Fault Detection Scheme to an Active Composite Flexible Structure.

    Get PDF
    In this paper, the problem of increasing reliability of active control procedure is considered. Indeed, a design method of rejection perturbation in presence of potentially faults, on a flexible structure with integrated piezo-ceramics, is presented. The piezo-ceramics are used as actuators and sensors. A single unit based solution, which handles both control action and fault diagnosis is proposed. The algorithm uses H∞ optimization techniques. A full order model of the structure is first obtained via both finite-element (FE) approach and identification procedure. This model is then reduced in order to be used in our robust approach. By a suitable choice of weightings functions, the provided method is able to reject disturbance robustly and to estimate occurred faults. The case of sensors and actuators faults is discussed. The choice of weightings for diagnosis and control systems is also tackled. Finally, the effectiveness of this integrated method is confirmed by both simulation and experimental results

    Fractional robust control of ligthly damped systems

    Get PDF
    The article proposes a method to design a robust controller ensuring the damping ratio of a closed-loop control. The method uses a contour para-meterized by the damping ratio in the Nichols plane and the complex non-integer (or fractional)differentiation to compute a transfer function whose open-loop Nichols locus tangents this contour, thus ensuring dynamic performance. The proposed method is applied to a flexible structure (a clamped-free beam with piezoelectric ceramics). The aims of the control loop are to decrease the vibrations and to ensure the damping ratio of the controlled system
    corecore