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Abstract: The article proposes a method to design a 
robust controller ensuring the damping ratio of a 
closed-loop control. The method uses a contour 
parameterized by the damping ratio in the Nichols 
plane and the complex non-integer (or fractional) 
differentiation to compute a transfer function whose 
open-loop Nichols locus tangents this contour, thus 
ensuring dynamic performance. The proposed method 
is applied to a flexible structure (a clamped-free beam 
with piezoelectric ceramics). The aims of the control 
loop are to decrease the vibrations and to ensure the 
damping ratio of the controlled system. 
 
 
 
 
 
 

1. INTRODUCTION 
 
The reduction of structural vibration has been challenging 
engineers for many years; innumerable applications exist 
where vibration control is beneficial, if not essential.  
In the control of vibrations, the damping ratio is an 
important data since it indicates how quickly the vibrations 
decrease. When control of vibration is at stake, it can be 
useful to control this parameter.  
This article deals with the control of uncertain plants. The 
method used to compute robust controller is the CRONE 
method [1]. CRONE control is a frequency-domain based 
methodology to design robust linear controller using 
complex-order differentiation [2]. As the method uses the 
frequency domain, it is necessary to define an element that 
quantifies the damping ratio in the frequency domain. The 
“iso-damping” contour defined by Oustaloup [3] is a 
contour whose graduation is the damping ratio ζ in the 
Nichols plane. So by computing a transfer function whose 
open-loop Nichols locus tangents this contour, the 
damping ratio of the closed-loop can be controlled. 
 
The article falls into two parts. Section 2 introduces the 
transfer function of a complex non-integer integrator 
defining a generalized template which will be considered 
as part of an open-loop Nichols locus [1]. This transfer 

function is used first for the construction in the Nichols 
plane of a network of iso-damping contours. 
Section 3 describes the CRONE control based on complex-
order differentiation. The interest of the fractional order is 
to define a transfer function with few parameters and thus 
to simplify the computations. 
Section 4 introduces the methodology based on the 
CRONE control to compute a closed-loop ensuring the 
damping ratio. The methodology is applied to a flexible 
structure which is a free-clamped beam with co-localized 
piezoelectric ceramics used as actuator to limit the 
vibrations and as sensor to measure these vibrations. 
Different masses are fixed at the extremity of the beam and 
change its characteristics. Robust control can thus be 
tested. Two cases are studied to validate the method. The 
first case is a closed –loop with a damping ratio of 0.1 and 
the second case is a closed –loop with a damping ratio of 
0.7. 
 
 

II.COMPLEX NON-INTEGER INTEGRATION, 
ISODAMPING CONTOURS AND OPEN LOOP 

TRANSFER FUNCTION 
 
A. Generalized template and non-integer integration 
 
A “vertical template” [1] - that is to say a vertical segment 
in the Nichols plane - is obtained using the real fractional 
(or non-integer) integration [4]. Indeed, the vertical 
template (Fig.1) is described by the transfer function of a 
real non-integer integrator of order, n, which defines its 
phase placement at crossover frequency ωcg, -n90°: 
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From the extension of the description of the vertical 
template, the “generalized template” - that is to say an any-
direction straight line segment in the Nichols plane - can 
be obtained using the complex non-integer integration of 
order n. The real part defines its phase placement at ωcg, 
 -Re(n)90°, and the imaginary part defines its angle to the 
vertical (Fig.1). The generalized template is thus described 
by the transfer function [1]: 
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The imaginary unit i of the integration order n (n = a + ib) 
is independent of the imaginary unit j of the variable s 
(s=σ+jω). 
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Fig.1. Representation of the vertical template and of the 

generalized template in the Nichols chart 
 
B. Isodamping contour [3][5] 
 
The easiest geometrical way to construct an isodamping 
contour is to use an envelope technique. The contour is 
then defined as the envelope tangented by a set of 
segments (Fig.2). In the Nichols plane, each segment of the 
set can be considered as the rectilinear part of an open-loop 
Nichols locus that ensures the closed-loop damping ratio 
corresponding to the contour. This rectilinear part around 
gain crossover frequency, ωcg, is the “generalized 
template” defined above. 
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Fig.2. Envelope defining an isodamping contour in the 

Nichols plane 
 
Isodamping contours can be defined analytically using a 
polynomial equation determined by interpolation of 
graphical data of each contour [3]. A contour Γζ   is thus 
defined by: 
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X and Y  being the coordinates expressed in degrees and in 
decibels and ajk the coefficients given in table 1. 
The equation of the tangent to Γζ at point (Xi, Yi) is 
deduced from relation (3) and can be written: 
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TABLE 1. VALUES OF COEFFICIENTS ajk 
 
   j/ k 0 1 2 3 

0 -180.36 117.7 -74.316 40.376 
1 -1.1538 3.8888 -5.2999 2.5417 
2 -0.0057101 0.0080962 -0.0060354 0.0016158 

 
 

III.CRONE CONTROL 
 
CRONE (the French acronym of "Commande Robuste 
d'Ordre Non Entier") control system design [1,4] is a 
frequency-domain based methodology, using complex 
fractional differentiation. It permits the robust control of 
perturbed linear plants using the common unity feedback 
configuration. It consists on determining the nominal and 
optimal open-loop transfer function that guaranties the 
required specifications. This methodology uses fractional 
derivative orders (real or complex) as high level 
parameters that make you easy the design and optimization 
of the control-system. While taking into account the plant 
right half-plane zeros and poles, the controller is then 
obtained from the ratio of the open-loop frequency 
response to the nominal plant frequency response. Three 
Crone control generations have been developed, 
successively extending the application fields. In this paper, 
the third generation will be applied.  
 
A. Open-loop transfer function 
 
The open-loop transfer function (Fig.3) of the initial third 
generation Crone method is based on the generalized 
template described previously and takes into account: 
- the accuracy specifications at low frequencies; 
- the generalized template around frequency ωcg; 
- the plant behavior at high frequencies in accordance 
with input sensitivity specifications for these frequencies. 
 
For stable minimum-phase plants, this function is written: 

)()()()( hml ssss ββββ = . (8) 

•  βm(s), based on complex non-integer integration, is the 
transfer function describing the band-limited generalized 
template [1]: 
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q’ being the smallest integer such that b’ verifies 
( )21 ,min' bbb <  with: 
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and K  being computed to get a gain of 0 dB at ωcg.  
 
•  βl(s) is the transfer function of order nl proportional-
integrator, whose corner frequency equals the low corner 
frequency of βm(s), so that joining βl(s) and βm(s) does not 
introduce extra parameters. βl(s) is defined by: 
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If npl is the order of asymptotic behavior of the plant in low 
frequency (ω <<ωl), order nl is given by   1l ≥n if  
npl = 0, and   pll nn ≥ if 1 pl ≥n , with  nl=1 canceling the 
position error and nl=2 canceling the velocity error. 
 
•  βh(s) is the transfer function of order nh low-pass filter, 
whose corner frequency equals the high corner frequency 
of βm(s), so that joining βh(s) and βm(s) does not introduce 
extra parameters. βh(s) is defined by: 
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If nph is the order of asymptotic behavior of the plant in 
high frequency (ω >>ωh), order nh is given by phh nn ≥ , 
with nh = nph ensuring invariability of the input sensitivity 
function with the frequency, and nh > nph ensuring 
decrease. 
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Fig.3. Different parts of the open-loop Nichols locus 

 
 
  

 At frequency ωr for which the tangency will be reached, 
the modulus and the argument of the open-loop frequency 
response are expressed respectively by: 
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The equation of the tangent to the Nichols locus at this 
frequency is given by: 
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B. CRONE methodology  
 
 The third generation CRONE methodology can be 
described in five points: 
 
1 - You determine the nominal plant transfer function and 
the uncertainty domains. For a given frequency, an 
uncertainty domain (called “template” by the QFT users 
[6]) is the smallest hull including the possible frequency 
responses of the plant. The use of the edge of the domains 
permits to take into account the uncertainty with the 
smallest number of data. To construct this domain 
securely, the simplest way is to define it convexly. 
 
2 - You specify some parameters of the open-loop transfer 
function defined for the nominal state of the plant: the 
number of band-limited generalized templates N+ and N, 
and the rational orders nl and nh. 
 
3 - You specify the bounds of the sensibility functions that 
you would like to obtain. Let 

nomrM  be the required 
resonant peak of the nominal complementary sensitivity 
function. 
 
4 - Using the nominal plant locus and the uncertainty 
domains in the Nichols chart, you optimize the parameters 
ωr, ak and bk (for k≠0),ωk and ωk+1 in order to obtain the 
optimal open-loop Nichols locus. An open-loop Nichols 
locus is defined as optimal if it tangents the 

nomrM  
magnitude contour and if it minimizes the variations of Mr 
for the other parametric states. By minimizing the cost 
function ( )2

max nomrr MMJ −=  where 
maxrM  is the 

maximal value of resonant peaks Mr, the optimal open-
loop Nichols locus positions the uncertainty domains 



correctly, so that they overlap the low stability margin 
areas as little as possible (Figure 4: case (c) is the best 
configuration). The minimization of J is carried out under 
a set of shaping constraints on the four usual sensitivity 
functions. 
 
5 - The last point is the synthesis of the controller. While 
taking into account the plant right half-plane zeros and 
poles, the controller is deduced by the frequency-domain 
system identification of the ratio of βnom(jω) to the nominal 
plant function transfer Gnom(jω). The resulting controller 
K(s) is a rational transfer function. 
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Fig.4. Optimal open-loop Nichols locus to position the 

uncertainty domains 
 
 
 

IV. CRONE CONTROL APPLIED TO 
LIGHTLY DAMPED SYSTEMS 

 
The methodology of the CRONE control can be adapted to 
plants whose damping ratio needs to be controlled. Indeed, 
in this article, we propose to apply the methodology of the 
CRONE control described in the previous section but to 
compute an open-loop Nichols locus that tangents an iso-
damping contour instead of a magnitude contour. The 
objective is to control the damping ratio in a robust way.   
 
In order to validate this idea, it has been applied to a 
simple flexible structure: a clamped-free beam with two 
co-localised piezoelectric ceramics (figure 5). One ceramic 
is used as actuator and this other as sensor. This example 
has been chosen since it can represent different 
applications (ailerons, electronic boards,…). The 
characteristics of the structure chosen for the example are 
given in table 2. 

 

Actuator 

Sensor  
 

 
 

Fig.5. Clamped-free beam with piezoelectric ceramics 
 

TABLE 2:  SYSTEM PROPERTIES 

 Beam Actuator 
Length (mm) 300 25 
Width (mm) 20 20 
Thickness (mm) 2 0.5 
Density (kg/m3) 2970 7800 
Young’s Modulus (GPa) 75 67 
Piezoelectric Const. (pm/V) - -210 

 
The free response of the flexible system to a perturbation is 
given in the Figure 6. It is a very lighted-damped system. 
 

 
Fig.6. Free response of the flexible system  

 
At the extremity of the beam, masses are added to modify 
the characteristics of the plant and to test the robustness of 
the controller. 
The models of the plant for the different values of the mass 
are given in the table 3 and the figure 7 shows the transfer 
functions of the plant for the different cases.  
 

TABLE 3:  SYSTEM MODELS 

 
 Mode 1 Quality 

factor of 
mode 1 

Mode 2 Quality 
factor of 
mode 2 

No mass 19.08 74 114.4 165 
Mass 1 18.48 92 111.5 192 
Mass 2 17.49 82 107.3 66 
Mass 3 15.53 86 101.3 99 
Mass 4 14.98 83 100.6 102 



 

 
 
Fig.7. Transfer functions of the flexible system for the five 

cases of Table 3. 
 
 
 Note that for damping plants, it is necessary to complete 
the open-loop transfer function with the resonance modes 
and in some cases with notch filters [7]. For the system 
under study, the aim is to control the vibrations for the first 
two modes. So the open-loop transfer function described in 
(8) is completed with the transfer functions of the first two 
resonances and of the anti-resonance of the nominal plant.  
 
 
A. STUDY 1 
 
For the first study, the aim is to ensure a damping ratio of 
value 0.1. 
The limits on the sensitivity functions are given by the 
following constraints:   
- the maximum plant input (1V),  
- the maximum magnitude Tmax of the complementary 

sensitivity function set at 3 dB,  
- the maximum magnitude Smax of the sensitivity 

function set at 6dB and the minimum set at -10dB. 
 
 
Only one generalized template is used in the definition of 
the open-loop. Two notch filters are also added and theirs 
expressions are:  
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The parameters obtained after optimization are: 

06.2=a , 278.0=b  ; 12=rw rad/s ; Yr = -5.28dB; 
42.80 =w  rad/s ; 10001 =w  rad/s  . 

 
The Nichols locus of the nominal open-loop and the 
domains of uncertainties are given in Figure 8. The 
Nichols locus tangents the iso-damping contour of value 
0.1 and the domains uncertainties do not penetrate into the 
contours. 
 

 
Fig.8 Case n°1 –Nominal open-loop Nichols locus and 

domains of uncertainties 
 
 

The transfer function of the controller is synthesized by a 
frequency-domain identification and its expression is:   
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Tests are achieved on the plant. The flexible structure is 
deviated from its equilibrium position and released.  Figure 
9 shows the plant input u and the plant output y in the case 
where no mass is added. The damping ratio measured on 
the output is 0.12.  It is close to the expected value of 0.1.  
 

 
Fig.9. Case n°1 - Plant input and output if no mass added 

 
Figure 10 shows the plant output for the four different 
values of added mass and the robustness of the controller 
can be noticed. 
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Fig.10. Case n°1 - Plant outputs in four different cases 



B. STUDY 2 
 
For the second study, the aim is to ensure a damping ratio 
of value 0.7. 
The constraints on the sensitivity functions are the same as 
in the case of study 1.   
Only one generalized template is used in the definition of 
the open-loop. Two notch filters are also added and theirs 
expressions are:  
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The parameters obtained after optimization are: 
18.1=a , 46.0=b  ; 12=rw rad/s ; Yr = -8.2 dB; 

4.50 =w  rad/s ; 1481 =w  rad/s . 
The Nichols locus of the nominal open-loop and the 
domains of uncertainties are given in Figure 11. It is more 
difficult in this case to ensure that the domains of 
uncertainties do not penetrate into the iso-damping 
contour. 
The transfer function of the controller is synthesized by a 
frequency-domain identification and its expression is:   
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Fig.11. Case n°2 –Nominal open-loop Nichols locus and 
domains of uncertainties 

 
Tests are achieved on the plant. Figure 12 shows the plant 
input u and the plant output y in the case where no mass is 
added. The plant input nearly does not exceed its 
maximum value and the output comes back to the 
equilibrium position very quickly, that is expected with a 
damping ratio of 0.7. 

 
Fig.12. Case n°2 - Plant input and output if no mass added 

As in the other case, figure 13 shows the output for the 
four different values of added mass and the robustness of 
the controller can be checked.  
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Fig.13. Case n°2 - Plant outputs in four different cases  

 
 

V. CONCLUSION 
 
This article has introduced a method to design a robust 
controller ensuring the damping ratio of a closed-loop 
control. The first part of this article (section 2) introduces 
the generalized template based on complex non-integer 
integration and recalls the method for construction of iso-
damping contours by the envelope technique. This 
technique uses segments obtained using complex non-
integer integration. Section 3 describes the CRONE 
methodology. Section 4 concerns the proposed 
methodology and its application to a flexible structure in 
two cases of study. The results show the efficiency of the 
method. 
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