479 research outputs found

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Fluctuation diamagnetism around the superconducting transition in a cuprate crystal with a reduced Meissner fraction

    Full text link
    The magnetization around the superconducting transition was measured in a Tl0.5_{0.5}Pb0.5_{0.5}Sr2_2CaCu2_2O7_7 crystal affected by a considerable reduction (\sim55%) of its effective superconducting volume fraction but still with a relatively sharp low-field Meissner transition, a behaviour that may be attributed to the presence of structural inhomogeneities. By taking into account these inhomogeneities just through the Meissner fraction, the observed diamagnetism may still be explained, consistently above and below the superconducting transition, in terms of the conventional Ginzburg-Landau approach with fluctuations of Cooper pairs and vortices.Comment: 4 pages, 4 figure

    Violation of the Widom scaling law for effective crossover exponents

    Full text link
    In this work we consider the universal crossover behavior of two non-equilibrium systems exhibiting a continuous phase transition. Focusing on the field driven crossover from mean-field to non-mean-field scaling behavior we show that the well-known Widom scaling law is violated for the effective exponents in the so-called crossover regime.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    VPOET: Using a Distributed Collaborative Platform for Semantic Web Applications

    Get PDF
    This paper describes a distributed collaborative wiki-based platform that has been designed to facilitate the development of Semantic Web applications. The applications designed using this platform are able to build semantic data through the cooperation of different developers and to exploit that semantic data. The paper shows a practical case study on the application VPOET, and how an application based on Google Gadgets has been designed to test VPOET and let human users exploit the semantic data created. This practical example can be used to show how different Semantic Web technologies can be integrated into a particular Web application, and how the knowledge can be cooperatively improved.Comment: accepted for the 2nd International Symposium on Intelligent Distributed Computing - IDC'2008. September 18-20, 2008, Catania, Ital

    Divine Foreknowledge and the Problem of Evil: Four Views

    Get PDF
    This paper examines the issues of divine foreknowledge and the Problem of Evil from the standpoint of four different theological systems: Open Theism, Arminianism, Molinism, and Calvinism. The author summarizes each view’s understanding of divine foreknowledge and then explains how this understanding applies to the view’s refutation of the Problem of Evil

    What is Autonomy?

    Get PDF
    A system is autonomous if it uses its own information to modify itself and its environment to enhance its survival, responding to both environmental and internal stimuli to modify its basic functions to increase its viability. Autonomy is the foundation of functionality, intentionality and meaning. Autonomous systems accommodate the unexpected through self-organizing processes, together with some constraints that maintain autonomy. Early versions of autonomy, such as autopoiesis and closure to efficient cause, made autonomous systems dynamically closed to information. This contrasts with recent work on open systems and information dynamics. On our account, autonomy is a matter of degree depending on the relative organization of the system and system environment interactions. A choice between third person openness and first person closure is not required

    Spontaneous breaking of the BRST symmetry in the presence of the Gribov horizon : renormalizability

    Get PDF
    An all orders algebraic proof of the multiplicative renormalizability of the novel formulation of the Gribov-Zwanziger action proposed in Phys. Rev. D 86, 045005 (2012) [arXiv:1205.3934], and allowing for an exact but spontaneously broken BRST symmetry, is provided.Comment: 15 page

    Can planetesimals form by collisional fusion?

    Full text link
    As a test bed for the growth of protoplanetary bodies in a turbulent circumstellar disk we examine the fate of a boulder using direct numerical simulations of particle seeded gas flowing around it. We provide an accurate description of the flow by imposing no-slip and non-penetrating boundary conditions on the boulder surface using the immersed boundary method pioneered by Peskin (2002). Advected by the turbulent disk flow, the dust grains collide with the boulder and we compute the probability density function (PDF) of the normal component of the collisional velocity. Through this examination of the statistics of collisional velocities we test the recently developed concept of collisional fusion which provides a physical basis for a range of collisional velocities exhibiting perfect sticking. A boulder can then grow sufficiently rapidly to settle into a Keplerian orbit on disk evolution time scales.Comment: Astrophysical Journal, in pres

    On the Interplay Between Edge Caching and HARQ in Fog-RAN

    Full text link
    In a Fog Radio Access Network (Fog-RAN), edge caching is combined with cloud-aided transmission in order to compensate for the limited hit probability of the caches at the base stations (BSs). Unlike the typical wired scenarios studied in the networking literature in which entire files are typically cached, recent research has suggested that fractional caching at the BSs of a wireless system can be beneficial. This paper investigates the benefits of fractional caching in a scenario with a cloud processor connected via a wireless fronthaul link to a BS, which serves a number of mobile users on a wireless downlink channel using orthogonal spectral resources. The fronthaul and downlink channels occupy orthogonal frequency bands. The end-to-end delivery latency for given requests of the users depends on the HARQ processes run on the two links to counteract fading-induced outages. An analytical framework based on theory of Markov chains with rewards is provided that enables the optimization of fractional edge caching at the BSs. Numerical results demonstrate meaningful advantages for fractional caching due to the interplay between caching and HARQ transmission. The gains are observed in the typical case in which the performance is limited by the wireless downlink channel and the file popularity distribution is not too skewed
    corecore