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Abstract

An all orders algebraic proof of the multiplicative renormalizability of the novel formulation of the Gribov-
Zwanziger action proposed in [1], and allowing for an exact but spontaneously broken BRST symmetry, is
provided.

1 Introduction

In recent years much attention has been devoted to the study of the issue of the Gribov copies [2] and of its
relevance for confinement in Yang-Mills theories1 . The existence of the Gribov copies is a general feature of the
gauge fixing quantization procedure, being related to the impossibility of finding a local gauge condition which
picks up only one gauge configuration for each gauge orbit [5]. As it has been shown by Gribov and Zwanziger
[2, 6, 7], a partial resolution of the Gribov problem in the Landau gauge can be achieved by restricting the domain
of integration in the functional Euclidean integral to the first Gribov horizon. Remarkably, this restriction has
resulted into a local and renormalizable action, known as the Gribov-Zwanziger action [6, 7].

More recently, a Refined version of the Gribov-Zwanziger action has been worked out in [8, 9, 10], leading to a
tree level gluon propagator whose behavior in the infrared region is in very good agreement with the most recent
lattice numerical simulations [11, 12, 13, 14, 15, 16]. Thispropagator displays complex poles in momentum
space. As such, it cannot describe the propagation of physical excitations. Rather, it is suited for a kind of effective
description of gluon confinement, see also [17]. In spite of the appearance of complex poles, the Refined-Gribov-
Zwanziger gluon propagator has been successfully employedto investigate the correlation functions of gauge
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invariant composite glueball operators in order to get estimates of the glueball masses. It turns out that a Källén-
Lehmann spectral representation with positive spectral density can be extracted from these correlation functions
[18],with numerical verification recently considered in [19]. The resulting mass estimates for the lowest glueball
states with quantum numbersJPC = 0++,2++,0−+, are in qualitative agreement with the available numericaldata
on the spectrum of the glueballs [20]. Let us also mention that such type of gluon propagator has also been used
in previous studies in hadron physics [21, 22], see also [23,24] for a recent attempt to generalize the Refined-
Gribov-Zwanziger action by including quarks and associated chiral symmetry breaking. Recently, complex pole
propagators were also considered in terms of semi-analytical approaches to the QCD phase diagram [25, 26],
partially motivated by fits to finite temperature lattice gluon data [27, 28].

Although the aforementioned results can be taken as evidence of the fact that the Refined Gribov-Zwanziger
theory can be effectively employed to investigate the physical spectrum of a confining Yang-Mills theory, there
are still many aspects of the theory which remain to be understood. Certainly, the systematic construction of
a set of composite operators whose correlation functions can be directly related to the physical spectrum of a
confining Yang-Mills theory is one of the most challenging aspects of the Gribov-Zwanziger framework for color
confinement. At present, the characterization of the analyticity and of the unitarity properties of these correlation
functions seems a highly cumbersome task, taking into account that explicit calculations have to be done by
employing a confining gluon propagator exhibiting complex poles.

Amongst the various open aspects of the Gribov-Zwanziger framework, the issue of the BRST symmetry is a
source of continuous investigations, see for example [6, 7,9, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] for an
overview of what has been already done on this topic. We expect that a better understanding of the role of the
BRST symmetry in confining Yang-Mills theories would be of great relevance in order to face the characterization
of the physical spectrum.

In a recent work [1], some of the authors have been able to obtain an equivalent formulation of the Gribov-
Zwanziger action which displays an exact BRST symmetry which turns out to be spontaneously broken by the
restriction of the domain of integration to the Gribov horizon. In particular, in [1], the BRST operators retains the
important property of being nilpotent,i.e. s2 = 0. This feature enabled us to make use of the powerful tool of the
cohomology ofs [41, 40] in order to prove that the set of colorless gauge invariant operators corresponding to the
cohomology classes ofs is closed under time evolution [1]. Moreover, it has also been shown that the Goldstone
mode associated to the spontaneous breaking ofs is completely decoupled.

The aim of the present article is to fill a gap not addressed in the previous work [1], namely, the renormalizability
to all orders of the spontaneous symmetry breaking formulation of the Gribov-Zwanziger theory ind = 4. As we
shall see, the action obtained in [1] enjoys a large set of Ward identities which enables us to prove that it is, in fact,
multiplicatively renormalizable to all orders.

The paper is organized as follows. In Sect. 2 we provide a short summary of the BRST spontaneous symmetry
breaking formulation of the Gribov-Zwanziger action. In Sect. 3 we derive numerous Ward identities fulfilled by
the action in the novel formulation. In Sect. 4, the renormalizability to all orders of the model is established by
means of the algebraic renormalization procedure [40].
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2 A novel formulation of the Gribov-Zwanziger action and the spontaneous break-
ing of the BRST symmetry

Let us start by recalling the expression of the Gribov-Zwanziger action which enables us to restrict the Euclidean
functional integral to the first Gribov horizon, namely

SGZ =
1
4

∫
d4x Fa

µνFa
µν +

∫
d4x

(
iba∂µAa

µ+ca∂µDab
µ cb

)

+

∫
d4x
(

ϕac
µ ∂νDam

ν ϕmc
µ −ωac

µ ∂νDam
ν ωmc

µ −g
(
∂νωac

µ

)
f abm(Dνc)b ϕmc

µ

)

+
∫

d4x
(
−γ2g fabcAa

µ(ϕ
bc
µ +ϕbc

µ )−4
(
N2−1

)
γ4
)
. (1)

The fieldba stands for the Lagrange multiplier implementing the Landaugauge condition,∂µAa
µ = 0, andca,ca

are the corresponding Faddeev-Popov ghosts. The fieldsϕab
µ ,ϕab

µ are a pair of bosonic fields, whileωab
µ ,ωab

µ are
a pair of anticommuting fields. These fields are needed in order to implement the restriction to the first Gribov
horizon in a local way [6, 7, 9]. All fields belong to the adjoint representation of the gauge groupSU(N). The
massive parameterγ2, called the Gribov parameter, is not a free parameter, beingdetermined in a self-consistent
way through the gap equation

∂Evac

∂γ2 = 0 , (2)

whereEvac stands for the vacuum energy of the theory [2, 6, 7],

e−Evac =

∫
[DΦ] e−SGZ . (3)

It turns out that the Gribov-Zwanziger action (1) does not exhibits an exact BRST invariance [6, 7, 9], which is
softly broken by the Gribov parameterγ2. Indeed,

sSGZ = −γ2
∫

d4x
(

g fabcDak
µ ck(ϕbc

µ +ϕbc
µ )+g fabcAa

µωbc
µ

)
, (4)

wheresstands for the nilpotent BRST operator

sAa
µ = −Dab

µ cb =−(∂µδab+g facbAc
µ)c

b , sca =
g
2

f acbcbcc , sca = iba , sba = 0 ,

sωab
µ = ϕab

µ , sϕab
µ = 0 , sϕab

µ = ωab
µ , sωab

µ = 0 , s2 = 0 . (5)

In ref.[1] it was proposed to replace expression (1) by the following action

S′GZ =
1
4

∫
d4x Fa

µνFa
µν +

∫
d4x

(
iba∂µAa

µ+ca∂µDab
µ cb

)

+

∫
d4x
(

ϕac
µ ∂νDam

ν ϕmc
µ −ωac

µ ∂νDam
ν ωmc

µ −g
(
∂νωac

µ

)
f abm(Dνc)b ϕmc

µ

)

+

∫
d4x
(
−G

ab
µν∂2Gab

µν +F
ab
µν∂2F ab

µν −G
ab
µνDak

µ ϕkb
ν −g fakℓG

ab
µνDℓp

µ cpωkb
ν

)

+

∫
d4x

(
−Ĝ

ab

µν∂2Ĝab
µν + F̂

ab

µν∂2F̂ ab
µν + F̂

ab

µνDak
µ ωkb

ν − Ĝ
ab

µνDak
µ ϕkb

ν +g fakℓF̂
ab

µνDℓp
µ cpϕkb

ν

)

+
∫

d4x

(
H ab

µν

(
G

ab
µν −δµνδabγ2

)
+ Ĥ ab

µν

(
Ĝ

ab

µν −δµνδabγ2
)
−G

ab
µνĜ

ab

µν

)
, (6)
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where we have introduced two new BRST quartets [40] of fields consisting ofF ab
µν , F

ab
µν (commuting),Gab

µν , G
ab
µν

(anticommuting) and their hat-counterparts:

sF
ab
µν = G

ab
µν , sG

ab
µν = 0, sF̂

ab

µν = Ĝ
ab

µν , sĜ
ab

µν = 0,

sGab
µν = F ab

µν , sF ab
µν = 0, sĜab

µν = F̂ ab
µν , sF̂ ab

µν = 0 , (7)

as well as the singlet fieldsH ab
µν ,Ĥ

ab
µν

sH ab
µν = sĤ ab

µν = 0 . (8)

It is easily checked that the action (6) can be rewritten as

S′GZ =
1
4

∫
d4x Fa

µνFa
µν +s

∫
d4x

(
ca∂µAa

µ+ωac
µ ∂νDam

ν ϕmc
µ

)

+s
∫

d4x

(
−F

ab
µν∂2Gab

µν −G
ab
µνDak

µ ωkb
ν − F̂

ab

µν∂2Ĝab
µν − F̂

ab

µνDak
µ ϕkb

ν

)

+
∫

d4x

(
H ab

µν

(
G

ab
µν −δµνδabγ2

)
+ Ĥ ab

µν

(
Ĝ

ab

µν −δµνδabγ2
)
−G

ab
µνĜ

ab

µν

)
, (9)

from which it can be established thatS′GZ has an exact BRST invariance

sS′GZ = 0 , (10)

whereby we have preserved the nilpotency of the BRST operator, s2 = 0.

As discussed in [1], the formulation provided by the novel action S′GZ is equivalent to that of the original Gribov-
Zwanziger actionSGZ. Let us therefore point out that, using the algebraic exact equations of motion of the fields

(H ,Ĥ ),

G
ab
µν = Ĝ

ab

µν = γ2δabδµν , (11)

we immediately recover theγ-dependent part of the Gribov-Zwanziger action, namely

∫
d4x

(
−G

ab
µνDak

µ ϕkb
ν − Ĝ

ab

µνDak
µ ϕkb

ν −G
ab
µν∂2Gab

µν − Ĝ
ab

µν∂2Ĝab
µν −G

ab
µνĜ

ab

µν +H ab
µν

(
G

ab
µν −δµνδabγ2

))

H −,Ĥ −EOM
−→

∫
d4
(
−γ2g fabcAa

µ

(
ϕbc

µ +ϕbc
µ

)
−4(N2−1)γ4

)
. (12)

Moreover, the integration over the fieldsF , F , F̂ andF̂ turns out to generate a unity in the partition function, as
can be seen by performing the following simultaneous changes of integration variables:

F̂ ab
µν → F̂ ab

µν −
1
∂2

(
Dak

µ ωkb
ν +g fakℓDℓp

µ cpϕkb
ν

)
, ωtb

ν → ωtb
ν +

[
(∂D)−1]tk(g fakℓG

ab
µνDℓp

µ cp
)
,

F ab
µν → F ab

µν −
1
∂2

(
Dak

µ ωkb
ν +g fakℓDℓp

µ cpϕkb
ν

)
, (13)

from which the equivalence between the two formulations, expressed by means of (1) and (6), follows.

Let us proceed by showing how the spontaneous breaking of theBRST symmetry is realized in the new formulation
of the Gribov-Zwanziger action. To that end, let us rewrite the actionS′GZ by again making explicit use of the

4



equations of motion (11). Thus

S′GZ =
1
4

∫
d4x Fa

µνFa
µν +

∫
d4xs

(
ca∂µAa

µ+ωac
µ ∂νDam

ν ϕmc
µ

)

+

∫
d4x

(
F

ab
µν∂2F ab

µν − γ2 s(Dak
µ ωka

µ )+ F̂
ab

µν∂2F̂ ab
µν − γ2Dak

µ ϕka
µ + F̂

ab

µν s(Dak
µ ϕkb

ν )− γ4d(N2−1)

)
.

(14)

This expression turns out to be left invariant by the following nilpotent BRST transformations:

sAa
µ = −Dab

µ cb =−(∂µδab+g facbAc
µ)c

b , sca =
g
2

f acbcbcc , sca = iba , sba = 0 ,

sωab
µ = ϕab

µ , sϕab
µ = 0 , sϕab

µ = ωab
µ , sωab

µ = 0 ,

sF
ab
µν = γ2δabδµν , sF̂

ab

µν = γ2δabδµν , sGab
µν = F ab

µν , sF ab
µν = 0 ,

sĜab
µν = F̂ ab

µν , sF̂ ab
µν = 0 , (15)

with
sS′GZ = 0, s2 = 0 . (16)

Furthermore, from equations (15), it follows that the BRST operator suffers from spontaneous symmetry breaking.
In fact

〈sF
ab
µν〉= γ2δabδµν , 〈sF̂

ab

µν〉= γ2δabδµν . (17)

Let us end this short summary by mentioning the important feature that the Goldstone mode associated to the
spontaneous symmetry breaking of the BRST operator turns out to be completely decoupled from the theory, see
[1] for the argument.

3 Ward identities

The first step in order to prove the all orders renormalizability of the novel formulation is to establish the set of
Ward identities obeyed by the actionS′GZ, eq.(6). To that end, and following the algebraic renomalization procedure
[40], we introduce a set of external sourcesλab

i ,ρab
i ,Ka

µ,L
a transforming as

sλab
i = ρab

i , sρab
i = 0 , sKa

µ = sLa = 0 , (18)

and the complete BRST invariant actionΣ

Σ =
∫

d4x

{
1
4

Fa
µνFa

µν + iba∂µAa
µ+ c̄a∂µDab

µ cb+ φ̄a
i ∂µDab

µ φb
i − ω̄a

i ∂µDab
µ ωb

i −g fabc(∂µω̄a
i )(D

bd
µ cd)φb

i

−G
a
µi ∂

2Ga
µi+F

a
µi ∂

2F a
µi −G

a
µi D

ab
µ φ̄b

i +g fabcG
a
µi(D

bd
µ cd)ω̄c

i − Ĝ
a

µi ∂
2Ĝa

µi+ F̂
a

µi ∂
2F̂ a

µi + F̂
a

µi D
ab
µ ωb

i

−Ĝ
a

µi D
ab
µ φb

i −g fabcF̂
a

µi(D
bd
µ cd)φc

i +H a
µi

(
G

a
µi−δa

µiγ
2
)
+ Ĥ a

µi

(
Ĝ

a

µi−δa
µiγ

2
)
−G

a
µiĜ

a

µi

−Ka
µ Dab

µ cb+
g
2

f abcLacbcc+ρab
i F̂

a

µi D
bc
µ cc−λab

i Ĝ
a

µi D
bc
µ cc
}
, (19)

sΣ = 0 , (20)

where, as done in the original work by Zwanziger [6, 7], we have introduced the multi-index notationi ≡ (a,µ),
i = 1, ..., f = 4(N2−1), which turns out to be very useful in the discussion of the renormalizability. As pointed
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out in [6, 7], the possibility of introducing the multi-index i ≡ (a,µ) relies on the existence of a global symmetry
U( f ). Thus, the termδa

µi appearing in expression (19) stands for

δa
µi ≡ δabδµν . (21)

As one can see from the expressionΣ, the external sourcesKa
µ,L

a are introduced in order to properly define the
composite operatorsDab

µ cb and g
2 f acbcbcc, corresponding to the nonlinear BRST transformations of the fieldsAa

µ

andca, eqs.(5). Moreover, it turns out to be useful to also couple the BRST doublet of external fieldsλab
i ,ρab

i to

the composite operatorŝG
a

µi D
bc
µ cc andF̂

a

µi D
bc
µ cc.

We are now ready to derive an extensive set of Ward identitiesfulfilled by the actionΣ. These are:

• the Slavnov-Taylor identity

S(Σ) ≡

∫
d4x

{
δΣ

δKa
µ

δΣ
δAa

µ
+

δΣ
δLa

δΣ
δca + iba δΣ

δc̄a + φ̄a
i

δΣ
δω̄a

i
+ωa

i
δΣ
δφa

i
+G

a
µi

δΣ
δF

a
µi

+F a
µi

δΣ
δGa

µi

+Ĝ
a

µi
δΣ

δF̂
a

µi

+ F̂ a
µi

δΣ
δĜa

µi

+ρab
i

δΣ
δλab

i

}
= 0. (22)

• the linearly broken Ward identity for the Gribov parameterγ2

∂Σ
∂γ2 =−

∫
d4x

(
H aa

µµ + Ĥ aa
µµ

)
. (23)

As we shall see in the next section, this identity will be responsible for the nonrenormalizability properties of the
Gribov parameterγ2. Notice that the left hand side of (23) is linear in the quantum fields,i.e. it is a linear breaking.
It is well established that this kind of breaking is not affected by quantum corrections, see [40].

• the gauge-fixing condition and the anti-ghost equation:

δΣ
δba = ∂µAa

µ ,
δΣ
δc̄a +∂µ

δΣ
δKa

µ
= 0, (24)

• the equations of motion of the auxiliary fields:

δΣ
δGa

µi
=−∂2G

a
µi ,

δΣ
δĜa

µi

=−∂2Ĝ
a

µi , (25)

δΣ
δF a

µi
=−∂2F

a
µi ,

δΣ
δF

a
µi

= ∂2F a
µi ,

δΣ
δF̂ a

µi

=−∂2F̂
a

µi , (26)

• the equations of motion of the Lagrange multipliers:

δΣ
δH a

µi
= G

a
µi −δa

µiγ
2 ,

δΣ

δĤ a
µi

= Ĝ
a

µi−δa
µiγ

2 , (27)

6



• the equations of motion of the localizing fields:

Φa
i (Σ) ≡

δΣ
δφ̄a

i
+∂µ

δΣ

δĜ
a

µi

−Dab
µ

δΣ
δH b

µi

−∂µ

(
λab

i
δΣ

δKb
µ

)

=−∂2∂µĜa
µi +∂µĤ a

µi +∂µG
a
µi+ γ2g fabcAc

µδb
µi , (28)

Ωa
i (Σ) ≡

δΣ
δω̄a

i
+∂µ

δΣ

δF̂
a

µi

−g fabc

(
δΣ

δH b
µi

+δb
µiγ

2

)
δΣ

δKc
µ
+∂µ

(
ρab

i
δΣ

δKb
µ

)

= ∂2∂µF̂ a
µi , (29)

Φa
i (Σ) ≡

δΣ
δφa

i
+∂µ

δΣ
δG

a
µi

+ ig f abcφ̄b
i

δΣ
δbc −g fabcω̄b

i
δΣ
δc̄c +g fabc δΣ

δρbc
i

−Dab
µ

δΣ

δĤ b
µi

=−∂2∂µGa
µi +∂µH a

µi −∂µĜ
a

µi− γ2g fabcδc
µiA

b
µ . (30)

• the Ward identities:

Ui(Σ) =
∫

d4x

{
ca δΣ

δωa
i
+ ω̄a

i
δΣ
δc̄a −δab δΣ

δρab
i

}
= 0, (31)

Vi(Σ) =
∫

d4x

{
−ca δΣ

δφa
i
+ φ̄a

i
δΣ
δc̄a +

δΣ
δLa

δΣ
δωa

i
+

(
δΣ

δĤ a
µi

+ γ2δa
µi

)
δΣ

δKa
µ

}
= 0. (32)

• the linearly brokenU(4(N2−1)) Ward identity

Qi j (Σ) ≡

∫
d4x

{
φa

i
δΣ
δφa

j
− φ̄a

j
δΣ
δφ̄a

i
+ωa

i
δΣ

δωa
j
− ω̄a

j
δΣ

δω̄a
i
+G

a
µi

δΣ
δG

a
µ j

−Ga
µ j

δΣ
δGa

µi
− Ĝ

a

µ j
δΣ

δĜ
a

µi

+ Ĝa
µi

δΣ
δĜa

µ j

−F̂
a

µ j
δΣ

δF̂
a

µi

+ F̂ a
µi

δΣ
δF̂ a

µ j

−H a
µ j

δΣ
δH a

µi
+ Ĥ a

µi
δΣ

δĤ a
µ j

+ρab
i

δΣ
δρab

j

+λab
i

δΣ
δλab

j

}

= γ2
∫

d4x
(

δa
µiH

a
µ j −δa

µ jĤ
a

µi

)
. (33)

• the exact integrated Ward identities:

T(1)
i j (Σ) ≡

∫
d4x

(
F

a
µi

δΣ
δGa

µ j
−G

a
µ j

δΣ
δF a

µi

)
= 0,

T(2)
i j (Σ) ≡

∫
d4x

(
F̂

a

µi
δΣ

δGa
µ j
−G

a
µ j

δΣ
δF̂ a

µi

)
= 0,

T(3)
i j (Σ) ≡

∫
d4x

(
F̂

a

µi
δΣ

δĜa
µ j

− Ĝ
a

µ j
δΣ

δF̂ a
µi

)
= 0,

T(4)
i j (Σ) ≡

∫
d4x

(
F

a
µi

δΣ
δĜa

µ j

− Ĝ
a

µ j
δΣ

δF a
µi

)
= 0,
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T(5)
i j (Σ) ≡

∫
d4x

(
F a

µi
δΣ

δGa
µ j
+G

a
µ j

δΣ
δF

a
µi

)
= 0,

T(6)
i j (Σ) ≡

∫
d4x

(
F

a
µi

δΣ
δF

a
µ j

−F a
µ j

δΣ
δF a

µi

)
= 0,

T(7)
i j (Σ) ≡ (δikδ jl −δ jkδil )

∫
d4xG

a
µk

δΣ
δGa

µl
= 0,

T(8)
i j (Σ) ≡

∫
d4x

(
Ĝ

a

µi
δΣ

δGa
µ j

−G
a
µ j

δΣ
δĜa

µi

)
= 0,

T(9)
i j (Σ) ≡ (δikδ jl −δ jkδil )

∫
d4xĜ

a

µk
δΣ

δĜa
µl

= 0,

T(10)
i j (Σ) ≡

∫
d4x

(
F

a
µi

δΣ
δF

a
µ j

−F a
µ j

δΣ
δF a

µi

)
= 0. (34)

• theSL(2,R) Ward identity

D(Σ)≡
∫

d4x

(
ca δΣ

δc̄a − i
δΣ
δba

δΣ
δLa

)
= 0. (35)

• the linearly broken rigidSU(N) symmetry

W a(Σ) =−γ2
∫

d4xg fabc(H b
µiδ

c
µi+ Ĥ b

µiδ
c
µi) , (36)

with

W a ≡ g fabc
∫

d4x

{

∑
y∈O

yb δ
δyc +ρbd

i
δ

δρcd
i

+ρdb
i

δ
δρdc

i

+λbd
i

δ
δλcd

i

+λdb
i

δ
δλdc

i

}
(37)

whereO stands for
O =

{
Aa

µ,b
a, c̄a,ca,φa

i , φ̄
a
i ,ω

a
i , ω̄

a
i , . . .

}
, (38)

i.e., the setO is the set of all fields and sources that have only one color index, where we have not taken into
account the color index hidden in the multi-indexi = (a,µ).

• the equation of motion of the sourceλab
i

Λab
i (Σ)≡

δΣ
δλab

i

−


 δΣ

δĤ a
µi

+ γ2δa
µi


 δΣ

δKb
µ
= 0. (39)

• theQf charge

We can combine the operatorsQi j andT(6)
i j , appearing in eqs.(33) and (34), respectively, and construct the follow-

ing operator:

QT
i j = Qi j +T(6)

i j . (40)
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The operatorQT
i j commutes with the BRST operators

[s,QT
i j ] = 0. (41)

Then, the trace ofQT
i j defines a new charge:

QT
ii ≡ Qf :=

∫
d4x

{
φa

i
δ

δφa
i
− φ̄a

i
δ

δφ̄a
i
+ωa

i
δ

δωa
i
− ω̄a

i
δ

δω̄a
i
+G

a
µi

δ
δG

a
µi

−Ga
µi

δ
δGa

µi
− Ĝ

a

µi
δ

δĜ
a

µi

+ Ĝa
µi

δ
δĜa

µi

−F̂
a

µi
δ

δF̂
a

µi

+ F̂ a
µi

δ
δF̂ a

µi

−H a
µi

δ
δH a

µi
+ Ĥ a

µi
δ

δĤ a
µi

+ρab
i

δ
δρab

i

+λab
i

δ
δλab

i

+F
a
µi

δ
δF

a
µi

−F a
µi

δ
δF a

µi

}
,

(42)

where f ≡ 4(N2− 1). TheQf charge gives rise to a powerful linearly broken Ward identity when acting onΣ,
namely

Qf (Σ) = γ2
∫

d4x
(

δa
µiH

a
µi −δa

µiĤ
a

µi

)
. (43)

This is actually the Ward identity which enables us to make use of the multi-indexi = (a,µ).

4 Proof of the all orders renormalizability

Having established the Ward identities obeyed by the actionΣ, eqs.(22)-(43), we can proceed to show the renor-
malizability to all orders of the model. Let us begin with thealgebraic characterization of the most general local
invariant counterterm that is compatible with all Ward identities.

4.1 Algebraic characterization of the invariant counterterm

In order to characterize the most general local invariant counterterm which can be freely added to all orders in
perturbation theory, we follow the general setup of the algebraic renormalization [40] and perturb the starting
actionΣ by adding an integrated local polynomial in the fields and sources,Σcount, with dimension bounded by
four and with vanishing ghost number. We thus demand that theperturbed action,

Σ+ηΣcount, (44)

whereη is an expansion parameter, fulfills, to the first order inη, the same set of Ward identities obeyed byΣ,
eqs.(22)-(43). This requirement gives rise to the following constraints for the countertermΣcount:

SΣ(Σcount) = 0, (45)
(

δ
δc̄a +∂µ

δ
δKa

µ

)
Σcount= 0, (46)

δ
δba

Σcount= 0,
∂

∂γ2 Σcount= 0,
δ

δGa
µi

Σcount= 0,
δ

δĜa
µi

Σcount= 0,
δ

δF a
µi

Σcount= 0,

δ
δF

a
µi

Σcount= 0,
δ

δF̂ a
µi

Σcount= 0,
δ

δH a
µi

Σcount= 0,
δ

δĤ a
µi

Σcount= 0, (47)
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Φa
i (Σcount) = 0, Ωa,i

Σ (Σcount) = 0, Φa
i (Σcount) = 0, Ui(Σcount) = 0,

V i
Σ(Σcount) = 0, DΣ(Σcount) = 0, W a(Σcount) = 0, Λab,i

Σ (Σcount) = 0,

Qi j (Σcount) = 0, T(n)
i j (Σcount) = 0, n= 1, . . . ,10, (48)

Qf (Σcount) = 0. (49)

Here, the operators with the subscript “Σ” represent the so called linearized operators corresponding to the Ward
identities which are nonlinear inΣ, see [40]. For example,SΣ is the linearized operator corresponding to the
Slavnov-Taylor identity (22), namely

SΣ =
∫

d4x

{
δΣ

δKa
µ

δ
δAa

µ
+

δΣ
δAa

µ

δ
δKa

µ
+

δΣ
δLa

δ
δca +

δΣ
δca

δ
δLa + iba δ

δc̄a + φ̄a
i

δ
δω̄a

i
+ωa

i
δ

δφa
i

+G
a
µi

δ
δF

a
µi

+F a
µi

δ
δGa

µi
+ Ĝ

a

µi
δ

δF̂
a

µi

+ F̂ a
µi

δ
δĜa

µi

+ρab
i

δ
δλab

i

}
. (50)

As the BRST operator, alsoSΣ is nilpotent,i.e.

SΣSΣ = 0 . (51)

The remaining linearized operators are given by:

Ωa,i
Σ =

δ
δω̄a

i
+∂µ

δ

δF̂
a

µi

−g fabc

(
δΣ

δH b
µi

+δb
µiγ

2

)
δ

δKc
µ
+g fabc δΣ

δKb
µ

δ
δH c

µi
+∂µ

(
ρab

i
δ

δKb
µ

)
,

V i
Σ =

∫
d4x

{
−ca δ

δφa
i
+ φ̄a

i
δ

δc̄a +
δΣ
δLa

δ
δωa

i
+

δΣ
δωa

i

δ
δLa +

(
δΣ

δĤ a
µi

+ γ2δa
µi

)
δ

δKa
µ
+

δΣ
δKa

µ

δ

δĤ a
µi

}
,

DΣ =
∫

d4x

(
ca δ

δc̄a − i
δΣ
δba

δ
δLa − i

δΣ
δLa

δ
δba

)
,

Λab,i
Σ =

δ
δλab

i

−


 δΣ

δĤ a
µi

+ γ2δa
µi


 δ

δKb
µ
−

δΣ
δKb

µ

δ

δĤ a
µi

. (52)

Let us now turn to the characterization of the counterterm. The constraints (47) imply thatΣcount is independent

from the fieldsb, G , Ĝ , F , F̂ , F , H , Ĥ , as well as from the Gribov parameterγ2. Equation (46) means that
Σcount depends on ¯c andK only through the combination(∂µc̄a+Ka

µ). Moreover, from eq.(49) it follows thatΣcount

has zeroQf -charge. Finally, relying on well known properties of the cohomology of Yang-Mills theories [40],
condition (45) allow us to construct the countertem in the form:

Σcount = a0 SYM +SΣ∆(−1) ,

SYM =

∫
d4x

1
4

Fa
µνFa

µν , (53)

wherea0 is a dimensionless coefficient and∆(−1) is an integrated polynomial in the fields and sources with dimen-
sion four and ghost number−1. Collecting all this information, and making use of Table 1and of Table 2, one can
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write ∆(−1) as

∆(−1) =
∫

d4x

{
a1 (∂µc̄a+Ka

µ)A
a
µ+a2Laca+a3 F̂

a

µi ∂µφa
i +a4g fabcF̂

a

µi A
c
µφb

i +a5 ω̄a
i ∂2φa

i +a6g fabc(∂µω̄a
i )A

c
µφb

i

+a7g fabcω̄a
i Ac

µ∂µφb
i +a8g fabcω̄a

i Ac
µG

b
µi +a9 ω̄a

i ∂µG
a
µi +a10F̂

a

µiG
a
µi + tabcd

1 ω̄a
i φb

i φ̄c
jφ

d
j + tabcd

2 ω̄a
i φb

j φ̄
c
i φd

j

+tabcd
3 ω̄a

i φb
i ω̄c

jω
d
j + tabcd

4 ω̄a
i φb

j ω̄
c
i ωd

j +αabcd
1 λab

i F̂
c

µi ∂µcd +αabcd
2 λab

i (∂µF̂
c

µi)cd +αabcd
3 λab

i Ĝ
c

µi A
d
µ

+αabcd
4 ρab

i F̂
c

µi A
d
µ+αabcd

5 λab
i (∂µω̄c

i )∂µcd +αabcd
6 λab

i (∂2ω̄c
i )c

d +αabcd
7 λab

i ω̄c
i ∂2cd +αabcd

8 (∂2λab
i )ω̄c

i c
d

+αabcd
9 λab

i (∂µφ̄c
i )A

d
µ+αabcd

10 λab
i φ̄c

i ∂µAd
µ+αabcd

11 ρab
i (∂µω̄c

i )A
d
µ+αabcd

12 ρab
i ω̄c

i ∂µAd
µ+βabcde

1 λab
i F̂

c

µic
dAe

µ

+βabcde
2 λab

i (∂µω̄c
i )c

dAe
µ+βabcde

3 λab
i ω̄c

i (∂µcd)Ae
µ+βabcde

4 λab
i ω̄c

i c
d(∂µAe

µ)+βabcde
5 λab

i φ̄c
i A

d
µAe

µ

+βabcde
6 ρab

i ω̄c
i A

d
µAe

µ+ τabcde fλab
i ω̄c

i c
dAe

µAf
µ+Mabcde f g

1 λab
i λcd

j φ̄e
i φ̄ f

j c
g+Mabcde f g

2 λab
i λcd

i φ̄e
j φ̄

f
j c

g
}
. (54)

In this expression,ai , i = 1, ...,10, are dimensionless coefficients, while{t}, {α}, {β}, {τ}, {M} stand for invariant
tensors of the gauge groupSU(N). Following an observation already employed in previous works [8, 9, 10], it
turns out that the coefficienta2 vanishes. This is due to the fact that, as the termLaca is already of dimension 4,
the coefficienta2 cannot depend on the Gribov parameterγ2, and it vanishes whenγ2 = 0 due to the existence of
an additional Ward identity, called the Landau gauge ghost Ward identity, see [42, 40].

Furthermore, applying the remaining constraints, and using the following useful commutation and anti-commutation
relations,

[
SΣ,

δ
δba

]
=−i

(
δ

δc̄a +∂µ
δ

δKa
µ

)
,

{
SΣ,

δ
δF a

µi

}
= δ

δGa
µi
,

{
SΣ,

δ
δF̂ a

µi

}
= δ

δĜa
µi
,

{
SΣ,

δ
δF

a
µi

}
= 0,

[
SΣ,

δ
δGa

µi

]
= 0,

[
SΣ,

δ
δĜa

µi

]
= 0,

[
SΣ,Φ

a
i

]
=−Ωai

Σ ,
{

SΣ,Ω
ai
Σ

}
= 0, [SΣ,Φa

i ] =−g fabcΛbc,i
Σ ,

[SΣ,Ui ] =

∫
d4x

(
V i

Σ +δabΛab,i
Σ

)
,

{
SΣ,V

i
Σ
}
= 0,

{
SΣ,Λab,i

Σ

}
= 0,

{
SΣ,T

(1)
i j

}
= T(7)

i j ,
{

SΣ,T
(2)

i j

}
= T(8)

i j ,
{

SΣ,T
(3)

i j

}
= T(9)

i j ,

{
SΣ,T

(4)
i j

}
=−T(7)

ji ,
[
SΣ,T

(10)
i j

]
= 0,

[SΣ,DΣ] = 0, [SΣ,W a] = 0,
[
SΣ,QT

i j

]
= 0, (55)

it follows that, after a lengthy analysis, only the coefficient a1 remains free. The a priori quite monstrous expression
for ∆(−1), eq. (54), eventually thus reduces considerably to the following form

∆(−1) = a1

∫
d4x
[
(∂µc̄a+Ka

µ)A
a
µ+(∂µω̄a

i + F̂
a

µi)D
ab
µ φb

i +G
a
µi D

ab
µ ω̄b

i + F̂
a

µiG
a
µi−λab

i F̂
a

µi D
bc
µ cc
]
. (56)

Summarizing, the most general invariant countertermΣcount compatible with all constraints (45)–(49) has two
independent free coefficients,a0,a1, and is given by

Σcount= a0

∫
d4x

1
4

Fa
µνFa

µν + SΣ∆(−1) . (57)
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A b c̄ c φ̄ φ ω̄ ω G G F F Ĝ Ĝ F̂ F̂ H Ĥ
dimension 1 2 2 0 1 1 1 1 2 0 2 0 2 0 2 0 2 2

ghost # 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0 −1 1 0 0
Qf -charge 0 0 0 0 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 1

Table 1: Quantum numbers of the fields

K L ρ λ
dimension 3 4 1 1

ghost # −1 −2 0 −1
Qf -charge 0 0 1 1

Table 2: Quantum numbers of the external sources

4.2 Renormalization factors

Having characterized the most general invariant local countertermΣcount, eq.(57), compatible with all Ward iden-
tities (22)-(43), it remains to check ifΣcount can be reabsorbed into the starting actionΣ through a multiplicative
renormalization of the fields, sources and parameters of theory, namely

Σ( f ,J) + ηΣcount( f ,J) = Σ( f0,J0)+O(η2) , (58)

with
f0 = Z1/2

f f , J0 = ZJ J , (59)

where( f0, f ) is a shorthand notation for the bare and renormalized fields,while (J0,J) stand for the bare and
renormalized sources and parameters. Making use of expression (57), for the renormalization factors{Z} one
obtains

Z1/2
A = 1+η

(a0

2
+a1

)
+O(η2) ,

Zg = 1−η
a0

2
+O(η2) , (60)

Z1/2
c = Z1/2

c̄ = Z1/2
φ = Z1/2

φ̄ = Z−1/2
g Z−1/4

A ,

Z1/2
ω̄ = Z−1

g , Z1/2
ω = Z−1/2

A ,

Z1/2
G

= Z1/2

Ĝ
= Zγ2 = Z−1/2

g Z−1/4
A ,

Z1/2
G = Z1/2

Ĝ
= Z1/2

g Z1/4
A ,

Z1/2

F̂
= Z−1

g , Z1/2

F̂
= Zg ,

Z1/2
F

= Z1/2
F = 1,

Z1/2
H

= Z1/2

Ĥ
= Z1/2

g Z1/4
A ,

ZK = Z1/2
g Z1/4

A , ZL = ZgZ1/2
A ,

Zρ = Z3/2
g Z1/4

A , Zλ = Z−1
g Z−1/2

A . (61)
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This finalizes the proof of the all orders algebraic renormalization of the novel formulation of the Gribov-Zwanziger
theory. Let us conclude by observing that the renormalization factorZγ2 of the Gribov parameterγ2 is not an inde-
pendent quantity, being expressed in terms of the renormalization factors of the gauge coupling constantg and of
the gauge fieldAa

µ, i.e. Zγ2 = Z−1/2
g Z−1/4

A . This feature expresses the nonrenormalization properties of γ2, already
established in [6, 7, 8, 9, 10], here a simple consequence of the powerful Ward identity (23).

5 Conclusion

In this work we have pursued the investigation of the novel formulation of the Gribov-Zwanziger action proposed
in [1], which allows for an exact BRST invariance of the action implementing the restriction to the Gribov horizon.
As shown in [1], the BRST symmetry turns out to be spontaneously broken, the breaking parameter being nothing
but the Gribov massγ2. It is worth mentioning that in this reformulation the BRST operators does keep its
nilpotency,i.e. s2 = 0, a crucial feature which enables us to employ the powerful results on the cohomology ofs
in order to construct the set of colorless local composite gauge invariant operators [40].

In the present paper we have presented the all orders algebraic proof of the renormalizability of the new for-
mulation. In particular, as one can see from eq. (60), only two independent renormalization factors are needed,
namelyZA andZg, a feature which is shared by the original formulation of theGribov-Zwanziger action. This is
an important check of the equivalence between the two formulations at the quantum level.

Certainly, many aspects of the role of the BRST symmetry in the presence of the Gribov horizon remain to be
unraveled. Though, we believe that the current formulationin which the BRST symmetry is spontaneously broken
might be helpful in order to face the hard and still open problem of identifying a set of renormalizable composite
operators whose correlation functions display the necessary analytical and unitarity properties allowing to make
contact with the physical spectrum of a confining Yang-Millstheory. The results of [1], together with those of
the current follow-up paper already learn that we can introduce the subspace of renormalizable gauge invariant
operators which is furthermore preserved under time evolution, based on BRST cohomology tools. The further
extraction of a physical subspace with the desired spectralproperties is now subject to further investigation.

Finally, although the proof of the renormalizability givenhere refers to the new Gribov-Zwanziger action in 4d, it
is worth to mention that it immediately generalizes to the case of the Refined Gribov-Zwanziger action [8, 9, 10],
both in 4d and in 3d [43].
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