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Abstract

An all orders algebraic proof of the multiplicative renodirability of the novel formulation of the Gribov-
Zwanziger action proposed ihl[1], and allowing for an exadt §pontaneously broken BRST symmetry, is
provided.

1 Introduction

In recent years much attention has been devoted to the sfutihe assue of the Gribov copies![2] and of its
relevance for confinement in Yang-Mills theoHesThe existence of the Gribov copies is a general featureeof th
gauge fixing quantization procedure, being related to thgossibility of finding a local gauge condition which
picks up only one gauge configuration for each gauge orbitAs]it has been shown by Gribov and Zwanziger
[2,[6,[7], a partial resolution of the Gribov problem in thendau gauge can be achieved by restricting the domain
of integration in the functional Euclidean integral to thistfiGribov horizon. Remarkably, this restriction has
resulted into a local and renormalizable action, known as3hbov-Zwanziger action [6) 7].
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More recently, a Refined version of the Gribov-Zwanzigeiosmchas been worked out ihl[8] 9,]10], leading to a
tree level gluon propagator whose behavior in the infraeggion is in very good agreement with the most recent
lattice numerical simulations [11, 12,113,114, 15] 16]. Tpispagator displays complex poles in momentum
space. As such, it cannot describe the propagation of plyestcitations. Rather, it is suited for a kind of effective
description of gluon confinement, see also [17]. In spitehefdppearance of complex poles, the Refined-Gribov-
Zwanziger gluon propagator has been successfully emplayaavestigate the correlation functions of gauge
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invariant composite glueball operators in order to getneasties of the glueball masses. It turns out that a Kallén-
Lehmann spectral representation with positive spectrasitiecan be extracted from these correlation functions
[18],with numerical verification recently considered [i®]1 The resulting mass estimates for the lowest glueball
states with quantum numbei8© = 0+, 27+ 0~*, are in qualitative agreement with the available numexicah

on the spectrum of the glueballs [20]. Let us also mentiohghah type of gluon propagator has also been used
in previous studies in hadron physi¢s [21] 22], see also/Z4Bfor a recent attempt to generalize the Refined-
Gribov-Zwanziger action by including quarks and assodiatairal symmetry breaking. Recently, complex pole
propagators were also considered in terms of semi-analydigproaches to the QCD phase diagran [25, 26],
partially motivated by fits to finite temperature lattice ghudata([27], 28].

Although the aforementioned results can be taken as ewdehthe fact that the Refined Gribov-Zwanziger
theory can be effectively employed to investigate the ptalsspectrum of a confining Yang-Mills theory, there
are still many aspects of the theory which remain to be umaleds Certainly, the systematic construction of
a set of composite operators whose correlation functionsbeadirectly related to the physical spectrum of a
confining Yang-Mills theory is one of the most challengingeats of the Gribov-Zwanziger framework for color
confinement. At present, the characterization of the aie#lytand of the unitarity properties of these correlation
functions seems a highly cumbersome task, taking into artcthat explicit calculations have to be done by
employing a confining gluon propagator exhibiting complelep.

Amongst the various open aspects of the Gribov-Zwanziganéwork, the issue of the BRST symmetry is a
source of continuous investigations, see for examiglé![®, 29,30/ 31| 32, 33, 34, Bb, 136,137, 38] 39] for an
overview of what has been already done on this topic. We éxpat a better understanding of the role of the
BRST symmetry in confining Yang-Mills theories would be oégtrelevance in order to face the characterization
of the physical spectrum.

In a recent work[[1], some of the authors have been able tdrobta equivalent formulation of the Gribov-
Zwanziger action which displays an exact BRST symmetry twiticns out to be spontaneously broken by the
restriction of the domain of integration to the Gribov horiz In particular, in[[1], the BRST operatsretains the
important property of being nilpoterite. £ = 0. This feature enabled us to make use of the powerful todief t
cohomology ofs[41,[40] in order to prove that the set of colorless gaugeriama operators corresponding to the
cohomology classes dafis closed under time evolutiohl[1]. Moreover, it has alsorbgleown that the Goldstone
mode associated to the spontaneous breakisgsofompletely decoupled.

The aim of the present article is to fill a gap not addressetlarptevious work[1], namely, the renormalizability
to all orders of the spontaneous symmetry breaking fornwnaif the Gribov-Zwanziger theory id = 4. As we
shall see, the action obtained lin [1] enjoys a large set ofiMdmntities which enables us to prove that it is, in fact,
multiplicatively renormalizable to all orders.

The paper is organized as follows. In Sect. 2 we provide at swwnmary of the BRST spontaneous symmetry
breaking formulation of the Gribov-Zwanziger action. Inc66 we derive numerous Ward identities fulfilled by
the action in the novel formulation. In Sect. 4, the renoinadlility to all orders of the model is established by
means of the algebraic renormalization proceduré [40].



2 A novd formulation of the Gribov-Zwanziger action and the spontaneous br eak-
ing of the BRST symmetry

Let us start by recalling the expression of the Gribov-Zvigeizaction which enables us to restrict the Euclidean
functional integral to the first Gribov horizon, namely

Sz = % / d*x F3F3 + / d*x (ibaauAﬁJrCaauDﬁbcb)
+ /d4X <?I)_ﬁCaVD\a,m¢?C—UJﬁCaVD3mQ)H]C—g(a\; ac) fabm(Dv c) ¢?c)
b [ atx(—arEagele+ 95 -4 (N2 - 1) V) @)

The fieldb? stands for the Lagrange multiplier implementing the Landauge conditiong, A} = 0, andc®,c?

are the corresponding Faddeev-Popov ghosts. The frﬁfdrbab are a pair of bosonic fields, Whl@u wﬁb are
a pair of anticommuting fields. These fields are needed inrdadamplement the restriction to the first Gribov
horizon in a local wayl([6,17,]9]. All fields belong to the adjbhepresentation of the gauge gro8p(N). The
massive parametaf, called the Gribov parameter, is not a free parameter, bidétgrmined in a self-consistent
way through the gap equation
aEvac
oy?

whereE, 5. stands for the vacuum energy of the theoéry [2.,16, 7],

=0, 2
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It turns out that the Gribov-Zwanziger actidd (1) does ndtileits an exact BRST invariance! [6,[7, 9], which is
softly broken by the Gribov paramete. Indeed,

SS7 = —yz/d”'x <gfabCDﬁka($Bc+¢BC)+gfabCAﬁOJBC) ’ (4)
wheres stands for the nilpotent BRST operator
_ beb _ b baCY b _ 9cachb A _ _
sAl = —Dj’c®=—(0u0"+gf*A)C’, s@ = zfac c’c, sc? = ib?, st = 0,
P = $7, 9P =0, P =, =0 =0 (5)

In ref.J1] it was proposed to replace expressian (1) by tlleviong action
Sz = 5 [ dxFRRR+ [ o' (ib0,A+ 0,08
+/d4X waCavDsmq) _aﬁCavDsmeTC_g(avo—JﬁC) fabm(DvC)bq)LTC)
—ab —ab_/p p
+ [ a(~GGad+ T2 — GaDYP — g GiuDlPoPal?)
~ab
+ / d4x< g "2 ab+ffwasz +7wDak ngak% +gfa”7woﬁpcp¢5b>

__al ~ =a ab=2b
+/d4x <7'l®b (Qp\t;) - 5uv5abV2) + AP <guv - 6uv6abyz> guvb?uv> ’ ©)



where we have introduced two new BRST quartets [40] of fietussisting ofﬁf‘b, ?ﬁ\t,’ (commuting),gﬁ\f’, Eﬁ\?
(anticommuting) and their hat-counterparts:

~ab ~ab ~ab

—ab —ab —ab
SFw = G Gy = 0, SFw = G Gy = 0,
G = g® sgP =0, sGP=FP  sEP =0, 7

as well as the singlet field&zP, 20

SHE — sH — 0. ®)

It is easily checked that the actidd (6) can be rewritten as

Sz = %/d“xFaFMs/d“ 0,47 + B, D)

+s [ d'x (—?wazg DI F 02 szﬁkq>5b>
+ [ dx < (G —Bw8™?) + 7437 @5— 5uv5ab\/2> gwb?ﬁvb> , ©)
from which it can be established thg{, has an exact BRST invariance
$%z=0, (10)

whereby we have preserved the nilpotency of the BRST opesite 0.

As discussed iri]1], the formulation provided by the noveimrs;, is equivalent to that of the original Gribov-
Zwanziger actiorssz. Let us therefore point out that, using the algebraic exqoagons of motion of the fields

(H, H),

—ab ~ab

G = G =V, (12)
we immediately recover thedependent part of the Gribov-Zwanziger action, namely

/ d’x ( GooDYG ng Ko - Goo? Gb Efwbazégvb—gﬁféfwb+ ab (Eﬁwb—awaab\,z))
}[—,E}EOM/d4 <—y29 fabCAﬁ <¢Bc_|_¢—ﬁc> —4(N2— 1)\/4) ‘ (12)

Moreover, the integration over the fields, 7, ? and Z turns out to generate a unity in the partition function, as
can be seen by performing the following simultaneous chanfitegration variables:

ﬁg}b N %ab_ < (Dak%b+gfak€DﬁpCp¢\I§b) ’ Uf;b N Q)E)b+ [(GD)*l]tk (gfaW?ﬁt’DﬁpCp) :
ﬂ%b N ',]_—ab__ (Dak%b+gfak€DﬁpCp$\I§b) : (13)

from which the equivalence between the two formulationpressed by means ¢fl (1) ad (6), follows.

Let us proceed by showing how the spontaneous breaking 8RIST symmetry is realized in the new formulation
of the Gribov-Zwanziger action. To that end, let us rewrfte aictionS;, by again making explicit use of the



equations of motior (11). Thus
+ xR [ atxs(@a,aL o,

+ [t <?fwbazfu%b—v2s(o )+ F 0T~ VDR + 7 SDYOLE) V(N )
(14)

This expression turns out to be left invariant by the follegvnilpotent BRST transformations:

sAl = —DIP=—(0, 8% +gf* A, s = gfa"bcbcc, s = ib?, si =0,
S = g, 9P =0, P =P s =0,
TFL = P, ST = Y. SGP = £, sE® -0,
sgab = FP. g5 =0, (15)
with
s%,=0, $=0. (16)

Furthermore, from equations {15), it follows that the BR®Em@tor suffers from spontaneous symmetry breaking.
In fact

—ab ~ab
(SFi) =V,  (SF ) =Y . (17)
Let us end this short summary by mentioning the importantufeathat the Goldstone mode associated to the

spontaneous symmetry breaking of the BRST operator turntdae completely decoupled from the theory, see
[1] for the argument.

3 Ward identities

The first step in order to prove the all orders renormalidgbdf the novel formulation is to establish the set of
Ward identities obeyed by the acti8f,, eq.[6). To that end, and following the algebraic renonaaiimn procedure
[40], we introduce a set of external sourdés, p2°, K3, L® transforming as

AP =p®  ft=0, sKI=sl?=0, (18)

and the complete BRST invariant actian
/ d*x { F3F3 +ib?0,A% + C9,D3°c + ¢f 0,D°¢P — @R 0,DPwP — g 139, (D) P
gu. 0P Ga+ Ty 2 — G DG + 1G5 (DYC)F - G,,0°G2 + F s aszp. + 7 D
Gpi Dﬁbfﬂb -9 fabc-{]:ui Dﬁdcd (ﬂc + %all (gpi - uiyz) + %6} <Gpi - uiy2> - gui Gpi
g

=a ~a
—KaDac + 5 faP9L 2P+ pfP F | DR — ARG, D[’fc"} : (19)

s =0, (20)

where, as done in the original work by Zwanziger([B, 7], weehmtroduced the multi-index notatiare (a, ),
i =1,...,f = 4(N?—1), which turns out to be very useful in the discussion of theoraralizability. As pointed
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out in [6,[7], the possibility of introducing the multi-inde = (a, ) relies on the existence of a global symmetry

U(f). Thus, the termrSﬁi appearing in expressioh (19) stands for

& =828, .

(21)

As one can see from the expressibnthe external sourcds?,L? are introduced in order to properly define the
composite operator@f"bcb ands g fachebec corresponding to the nonlinear BRST transformations effiblds A}
andc?, egsl(h). Moreover it turns out to be useful to also coupieBRST doublet of external frelo}§b p;”‘b to

the composite operato@w DRCc® and f i DRCcE.
We are now ready to derive an extensive set of Ward idenfitiéiled by the action>. These are:

o the Slavnov-Taylor identity

55 55 8% BT 3T _a BT 55
4 —_
/d {oKaoA“ slasa tP° “”a 6cﬁ"+g”'6fﬁl+%'6gﬁ‘i
~a &5 55 55
G i—a + Fi—— +p® }z
“or OGh O

e the linearly broken Ward identity for the Gribov paramegfer

— [t (g 43z

(22)

(23)

As we shall see in the next section, this identity will be megble for the nonrenormalizability properties of the
Gribov parametey?. Notice that the left hand side ¢f(23) is linear in the quamfields,i.e. itis a linear breaking.

It is well established that this kind of breaking is not aféetby quantum corrections, séel[40].

e the gauge-fixing condition and the anti-ghost equation:

oX a oX oz
¢ the equations of motion of the auxiliary fields:
0% —a oz ~a
=-0°G,, — = —0°G;,
3G2 Hi 562 Hi
2 —a ox ox —a
:_62-‘7: i’ Ta:(-jz-q:a'7 =~ :_02? i
e the equations of motion of the Lagrange multipliers:
0z =
gpr ur T gpi 6ﬁ|y2

617-1;["" 5 }[Lli

(24)

(25)

(26)

(27)



o the equations of motion of the localizing fields:

— o 0% o o
P(Z) = aH Aa —-DP =9 <)\""b )
5 M b ML BKb
N
= _azaHGw + au%l + au gw + yzg fabc pl ) (28)
— oX oX 0% oX oX
0%z) = 0 —= gfabC< +6by2> ——+0, (p ab )
! (53 571 6}4}’ OKS ' 3Kb
- azauﬁ‘paia (29)
oX oX oX oX oX
a — abc, b V< abc—b abc __pab
o) = 5‘ﬂa +6p6?a +igf (ﬁbébc gf 6CC +gf 6ch " éﬂfﬁf
020,65+ 07— 0,G — VO TG, (30)
e the Ward identities: & -
4 ab
5) - [d { &F o - & 5pab} 0, (31)
62 — 02 OX oY oX oX
4 02 02 02 a) 0| _
/ ax { 52 T olaseR | < V25“'> 5Ka} 0. (32)
| 7—4“ n
o the linearly broker (4(N? — 1)) Ward identity
oX 62 62 — —a OX =a X
Qij (Z) = /d4X{ <A () ? Gw GLIJ a gl“ =~a gpl
écpj?‘ 6([{" 6(»"" 5g Ui ég 5G gm
=a 9y ~, 0X 0% o
T Fa %t +%a 2 o %Z b }
HJ 6,‘7'—ui i 5 ?uaj Ja%a % ! 6pjab I 6)\ab
= V[ (S - ) - (33)

¢ the exact integrated Ward identities:
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(5) . oz a OX
Tij (Z) == /d4X <-{]:pai6ga +g“16-‘7:w> O,

oz
T”(e)(z) /d“ <73, —3 ‘fuajafa> =0,

Fui
oz
1) = Gy -5 | I Gz = O
ul

) B 4 a dy —a O0X )\

TI] (Z) = /d X <gp|6ga g“]éga _0’
~a 62

T”(9>(z) = (Okdj — Ojkdi) /d Xgukég =0,

ul

Fui

5% 5%
110z d*x | F = — 72 =0. 34
ij ( ) / p| a pjéf]_—j ( )

¢ theSL(2,R) Ward identity
20 62 0%
4 _ | —— sl
/d ( ocd  db? 6La> 0. (35)

o the linearly broken rigidSU(N) symmetry

V2 [ dixg PO (HET + 455 (36)
with
W = gfabc/d4 Zyb +p| _|_p:jb o +)\|bd 0 +)\;jb o) (37)
o op Cd 6p|d° 6)\Cd 6)\?"
whereO stands for
0= {A}b%C % ¢, ¢ f &F,.. . } (38)

i.e, the setO is the set of all fields and sources that have only one colaind/here we have not taken into
account the color index hidden in the multi-index (a, ).

o the equation of motion of the souraé®

ab 62
NE(E) = S (5%a Vzé)est (39)

e the Qs charge

We can combine the operatd@s andT, ”( ), appearing in eq$.(83) arld (34), respectively, and coctstine follow-
ing operator:

Qf =Qj +Tij(6) : (40)



The operatoQ; commutes with the BRST operatsr

[5.Qjj] =0. (41)
Then, the trace o@ﬁ defines a new charge:
- 6 . 0
- [ax{args of 5z + G — Gl — Gyuza + G
R R “'esgu. "3 gp.
=a J ~. 0 0 ~_ 0 0 0 0
~Fpima T R — He e + HE—— + PP A N+ T = — 3 }
i 6?; Wi 6?&? %I 5.‘7‘4{’} -7'4“ 5_‘7—4_1 Pi 6pab i 6)\|ab Wi 5,‘7'—“, i 5,‘7;}

(42)

wheref = 4(N2—1). The Qs charge gives rise to a powerful linearly broken Ward idgntihen acting orz,

namely
£) =2 [ d' (83— 543 (43)

This is actually the Ward identity which enables us to maleafshe multi-index = (a, ).

4 Proof of the all ordersrenormalizability

Having established the Ward identities obeyed by the a&jcegs[(22){(43), we can proceed to show the renor-
malizability to all orders of the model. Let us begin with thlgebraic characterization of the most general local

invariant counterterm that is compatible with all Ward ities.

4.1 Algebraic characterization of the invariant counterterm

In order to characterize the most general local invarianinterterm which can be freely added to all orders in

perturbation theory, we follow the general setup of the lalge renormalization [40] and perturb the starting
actionZ by adding an integrated local polynomial in the fields andre®s} 2 o4, With dimension bounded by
four and with vanishing ghost number. We thus demand thgbenieirbed action,

Z + n Zcounta (44)

wheren is an expansion parameter, fulfills, to the first ordenjrthe same set of Ward identities obeyed2hy
eqsl(Z2){(4B). This requirement gives rise to the follayvionstraints for the counterterBount:

SZ(Zcount) = 07 (45)
0 0
<$ + a”%) 2count= 0, (46)
0 0 o) o) o)
%zcount = 07 chount = 07 5%. zcount 0 6T&izcount = 07 6—£Zcount = 07
0 0 0 0
ﬁzcoum = 07 Tﬁzcount = 07 T}{ﬁzcount = 07 ﬁzcount = 07 (47)



6?(zcount) = 07 ﬁg’l(zcount) = 07 (Dia(zcount) = 07 ﬂi(zcount) = 0
(V{(zcount) = 07 @Z(zcount) = 07 Wa(zcount) = 07 /\ab| (zcount) 07
Qij (zcount) = 07 TiJ(n)(Zcount) = 07 n= 1; ceey 107 (48)

Qf (zcount) =0. (49)

Here, the operators with the subscrift’‘tepresent the so called linearized operators correspgnidi the Ward
identities which are nonlinear iR, see [[40]. For example$s is the linearized operator corresponding to the
Slavnov-Taylor identity[(22), namely

Sy = /d4X 6_zi+6_zi+6z 6+§i+ _|_(Ha + ai
= K3 5AZ ' BARBKA ' BLadca | dcadLa 5 o
o 0 o o p O
+Go—a + F2 +g — + R 12 } (50)
: 6'{]:lil lJI6glil : Tul 3 gl-ll | 6)\?b
As the BRST operator, als§y is nilpotent,i.e.
5385 =0. (51)
The remaining linearized operators are given by:
=ai O o abe [ O o abc 0= O ab O
Q; = e_mf,\+apz_>(}a —gf 5%b+5 ny 6—Kﬁ+gf 6wa45+ap P 5ke
Wi

- 5 5 &5 o585 (&8 5 & 5
[ 4 c@ i Tt Tt e a
"= /d { 5 (ﬂaéc_a+6Laéu)f‘+6uf6La+<5§43+y26“'>6Ka 6Ka5%a}

5 85 553
_ 4 - _pgoe M e P
P = / I (C 5& 'sbAola oLe 5ba> ’

AP 6<5§+y263i>6 0z 9 (52)

AP\ 5 3 3Kb  BKP 57 %a

Let us now turn to the characterization of the counterterine @onstraints (47) imply th&oun: is independent

from the fieldsb, G, é F, F,F, 9, #, as well as from the Gribov parametgr. Equation [4B6) means that
Zcount depends oe andK only through the combinatio(@,c® + K3). Moreover, from ed.(49) it follows th&oynt
has zerdQ¢-charge. Finally, relying on well known properties of thehomology of Yang-Mills theoried [40],
condition [45) allow us to construct the countertem in thefo

2count = a9Sym +52A(7l)7
1 a.a
Sy = /d X ZFEFR (53)

whereag is a dimensionless coefficient anéi-V is an integrated polynomial in the fields and sources withediim
sion four and ghost numberl. Collecting all this information, and making use of Tablad of Table 2, one can
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write AV as
1 4 =2 ber —a 32 b
AD = /d X{al (0uC™ + KA)AL + a2 L2 + ag F 1 0¢f + au g T2°°F  ASGP + as G 0% -+ 36 9 240,07 AS gl
—b . —~a__ — —
+ar g WAL, + a9 FPGRAL G, + 30 W 0uGy + 10 T i G + PP G + B P
~C ~C ~C
HE" OGP PS ]+ TP + PPN e + oG (3,7 ) ¢+ aF NG A
~C _ _
"‘azaledpiapriAﬁ + agbcd)\iab(au(a(:) aqu + a%bcd)\iab(OZwiC)cd + a;bcd)\iab(acazcd + ngCd (OZA?b)wfcd
— — ~C
BN (0,08 ) AL -+ BB ATEGE BAY + a5 PR 0,6 Al -+ aB3 RO AT + BN A
BN, ) AR + BN (B, A + BTG (9,7 + BRI PP ALA
bedef ——f bedef ——f
—l—ngCdep?b(:ﬁcAﬁAﬁ—i-TadeefA?b(:ﬁCCdAﬁA;+ Mi\ cde g)\?b)\(j:d(ﬂe(pj 9+ Mg cae g)\?bAiCd(P?(Pj Cg}. (54)
In this expressiong;,i =1, ..., 10, are dimensionless coefficients, wHité, {a}, {B}, {t}, {M} stand for invariant
tensors of the gauge grolgJ(N). Following an observation already employed in previousk&dB,[9,[10], it
turns out that the coefficiersb vanishes. This is due to the fact that, as the tefa? is already of dimension 4,

the coefficienta, cannot depend on the Gribov paramaferand it vanishes whey? = 0 due to the existence of
an additional Ward identity, called the Landau gauge ghaaitMdentity, see [42, 40].

Furthermore, applying the remaining constraints, andguia following useful commutation and anti-commutation
relations,

o] =i(Erady).  {sd)-d  {sd) -
{SE,%} ~0, [Sz%} ~0, {Sz%} =0,
o] =-0f,  {s0F} =0, [Sn0f=-gftny,
S5, U] :/d4x (d+e2A) . {s9ib=0, {&AP}=o0,
{=r?}=1" {sn?}=7 {sn?)=7
ERT R )

S50 =0, [swWY=0, |5.Q]]=0. (55)

it follows that, after a lengthy analysis, only the coeffitia; remains free. The a priori quite monstrous expression
for A-Y, eq. [53), eventually thus reduces considerably to theatig form

— —a — ~a__ ~a
ACY = g / 0'x [ (W + KEAS+ (0uGF + 7 ) DR + G DE°GF + 7, Gy — N F D] . (56)

Summarizing, the most general invariant countertéigy,n compatible with all constraints_(45)—(49) has two
independent free coefficientsy, a;, and is given by

1
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Albl clclo|o|l®|w|G| G| TF|F|G|G|TF |F|H|H
dimension|f1 2| 2 |0 1 |1 1 12| O 2 0 2 0| 2 0| 2 2
ghost# /OO0l -1|1] 0 |0O|-1|2|0]| 0 ]|-1]1 O |O0|-1|1 0 0
Q¢-chargej 0O, O |O|-2|2|(-2}|1|1|-1}1|-21|-1{212|-1|1, -1]1

Table 1: Quantum numbers of the fields

K L |p| A

dimension| 3 4 (1| 1
ghost# | -1| -2 |0 | -1

Q¢-charge| O 01| 1

Table 2: Quantum numbers of the external sources

4.2 Renormalization factors

Having characterized the most general invariant local ttermz2 o, €9.[57), compatible with all Ward iden-
tities (22)-(43), it remains to check ¥.ount can be reabsorbed into the starting acfiothrough a multiplicative
renormalization of the fields, sources and parameters ofyheamely

z(fv‘]) + nzcount(f>‘]) = Z( anJO) +O("12) ) (58)
with
fo=2z1%f,  Jy=233, (59)

where (fo, f) is a shorthand notation for the bare and renormalized figlthie (Jp,J) stand for the bare and

renormalized sources and parameters. Making use of exmme&l), for the renormalization factofZ} one
obtains

z? = 14n(F+a)+0m?),

Zg = 1—n§+0(n2), (60)
7302 _ Zyz Zl/2 ;/2 _z 125 1/4’
227t ZPog,

3/2 _ }\/2 Zy2 _ Zg—l/ZZA_1/4

)

G
Zé/z _ 2 _ 21/221/47
G
172 -1 1/2
? _Z ) 1’7} —Zg>
Zl/2 ;/2 _1,
l 2 1/2 1/251/4
}; 742732714
ZK _ 25/221/4 ZL — Zgzi-\/z’
z,=23%zy*, z=z5'z,". (61)
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This finalizes the proof of the all orders algebraic renoinadion of the novel formulation of the Gribov-Zwanziger
theory. Let us conclude by observing that the renormabrdafactorZ . of the Gribov parametep is not an inde-
pendent quantity, being expressed in terms of the renazatadn factors of the gauge coupling constgmaind of
the gauge field\}, i.e. Zp = Z§1/22;1/4. This feature expresses the nonrenormalization progesfig?, already
established in[6,/7./8) 9, 10], here a simple consequendeeqgidwerful Ward identity (23).

5 Conclusion

In this work we have pursued the investigation of the novaehidation of the Gribov-Zwanziger action proposed
in [1], which allows for an exact BRST invariance of the antimplementing the restriction to the Gribov horizon.
As shown in[[1], the BRST symmetry turns out to be spontanigdaursken, the breaking parameter being nothing
but the Gribov mas§?. It is worth mentioning that in this reformulation the BRSerators does keep its
nilpotency,i.e. § =0, a crucial feature which enables us to employ the poweeilits on the cohomology sf

in order to construct the set of colorless local compositeggganvariant operators [40].

In the present paper we have presented the all orders aiggdmof of the renormalizability of the new for-
mulation. In particular, as one can see from gl (60), only imdependent renormalization factors are needed,
namelyZ, andZg, a feature which is shared by the original formulation of @rbov-Zwanziger action. This is
an important check of the equivalence between the two fations at the quantum level.

Certainly, many aspects of the role of the BRST symmetry endresence of the Gribov horizon remain to be
unraveled. Though, we believe that the current formulatiomhich the BRST symmetry is spontaneously broken
might be helpful in order to face the hard and still open peabbf identifying a set of renormalizable composite
operators whose correlation functions display the necgssealytical and unitarity properties allowing to make
contact with the physical spectrum of a confining Yang-Miligory. The results of [1], together with those of
the current follow-up paper already learn that we can intoedthe subspace of renormalizable gauge invariant
operators which is furthermore preserved under time easlubased on BRST cohomology tools. The further
extraction of a physical subspace with the desired spgutoglerties is now subject to further investigation.

Finally, although the proof of the renormalizability giveare refers to the new Gribov-Zwanziger action i) #
is worth to mention that it immediately generalizes to theecaf the Refined Gribov-Zwanziger action[[8 9] 10],
both in 4 and in 31 [43].
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