79 research outputs found

    Media independent transport service for ambient intelligence

    Get PDF
    The evolution on ambient intelligence technologies, such as sensor networks, propelled a universe of very diverse types of both data and hardware equipment creating one of the most heterogeneous network environments. This diversity brings to light the main issue we aim to address in this paper: the need for a common ground that enables communications between the different heterogeneous equipments and technologies. Starting from the well-established IEEE 802.21 Media Independent Handover standard, we propose its mechanisms and structure to be extended to provide the needed common ground for communication in ambient intelligence scenarios. In this work, we extend 802.21 to include sensor information, enabling different types of equipment and network technologies to communicate with each other under a common standard contributing to a truly heterogeneous network framework. To conclude, we address its viability through a comparison with other known solutions for communication on sensing devices

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Dare et Capere: Virtuous Mesh and a Targeting Diagram

    Get PDF
    In Miller, P. D. and Matviyenko, S. (Eds.) (2014). The Imaginary App. Cambridge, MA: The MIT Press. Pp. 143-162

    Incrementando as redes centradas à informaçãopara uma internet das coisas baseada em nomes

    Get PDF
    The way we use the Internet has been evolving since its origins. Nowadays, users are more interested in accessing contents and services with high demands in terms of bandwidth, security and mobility. This evolution has triggered the emergence of novel networking architectures targeting current, as well as future, utilisation demands. Information-Centric Networking (ICN) is a prominent example of these novel architectures that moves away from the current host-centric communications and centres its networking functions around content. Parallel to this, new utilisation scenarios in which smart devices interact with one another, as well as with other networked elements, have emerged to constitute what we know as the Internet of Things (IoT). IoT is expected to have a significant impact on both the economy and society. However, fostering the widespread adoption of IoT requires many challenges to be overcome. Despite recent developments, several issues concerning the deployment of IPbased IoT solutions on a large scale are still open. The fact that IoT is focused on data and information rather than on point-topoint communications suggests the adoption of solutions relying on ICN architectures. In this context, this work explores the ground concepts of ICN to develop a comprehensive vision of the principal requirements that should be met by an IoT-oriented ICN architecture. This vision is complemented with solutions to fundamental issues for the adoption of an ICN-based IoT. First, to ensure the freshness of the information while retaining the advantages of ICN’s in-network caching mechanisms. Second, to enable discovery functionalities in both local and large-scale domains. The proposed mechanisms are evaluated through both simulation and prototyping approaches, with results showcasing the feasibility of their adoption. Moreover, the outcomes of this work contribute to the development of new compelling concepts towards a full-fledged Named Network of Things.A forma como usamos a Internet tem vindo a evoluir desde a sua criação. Atualmente, os utilizadores estão mais interessados em aceder a conteúdos e serviços, com elevados requisitos em termos de largura de banda, segurança e mobilidade. Esta evolução desencadeou o desenvolvimento de novas arquiteturas de rede, visando os atuais, bem como os futuros, requisitos de utilização. As Redes Centradas à Informação (Information-Centric Networking - ICN) são um exemplo proeminente destas novas arquiteturas que, em vez de seguirem um modelo de comunicação centrado nos dispositivos terminais, centram as suas funções de rede em torno do próprio conteúdo. Paralelamente, novos cenários de utilização onde dispositivos inteligentes interagem entre si, e com outros elementos de rede, têm vindo a aparecer e constituem o que hoje conhecemos como a Internet das Coisas (Internet of Things - IoT ). É esperado que a IoT tenha um impacto significativo na economia e na sociedade. No entanto, promover a adoção em massa da IoT ainda requer que muitos desafios sejam superados. Apesar dos desenvolvimentos recentes, vários problemas relacionados com a adoção em larga escala de soluções de IoT baseadas no protocolo IP estão em aberto. O facto da IoT estar focada em dados e informação, em vez de comunicações ponto-a-ponto, sugere a adoção de soluções baseadas em arquiteturas ICN. Neste sentido, este trabalho explora os conceitos base destas soluções para desenvolver uma visão completa dos principais requisitos que devem ser satisfeitos por uma solução IoT baseada na arquitetura de rede ICN. Esta visão é complementada com soluções para problemas cruciais para a adoção de uma IoT baseada em ICN. Em primeiro lugar, assegurar que a informação seja atualizada e, ao mesmo tempo, manter as vantagens do armazenamento intrínseco em elementos de rede das arquiteturas ICN. Em segundo lugar, permitir as funcionalidades de descoberta não só em domínios locais, mas também em domínios de larga-escala. Os mecanismos propostos são avaliados através de simulações e prototipagem, com os resultados a demonstrarem a viabilidade da sua adoção. Para além disso, os resultados deste trabalho contribuem para o desenvolvimento de conceitos sólidos em direção a uma verdadeira Internet das Coisas baseada em Nomes.Programa Doutoral em Telecomunicaçõe

    Orchestration of distributed ingestion and processing of IoT data for fog platforms

    Get PDF
    In recent years there has been an extraordinary growth of the Internet of Things (IoT) and its protocols. The increasing diffusion of electronic devices with identification, computing and communication capabilities is laying ground for the emergence of a highly distributed service and networking environment. The above mentioned situation implies that there is an increasing demand for advanced IoT data management and processing platforms. Such platforms require support for multiple protocols at the edge for extended connectivity with the objects, but also need to exhibit uniform internal data organization and advanced data processing capabilities to fulfill the demands of the application and services that consume IoT data. One of the initial approaches to address this demand is the integration between IoT and the Cloud computing paradigm. There are many benefits of integrating IoT with Cloud computing. The IoT generates massive amounts of data, and Cloud computing provides a pathway for that data to travel to its destination. But today’s Cloud computing models do not quite fit for the volume, variety, and velocity of data that the IoT generates. Among the new technologies emerging around the Internet of Things to provide a new whole scenario, the Fog Computing paradigm has become the most relevant. Fog computing was introduced a few years ago in response to challenges posed by many IoT applications, including requirements such as very low latency, real-time operation, large geo-distribution, and mobility. Also this low latency, geo-distributed and mobility environments are covered by the network architecture MEC (Mobile Edge Computing) that provides an IT service environment and Cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. Fog computing addresses use cases with requirements far beyond Cloud-only solution capabilities. The interplay between Cloud and Fog computing is crucial for the evolution of the so-called IoT, but the reach and specification of such interplay is an open problem. This thesis aims to find the right techniques and design decisions to build a scalable distributed system for the IoT under the Fog Computing paradigm to ingest and process data. The final goal is to explore the trade-offs and challenges in the design of a solution from Edge to Cloud to address opportunities that current and future technologies will bring in an integrated way. This thesis describes an architectural approach that addresses some of the technical challenges behind the convergence between IoT, Cloud and Fog with special focus on bridging the gap between Cloud and Fog. To that end, new models and techniques are introduced in order to explore solutions for IoT environments. This thesis contributes to the architectural proposals for IoT ingestion and data processing by 1) proposing the characterization of a platform for hosting IoT workloads in the Cloud providing multi-tenant data stream processing capabilities, the interfaces over an advanced data-centric technology, including the building of a state-of-the-art infrastructure to evaluate the performance and to validate the proposed solution. 2) studying an architectural approach following the Fog paradigm that addresses some of the technical challenges found in the first contribution. The idea is to study an extension of the model that addresses some of the central challenges behind the converge of Fog and IoT. 3) Design a distributed and scalable platform to perform IoT operations in a moving data environment. The idea after study data processing in Cloud, and after study the convenience of the Fog paradigm to solve the IoT close to the Edge challenges, is to define the protocols, the interfaces and the data management to solve the ingestion and processing of data in a distributed and orchestrated manner for the Fog Computing paradigm for IoT in a moving data environment.En els últims anys hi ha hagut un gran creixement del Internet of Things (IoT) i els seus protocols. La creixent difusió de dispositius electrònics amb capacitats d'identificació, computació i comunicació esta establint les bases de l’aparició de serveis altament distribuïts i del seu entorn de xarxa. L’esmentada situació implica que hi ha una creixent demanda de plataformes de processament i gestió avançada de dades per IoT. Aquestes plataformes requereixen suport per a múltiples protocols al Edge per connectivitat amb el objectes, però també necessiten d’una organització de dades interna i capacitats avançades de processament de dades per satisfer les demandes de les aplicacions i els serveis que consumeixen dades IoT. Una de les aproximacions inicials per abordar aquesta demanda és la integració entre IoT i el paradigma del Cloud computing. Hi ha molts avantatges d'integrar IoT amb el Cloud. IoT genera quantitats massives de dades i el Cloud proporciona una via perquè aquestes dades viatgin a la seva destinació. Però els models actuals del Cloud no s'ajusten del tot al volum, varietat i velocitat de les dades que genera l'IoT. Entre les noves tecnologies que sorgeixen al voltant del IoT per proporcionar un escenari nou, el paradigma del Fog Computing s'ha convertit en la més rellevant. Fog Computing es va introduir fa uns anys com a resposta als desafiaments que plantegen moltes aplicacions IoT, incloent requisits com baixa latència, operacions en temps real, distribució geogràfica extensa i mobilitat. També aquest entorn està cobert per l'arquitectura de xarxa MEC (Mobile Edge Computing) que proporciona serveis de TI i capacitats Cloud al edge per la xarxa mòbil dins la Radio Access Network (RAN) i a prop dels subscriptors mòbils. El Fog aborda casos d?us amb requisits que van més enllà de les capacitats de solucions només Cloud. La interacció entre Cloud i Fog és crucial per a l'evolució de l'anomenat IoT, però l'abast i especificació d'aquesta interacció és un problema obert. Aquesta tesi té com objectiu trobar les decisions de disseny i les tècniques adequades per construir un sistema distribuït escalable per IoT sota el paradigma del Fog Computing per a ingerir i processar dades. L'objectiu final és explorar els avantatges/desavantatges i els desafiaments en el disseny d'una solució des del Edge al Cloud per abordar les oportunitats que les tecnologies actuals i futures portaran d'una manera integrada. Aquesta tesi descriu un enfocament arquitectònic que aborda alguns dels reptes tècnics que hi ha darrere de la convergència entre IoT, Cloud i Fog amb especial atenció a reduir la bretxa entre el Cloud i el Fog. Amb aquesta finalitat, s'introdueixen nous models i tècniques per explorar solucions per entorns IoT. Aquesta tesi contribueix a les propostes arquitectòniques per a la ingesta i el processament de dades IoT mitjançant 1) proposant la caracterització d'una plataforma per a l'allotjament de workloads IoT en el Cloud que proporcioni capacitats de processament de flux de dades multi-tenant, les interfícies a través d'una tecnologia centrada en dades incloent la construcció d'una infraestructura avançada per avaluar el rendiment i validar la solució proposada. 2) estudiar un enfocament arquitectònic seguint el paradigma Fog que aborda alguns dels reptes tècnics que es troben en la primera contribució. La idea és estudiar una extensió del model que abordi alguns dels reptes centrals que hi ha darrere de la convergència de Fog i IoT. 3) Dissenyar una plataforma distribuïda i escalable per a realitzar operacions IoT en un entorn de dades en moviment. La idea després d'estudiar el processament de dades a Cloud, i després d'estudiar la conveniència del paradigma Fog per resoldre el IoT prop dels desafiaments Edge, és definir els protocols, les interfícies i la gestió de dades per resoldre la ingestió i processament de dades en un distribuït i orquestrat per al paradigma Fog Computing per a l'IoT en un entorn de dades en moviment

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    New Challenges on Web Architectures for the Homogenization of the Heterogeneity of Smart Objects in the Internet of Things

    Get PDF
    Aquesta tesi tracta de dues de les noves tecnologies relacionades amb la Internet of Things (IoT) i la seva integració amb el camp de les Smart Grids (SGs); aquestes tecnologies son la Web of Things (WoT) i la Social Internet of Things (SIoT). La WoT és una tecnologia que s’espera que proveeixi d’un entorn escalable i interoperable a la IoT usant la infraestructura web existent, els protocols web y la web semàntica. També s’espera que la SIoT contribueixi a solucionar els reptes d’escalabilitat i capacitat de descobriment creant una xarxa social d’agents (objectes i humans). Per explorar la sinergia entre aquestes tecnologies, l’objectiu és el de proporcionar evidència pràctica i empírica, generalment en forma de prototips d’implementació i experimentació empírica. En relació amb la WoT i les SGs, s’ha creat un prototip per al Web of Energy (WoE) que té com a objectiu abordar els desafiaments presents en el domini les SGs. El prototip és capaç de proporcionar interoperabilitat i homogeneïtat entre diversos protocols. El disseny d’implementació es basa en el Model d’Actors, que també proporciona escalabilitat del prototip. L’experimentació mostra que el prototip pot gestionar la transmissió de missatges per a aplicacions de les SGs que requereixen que la comunicació es realitzi sota llindars de temps crítics. També es pren una altra direcció d’investigació similar, menys centrada en les SGs, però per a una gamma més àmplia de dominis d’aplicació. S’integra la descripció dels fluxos d’execució com a màquines d’estats finits utilitzant ontologies web (Resource Description Framework (RDF)) i metodologies de la WoT (les accions es realitzen basant-se en peticions Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Aquest flux d’execució, que també pot ser un plantilla per a permetre una configuració flexible en temps d’execució, s’implementa i interpreta com si fos (i mitjançant) un Virtual Object (VO). L’objectiu de la plantilla és ser reutilitzable i poder-se compartir entre múltiples desplegaments de la IoT dins el mateix domini d’aplicació. A causa de les tecnologies utilitzades, la solució no és adequada per a aplicacions de temps crític (llindar de temps relativament baix i rígid). No obstant això, és adequat per a aplicacions que no demanden resposta en un temps crític i que requereixen el desplegament de VOs similars en el que fa referència al flux d’execució. Finalment, el treball s’enfoca en una altra tecnologia destinada a millorar l’escalabilitat i la capacitat de descobriment en la IoT. La SIoT està sorgint com una nova estructura de la IoT que uneix els nodes a través de relacions significatives. Aquestes relacions tenen com a objectiu millorar la capacitat de descobriment; en conseqüència, millora la escalabilitat d’una xarxa de la IoT. En aquest treball s’aplica aquest nou paradigma per optimitzar la gestió de l’energia en el costat de la demanda a les SGs. L’objectiu és aprofitar les característiques de la SIoT per ajudar a la creació de Prosumer Community Groups (PCGs) (grups d’usuaris que consumeixen o produeixen energia) amb el mateix objectiu d’optimització en l’ús de l’energia. La sinergia entre la SIoT i les SGs s’ha anomenat Social Internet of Energy (SIoE). Per tant, amb la SIoE i amb el focus en un desafiament específic, s’estableix la base conceptual per a la integració entre la SIoT i les SGs. Els experiments inicials mostren resultats prometedors i aplanen el camí per a futures investigacions i avaluacions de la proposta. Es conclou que el WoT i la SIoT són dos paradigmes complementaris que nodreixen l’evolució de la propera generació de la IoT. S’espera que la propera generació de la IoT sigui un Multi-Agent System (MAS) generalitzat. Alguns investigadors ja estan apuntant a la Web i les seves tecnologies (per exemple, Web Semàntica, HTTP/S)—i més concretamente a la WoT — com a l’entorn que nodreixi a aquests agents. La SIoT pot millorar tant l’entorn com les relacions entre els agents en aquesta fusió. Les SGs també poden beneficiar-se dels avenços de la IoT, ja que es poden considerar com una aplicació específica d’aquesta última.  Esta tesis trata de dos de las novedosas tecnologías relacionadas con la Internet of Things (IoT) y su integración con el campo de las Smart Grids (SGs); estas tecnologías son laWeb of Things (WoT) y la Social Internet of Things (SIoT). La WoT es una tecnología que se espera que provea de un entorno escalable e interoperable a la IoT usando la infraestructura web existente, los protocolos web y la web semántica. También se espera que la SIoT contribuya a solucionar los retos de escalabilidad y capacidad de descubrimiento creando una red social de agentes (objetos y humanos). Para explorar la sinergia entre estas tecnologías, el objetivo es el de proporcionar evidencia práctica y empírica, generalmente en forma de prototipos de implementación y experimentación empírica. En relación con la WoT y las SGs, se ha creado un prototipo para la Web of Energy (WoE) que tiene como objetivo abordar los desafíos presentes en el dominio las SGs. El prototipo es capaz de proporcionar interoperabilidad y homogeneidad entre diversos protocolos. El diseño de implementación se basa en el Modelo de Actores, que también proporciona escalabilidad del prototipo. La experimentación muestra que el prototipo puede manejar la transmisión de mensajes para aplicaciones de las SGs que requieran que la comunicación se realice bajo umbrales de tiempo críticos. También se toma otra dirección de investigación similar, menos centrada en las SGs, pero para una gama más amplia de dominios de aplicación. Se integra la descripción de los flujos de ejecución como máquinas de estados finitos utilizando ontologías web (Resource Description Framework (RDF)) y metodologías de la WoT (las acciones se realizan basándose en peticiones Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Este flujo de ejecución, que también puede ser una plantilla para permitir una configuración flexible en tiempo de ejecución, se implementa e interpreta como si fuera (y a través de) un Virtual Object (VO). El objetivo de la plantilla es que sea reutilizable y se pueda compartir entre múltiples despliegues de la IoT dentro del mismo dominio de aplicación. Debido a las tecnologías utilizadas, la solución no es adecuada para aplicaciones de tiempo crítico (umbral de tiempo relativamente bajo y rígido). Sin embargo, es adecuado para aplicaciones que no demandan respuesta en un tiempo crítico y que requieren el despliegue de VOs similares en cuanto al flujo de ejecución. Finalmente, el trabajo se enfoca en otra tecnología destinada a mejorar la escalabilidad y la capacidad de descubrimiento en la IoT. La SIoT está emergiendo como una nueva estructura de la IoT que une los nodos a través de relaciones significativas. Estas relaciones tienen como objetivo mejorar la capacidad de descubrimiento; en consecuencia, mejora la escalabilidad de una red de la IoT. En este trabajo se aplica este nuevo paradigma para optimizar la gestión de la energía en el lado de la demanda en las SGs. El objetivo es aprovechar las características de la SIoT para ayudar en la creación de Prosumer Community Groups (PCGs) (grupos de usuarios que consumen o producen energía) con el mismo objetivo de optimización en el uso de la energía. La sinergia entre la SIoT y las SGs ha sido denominada Social Internet of Energy (SIoE). Por lo tanto, con la SIoE y con el foco en un desafío específico, se establece la base conceptual para la integración entre la SIoT y las SG. Los experimentos iniciales muestran resultados prometedores y allanan el camino para futuras investigaciones y evaluaciones de la propuesta. Se concluye que la WoT y la SIoT son dos paradigmas complementarios que nutren la evolución de la próxima generación de la IoT. Se espera que la próxima generación de la IoT sea un Multi-Agent System (MAS) generalizado. Algunos investigadores ya están apuntando a la Web y sus tecnologías (por ejemplo,Web Semántica, HTTP/S)—y más concretamente a la WoT — como el entorno que nutra a estos agentes. La SIoT puede mejorar tanto el entorno como las relaciones entre los agentes en esta fusión. Como un campo específico de la IoT, las SGs también pueden beneficiarse de los avances de la IoT.This thesis deals with two novel Internet of Things (IoT) technologies and their integration to the field of the Smart Grid (SG); these technologies are the Web of Things (WoT) and the Social Internet of Things (SIoT). The WoT is an enabling technology expected to provide a scalable and interoperable environment to the IoT using the existing web infrastructure, web protocols and the semantic web. The SIoT is expected to expand further and contribute to scalability and discoverability challenges by creating a social network of agents (objects and humans). When exploring the synergy between those technologies, we aim at providing practical and empirical evidence, usually in the form of prototype implementations and empirical experimentation. In relation to the WoT and SG, we create a prototype for the Web of Energy (WoE), that aims at addressing challenges present in the SG domain. The prototype is capable of providing interoperability and homogeneity among diverse protocols. The implementation design is based on the Actor Model, which also provides scalability in regards to the prototype. Experimentation shows that the prototype can handle the transmission of messages for time-critical SG applications. We also take another similar research direction less focused on the SG, but for a broader range of application domains. We integrate the description of flows of execution as Finite-State Machines (FSMs) using web ontologies (Resource Description Framework (RDF)) and WoT methodologies (actions are performed on the basis of calls Hyper Text Transfer Protocol/ Secure (HTTP/S) to a Uniform Resource Locator (URL)). This execution flow, which can also be a template to allow flexible configuration at runtime, is deployed and interpreted as (and through) a Virtual Object (VO). The template aims to be reusable and shareable among multiple IoT deployments within the same application domain. Due to the technologies used, the solution is not suitable for time-critical applications. Nevertheless, it is suitable for non-time-critical applications that require the deployment of similar VOs. Finally, we focus on another technology aimed at improving scalability and discoverability in IoT. The SIoT is emerging as a new IoT structure that links nodes through meaningful relationships. These relationships aim at improving discoverability; consequently, improving the scalability of an IoT network. We apply this new paradigm to optimize energy management at the demand side in a SG. Our objective is to harness the features of the SIoT to aid in the creation of Prosumer Community Group (PCG) (groups of energy users that consume or produce energy) with the same Demand Side Management (DSM) goal. We refer to the synergy between SIoT and SG as Social Internet of Energy (SIoE). Therefore, with the SIoE and focusing on a specific challenge, we set the conceptual basis for the integration between SIoT and SG. Initial experiments show promising results and pave the way for further research and evaluation of the proposal. We conclude that the WoT and the SIoT are two complementary paradigms that nourish the evolution of the next generation IoT. The next generation IoT is expected to be a pervasive Multi-Agent System (MAS). Some researchers are already pointing at the Web and its technologies (e.g. Semantic Web, HTTP/S) — and more concretely at the WoT — as the environment nourishing the agents. The SIoT can enhance both the environment and the relationships between agents in this fusion. As a specific field of the IoT, the SG can also benefit from IoT advancements

    Enabling Things to Talk

    Get PDF
    Information Systems Applications (incl. Internet); Business IT Infrastructure; Computer Appl. in Administrative Data Processing; Operations Management; Software Engineering; Special Purpose and Application-Based Systems; Business Information Systems; Ubiquitous Computing; Reference Architecture; Spatio-Temporal Systems; Smart Objects; Supply Chain Management; IoT; SCM; Web Applications; Internet of Things; Smart Homes; RFI

    New Challenges on Web Architectures for the Homogenization of the Heterogeneity of Smart Objects in the Internet of Things

    Get PDF
    Aquesta tesi tracta de dues de les noves tecnologies relacionades amb la Internet of Things (IoT) i la seva integració amb el camp de les Smart Grids (SGs); aquestes tecnologies son la Web of Things (WoT) i la Social Internet of Things (SIoT). La WoT és una tecnologia que s’espera que proveeixi d’un entorn escalable i interoperable a la IoT usant la infraestructura web existent, els protocols web y la web semàntica. També s’espera que la SIoT contribueixi a solucionar els reptes d’escalabilitat i capacitat de descobriment creant una xarxa social d’agents (objectes i humans). Per explorar la sinergia entre aquestes tecnologies, l’objectiu és el de proporcionar evidència pràctica i empírica, generalment en forma de prototips d’implementació i experimentació empírica. En relació amb la WoT i les SGs, s’ha creat un prototip per al Web of Energy (WoE) que té com a objectiu abordar els desafiaments presents en el domini les SGs. El prototip és capaç de proporcionar interoperabilitat i homogeneïtat entre diversos protocols. El disseny d’implementació es basa en el Model d’Actors, que també proporciona escalabilitat del prototip. L’experimentació mostra que el prototip pot gestionar la transmissió de missatges per a aplicacions de les SGs que requereixen que la comunicació es realitzi sota llindars de temps crítics. També es pren una altra direcció d’investigació similar, menys centrada en les SGs, però per a una gamma més àmplia de dominis d’aplicació. S’integra la descripció dels fluxos d’execució com a màquines d’estats finits utilitzant ontologies web (Resource Description Framework (RDF)) i metodologies de la WoT (les accions es realitzen basant-se en peticions Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Aquest flux d’execució, que també pot ser un plantilla per a permetre una configuració flexible en temps d’execució, s’implementa i interpreta com si fos (i mitjançant) un Virtual Object (VO). L’objectiu de la plantilla és ser reutilitzable i poder-se compartir entre múltiples desplegaments de la IoT dins el mateix domini d’aplicació. A causa de les tecnologies utilitzades, la solució no és adequada per a aplicacions de temps crític (llindar de temps relativament baix i rígid). No obstant això, és adequat per a aplicacions que no demanden resposta en un temps crític i que requereixen el desplegament de VOs similars en el que fa referència al flux d’execució. Finalment, el treball s’enfoca en una altra tecnologia destinada a millorar l’escalabilitat i la capacitat de descobriment en la IoT. La SIoT està sorgint com una nova estructura de la IoT que uneix els nodes a través de relacions significatives. Aquestes relacions tenen com a objectiu millorar la capacitat de descobriment; en conseqüència, millora la escalabilitat d’una xarxa de la IoT. En aquest treball s’aplica aquest nou paradigma per optimitzar la gestió de l’energia en el costat de la demanda a les SGs. L’objectiu és aprofitar les característiques de la SIoT per ajudar a la creació de Prosumer Community Groups (PCGs) (grups d’usuaris que consumeixen o produeixen energia) amb el mateix objectiu d’optimització en l’ús de l’energia. La sinergia entre la SIoT i les SGs s’ha anomenat Social Internet of Energy (SIoE). Per tant, amb la SIoE i amb el focus en un desafiament específic, s’estableix la base conceptual per a la integració entre la SIoT i les SGs. Els experiments inicials mostren resultats prometedors i aplanen el camí per a futures investigacions i avaluacions de la proposta. Es conclou que el WoT i la SIoT són dos paradigmes complementaris que nodreixen l’evolució de la propera generació de la IoT. S’espera que la propera generació de la IoT sigui un Multi-Agent System (MAS) generalitzat. Alguns investigadors ja estan apuntant a la Web i les seves tecnologies (per exemple, Web Semàntica, HTTP/S)—i més concretamente a la WoT — com a l’entorn que nodreixi a aquests agents. La SIoT pot millorar tant l’entorn com les relacions entre els agents en aquesta fusió. Les SGs també poden beneficiar-se dels avenços de la IoT, ja que es poden considerar com una aplicació específica d’aquesta última.  Esta tesis trata de dos de las novedosas tecnologías relacionadas con la Internet of Things (IoT) y su integración con el campo de las Smart Grids (SGs); estas tecnologías son laWeb of Things (WoT) y la Social Internet of Things (SIoT). La WoT es una tecnología que se espera que provea de un entorno escalable e interoperable a la IoT usando la infraestructura web existente, los protocolos web y la web semántica. También se espera que la SIoT contribuya a solucionar los retos de escalabilidad y capacidad de descubrimiento creando una red social de agentes (objetos y humanos). Para explorar la sinergia entre estas tecnologías, el objetivo es el de proporcionar evidencia práctica y empírica, generalmente en forma de prototipos de implementación y experimentación empírica. En relación con la WoT y las SGs, se ha creado un prototipo para la Web of Energy (WoE) que tiene como objetivo abordar los desafíos presentes en el dominio las SGs. El prototipo es capaz de proporcionar interoperabilidad y homogeneidad entre diversos protocolos. El diseño de implementación se basa en el Modelo de Actores, que también proporciona escalabilidad del prototipo. La experimentación muestra que el prototipo puede manejar la transmisión de mensajes para aplicaciones de las SGs que requieran que la comunicación se realice bajo umbrales de tiempo críticos. También se toma otra dirección de investigación similar, menos centrada en las SGs, pero para una gama más amplia de dominios de aplicación. Se integra la descripción de los flujos de ejecución como máquinas de estados finitos utilizando ontologías web (Resource Description Framework (RDF)) y metodologías de la WoT (las acciones se realizan basándose en peticiones Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Este flujo de ejecución, que también puede ser una plantilla para permitir una configuración flexible en tiempo de ejecución, se implementa e interpreta como si fuera (y a través de) un Virtual Object (VO). El objetivo de la plantilla es que sea reutilizable y se pueda compartir entre múltiples despliegues de la IoT dentro del mismo dominio de aplicación. Debido a las tecnologías utilizadas, la solución no es adecuada para aplicaciones de tiempo crítico (umbral de tiempo relativamente bajo y rígido). Sin embargo, es adecuado para aplicaciones que no demandan respuesta en un tiempo crítico y que requieren el despliegue de VOs similares en cuanto al flujo de ejecución. Finalmente, el trabajo se enfoca en otra tecnología destinada a mejorar la escalabilidad y la capacidad de descubrimiento en la IoT. La SIoT está emergiendo como una nueva estructura de la IoT que une los nodos a través de relaciones significativas. Estas relaciones tienen como objetivo mejorar la capacidad de descubrimiento; en consecuencia, mejora la escalabilidad de una red de la IoT. En este trabajo se aplica este nuevo paradigma para optimizar la gestión de la energía en el lado de la demanda en las SGs. El objetivo es aprovechar las características de la SIoT para ayudar en la creación de Prosumer Community Groups (PCGs) (grupos de usuarios que consumen o producen energía) con el mismo objetivo de optimización en el uso de la energía. La sinergia entre la SIoT y las SGs ha sido denominada Social Internet of Energy (SIoE). Por lo tanto, con la SIoE y con el foco en un desafío específico, se establece la base conceptual para la integración entre la SIoT y las SG. Los experimentos iniciales muestran resultados prometedores y allanan el camino para futuras investigaciones y evaluaciones de la propuesta. Se concluye que la WoT y la SIoT son dos paradigmas complementarios que nutren la evolución de la próxima generación de la IoT. Se espera que la próxima generación de la IoT sea un Multi-Agent System (MAS) generalizado. Algunos investigadores ya están apuntando a la Web y sus tecnologías (por ejemplo,Web Semántica, HTTP/S)—y más concretamente a la WoT — como el entorno que nutra a estos agentes. La SIoT puede mejorar tanto el entorno como las relaciones entre los agentes en esta fusión. Como un campo específico de la IoT, las SGs también pueden beneficiarse de los avances de la IoT.This thesis deals with two novel Internet of Things (IoT) technologies and their integration to the field of the Smart Grid (SG); these technologies are the Web of Things (WoT) and the Social Internet of Things (SIoT). The WoT is an enabling technology expected to provide a scalable and interoperable environment to the IoT using the existing web infrastructure, web protocols and the semantic web. The SIoT is expected to expand further and contribute to scalability and discoverability challenges by creating a social network of agents (objects and humans). When exploring the synergy between those technologies, we aim at providing practical and empirical evidence, usually in the form of prototype implementations and empirical experimentation. In relation to the WoT and SG, we create a prototype for the Web of Energy (WoE), that aims at addressing challenges present in the SG domain. The prototype is capable of providing interoperability and homogeneity among diverse protocols. The implementation design is based on the Actor Model, which also provides scalability in regards to the prototype. Experimentation shows that the prototype can handle the transmission of messages for time-critical SG applications. We also take another similar research direction less focused on the SG, but for a broader range of application domains. We integrate the description of flows of execution as Finite-State Machines (FSMs) using web ontologies (Resource Description Framework (RDF)) and WoT methodologies (actions are performed on the basis of calls Hyper Text Transfer Protocol/ Secure (HTTP/S) to a Uniform Resource Locator (URL)). This execution flow, which can also be a template to allow flexible configuration at runtime, is deployed and interpreted as (and through) a Virtual Object (VO). The template aims to be reusable and shareable among multiple IoT deployments within the same application domain. Due to the technologies used, the solution is not suitable for time-critical applications. Nevertheless, it is suitable for non-time-critical applications that require the deployment of similar VOs. Finally, we focus on another technology aimed at improving scalability and discoverability in IoT. The SIoT is emerging as a new IoT structure that links nodes through meaningful relationships. These relationships aim at improving discoverability; consequently, improving the scalability of an IoT network. We apply this new paradigm to optimize energy management at the demand side in a SG. Our objective is to harness the features of the SIoT to aid in the creation of Prosumer Community Group (PCG) (groups of energy users that consume or produce energy) with the same Demand Side Management (DSM) goal. We refer to the synergy between SIoT and SG as Social Internet of Energy (SIoE). Therefore, with the SIoE and focusing on a specific challenge, we set the conceptual basis for the integration between SIoT and SG. Initial experiments show promising results and pave the way for further research and evaluation of the proposal. We conclude that the WoT and the SIoT are two complementary paradigms that nourish the evolution of the next generation IoT. The next generation IoT is expected to be a pervasive Multi-Agent System (MAS). Some researchers are already pointing at the Web and its technologies (e.g. Semantic Web, HTTP/S) — and more concretely at the WoT — as the environment nourishing the agents. The SIoT can enhance both the environment and the relationships between agents in this fusion. As a specific field of the IoT, the SG can also benefit from IoT advancements
    • …
    corecore