
O R C H E S T R AT I O N O F D I S T R I B U T E D I N G E S T I O N A N D
P R O C E S S I N G O F I O T D ATA F O R F O G P L AT F O R M S

juan luis pérez

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor in Computer Science

Universitat Politècnica de Catalunya

2018



Juan Luis Pérez: Orchestration of Distributed Ingestion and Processing of
IoT Data for Fog Platforms, A dissertation submitted in partial fulfill-
ment of the requirements for the degree of “Doctor per la Universitat
Politècnica de Catalunya”.
© 2018

advisor:
David Carrera

affiliation:
Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

location:
Barcelona



A B S T R A C T

In recent years there has been an extraordinary growth of the Inter-
net of Things (IoT) and its protocols in both, industry and academia.
The increasing diffusion of electronic devices with identification, com-
puting and communication capabilities, such as mobile phones, dig-
ital cameras, and music players, is laying ground for the emergence
of a highly distributed service and networking environment. The
rapid evolution of the mobile Internet, embedded distributed devices
and Machine-to-Machine (M2M) communication in the Cloud has en-
abled the IoT technologies.

From the point of view of predictions, Gartner expects that IoT will
grow to nearly 21 billion connected things by 2020. Companies like
Cisco and Ericsson predict that it will hit 50 billion by 2020. Regard-
less of the dance of numbers, what is undeniable is the importance
of the Internet of Things for both the industry and the academy now
as in the coming years. IoT hardware will be the largest technology
category in 2018 with $239 billion going largely toward modules and
sensors along with spending on infrastructure and security.

The above mentioned situation implies that there is an increasing
demand for advanced IoT data management and processing plat-
forms. Such platforms require support for multiple protocols at the
edge for extended connectivity with the objects, but also need to ex-
hibit uniform internal data organization and advanced data process-
ing capabilities to fulfill the demands of the application and services
that consume IoT data.

One of the initial approaches to address this demand is the inte-
gration between IoT and the Cloud computing paradigm. There are
many benefits of integrating IoT with the Cloud computing. The IoT
generates massive amounts of data, and Cloud computing provides
a pathway for that data to travel to its destination. But today’s Cloud
computing models do not quite fit for the volume, variety, and veloc-
ity of data that the IoT generates.

Among the new technologies emerging around the Internet of Things
(IoT) to provide a new whole scenario, the Fog Computing paradigm
has become the most relevant. Fog computing was introduced a few
years ago in response to challenges posed by many IoT applications,
including requirements such as very low latency, real-time opera-
tion, large geo-distribution, and mobility. Also this low latency, geo-
distributed and mobility environments are covered by the network
architecture MEC (Mobile Edge Computing) that provides an IT ser-
vice environment and Cloud-computing capabilities at the edge of
the mobile network, within the Radio Access Network (RAN) and in
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close proximity to mobile subscribers. Fog computing addresses use
cases with requirements far beyond Cloud-only solution capabilities.
The interplay between Cloud and Fog computing is crucial for the
evolution of the so-called Internet of Things (IoT), but the reach and
specification of such interplay is an open problem.

This thesis aims to find the right techniques and design decisions to
build a scalable distributed system for the IoT under the Fog Comput-
ing paradigm to ingest and process data. The final goal is to explore
the trade-offs and challenges in the design of a solution from Edge to
Cloud to address opportunities that current and future technologies
will bring in an integrated way. This thesis describes an architectural
approach that addresses some of the technical challenges behind the
convergence between IoT, Cloud and Fog with special focus on bridg-
ing the gap between Cloud and Fog. To that end, new models and
techniques are introduced in order to explore solutions for IoT envi-
ronments. More specifically, it is focused in three scenarios that are
incremental in its scope. First, it studies an architectural approach
under the Cloud paradigm to manage services under an IoT envi-
ronment. Second, it examines the feasibility and benefits of a Fog
computing IoT solution under a smart city scenario. And finally, it
brings a final architectural proposal for the orchestration of ingestion
and processing IoT data for a Fog platform.

Following these three items described above, this thesis contributes
to the architectural proposals for IoT ingestion and data processing by
1) proposing the characterization of a platform for hosting IoT work-
loads in the Cloud providing multi-tenant data stream processing
capabilities, the interfaces over an advanced data-centric technology,
including the building of a state-of-the-art infrastructure to evaluate
the performance and to validate the proposed solution. 2) studying
an architectural approach following the Fog paradigm that addresses
some of the technical challenges found in the first contribution. The
idea is to study an extension of the model that addresses some of
the central challenges behind the converge of Fog and IoT. 3) Design
a distributed and scalable platform to perform IoT operations in a
moving data environment. The idea after study data processing in
Cloud, and after study the convenience of the Fog paradigm to solve
the IoT close to the Edge challenges, is to define the protocols, the
interfaces and the data management to solve the ingestion and pro-
cessing of data in a distributed and orchestrated manner for the Fog
Computing paradigm for IoT in a moving data environment.
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1
I N T R O D U C T I O N

1.1 motivation

Currently we live in a hyperconnected world where any device is
likely to be connected, from a car to a clock, passing through a wash-
ing machine or a refrigerator. Any “thing” in the real world has the
ability to be connected through embedded solutions. All these things
have the ability to communicate with each other. This network of
physical devices, vehicles, home appliances and other items embed-
ded with electronics, software and sensors which enables these things
to connect and exchange data is the Internet of Things (IoT). Thanks
to the high growth of mobile networks, Machine-to-Machine [67]
(M2M) communication protocols, mini-hardware manufacturing, mi-
cro-computing and cheap processors the IoT technologies have been
enabled.

Gartner expects that IoT will grow to nearly 21 billion connected
things by 2020 [14]. Cisco [3] and Ericsson [11], on the other hand,
predict that it will hit 50 billion by 2020. Regardless of the dance
of numbers, what is undeniable is the importance of the Internet of
Things for both the industry and the academy now as in the coming
years. IoT hardware will be the largest technology category in 2018

with $239 billion going largely toward modules and sensors along
with spending on infrastructure and security [15].

More business are becoming aware of the relevance of the IoT and
the amount of data IoT is able to gather, but it is not just a problem
of volume of data, IoT raises problems far beyond data volume. The
Internet of Things components basically cover a variety of the latest
technologies used in the present era and require solving a variety
of research questions at different architecture layers. The number of
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2 introduction

different players in the market covers a wide range, both horizontally,
in terms of functionality, and vertically, among different industries.
Another issue is that the full benefits of the Internet of Things are
realized when large enough number of devices are able to interact
with each other, and therein lies a big problem.

The core infrastructure of an IoT environment is formed by sen-
sors, actuators, compute servers, and the communication network,
and the application layer provides the framework for communication
and distributed application development that includes data mining,
data processing and visualization APIs. The IoT environment might
support the interaction between things and allow for paradigms like
distributed computing. Internet of Things frameworks might lead to
software-development environments to help the development of soft-
ware to work with IoT components

At the same time, connected things need to be able to speak to
each other to transfer data and therefore a lot of standardization to
connect many different devices is needed. Despite the availability of
open standards and the standards organization that aspire to success-
fully setting their own standards, there is still room for improvement,
specially with regards to the integration of the different standards
between them.

Based on the scenario described above, Internet of Things is not
only a Big Data problem, a networking problem or a communication
problem, can be defined as a multidisciplinary problem where the
different topics need to be address in order to propose an overall
solution.

Moreover, in recent years there has been an extraordinary growth
of large-scale data processing technologies in both, industry and aca-
demic communities. This growth is due by the need to process the
enormous amount of data that both companies and communities
must be able to handle, and has led the introduction of new architec-
tures and infrastructures. Besides that, the set up of Cloud comput-
ing as the paradigm that enables ubiquitous access to shared pools
of configurable system resources and higher-level services have also
contributed significantly to the growth of large-scale technologies.
Cloud computing has completely changed the way servers, storage,
and other IT resources are delivered, posing new challenges to data
centers. Therefore, it is normal that the first solutions for the Internet
of Things came from the Cloud Computing, but the volume, variety,
and velocity of data that IoT generates and all the particular consid-
erations for the sensors and actuators included in IoT frameworks
make it necessary a specific approach to the solution.

One example of the kind of emerging technologies that is worth tar-
geting is the Fog Computing paradigm. The Fog Computing paradigm
allows to bring the Cloud Computing to the Edge. Both Cloud Com-
puting and Fog Computing provide storage, applications, and data
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Figure 1.1: IoT Ecosystem

to end-users. However, Fog Computing has a bigger proximity to
end devices and bigger geographical distribution. Fog Computing fa-
cilitates the operation of compute, storage, and networking services
between end devices and Cloud Computing data centers. The miss-
ing link for what data needs to be pushed to the Cloud, and what
can be analyzed locally, at the Edge, is provided by Fog Computing.
From the point of view of the Internet of Thing, Fog Computing is a
system-level horizontal architecture that distributes resources and ser-
vices of computing, storage, control and networking anywhere along
the continuum from Cloud to Edge.

Fog Computing addresses some of the problems discussed above.
Fog Computing can create low-latency network connections between
devices and analytics endpoints. This architecture in turn reduces
the amount of bandwidth needed compared to if that data had to
be sent all the way back to Cloud or a data center for processing.
Fog Computing also provides an approach where the communica-
tion between end devices is inherent to its architecture. Fog environ-
ments should be horizontally scalable supporting multiple industry
vertical use cases. Fog environments has to be able to work across
the Cloud to Things. And be a system-level technology, that extends
from Things, over network Edges, through to the Cloud and across
various network protocols, and fitting with the advances in 5G [1]
Radio Access Network (RAN) and Mobile Edge Computing (MEC)
architecture that are also key for the IoT evolution.

The complementarity between Fog and Cloud has traditionally been
seen as a mandatory feature in any Fog platform. This thesis advo-
cates for a different approach. Rather than specifying an architecture
where Fog and Cloud are complementary by design, is focused on a



4 introduction

service management architecture that literally fuses Fog and Cloud.
The final goal of this work is to explore the trade-offs and challenges
in the design of a solution from Edge to Cloud to address opportu-
nities that current and future technologies will bring in an integrated
way. Figure 1.1 represents the IoT ecosystem diversity.

This thesis aims to study and address these problems with the idea
of improving the integration of Cloud with Fog in an IoT environ-
ment, allowing alternative architecture solutions for orchestration of
distributed ingestion and processing of IoT data. More specifically,
it is focused in three areas. First, it will explore an architectural ap-
proach under the Cloud paradigm to manage services under an IoT
environment proposing the characterization of a platform for host-
ing IoT workloads in the Cloud providing mutli-tenant data stream
processing capabilities, the interfaces over an advanced data-centric
technology, including the building of a state-of-the-art infrastructure
to evaluate the performance and to validate the proposed solution..
Second, it will explore the feasibility and benefits of a Fog computing
IoT solution under a smart city scenario studying an architectural ap-
proach following the Fog paradigm that addresses some of the techni-
cal challenges found in the first contribution. The idea is to study an
extension of the model that addresses some of the central challenges
behind the converge of Fog and IoT. And finally, it brings a final archi-
tectural proposal for the orchestration of ingestion and processing IoT
data for a Fog platform designing a distributed and scalable platform
to perform IoT operations in a moving data environment. The idea
after study data processing in Cloud, and after study the convenience
of the Fog paradigm to solve the IoT close to the Edge challenges, is to
define the protocols, the interfaces and the data management to solve
the ingestion and processing of data in a distributed and orchestrated
manner for the Fog Computing paradigm for IoT in a moving data
environment.

1.2 contributions

The contributions of this thesis revolve around the interfaces, the or-
chestration and the architectural solutions to the problem of data in-
gestion in distributed environments. All the work done is incremental
in that each contribution is based on the previous one, but at the same
time each one of them delves into a new topic and proposes solutions
to different problems.

Figure 1.2 illustrates the two main directions this thesis explores,
and the steps taken in each one of them. The first direction repre-
sents the Scope of this thesis and the second direction represents the
Value that this thesis try to achieve. In this figure, the crossing be-
tween each one of the scopes and its value represents each one of the
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contributions of this thesis. More details about each contribution are
provided in the following sections.

This work aims to demonstrate the feasibility of the following the-
sis:

It is possible to develop an unified and distributed orchestration layer for
data ingestion and processing based on the Fog Computing paradigm for IoT
in a moving data sources environment.

To reach this statement, three are the major research objectives that
are addressed in this thesis. The first goal is develop interfaces for
data processing oriented to the IoT multi-tenancy and sharing data
between tenants, the second is develop orchestration techniques and
interfaces to manage life cycle of data processing elements in a Fog
environment based on the Fog Computing paradigm and the third
is develop a distributed and scalable platform to perform IoT opera-
tions in a environment with moving data sources. More details about
each contribution are provided in the following sections.

1.2.1 Hosting IoT data-centric workloads in the Cloud

Over the last years, Internet of Things (IoT) and Big Data platforms
are clearly converging in terms of technologies, problems and ap-
proaches. IoT ecosystems generate a vast amount of data that needs
to be stored and processed, becoming a Big Data problem. IoT devices
and sensors generate streams of data across a diversity of locations
and protocols that in the end reach a central platform that is used to
store and process it. Processing can be done in real time, with transfor-
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mations and enrichment happening on-the-fly, but it can also happen
after data is stored and organized in repositories. In the former case,
realtime processing technologies are required to operate on the data;
in the latter analytics and queries are of common use.

The first contribution of this thesis is the characterization of a plat-
form for hosting IoT workloads in the Cloud providing multi-tenant
data stream processing capabilities, a REST API over an advanced
data-centric technologies. The work includes the building of a state-
of-the-art infrastructure to evaluate the performance and to validate
the viability of the proposed solutions.

The work performed in this area has resulted in the following main
publications:

[65] Juan Luis Pérez, Álvaro Villalba, David Carrera, Iker Lariz-
goitia, and Vlad Trifa. The COMPOSE API for the internet of things.
In Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten
Suel, editors, 23rd International World Wide Web Conference, WWW ’14,
Seoul, Republic of Korea, April 7-11, 2014, Companion Volume, pages
971–976. ACM, 2014. ISBN 978-1-4503-2745-9. doi: 10.1145/2567948.
2579226. URL http://doi.acm.org/10.1145/2567948.2579226

[64] Juan Luis Pérez and David Carrera. Performance character-
ization of the servioticy API: an iot-as-a-service data management
platform. In First IEEE International Conference on Big Data Computing
Service and Applications, BigDataService 2015, Redwood City, CA, USA,
March 30 - April 2, 2015, pages 62–71. IEEE Computer Society, 2015.
ISBN 978-1-4799-8128-1. doi: 10.1109/BigDataService.2015.58. URL
https://doi.org/10.1109/BigDataService.2015.58

[80] Álvaro Villalba, Juan Luis Pérez, David Carrera, Carlos Pedri-
naci, and Luca Panziera. servioticy and iserve: A scalable platform
for mining the iot. In Elhadi M. Shakshuki, editor, Proceedings of the
6th International Conference on Ambient Systems, Networks and Technolo-
gies (ANT 2015), the 5th International Conference on Sustainable Energy
Information Technology (SEIT-2015), London, UK, June 2-5, 2015, vol-
ume 52 of Procedia Computer Science, pages 1022–1027. Elsevier, 2015.
doi: 10.1016/j.procs.2015.05.097. URL https://doi.org/10.1016/j.

procs.2015.05.097

1.2.2 Distribution of data processing under the Fog paradigm

The interplay between Cloud and Fog computing is crucial for the
evolution of IoT, but the reach and specification of such interplay is
an open problem. Meanwhile, the advances made in managing hyper-
distributed infrastructures involving the Cloud and the network Edge
are leading to the convergence of NFV and 5G, supported mainly by
ETSI’s MANO architecture.

http://doi.acm.org/10.1145/2567948.2579226
https://doi.org/10.1109/BigDataService.2015.58
https://doi.org/10.1016/j.procs.2015.05.097
https://doi.org/10.1016/j.procs.2015.05.097
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The second contribution of this thesis is a study of an architec-
tural approach following the Fog paradigm that addresses some of
the technical challenges found in the first contribution. The idea is to
study an extension of the model that addresses some of the central
challenges behind the convergence of Fog and IoT.

This second contribution has been done in collaboration with the
Corporate Strategic Innovation Group (CSIG) from Cisco and other
companies as well as the municipality of Barcelona. Through this col-
laboration, the candidate participated in the development of a Proof-
of-Concept (PoC) on Fog Computing that was deployed in the streets
of Barcelona, involving the provisioning, deploying, managing, and
maintaining the compute, network, and storage resources needed for
running Fog Services. The contributions from the candidate to this
international collaboration relate to the solution architecture design,
data processing techniques, life cycle management and API interfaces
extension, mainly:

• Managing the lifecycle of the Fog Nodes.

• Managing the lifecycle of the Fog Virtual Domains (FVDs), i.e.,
the virtual environments supporting the different Applications
running within a Fog Node.

• The APIs and protocols required for managing a Fog System,
including the interfaces and protocols: i) within the Backend
Platform; ii) within the Fog Nodes; iii) between the Backend
Platform and the Fog Nodes; iv) and between the Backend Plat-
form and the External Management Systems.

The work performed in this area has resulted in the following main
publications:

[86] Marcelo Yannuzzi, Frank van Lingen, Anuj Jain, Oriol Lluch
Parellada, Manel Mendoza Flores, David Carrera, Juan Luis Pérez,
Diego Montero, Pablo Chacin, Angelo Corsaro, and Albert Olive. A
new era for cities with fog computing. IEEE Internet Computing, 21

(2):54–67, 2017. doi: 10.1109/MIC.2017.25. URL https://doi.org/10.

1109/MIC.2017.25

[79] Frank van Lingen, Marcelo Yannuzzi, Anuj Jain, Rik Irons-
Mclean, Oriol Lluch Parellada, David Carrera, Juan Luis Pérez, Al-
berto Gutierrez, Diego Montero, Josep Marti, Ricard Maso, and Juan Pe-
dro Rodriguez. The unavoidable convergence of nfv, 5g, and fog: A
model-driven approach to bridge cloud and edge. IEEE Communica-
tions Magazine, 55(8):28–35, 2017

https://doi.org/10.1109/MIC.2017.25
https://doi.org/10.1109/MIC.2017.25
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1.2.3 Distribution and scalability of IoT operations with moving data sources

After the first two contributions where we explore the trade-offs and
challenges in the design of architectures for IoT based in Cloud and
Fog paradigms we presented a converged Cloud/Fog architecture
that addresses the challenges currently IoT is facing and an applica-
tion running inside.

The third contribution of this thesis is a proposed architecture for
a city-wide traffic service based on the Fog Computing paradigm. We
propose a data distribution algorithm resilient to back-haul connectiv-
ity issues.

The work performed in this area has resulted in the following pub-
lications:

[66] Juan Luis Pérez, Alberto Gutierrez-Torre, Josep Ll. Berral, and
David Carrera. A resilient and distributed near real-time traffic fore-
casting application for fog computing environments. Future Genera-
tion Computer Systems, 87:198 – 212, 2018. ISSN 0167-739X. doi: https:
//doi.org/10.1016/j.future.2018.05.013. URL http://www.sciencedirect.

com/science/article/pii/S0167739X1732678X

1.3 thesis organization

The remaining chapters of this thesis are organized as follows. Chap-
ter 2 introduces some basic concepts related to Internet of Things and
Web of Things, Cloud and Fog computing and Edge oriented archi-
tectures. Chapter 3 introduces the building of a state-of-the-art infras-
tructure for hosting IoT workloads in the Cloud and its characteriza-
tion to evaluate the performance. Chapter 4 presents an architecture
that addresses some of the central challenges behind the convergence
of NFV, 5G/MEC, IoT, and Fog. Chapter 5 is focused on presenting
a decentralized architecture towards smart-cities traffic monitoring
and forecasting. And finally, Chapter 6 presents the conclusions and
future work of this thesis.

http://www.sciencedirect.com/science/article/pii/S0167739X1732678X
http://www.sciencedirect.com/science/article/pii/S0167739X1732678X


2
B A C K G R O U N D

2.1 iot and web of things

The Internet of Things may be a hot topic in the industry but it’s
not a new concept. In the early 2000’s, Kevin Ashton was laying the
groundwork for what would become the Internet of Things (IoT) at
MIT’s AutoID lab [32].

Actually, the Internet of Things (IoT) is an integrated part of the
Future Internet and could be defined as a dynamic global network in-
frastructure with self configuring capabilities based on standard and
interoperable communication protocols where physical and virtual
"things" have identities, physical attributes, and virtual personalities
and use intelligent interfaces, and are seamlessly integrated into the
information network.

In the IoT, "things" are expected to become active participants in
business, information and social processes where they are enabled to
interact and communicate among themselves and with the environ-
ment by exchanging data and information "sensed" about the envi-
ronment, while reacting autonomously to the "real/physical world"
events and influencing it by running processes that trigger actions
and create services with or without direct human intervention.

The technology of IoT has been evolved according to the environ-
ment based on information communication technology and social in-
frastructure. By connecting billions or even trillions of devices to the
Internet, we realize that there are a lot of applications that are be-
ing used by the industries, the government, the public, etc. Massive
amounts of data are being generated by billions of connected devices
and transferred throughout the network to the Internet.

9
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In the IoT topic there must be an integration between the phys-
ical world and computer networks. The things have to be allowed
based on competing standards and requires custom solutions, hence
requires time and technical expertise. In this heterogeneous ecosys-
tem of devices, the development of a simple application requires
knowledge and time. Real world devices can be integrated to the
Web. REST principles can be applied to devices.

The Web of Things proposes to leverage the existing and ubiquitous
Web protocols as common ground where real objects could interact
with each other. One of the advantages of using Web standards is that
devices will be able to finally “speak” the same language as other
resources on the Internet, therefore making it very easy to integrate
physical devices with any content on the Web.

The Web of Things is designed to be seamlessly integrated to the
existing Web so it can fully leverage its infrastructure and standards
to minimize integrations across applications and systems. The defini-
tion of the fundamental building blocks of the Web of Things is an
extension of the current Web paradigms.

Web of Things proposes to integrate real world things int the ex-
isting Web by turning real objects into RESTful resources that can
be used directly over HTTP. A Web Server can be implemented on
embedded devices to turn them into a RESTful resource.

The Web Thing Model Submission is a specification that was pub-
lished in 2015 [81] by several members of the WoT IG. This document
proposes the basis of a common model to describe the virtual coun-
terpart of physical objects in the Web of Things. It defines a model
and Web API for Things to be followed by anyone wanting to create
a product, device, service, or application for the Web of Things.

2.2 cloud computing

Cloud computing is a model for enabling convenient, on-demand net-
work access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management ef-
fort or service provider interaction [61]. It is a computing technique
that allows renting storage infrastructures and computing services,
renting of business processes and overall applications. It simplifies
the computing jobs by renting resources and services.

There are many benefits of integrating IoT with the Cloud. The IoT
generates massive amounts of data, and cloud computing provides
a pathway for that data to travel to its destination. IoT is a network
of devices which act as information sources and produces a colos-
sal amounts of semi-structured or non-structured data with the three
typical Big Data characteristics: volume, velocity and variety. Into the



2.3 fog computing 11

Cloud, data can be treated in homogeneous manner through standard
APIs.

From the point of view of the computational resources, IoT devices
possess quite limited processing capacity which do not permit on-
site data processing. The collected data from these devices is usually
transmitted to the other powerful nodes capable of aggregation and
processing.

Cloud systems are located within the Internet, which is a large het-
erogeneous network with numerous speeds, technologies and topolo-
gies without central control. Because of the nature of the Internet,
there are many issues related to the quality of service that remain un-
resolved. One of the most important that affects the quality of service
is network latency. Realtime applications are affected by the delay
caused by latency in networks.

Today’s Cloud computing models are not designed for the volume,
variety, and velocity of data that the IoT generates. Billions of previ-
ously unconnected devices are generating more than two exabytes of
data each day. An estimated 50 billion “things” will be connected to
the Internet by 2020 [77]. Moving all data from these things to the
cloud for analysis would require vast amounts of bandwidth.

Cloud computing frees the enterprise and the end user from the
specification of many details. This facility becomes a problem for la-
tency sensitive applications that require large numbers of nodes in
order to meet the delay requirements. An emerging wave of Inter-
net deployments requires mobility support and wide range of Geo-
distribution in addition to location awareness and low latency fea-
tures.

2.3 fog computing

An emerging wave of Internet deployments, most notably the Inter-
net of Things (IoTs), requires mobility support and geo-distribution
in addition to location awareness and low latency. Analyzing IoT data
close to where it is collected minimizes latency. It offloads gigabytes
of network traffic from the core network. And it keeps sensitive data
inside the network. A new platform is needed to meet these require-
ments.

Fog computing is a system-level horizontal architecture that dis-
tributes resources and services of computing, storage, control and
networking anywhere along the continuum from Cloud to Things.

Fog computing is an extension of the Cloud computing paradigm
to the edge of the network where implementations of the architecture
can reside in multiple layers of a network’s topology.

All the benefits of Cloud should be preserved with the Fog exten-
sion, including containerization, virtualization, orchestration, man-



12 background

Figure 2.1: Fog computing layer architecture.

ageability, and efficiency. It is important to note that Fog computing
complements, not replaces, Cloud computing.

Fog computing supports multiple industry verticals and applica-
tion domains, delivering intelligence and services to users and busi-
ness. It enables services and applications to be distributed closer
to Things, and anywhere along the continuum between Cloud and
Things. It extends from the Things, over the network edges, through
the Cloud, and across multiple protocol layers systems. A general
view of the layer architecture of Fog computing can be seen in Fig-
ure 2.1.

The Fog computing model moves computation from the cloud closer
the edge, and potentially right up to the IoT sensors and actuators.
The computational, networking, storage and acceleration elements of
this new model are known as fog nodes. These are not completely
fixed to the physical edge, but should be seen as fluid system of con-
nectivity.

Fog computing targets cross-cutting concerns like the control of
performance, latency and efficiency are also key to the success of
fog networks. Certain functions are naturally more advantageous to
carry out in fog nodes, while others are better suited to cloud. The
segmentation of what tasks go to fog and what goes to the backend
cloud are application specific.

The OpenFog Reference Architecture enables fog-cloud and fog-
fog interfaces. OpenFog architectures offer several unique advantages
over other approaches, which we term SCALE:

• Security: Additional security to ensure safe, trusted transac-
tions.

• Cognition: awareness of client-centric objectives to enable au-
tonomy.
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Figure 2.2: Multi-Tier Fog Deployment

• Agility: rapid innovation and affordable scaling under a com-
mon infrastructure.

• Latency: real-time processing and cyber-physical system con-
trol.

• Efficiency: dynamic pooling of local unused resources from par-
ticipating end-user devices.

In a typical Fog deployment, there are usually several tiers (N-tiers)
of nodes. Nodes at the edge are typically focused on sensor data
acquisition, data normalization and command/control of sensors ac-
tuators. Nodes in the next higher tier are focused on data filtering,
compression, and transformation. They may also provide some edge
analytics required for critical real time or near real time processing.
As we move away from the true network edge, we see higher level
machine and system learning (analytics) capabilities. Nodes at the
higher tiers or nearest the backend cloud are typically focused on ag-
gregating data and turning the data into knowledge. Figure 2.2 shows
this typical multi-tier fog deployment.

The OpenFog Reference Architecture 2.3 description is a composite
of perspectives and multiple stakeholder views. The abstract architec-
ture includes perspectives, shown in grey vertical bars on the sides of
the architectural description. The perspectives include:

• Performance: Low latency is one of the driving reasons to adopt
Fog architectures. There are multiple requirements and design
considerations across multiple stakeholders to ensure this is sat-
isfied. This includes time critical computing, time sensitive net-
working, network time protocols, etc.

• Security: End-to-end security is critical to the success of all Fog
computing deployment scenarios.
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Figure 2.3: OpenFog architecture description with perspectives

• Manageability: Managing all aspects of fog deployments, which
include RAS (Reliability, Availability, Serviceability), DevOps,
etc., is a critical aspect across all layers of a Fog computing hier-
archy.

• Data Analitycs and Control: The ability for Fog nodes to be
autonomous requires localized data analytics coupled with con-
trol. The actuation/control needs to occur at the correct tier or
location in the hierarchy as dictated by the given scenario.

• IT Business and Cross Fog Applications: In a multi-vendor ecosys-
tem applications need the ability to migrate and properly oper-
ate at any level of a Fog deployment’s hierarchy. Applications
should be able to span all levels of a deployment to maximize
their value.

There are three identified viewpoints in the Architecture descrip-
tion diagram: Software, System, and Node.

• Software view: Represented in the top three layers shown in
the architecture description, and include Application Services,
Application Support, and Node Management (IB) and Software
Backplane.

• System view: Represented in the middle layers shown in the ar-
chitecture description, which include Hardware Virtualization
down through the Hardware Platform Infrastructure.

• Node view: Represented in the bottom two layers, which in-
cludes the Protocol Abstraction Layer and Sensors, Actuators,
and Control.

The IEEE has adopted the OpenFog Consortium’s OpenFog Refer-
ence Architecture, which defines how computing resources and ser-
vices are distributed between the Cloud, Edge computing facilities
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and devices, as an official standard, IEEE 1934 [34]. The OpenFog
Consortium relies on the reference architecture as a universal tech-
nical framework that enables the data-intensive requirements of the
Internet of Things (IoT), 5G and artificial intelligence (AI) applica-
tions.

2.4 data processing in iot

As has been previously argued, the volume of data already generated
by connected devices is vast and needs an approach based on BigData
techniques.

There are a huge amount of BigData solutions and infrastructures
related to data processing, from batch processing to streaming data
and user-facing abstractions. The current focus on BigData place par-
ticular emphasis on the power of data and data mining solutions and
the technologies solutions are focused on handle these large volumes
of data and trying to find patterns and trends from them.

In a IoT environment it is not enough to store information in a
data warehouse and report back on its days later. In IoT use cases,
data needs to be processed on a streaming basis with the ability to
identify and act on interesting information quickly and effectively. It
should also support stream processing from the outset and have the
capability to deal with low-latency queries against semi-structured
data items, at scale. Simply collecting data is only part of the solution.
What’s key is the ability to combine deep predictive analytics from
historical data with real-time events.

Common requirements for an IoT data processing platform are:
support for native raw data, support for a variety of workload types,
business continuity and security & privacy.

IoT applications produce big datasets that can’t be transferred over
the Internet to be processed by a centralized public or private data-
center. The datasets flow at a volume and velocity too large and too
fast to be processed by a single centralized datacenter and the an-
alytics models and intelligence required to process the datasets are
available across distributed locations. A highly scalable IoT process-
ing platform is essential.

2.5 benchmarking for iot

By the time the work presented in this thesis was started, one of the
first challenges was the characterization of a platform for hosting IoT
workloads in the Cloud (Chapter 3), but at that time there were no
tools to perform it. We had to develop our own evaluation system
(Section 3.5) in order to achieve this goal. Currently we find Bench-
marking tools for IoT like the widely used TPCx-IoT [29]. Here below
we will see the description of TPCx-IoT where will be seen that some
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of the lines that we follow in our characterization of the performance
of our state-of-the-art platform are found in the TPCx-IoT benchmark.

TPCx-IoT is the industry’s first benchmark which enables direct
comparison of different software and hardware solutions for IoT gate-
ways. The TPC is a non-profit corporation founded to define transac-
tion processing and database benchmarks and to disseminate objec-
tive, verifiable TPC performance data to the industry. Some of the
full members of the TPC corporation are IBM, Intel, Cisco, AMD
and Microsoft. TPCx-IoT was specifically designed to provide verifi-
able performance, price-performance and availability metrics for com-
mercially available systems that typically ingest massive amounts of
data from large numbers of devices, while running real-time analytic
queries. Provides an objective measure of performance and perfor-
mance of commercially available software and hardware systems in
IoT gateway environments.

The TPCx-IoT workloads consists of data ingestion and concurrent
queries simulating workloads on typical IoT Gateway systems. The
dataset represents data from sensors from electric power stations and
represents data from 200 different types of sensors. The data gener-
ated is ingested and persisted into the System Under Test (SUT) and
continuously queried to simulate simple analytics use cases. The Sys-
tem Under Test (SUT) represents an IoT gateway system consisting of
commercially available servers and storage systems running a com-
mercially available NoSQL data management system.

The workload represents data inject in to the SUT with analytics
queries in the background. The analytic queries retrieve the readings
of a randomly selected sensor for two 30 second time intervals, TI1

and TI2. The first time interval TI1 is defined between the timestamp
the query was started Ts and the timestamp 5 seconds prior to TS, i.e.
TI1 = [TS − 5, TS]. The second time interval is a randomly selected 5

seconds time interval TI2 within the 1800 seconds time interval prior
to the start of the first query, TS − 5. If TS <= 1810, prior to the start
of the first query, TS − 5.

TPCx-IoT defines the following primary metrics:

• The Performance Metric (IoTps) that represents the effective
throughput capability of the SUT.

• The Price Performance Metric ($) defined as: $
IoTps =

P
IoTps where

P is the total cost of ownership of the SUT.

The benchmark test consists of two runs, Run1 and Run2. Each run
consists of a Warmup Run and Measured Run. The total elapsed time
for the Performance run, in seconds (T), is used for the Performance
Metric calculation. The Performance Run is defined as the Measured
Run with the lower Performance Metric. The Reported Performance
Metric is the Performance Metric for the Performance Run.
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2.6 nfv mano

Network functions virtualization (NFV) (also known as virtual net-
work function (VNF)) proposes a new approach to the implementa-
tion and operation of network functions, and may inspire the devel-
opment and deployment of new types of network functions. NFV is
a network architecture concept that uses the technologies of IT virtu-
alization to virtualize entire classes of network node functions into
building blocks that may connect, or chain together, to create com-
munication services. NFV decouples the network functions, such as
network address translation (NAT), firewalling, intrusion detection,
domain name service (DNS), and caching, to name a few, from pro-
prietary hardware appliances so they can run in software. NFV offers
a new way to design, deploy and manage networking services.

It is designed to consolidate and deliver the networking compo-
nents needed to support a fully virtualized infrastructure - including
virtual servers, storage, and even other networks. It utilizes standard
IT virtualization technologies that run on high-volume service, switch
and storage hardware to virtualize network functions. It is applicable
to any data plane processing or control plane function in both wired
and wireless network infrastructures. NFV relies upon, but differs
from, traditional server-virtualization techniques, such as those used
in enterprise IT. A virtualized network function, or VNF, may consist
of one or more virtual machines running different software and pro-
cesses, on top of standard high-volume servers, switches and storage
devices, or even cloud computing infrastructure, instead of having
custom hardware appliances for each network function.

NFV MANO (network functions virtualization management and
orchestration), also called MANO, is an architectural framework for
managing and orchestrating virtualized network functions (VNFs)
and other software components. The European Telecommunications
Standards Institute (ETSI) Industry Specification Group (ISG NFV)
defined the MANO architecture to facilitate the deployment and con-
nection of services as they are decoupled from dedicated physical
devices and moved to virtual machines (VMs). A general view of
the MANO architecture can be seen in Figure 2.4. The Network Func-
tions Virtualisation Management and Orchestration (NFV-MANO) ar-
chitectural framework has the role to manage the NFV infrastructure
and orchestrate the allocation of resources needed by the network ser-
vices and VNFs. Such coordination is necessary now because of the
decoupling of the Network Functions software from the NFV infras-
tructure.

The NFV-MANO architectural framework identifies the following
functional blocks:
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Figure 2.4: NFV MANO Architecture

• NFV Orchestrator (NFVO): Consist of two layers – service or-
chestration and resource orchestration – which control the inte-
gration of new network services and VNFs into a virtual frame-
work. NFV orchestrators also validate and authorize NFV in-
frastructure (NFVI) resource requests.

• VNF Manager (NFVM): Oversees lifecycle management of VNF
instances; coordination and adaptation role for configuration
and event reporting between NFVI and Element or Network
Management System (EMS/NMS).

• Virtualised Infrastructure Manager (VIM): Controls and man-
ages NFV infrastructure, which encompasses compute, storage
and network resources.

MANO works with templates for standard virtual network func-
tions so users can pick from existing network functions virtualiza-
tion infrastructure resources to deploy their NFV platform. For NFV
MANO to be effective, it must be integrated with application program
interfaces (APIs) in existing systems in order to work with multiven-
dor technologies across multiple network domains.

2.7 yang

YANG (Yet Another Next Generation) is a data modeling language
used to model configuration data, state data, Remote Procedure Calls,
and notifications for network management protocols.
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YANG is a language originally designed to model data for the NET-
CONF protocol. A YANG module defines hierarchies of data that can
be used for NETCONF-based operations, this allows a complete de-
scription of all data sent between a NETCONF client and server.

YANG models the hierarchical organization of data as a tree in
which each node has a name, and either a value or a set of child
nodes. YANG provides clear and concise descriptions of the nodes,
as well as the interaction between those nodes.

The language, being protocol independent, can then be converted
into any encoding format, e.g. XML or JSON, that the network config-
uration protocol supports. YANG is a modular language representing
data structures in an XML tree format. The data modeling language
comes with a number of built-in data types. Additional application
specific data types can be derived from the built-in data types. More
complex reusable data structures can be represented as groupings.
YANG data models can use XPATH expressions to define constraints
on the elements of a YANG data model.

The following Yang module, code1, l3vpn shows a partial data model
for a layer 3 vpn. The module declares a namespace and a prefix and
imports the type library module ietf-inet-types before defining the type
department. It then defines a container topology that includes a list of
roles and a list of connections. A connection has two endpoints that
reference roles via the leafref type and its path restriction.

Listing 1: Yang example for a Layer 3 VPN

module l3vpn {

namespace ‘‘http://com/example/l3vpn’’;

prefix l3vpn;

import ietf-inet-types { prefix inet; }

typedef department {

type string;

description

‘‘The department that needs the VPN’’;

}

container topology {

list role {

key name;

leaf name {

type enumeration {

enum ce;

enum pe;

enum p;

}

}

}

list connection {
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key name;

leaf name {

type string;

}

leaf endpoint-1 {

type leafref {

path ‘‘/topology/role/name’’;

}

}

leaf endpoint-2 {

type leafref {

path ‘‘/topology/role/name’’;

}

}

leaf link-vlan {

type unit32;

}

}

}

. . . . .

} 	
2.8 mobile edge computing - mec

Mobile Edge Computing is a network architecture paradigm that pro-
vides an IT service environment and Cloud computing capabilities at
the Edge of the mobile network, within the Radio Access Network
(RAN) and in close proximity to mobile subscribers. The aim is to
reduce latency, ensure highly efficient network operation and service
delivery, and offer an improved user experience. Mobile Edge Com-
puting (MEC) is a new technology which is currently being standard-
ized in an ETSI Industry Specification Group (ISG) of the same name.
To align with broader developments in service provider networking,
and to increase the strategic value of MEC, the ISG has adopted the
ETSI management and orchestration (MANO) model for service or-
chestration and management.

Based on a virtualized platform, MEC is recognized by the Euro-
pean 5G PPP (5G Infrastructure Public Private Partnership) research
body as one of the key emerging technologies for 5G networks with
Network Functions Virtualization (NFV). For the evolution of 5G,
MEC represents a key technology and architectural paradigm. MEC
helps the advance of the transformation of the mobile broadband net-
work into a programmable environment satisfying the demanding
requirements of 5G in therms of latency, scalability and automation.
A general view of the layer architecture of MEC architecture can be
seen in Figure 2.5.

MEC is based on a virtualized platform and has a complementary
approach to NFV. NVF is focused on network functions but MEC



2.8 mobile edge computing - mec 21

            MEC System Level management 

UE 

MEC 

Platform 

MEC 

app 

MEC 

app 

MEC 

app 

MEC Applications 

MEC 

Host Level 

Management 

M
E

C
  

S
y
s
te

m
 L

e
v
e

l 
M

E
C

 H
o
s
t 
L

e
v
e

l 

3GPP 

network 

Local 

network 

External 

network 

3rd party 

N
e
tw

o
rk

s
 

MEC host 

Virtualisation 

infrastructure 

MEC Orchestrator 

Figure 2.5: MEC Architecture

framework enables applications running at the Edge of the network.
There are similarities between the infrastructure that hosts MEC and
NFV, so it will be beneficial to reuse the NFV infrastructure by host-
ing both, VNFs and MEC applications on the same platform. The
primary goal of Mobile Edge Computing is to reduce network con-
gestion and improve application performance by achieving related
task processing closer to the user.

The major components of the MEC architecture can be described
as follows:

• Mobile Edge Platform: Is the component that provides the func-
tionalities that are required to run on the MEC host applications
and to enable MEC applications to access the MEC services. It
also provides a set of services that expose radio network data
and other real time context information to authorized MEC ap-
plications.

• Mobile Edge Orchestrator has the visibility over the resources
and capabilities of the entire MEC system and maintains an
overall view of the deployed MEC servers to determine the lo-
cations for instantiating the MEC applications. In many ways it
is similar to the ETSI Network Functions Virtualization Orches-
trator (Section 2.6).

• Mobile Edge Platform Manager is the responsible for the life-
cycle management of the MEC applications and management
of the MEC Application Platform and the MEC application pol-
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icy management functions. Is also responsible for instantiating,
terminating and relocating the MEC applications.

• Virtualized Infrastructure Manager is responsible for managing
the resources of the virtualized infrastructure, like releasing and
allocating vitualized storage, network resources and compute.
And also includes preparing the infrastructure for running a
software image.

• Mobile Edge Applications run as virtual machines on top of
virtualization infrastructure provided by the MEC host. They
must use the MEC application programming interfaces (APIs)
and be manageable within the NFV framework.

• MEC host is a logical construct which embraces the MEC plat-
form and the virtualization infrastructure that provides com-
pute, storage and network resources to the MEC applications.
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H O S T I N G I O T D ATA - C E N T R I C W O R K L O A D S I N
T H E C L O U D

3.1 introduction

In the last years, Internet of Things (IoT) and Big Data platforms
are clearly converging in terms of technologies, problems and ap-
proaches. IoT workloads generate a vast amount of data that needs to
be stored and processed, becoming a Big Data problem. IoT devices
and sensors generate streams of data across a diversity of locations
and protocols that in the end reach a central platform that is used
to store and process these streams. Processing can be done in real
time, with transformations and enrichment happening on-the-fly, but
it can also happen after data is stored and organized in repositories.
In the former case, stream processing technologies are required to op-
erate on the data; in the latter analytics and queries are of common
use. This chapter presents a detailed characterization of the of the
servIoTicy [24] platform: a state-of-the-art infrastructure for hosting
Internet of Things (IoT) workloads in the Cloud. It provides multi-
tenant data stream processing capabilities, a REST API, data analytics,
advanced queries and multi-protocol support in a combination of ad-
vanced data-centric technologies. The deployment of such a complex
platform in the cloud requires a detailed understanding of all these
components and tiers to allow for auto-scaling and dynamic provi-
sioning capabilities. This chapter aims to provide this initial charac-
terization to be the basis for advanced cloud provisioning strategies
and algorithms.

The above mentioned situation implies that there is an increasing
demand for advanced IoT data management and processing plat-
forms. Such platforms require support for multiple protocols at the

23
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edge for extended connectivity with the objects, but also need to ex-
hibit uniform internal data organization and advanced data process-
ing capabilities to fulfill the demands of the application and services
that consume IoT data.

To provide answer to this growing demand, servIoTicy is a state-of-
the-art platform for hosting Internet of Things (IoT) workloads in the
Cloud. It provides multi-tenant data stream processing capabilities, a
REST API, data analytics, advanced queries and multi-protocol sup-
port in a combination of advanced data-centric services. ServIoTicy
aims to provide a technological platform for easily creating services
based on the Internet of Things (IoT), thus unleashing the full poten-
tial of an Internet of Services (IoS) based on the IoT. The main focus
of servIoTicy is to provide a rich set of features to store and process
data through it REST API, allowing objects, services and humans to
access the information produced by the devices connected to the plat-
form. servIoTicy allows for a real time processing of device-generated
data, and enables for simple creation of data transformation pipelines
using user generated logic. Unlike traditional service composition ap-
proaches, usually focused on addressing the problems of functional
composition of existing services, one of the goals of the servIoTicy is
to focus on data processing scalability. Other components that can be
connected to servIoTicy provide added capabilities to automatically
create compositions of high-level services using existing tools [63].
Figure 3.1 provides an overall view of the features offered by servIoT-
icy.

Advanced streaming and analytics platforms such as servIoTicy
are complex pieces of software that integrate a large set of compo-
nents under the hood. They hide their complexity behind simple
REST APIs and multi-protocol channels, but the reality is that their
deployment and configuration is complex. Automatically provision-
ing resources in the cloud for hosting these platforms as a service
requires a detailed understanding of all these components and tiers
to allow for auto-scaling and dynamic provisioning capabilities. This
chapter aims to provide this initial characterization on servIoTicy
to be the basis for advanced cloud provisioning strategies and algo-
rithms. The workload characterization described in this chapter also
offers an interesting insight for anybody interested in understanding
the resource demands of modern indexing platforms such as Elastic-
Search [10] or distributed data stores such as CouchBase [4].

The platform described and characterized in this chapter is part of
the developments of the COMPOSE [55] project, which aims to de-
velop a more ambitious IoT platform, not only focused on the data
management and processing part, but including other aspects such
as security, discovery of objects, development tools and composition
engines. The sources of the servIoTicy are freely available as an open
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source project1 in GitHub. The platform is also available for single
node testing as a vagrant box, downloadable from a github reposi-
tory2.

The main contributions of this chapter are:

• A detailed workload and resource characterization of the serv-
IoTicy major components (REST API tier, Distributed Data Store
and Indexing Engine) from a point of view of scalability with
the available resources (Experiment 1) and with the load (Exper-
iment 2).

• An evaluation of the efficiency of CouchBase as a distributed
data store in terms of response time delivered wit the load (Ex-
periment 3)

• An insight on the performance impact of a proper configuration
of the memory settings in ElasticSearch (Experiment 4).

The remaining sections of the chapter are structured as follows: Sec-
tion 3.2 introduces a set of abstractions defined in servIoTicy for man-
aging data associated to objects; Section 3.3 introduces the general
architecture and components of the platform; Section 3.4 describes
the main features of the REST API of the platform and its associ-
ated data models; Section 3.5 presents the evaluation methodology
and the four experiments included in the chapter; Finally, Section 3.6
goes through the related work and Section 3.7 provides a summary
of the chapter.

3.2 abstractions used in servioticy

Several abstractions are used in servIoTicy to embrace the different
entities involved in the existence of IoT ecosystems. Figure 3.1 pro-
vides a visual representation of the features and abstractions pro-
vided by servIoTicy, that are described in more detail in this section.

• Web Object: The IoT is composed of objects, either connected to
the Internet or not. The group of objects not directly connected
to the Internet (e.g. a bottle of wine with a RFID or NFC tag)
will need a proxy to represent them in the servIoTicy. There
is also a group of objects which may have network capabilities,
but limited programmability and support for advanced network
protocols. These devices, such as simple sensors, still will need
the use of proxies to be able to communicate with servIoTicy.
Finally, there is a group of advanced devices (so-called Smart
Objects, such as a Smart Phone, tablet, or an Arduino device)

1 https://github.com/servioticy
2 https://github.com/servioticy/servioticy-vagrant



26 hosting iot data-centric workloads in the cloud

DataData

Data

Actuations
are delivered to devices 
over MQTT and STOMP

servIoTicy

Subscriptions
provide asynchronous 
forwarding of data over 
MQTT and STOMP

Actuations
can be invoked 
using HTTP, 
STOMP or MQTT

Data

Data

REST API
HTTP / MQTT / STOMP

Data

Data
Data

Things

Figure 3.1: servIoTicy features

that already hold the capabilities to talk to the COMPOSE plat-
form directly. Each one of the above mentioned objects (enabled
with a communications proxy when needed) is known as a Web
Object in servIoTicy. Web Objects are physical objects sitting on
the edge of the servIoTicy and capable of keeping for example
HTTP-based bi-directional communications, such that the ob-
ject will be able to both send data to the platform and receive
activation requests and notifications. Not all such objects will
support the same set of operations, but a minimum subset will
have to be guaranteed to make them usable to servIoTicy.

• Service Object: Service Objects are standard internal servIoTicy
representations of Web Objects. servIoTicy specifies an API (de-
scribed in detail in Section 3.4) by which it expects to communi-
cate with the Web Objects, in order to obtain data from them, or
set data within them. That API can be embedded directly in the
Objects or can be provided by a mediating proxy that will con-
nect the Objects to their corresponding servIoTicy Service Ob-
jects. This entity serves mainly for data management purposes
and has a well-defined and closed API. That API is needed in
order to streamline and standardize internal access to Service
Objects, which can in turn represent a variety of very different
Web Objects providing very different capabilities. ServIoTicy, in
an effort to embrace as many IoT transports as possible, allows
Web Objects to interact with their representatives in the Plat-
form (the Service Objects) using a set of well-known protocols:
HTTP, STOMP [26] over TCP, STOMP over WebSockets [30], and
MQTT [20] over TCP.
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• Data Processing Pipe: A Data Processing Pipe is a data service
and aggregation mechanism, which relies on the data process-
ing and management back-end component to provide complex
computations resulting from subscriptions to different Service
Objects as data sources. This construct can support pseudo-real
time data stream transformations, combined with queries con-
cerning historical data. Data analytics code defined by the user
may be provided as well. The end result of a Data Processing
Pipe is inserted into the servIoTicy registry along with its de-
scription and may be used by higher level constructs as yet an-
other kind of Service Object building block. Just like a Service
Object, this entity serves mainly for data management purposes
and has a well-defined and closed API.

• Subscription: Data subscriptions are a mechanism in servIoT-
icy that allow Service Objects, Data Processing Pipes and ex-
ternal data consumers to get data updates automatically and
asynchronously forwarded for further processing.

3.3 architecture of servioticy

A general view of the servIoTicy architecture can be seen in Figure 3.2.
The Front-End of platform is a Web Tier that implements the REST
API that sits at the core of servIoTicy. The API contains part the logic
of the Service Objects and Data Processing pipes, related to authenti-
cation, data storage and data retrieval actions. The Stream Processing
Topology is responsible for the execution of the code associated to
Data Processing pipes as well as the forwarding of data across Service
Objects and to external entities (e.g. external subscribers that want
data forwarded on real-time using a push model on top of MQTT
or STOMP). Finally, the data Back-End includes the Data Store that
provides scalable, distributed and fault-tolerant properties to servIoT-
icy, and the Indexing Engine that provides search capabilities across
sensors data using different criteria, like timestamps, string patterns
or geo-location. In this Section we describe in more detail the main
properties of each component of the servIoTicy architecture.

We describe in more detail the main properties of each component
of the servIoTicy architecture related to this thesis.

3.3.1 Web Tier

The Web Tier for the REST API is composed of a Servlets Container
and a REST Engine. As a HTTP Web Server and Java Servlet con-
tainer we use Jetty [18], which is a pure Java-based HTTP server
and Java Servlet container. Jetty is often used for machine-to-machine
communications, usually within larger software frameworks. As a
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Figure 3.2: ServIoTicy architecture diagram.

REST Engine (JSON processor) we use Jackson [17], which is a high-
performance suite of data-processing tools for Java, including the
flagship JSON parsing and generation library, as well as additional
modules. The Jackson Project also has handlers to add data format
support for JAX-RS implementations like Jersey.

3.3.2 Data Store

A distributed data store is used to keep track of all the object pro-
duced data. For that purpose, CouchBase [4] has been chosen because
it provides the benefits of NoSQL data stores (highly distributed,
high-availability properties, scalable), and it is document oriented
(which fits well for many different data sources and formats). Couch-
base has native support for JSON documents. Each JSON document
can have a different structure, and multiple documents with different
structures can be stored in the same CouchBase bucket. Document
structure can be changed at any time, without changing other docu-
ments in the database. A Bucket is defined as the owner of a subset of
the key space of a Couchbase cluster. These Buckets are used to dis-
tribute information effectively across a cluster. A Bucket is equivalent
to a database. A common practice is to store For the work presented
in this paper we have defined two buckets. One to store the Service
Objects definitions and another to store the data associated to a Ser-
vice Objects data streams.
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3.3.3 Data Indexing

Queries on the data associated to Service Objects are available using a
query DSL. The mechanism to send queries to the platform has been
integrated in the API used to access Servioticy. The search infrastruc-
ture to resolve queries is provided by an underlying component that
performs high-performance indexing and search operations. In par-
ticular Elasticsearch [10] is leveraged as it is one of the most powerful
and extended search engines that can be integrated with scalable data
back-ends (in particular Couchbase). The integration between Couch-
base and Elasticsearch enables full-text search, indexing and querying
and real-time analytics for variety of use cases such as a content store
or aggregation of data from different data sources.

3.3.4 Stream Processing Topology

The Stream Processing Topology is implemented on top of Apache
STORM [27], which is a state-of-the-art stream processing runtime.
Out-of-the-box, STORM provides the availability to build topologies
composed of spouts (sources of data) and bolts (processing units).
Topologies are static after their deployment, and data keeps flowing
through their bolts until the topology is stopped. In case that a differ-
ent topology is needed, the user needs to stop the running topology
and deploy the new one. ServIoTicy implements a novel dynamic
user-code injection mechanism that allows STORM bolts to run dif-
ferent versions of code depending on the piece of data that is being
processed. The result is that one single STORM topology can in turn
be running multiple virtual topologies on top of it, being defined by
user preferences. This technique transforms the STORM topology in
a multi-tenant data stream processing platform. The mechanism is
out of the scope of this paper, and no further details will be provided
about it in the context of this work. The Stream Processing Topol-
ogy also requires the support of a queuing system that will act as
the spout for the STORM topology. In servIoTicy, this is implemented
using Kestrel [19].

3.4 servioticy api

Service Objects are exposed through a RESTful API that uses HTTP
as a transport and that acts as the SO front-end. This basically im-
plies that SOs can be identified unambiguously using uniques URIs.
The API provides resource actuations through the four main HTTP
operations: GET (retrieve), POST (create), PUT (update) and DELETE.
Table 3.1 contains a summary of the operations implemented in the
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REST API. A more detailed description can be found in [65] as well
as online 3.

SOs are created by POSTing a JSON document to the API. The doc-
ument is a basic description of the main properties of the Service
Object about to be created. The following example illustrates the case
of a SmartPhone object enabled with three different sensors (GPS lo-
cation, Microphone and Temperature Sensor), each one becoming a
stream of data in the SO abstraction. The device is also presenting
the capability to be activated through the platform: when the vibrate
action is invoked on it, the device will vibrate to notify something to
the user carrying it.

The corresponding response message contains the field "id" that is
the unique identifier of the SO within the COMPOSE platform (the
<soId> The response also contains the list of the <streamsId> in the
field "streams".

As discussed before, a SO update is actually a JSON document con-
taining, among other information, a tuple of values that correspond
to the channels of a device sensor, what is represented as a stream in
the SO representation.

Listing 2: Format of a Sensor Update

{ "channels": [

{ "name": "temp",

"current-value": 22.58,

"type": "numeric",

"unit": "m/s2"

} ],

"name": "temperature",

"lastUpdate": 194896800,

"customFields": {

"covered-period": "24h",

"averageLastHour": 32,

"risk": "low",

"averageLastDay": 42

}

} 	
An example of pushing data from the SmartPhone to its corre-

sponding SO counter-part is achieved by submitting a JSON docu-
ment to the corresponding url. The <soId> would be obtained from
the previous creation of the SO. streamId should be picked from the
list of streams existing in the SO description. In this example, temper-
ature data is being pushed to the platform. As it can be observed in
the following example, the information for the temp channel, which
is associated to the temperature stream, includes the actual temper-
ature value as well as other information such as units, update time

3 http://docs.servioticy.com
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operation Target URI Role

Create POST / Create a new SO posting a JSON document.

Retrieve GET / Retrieve the list of all the SOs created.

Retrieve GET /<soId> Retrieve attributes from the <SO_Id> Service Object.

Update PUT /<soId> Modify the <SO_Id> ServiceObject.

Delete DEL /<soId> Delete the <SO_Id> Service Object.

Retrieve GET /<soId>/streams Retrieve the list of all the SO streams.

Create POST /<soId>/streams/<streamId>/subscriptions Subscribe the Service Object <soId> to a service .

Update PUT /<soId>/streams/<streamId> Store <soId> data puting a JSON document.

Retrieve GET /<soId>/streams/<streamId> Retrieve the list of all the data of <soId> Service Object.

lastUpdate GET /<soId>/streams/<streamId>/lastUpdate Retrieve the last piece of data generated by a <soId> Service Object.

Table 3.1: API operations

and a series of custom fields that the WO can decide to add when
generating the SU for future reference.

To retrieve and delete a SO, the corresponding operation can be
invoked for each <soId> URL. For the former a response JSON doc-
ument describing the success of the operation is generated, as well
as a 200 HTTP status code. For the latter, a new SO description must
be associated to the PUT HTTP operation on the <soId> URL, result-
ing in the SO description being updated and a response generated
analogously to the SO creation case described above.

Finally, retrieving data associated to a SO stream results in a JSON
document containing an array of all the tuples stored for this stream.

The creation of subscriptions is at the core of the COMPOSE plat-
form and allows for the definition of data processing paths that are
followed by SUs being generated by external WOs and afterwards in-
gested by the platform. Subscriptions can be internal (when one SO
wants to get SUs generated by other SOs to be forwarded to it), or
external, when entities outside of the COMPOSE platform wants to
be notified about any SUs produced by one particular SO.

3.5 evaluation

After the description of the platform we will move to the evaluation
of its performance and the viability of the proposed solutions. The
goal of our evaluation was to explore the following questions:

• Experiment 1: How does throughput and response time scale
for the servIoTicy API with the amount of available resources?

• Experiment 2: How does throughput and response time scale
for the servIoTicy API when the load increases?

• Experiment 3: How does the response time delivered by Couch-
Base scale with the API pressure?

• Experiment 4: How does ElasticSearch scale with the load and
how does its configured heap size affects its performance?

/
/
/<soId>
/<soId>
/<soId>
/<soId>/streams
/<soId>/streams/<streamId>/subscriptions
/<soId>/streams/<streamId>
/<soId>/streams/<streamId>
/<soId>/streams/<streamId>/lastUpdate
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To provide answers to these questions a set of four different ex-
periments have been developed that are presented in the following
subsections.

3.5.1 Evaluation Methodology and Infrastructure

For the client emulation we used Httperf [58] specifying a session
workload generator, designed to simulate a real users progress through
a site. This type of testing is useful for estimating the actual perfor-
mance that a web server or an API will achieve in practice. A file
was created containing the sequence of requests to be performed, the
number and sequence of URI’s and request method. We created a
file containing the list of all existing Service Objects, randomly sorted
and not repeated more than 8 times.

For such purpose, 6 parallel Httperf processes were used, each one
emulating 300 clients (at which 100 new sessions were created per
second) for a total of 1800 clients, each one issuing requests at a vari-
able rate. It was verified that each Httperf process had no internal
bottlenecks. The target request rate was changed from 1 request per
second to 40 requests per second, resulting in an overall target load
of 1,800 to 72,000 requests per second.

Requests are distributed across different Service Objects a specified
before, and the in all cases the API call to perform was ’lastUpdate’
(see Table 3.1 for more details). This call is interesting because it in-
volves a query to the search engine to retrieve the latest timestamp for
all the stored updates for a given sensor, and then the actual retrieve
of the sensor update that is returned to the client. This operation actu-
ally is more complex than updates from the point of view of the API:
updates are a difficult task for the Stream Processing Topology, that
is out of the scope of this paper, but involve less work for the API.

ServIoTicy was populated for the experiments with 52,388 Service
Objects and 261,940 Sensor Updates, an average of 5 Sensor Updates
per Service Object.

The tests have been run on two sets of nodes: one set for running
the client emulators and one set for running the servers of the system
under test. The ’server’ set was composed of 16 two-way 4-core Xeon
L5630 @2.13GHz Linux boxes, for a total of 8 cores per node and 16

hardware threads because hyperthreading was enabled. Each ’server’
machine was enabled with 24GB of RAM. The ’client’ set was com-
posed of 2 two-way 6-core Xeon E5-2620 0 @2.00GHz Linux boxes,
for a total of 12 cores per node and 24 hardware threads because hy-
perthreading was enabled. Each ’server’ machine was enabled with
64GB of RAM. All nodes were connected using GbE links to a non
blocking 48port Cisco 3750-X switch.

For the software stack, all nodes were running Ubuntu 12.04LTS,
and we used Httperf v0.9.1, nginx 1.2.8, Jetty v9.2.3, Jackson v2.3.1,
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Jersey v1.18, Couchbase 2.2.0 Enterprise Edition, Elasticsearch 1.3.4,
and Couchbase Transport Plugin for Elasticsearch v2.0.0.

3.5.2 Experiment 1: Scalability of the API with available resources

The goal of this experiment is to analyze how the throughput and
the response time scale for the servIoTicy API when the number of
instances for different servIoTicy components varies. To this end we
vary the number of Jetty nodes that serve the API and the number
of Elasticsearch servers that perform the request search. We run the
same workload changing the request rate target from 1 request per
second to 40 requests per second and compare the results. Notice
that as this is a closed loop system, request rate target is not always
achieved as the response time delivered by the serves will influence
the rate at which the client emulators will issue requests.

For this experiment we explore the scalability of the web tier of the
IoT REST API for a combination of 1 to 12 Web Servers (Jetty) and a
combination of 1 to 3 ElasticSearch servers. A static configuration of 2

CouchBase servers, continuosly synchronized with the ElasticSearch
tier are used also.

Figure 3.3a shows the results for highest target load explored, a
request rate of 40 requests per second each client, resulting in an
overall request rate target of 72,000 requests per second. As it can be
observed, the Web Tier offers almost linear scalability as the resources
committed to this tier increase. This can be observed for the case in
which 3 ElasticSearch servers are allocated. This can be considered an
expected result because the Web Tier is stateless and does not benefit
from any kind of session affinity, what could result in a performance
impact for some conventional Web Applications, but this it not the
usual case for REST APIs.

As the number of ElasticSearch servers is reduced, from 3 to one,
it can be observed how the indexing tier gradually becomes the bot-
tleneck, dropping the overall performance of the servIoTicy API from
around 25,000 requests processed per second for 12 Jetty servers and
3 ElasticSearch nodes, to roughly 2,500 requests processed per second
inthe case that the same 12 Jetty servers are allocated for the Web Tier
and only one instance of ElasticSearch is used.

Looking at the results for response time scalability, shown in Fig-
ure 3.3b, it can be clearly observed the same behavior, what is ex-
pected for a closed loop system as our testing platform is. In this
case, it can be seen how the platform can easily achieve a baseline re-
sponse time of around 100ms per request for any configuration of the
Web tier that is provisioned with 8 or more Jetty servers. But when
the number of ElasticSearch servers is varied, from 3 instances to 1 in-
stance, we observe again how the delay introduced per request in the
indexing layer starts increasing, increasing substantially the response
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Figure 3.3: API scalability with variations of the number of instances for the
Web Tier and ElasticSearch

time and therefore reducing the maximum throughput delivered by
servIoTicy as it had been seen in Figure 3.3a.

The reason why the experiment does not explore a different num-
ber of CouchBase servers is that we have observed that the data tier is
not a bottleneck in most situations. CouchBase seems to deliver very
low response time for a very high number of requests per second,
and therefore the usual case is that either the ElasticSearch tier or
the Web tier are responsible for performance bottlenecks. For a better
understanding of this statement we refer the reader to Experiment 4

below in this Section.
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3.5.3 Experiment 2: Scalability of the API with load

Once the scalability of the platform with the allocated instances for
the Web and Indexing tier has been explored, we look now in more
detail how the throughput and response time scale for servIoTicy
with load variations. To do this we set the number of Elasticsearch
instances to a fixed number, and we modify the target request rate in
the range that goes from from 1 request per second to 40 request per
second and client.

(a) Throughput

(b) Response Time

Figure 3.4: API scalability with variations of the number of instances for the
Web Tier and the Load Level

As in Experiment 1, we then vary the number of Jetty servers serv-
ing the API. In particular, and based on the results obtained for Ex-
periment 1, we fix the number of Elasticsearch instances to three, as it
provides a good compromise between scalability and resource usage,
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and ensures that ElasticSearch will not be the bottleneck for most of
the load levels to be tested.

Figure 3.4a and Figure 3.4b show respectively the throughput and
response time associated with each number of Jetty servers for a
range of load levels. As it can be observed, the more instances are
provisioned for the REST API tier, the higher the maximum achieved
throughput is, as more instances are operating in parallel and there-
fore more requests per second can be processed. A similar behavior
can be observed for the response time: there is a baseline response
time of about 100ms that is only achievable for those load levels and
configurations that are not saturated. Any configuration that provides
a too low number of instances for the Web Tier as to keep the equilib-
rium of the system, quickly results in a system with growing waiting
queues for the requests and ends up with increased response times.

Looking at Figure 3.4a, and taking a particular load level, some
interesting scalability properties can be observed. Take for instance
load level 40 as an example. It can be seen how for this load level, the
system is initially constrained by the capacity of the Web Tier. This
fact can be observed because as more instances are added to the Web
Tier, the system perfectly scales-out, going for instance from around
2,000 replies per second for a load level 40 and 1 Jetty instance to
around 4,000 replies per second when the capacity of the Web Tier is
doubled to two instances. This behavior is generally observed until
other limits are reached. An example of this situation can be seen for
the same load level and 10 or 12 instances allocated for the Web Tier.
In these scenarios, the scalability exhibited by the system is not linear,
and therefore, other limiting factors must be reach.

To understand the situation, we monitor the resource consump-
tion of the platform components for different load levels. Figure 3.5
shows the average CPU and memory consumption for the Web Tier
instances (the cases in which 2 instances and 12 instances are pro-
visioned) and for the combination of ElasticSearch and CouchBase
components, when the load level is 40. As it can be observed, for the
case in which 2 Jetty instances are provisioned(Figure 3.5a) shows
how the servers hosting those instances are clearly overloaded, with
a total CPU consumption above 90% all the time. When we compare
these numbers with the resource consumption observed for Elastic-
Search and CouchBase (Figure 3.5c), it can be clearly seen how those
components are not suffering from the same overload. For the case in
which 12 Jetty instances are used, the situation is the opposite, show-
ing a lower CPU utilitzation for the Web Tier (Figure 3.5b) than the
data tier (Figure 3.5d).

Notice that in all cases, memory is not a limiting factor for the
tests included in this experiment. Nevertheless, this is not always the
situation, and we refer the reader to Experiment 4 for an example of
effects of memory consumption on the performance of the platform.
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(a) 2 Jetty Instances - Jetty

(b) 12 Jetty Instances - Jetty

(c) 2 Jetty Instances - ES + CB

(d) 12 Jetty Instances - ES + CB

Figure 3.5: Resource consumption (CPU, Memory) for the REST API Web
tier (Jetty) - Load Level 40
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3.5.4 Experiment 3: Scalability of the Data Store

The goal of this third experiment is to evaluate the horizontal scala-
bility of the Couchbase tier and its impact in servIoTicy performance.
The motivation for this experiment is the fact that as we went through
all the tests included in this paper, we realized that CouchBase was
delivering very low response times independently of the number
of instances that we were provisioning. Even 12 Jetty instances for
the Web Tier were apparently unable to saturate a single instance
of Couchbase. To put some light on the reponse times delivered by
Couchbase on our experiments and to understand by how much this
tier was responsible for the baseline response time observed for serv-
IoTicy, we built the response time histograms that can be observed in
Figure 3.6.
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Figure 3.6: Distribution of response times (bins) - Couchbase tier

In this experiment take the more demanding load level (40), we pro-
vision 12 Jetty servers for the Web Tier and we compare the behavior
of the Couchbase tier when two and three instances of Couchbase
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(a) 1 Jetty Instance

(b) 12 Jetty Instances

Figure 3.7: Variation of memory Heap usage for Load Level 40, one Elastic-
Search instance and a variation of instances provisioned for the
Web Tier

are provisioned. Results are organized in response time bins on the x-
axis, and in the y-axis we show the percentage of the total responses
generated in the experiment that fell in that bin. There are two facts to
remark in this experiment: First, the confirmation that Couchbase is
delivering very low response times, with all the requests being served
in less than one millisecond; Second, that when we compare the re-
sponse time delivered by two instances against the observed times
for three instances, it can be seen that no difference is noticeable, in-
dicating that the instances deliver perfect horizontal scalability and
that very rarely they will become the bottleneck for servIoTicy de-
ployments.

3.5.5 Experiment 4: Performance limitations of the Indexing components

In this experiment we evaluate how ElasticSearch performance is af-
fected by the Heap Size in that is configured in Java when running
the indexing instances. For this purpose we look in detail the execu-
tion of the servIoTicy workload this time using a single Elasticsearch
instance and a load 40.



40 hosting iot data-centric workloads in the cloud

2

4

6

8

1
2

4

8
10

12

 0

 5000

 10000

 15000

 20000

 25000

T
hr

ou
gh

pu
t (

re
pl

ie
s/

s)

Heap mem (GB)

Jetty Servers

T
hr

ou
gh

pu
t (

re
pl

ie
s/

s)

 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000
 22000

(a) Throughput

2

4

6

8

1
2

4

8
10

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

R
ep

ly
 T

im
e 

(m
s)

Heap mem (GB)

Jetty Servers

R
ep

ly
 T

im
e 

(m
s)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

(b) Response Time

Figure 3.8: API scalability with variations of the memory Heap configura-
tion for a set of three ElasticSearch instances, a variation of the
instances provisioned for the Web Tier and a Load Level 40

The first thing to explore is how the memory Heap consumption is
affected by the load level that reaches the ElasticSearch tier in servIoT-
icy. Figure 3.7a and 3.7b show the heap memory overhead produced
for a load of 40 when the Web Tier is provisioned with 1 and with 12

Jetty servers respectively. As it can be observed, when 1 single Jetty
instance is provisioned, as it acts as a bottleneck for the platform,
the load that reaches the ElasticSearch tier is low and therefore the
memory Heap utilization is low. In contrast, when 12 Jetty instances
are provisioned and a much higher demand reaches the indexing tier,
the Heap utilization becomes extremely high and, as it will be show
below, this situation results in a significant performance degradation.
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To quantify the peformance impact of memory Heap configura-
tion on ElasticSearch, we set the number of Elasticsearch instances
to three and we analyze for a load level 40, the impact of different
Heap memory configurations (ranging from 2GB to 8GB per instance)
as we vary the number of Jetty servers. Figure 3.8a and Figure 3.8b
show the throughput and response time delivered by servIoTicy un-
der these configurations. As it can be observed, the capacity of the
system to deliver sustained performance is seriously affected by the
memory allocated to the ElasticSearch instances. As an example, the
same number of Jetty and ElasticSearch instances, using 8GB of Hep
per indexing instance allows servIoTicy to deliver up to 25,000 replies
per second, while changing the Heap size to 2GB produces a drop on
performance that results in less than 5,000 replies per second.

3.6 related work

Few studies present both a characterization of workload and resource
consumption for web applications. In [62] Patwardhan et al. perform
a CPU Usage breakdown of popular Web benchmarks with emphasis
on networking overhead, identifying that network overhead for dy-
namic applications is negligible, while not for static content. In [87]
Ye and Cheng present a similar characterization of resource utiliza-
tions as the one presented here, but for Online Multiplayer Games. The
work presented in this paper is, to our knowledge, the first perfor-
mance characterization of a Data Centric IoT platform for the Cloud.

Deployment of IoT platforms on the Cloud is also covered in the
literature. In [41], authors propose strategies for deciding the best
approach at the time of making cloud-based deployments of IoT ap-
plications using nowadays regular cloud technologies. Another re-
cent work [37] studies the implementation of IoT platforms on top
of cloud-based pub/sub communication infrastructures. Finally, au-
thors go one step beyond in [59] by leveraging completely Software
Defined Environments for managing the Cloud infrastructures in which
IoT applications are deployed.

Data Centric view of the IoT is not something new for servIoTicy
as it was widely covered in the survey presented in [68]. What serv-
IoTicy uniquely provides is an open source solution that challenges
the features of commercial solutions such as Xively [31] and Evry-
thng [13], while extending their capabilities with the ability to inject
user-defined code into its stream processing runtime.

There are other open source platforms for IoT in the market, but
they are focused on other aspects of the Internet of Things. The De-
viceHive [8] project offers a machine-to-machine (M2M) communica-
tion framework for connecting devices to the Internet of Things. It
includes easy-to-use Web-based management software for creating
networks, applying security rules and monitoring devices. Device-
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hub.net [9] is a cloud-based service that stores IoT-related data, pro-
vides visualizations of that data and allows users to control IoT de-
vices from a Web page. The IoT Toolkit [16] project provides a variety
of tools for integrating multiple IoT-related sensor networks and pro-
tocols. The primary project is a Smart Object API, but it also aims to
develop an HTTP-to-CoAP Semantic mapping. Mango [9] is a popu-
lar open source Machine-to-Machine (M2M) software, which is web-
based and supports multiple platforms. Key features include support
for multiple protocols and databases, and user-defined events among
others. Nimbits [21] can store and process a specific type of data
previously time- or geo-stamped. A public platform as a service is
available, but it can also be downloaded and deployed on Google
App Engine, any J2EE server on Amazon EC2 or on a Raspberry
Pi. OpenRemote [23] offers four different integration tools for home-
based hobbyists, integrators, distributors, and manufacturers. It sup-
ports dozens of different existing protocols, allowing users to create
nearly any kind of smart device they can imagine and control it using
any device that supports Java. The SiteWhere [25] project provides a
complete platform for managing IoT devices, gathering data and in-
tegrating that data with external systems. SiteWhere releases can be
downloaded or used on Amazon’s cloud. It also integrates with mul-
tiple big data tools, including MongoDB and ApacheHBase. Finally,
ThingSpeak [28] can process HTTP requests and store and process
data. Key features of the open data platform include an open API,
real-time data collection, geolocation data, data processing and visu-
alizations, device status messages and plugins.

3.7 summary

This chapter presents a detailed characterization of the resource de-
mand observed for the different components of the servIoTicy plat-
form. ServIoTicy is a state-of-the-art platform for IoT services, that
integrates multi-protocol channels to communicate with the platform
on the edge and data management and processing capabilities at its
core. The characterization has revealed interesting details about the
three main components involved in the process of storing and retriev-
ing data: the REST API (implemented using Jackson on Jetty), the
data store (CouchBase) and the search and indexing engine (Elastic-
Search). We have observed how the REST API is generally the bottle-
neck, clearly CPU-bound, being ElasticSearch the second component
more demanding in terms of CPU resources. CouchBase has deliv-
ered impressive performance and very low response times across dif-
ferent configurations, allowing one single instance of this data store
to fulfill the demand in terms of requests per second of up to 12 API
instances. ElasticSearch has shown to be very sensitive to memory
configurations: degradation on its performance could be observed
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both for lack of free CPU resources as because of a limited amount
of available memory. This work is a first stage toward the construc-
tion of resource allocation policies for highly distributed data-centric
platforms such as servIoTicy.

The work described in this chapter is a summary of the following
main publications:

[65] Juan Luis Pérez, Álvaro Villalba, David Carrera, Iker Lariz-
goitia, and Vlad Trifa. The COMPOSE API for the internet of things.
In Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten
Suel, editors, 23rd International World Wide Web Conference, WWW ’14,
Seoul, Republic of Korea, April 7-11, 2014, Companion Volume, pages
971–976. ACM, 2014. ISBN 978-1-4503-2745-9. doi: 10.1145/2567948.
2579226. URL http://doi.acm.org/10.1145/2567948.2579226

[64] Juan Luis Pérez and David Carrera. Performance character-
ization of the servioticy API: an iot-as-a-service data management
platform. In First IEEE International Conference on Big Data Computing
Service and Applications, BigDataService 2015, Redwood City, CA, USA,
March 30 - April 2, 2015, pages 62–71. IEEE Computer Society, 2015.
ISBN 978-1-4799-8128-1. doi: 10.1109/BigDataService.2015.58. URL
https://doi.org/10.1109/BigDataService.2015.58

[80] Álvaro Villalba, Juan Luis Pérez, David Carrera, Carlos Pedri-
naci, and Luca Panziera. servioticy and iserve: A scalable platform
for mining the iot. In Elhadi M. Shakshuki, editor, Proceedings of the
6th International Conference on Ambient Systems, Networks and Technolo-
gies (ANT 2015), the 5th International Conference on Sustainable Energy
Information Technology (SEIT-2015), London, UK, June 2-5, 2015, vol-
ume 52 of Procedia Computer Science, pages 1022–1027. Elsevier, 2015.
doi: 10.1016/j.procs.2015.05.097. URL https://doi.org/10.1016/j.
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D I S T R I B U T I O N O F D ATA P R O C E S S I N G U N D E R
T H E F O G PA R A D I G M

4.1 introduction

The interplay between Cloud and Fog computing is crucial for the
evolution of IoT, but the reach and specification of such interplay is
an open problem. Meanwhile, the advances made in managing hyper-
distributed infrastructures involving the Cloud and the network Edge
are leading to the convergence of NFV and 5G, supported mainly by
ETSI’s MANO architecture. This chapter argues that Fog computing
will become part of that convergence, and introduces an open and
converged architecture based on MANO that offers uniform manage-
ment of IoT services spanning the continuum from the Cloud to the
Edge. More specifically, the first YANG models have been created for
fog nodes, for IoT services involving Cloud, network, and/or Fog,
and expanded the concept of “orchestrated assurance” to provision
carrier-grade service assurance in IoT. The chapter also discusses the
application of our model in a flagship pilot in the city of Barcelona.

Several technologies relevant for the expansion of IoT have emerged
including Network Function Virtualization (NFV) [2], 5G [45], and
Fog computing. In particular, the European Telecommunications Stan-
dards Institute (ETSI) has standardized the reference architecture for
NFV Management and Orchestration [33], a cornerstone for building,
deploying, and managing services in NFV environments. Advances
in 5G Radio Access Network (RAN), and in the Multi-access Edge
Computing (MEC) group at ETSI [49], are also key for the IoT evolu-
tion. MEC proposes a virtualized platform built upon an NFV infras-
tructure, and is expected to leverage the NFV MANO architecture
and APIs. The majority of service providers (SPs) will exploit NFV

45
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infrastructures not only for virtualized RANs and MEC, but also for
other services, including enterprise, residential, and Cloud offerings.
Thus, the convergence of NFV and some of the key building blocks
of future 5G architectures seems unquestionable (Figure 4.1).

Fog computing addresses use cases with requirements far beyond
cloud-only solution capabilities. The complementarity between Fog
and Cloud has traditionally been seen as a mandatory feature in
any Fog platform. In this chapter, a different approach is advocated.
Rather than specifying an architecture where Fog and Cloud are com-
plementary by design, we focus on a service management architec-
ture that literally fuses Fog and Cloud. We must start thinking about
one computing fabric, managed as a single entity, in a service-centric
way. With this approach, an infrastructure composed of Fog nodes,
network nodes, and Cloud nodes is exposed to service administrators
as a unified resource fabric. Administrators can then define where to
instantiate resources according to the service requirements.

Compute nodes in the Cloud or Fog are treated architecturally the
same, as the service management platform unifies the life cycle man-
agement of services that might require instances running in the Fog,
Cloud, or a combination. Distinctive features of a Fog, network, or
Cloud node will be captured by their corresponding YANG mod-
els [40]. A main advantage of this approach is that different IoT ser-
vices can coexist and be managed in a uniform way. Consider services
where Fog is not required (e.g., sensor communications supported
through long-range radio, such as LoRA or NB-IoT [70]) vs. applica-
tions where Fog is mandatory (e.g., industrial machines producing
data filtered and analyzed by a fog node that is directly connected
to the former through a wired interface [9]). System integrators and
SPs can leverage our unified infrastructure and uniform service man-
agement to provide services to customers in both segments simulta-
neously.

The requirements to host and manage NFV, MEC, and Fog comput-
ing services are undeniably similar. SPs and enterprises embracing
NFV will seek to maximize their investments, leveraging their NFV
infrastructure and MANO systems to the largest extent possible. It is
only a matter of time until Fog computing becomes part of the con-
vergence that we are already witnessing between NFV and 5G/MEC,
driven by SPs and enterprise investments (Figure 4.1).

This chapter describes an architectural approach that addresses
some of the technical challenges behind the convergence shown in
Figure 4.1, with special focus on bridging the gap between Cloud
and Fog. We introduce a model-driven and service-centric architec-
ture that is, at the time of writing, perfectly aligned with the OpenFog
Consortium (OFC) reference architecture [22].
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Figure 4.1: Different technologies but with overlapping needs and chal-
lenges.

This work has been done in collaboration with the Corporate Tech-
nology Group (CTG) at Cisco in order to explore the Fog architecture
paradigm to build a Proof-of-Concept (PoC) on Fog Computing.

The PoC addresses the development of the systems required for
provisioning, deploying, managing, and maintaining the compute,
network, and storage resources needed for running Fog Services.

The PoC ends in a final demo with the Barcelona City Hall to cover
different uses cases to address a set of specific functional IoT chal-
lenges for cities and demonstrate the strengths of a consolidated ser-
vice platform for IoT.

The contributions from the candidate to this work relate to its ar-
chitecture build, data processing, life cycle management and API in-
terfaces extension, mainly:

• Managing the lifecycle of the Fog Nodes.

• Managing the lifecycle of the Fog Virtual Domains (FVDs), i.e.,
the virtual environments supporting the different Applications
running within a Fog Node.

• The APIs and protocols required for managing a Fog System,
including the interfaces and protocols: i) within the Backend
Platform; ii) within the Fog Nodes; iii) between the Backend
Platform and the Fog Nodes; iv) and between the Backend Plat-
form and the External Management Systems.

4.2 terminology

In the literature, a variety of terms are used in various and often
inconsistent ways. The following terms are carefully defined for use
in this document in order to eliminate any ambiguities.



48 distribution of data processing under the fog paradigm

• Fog Node: The fundamental building block in a Fog Computing
system. Fog Nodes provide the compute, storage and network-
ing resources to host Applications. It is worth emphasizing that
these are the “physical devices” hosting the Applications.

• Fog Virtual Domain (FVD): An FVD is basically a group of
atomic virtual instances that are logically interconnected and
that would typically run within a Fog Node, such as a set of in-
terconnected containers or VMs. Note that an FVD can be com-
posed even of a single virtual instance (e.g., just one container
or one VM). An FVD belongs to a single administrative domain
(i.e., a single tenant), and as such, it must remain isolated from
other FVDs inside a Fog Node.

• Fog Service: When a combination of Things, Applications run-
ning in the FVDs, and other appli-cations running at upper lev-
els, interact and work in concert, we say that they implement a
Fog Service. The ultimate goal of any Fog Computing system is
to enable the deployment and execu-tion of Fog Services.

• Fog Region: Fog Regions encompass all the Fog Nodes orches-
trated by a (possibly distributed) single instance of the compute,
storage and networking components of a Fog Orchestration sys-
tem.

• Fog Aggregates: A Fog Aggregate is an “overlay” grouping of
Fog Nodes within a single Fog Region. Fog Aggregates are op-
tional, and are arbitrarily set up by the Administrator. They are
typically used to group Fog Nodes offering similar capabilities
to simplify their orchestration. For example, an Administrator
may chose to create an Aggregate of Fog Nodes that can access
a sensor mesh in less than 50 ms.

4.3 architecture

The objective is to have a single, extensible, and distributed infrastruc-
ture that provides the necessary flexibility to address opportunities
for current and future urban services technologies in an integrated
way. This infrastructure would have nodes in three locations: the cab-
inets, metropolitan network, and data centers. More importantly, it
should enable instantiation and management of urban services and
their data in a consolidated way. From an operational standpoint, the
goal is to streamline urban services and reduce hardware and service
maintenance overheads.

4.3.1 A Model-Driven and Service-Centric Approach

The model is based on a two-layer abstraction:



4.3 architecture 49

• The separation of the “service intention” (i.e., “what”) from the
“service instantiation” (i.e., “how”)

• The decoupling of the “service instantiation” from the specifics
of the devices where the instances will be ultimately deployed
- independent of whether they will be instantiated in the Cloud
or network, or at the Edge

The left side of Figure 4.2 shows how this abstraction is achieved
through utilization of a standardized data modeling language, YANG [40].
The right side shows a small YANG model snippet that is part of a
sensor telemetry use case and multi-protocol data aggregation de-
scribed later. The YANG model shows various parameters related to
the tenant, the fog node, and analytics components.

YANG is used for service and device modeling. Models are machine-
readable, and can be interpreted and processed by an orchestration
system, which is one of the basic components of our NFV MANO im-
plementation. A main role of the orchestration system is to translate
the “what” to the “how,” and enforce corresponding configurations
on specific device models. The translation process is captured by map-
ping functions depicted on the left side of Figure 4.2, which transform
service definitions and input parameters to device configuration pa-
rameters. Configurations are enforced through NETCONF interfaces
exposed by any device present in our infrastructure (Cloud, network,
or Edge). NETCONF is a standard Internet Engineering Task Force
(IETF) protocol used to install and update device configurations. The
protocol was chosen because of its ubiquitous presence, as it has been
largely adopted by SPs and enterprises as part of their service man-
agement operations.

The two-layer abstraction is not new. We believe, however, that this
is a safe bet toward the convergence shown in Figure 4.1, since this
is precisely what many SPs and large enterprises are starting to use
when adopting NFV. The novelties introduced in this chapter are:

• The extension of the model to cover fog and IoT. Although
the utilization of NETCONF and YANG has traditionally fo-
cused on network configuration, these standards are sufficiently
generic to be leveraged for any kind of device or service model.
We have expanded the reach of NETCONF and YANG to fog
nodes.

• The extension of orchestrated assurance to cover IoT services
(i.e., service assurance is an intrinsic part of the IoT service def-
inition in YANG).

In our model, everything is reduced to services. Infrastructure ser-
vices (i.e., those dealing directly with physical resources) become an
integral part of modeling and enabling higher-level services. The com-
position of YANG models for building services is key to breaking
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Figure 4.2: YANG is used for both service and device modeling, making de-
vices transparent to service management. Service assurance is
supported through distributed monitoring across the infrastruc-
ture and feeds a transactional orchestration system, which can
deal with any discrepancy between the current state and the de-
sired state of an IoT service.

down the complexity of service modeling and for reusing parts of
existing service catalogs. This approach is proven to facilitate life cy-
cle management of large collections of services in NFV environments,
and is critical to reduce complexity when designing IoT services, with
much more infrastructure heterogeneity beyond the data center.

The workflow for deploying a service starts from a service model
definition. Subsequently, the service is instantiated and the configu-
ration is enforced on one or more devices in the infrastructure. As
shown in Figure 4.2, YANG models and corresponding device config-
urations are stored, and can be rolled back to previous models and/or
configuration versions should this be necessary.

The designer of a service model can include key performance indi-
cators (KPIs), and compare the “actual state” of the instantiated ser-
vice to the “desired state” as part of the service assurance. In case of
discrepancy between states, service assurance components depicted
in Figure 4.3 notify the service managers within the NFV MANO ar-
chitecture, and orchestration services take action to align the actual
state with the desired state.

4.3.2 Toward Converged Service Management

Our approach uses the well-known NFV MANO architecture and ex-
tends it to other service categories, beyond NFV and network devices.
Figure 4.3 shows the main building blocks, split into three categories:
the data plane; basic components to support data plane functionality
(service assurance, security, and networking); and the management
plane based on NFV MANO.
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Figure 4.3: ETSI MANO architecture extended to cover service management
beyond the traditional NFV and networking domains.

The first category consists of services to manipulate, share, and
distribute data to other services over the cloud to edge continuum.
The second category provides services to ensure secure and reliable
service operation and efficient data delivery. The third category en-
compasses the usual MANO components extended with new models
to cover Fog nodes and IoT services, and IoT-specific features, espe-
cially in the areas of security and service assurance. Except for the
presence of NETCONF and YANG, the blocks shown in Figure 4.3
are technology-agnostic. NETCONF and YANG are present to empha-
size the need for the adoption of standardized and broadly accepted
interfaces and data modeling languages.

The main components are described in more detail below.

• Data Plane: Refers to the transport and delivery of the broad-
band traffic that are flowing. Includes data distribution and data
sharing services. The data and service policy management mod-
ule present in the security block (II) allows administrators to
share data between tenants in a controlled and secure way. This
enables sharing of data between services on multiple Fog nodes,
and also across Fog and Cloud, while adhering to policies de-
fined in the data and service policy management module. These
policies could be leveraged to build so-called data and resource
pricing models [48] as an incentive to optimize resource usage
in multi-tenant environments.

The setup should offer multi-tenancy, and enable streaming and/or
historian analytics depending on requirements.

• Service Assurance: Services are linked to a certain quality of
service, specified by KPIs. An effective technique starting to be
used in NFV scenarios is to monitor the KPIs through a set of
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virtual probes (vProbes), instantiated at the points where rele-
vant parameters need to be monitored, and usually deployed in
a distributed way. A combination of passive and active vProbes
can efficiently detect violations to KPIs directly at the problem
source.

This technique has proven simpler and more accurate than tra-
ditional approaches, which are often based on gathering infor-
mation from multiple sources, including measurement tools,
logs, monitoring systems, and so on, for root cause analysis.
In our platform, KPI violation is notified to the service owner,
and orchestrator or service manager, to resolve the discrepancy
between observed and desired service state. Service assurance
forms an integral part of the service definition and composition
developed in YANG (captured through service models). The
role of vProbes, their locations, and actions that need to be taken
upon KPI violations are specified in the service model. Service
assurance covers both the infrastructure and the services that
multiple tenants will deploy on top of it.

• Security: An integral part of the architecture, since the extension
of NFV MANO to cover Fog and IoT substantially increases
the attack surface. Security elements are categorized into the
following three groups.

- Network-Based Security and Role-Based Access Control: Provided
through specific virtual network functions (VNFs), such as fire-
walls, intrusion detection applications, and so on. Many of these
will be instantiated in fog nodes, and service designers decide
whether a security VNF is instantiated to protect an entire node
(e.g., a Fog node), a specific tenant execution environment (TEE)
within a node, or a pool of TEEs instantiated in a single chassis
(where one or more Fog nodes can reside) or spanning across
several of them. This category also covers mechanisms for con-
trolling which services can access what data and when, as well
as which users can access what services and resources and when.
Mechanisms for authentication and authorization are essential
to control data sharing policies and grant access to specific re-
sources for each tenant. Different tenants usually deploy differ-
ent services, and require different KPIs to be monitored. In the
case of Barcelona, data associated with service assurance of dif-
ferent tenants was stored in a geo-distributed historian database.
Enforcement of access control on the database ensured separa-
tion of information between tenants. Internal communication
between components of the platform were also secured using
encryption.
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- Host-Based Security: Includes aspects such as trusted compute
based on the trusted platform module (TPM), operating sys-
tem hardening, disk encryption, vulnerability management and
patching policies, security information and event management
(SIEM), enforcing isolation among TEEs, and so on. The Bar-
celona pilot covered the majority of these aspects, with strong
focus on securing fog nodes.

- Fog-Based Security: Security the system can provide to help pro-
tect “things” connected to Fog nodes, and protect the fabric and
its services from malicious things located at the network edge.
The IETF has recently proposed the manufacturer usage descrip-
tion (MUD) specifications [53] as a first step toward a standard-
ized and secure way of onboarding, and connecting, simple
“things” to an IoT system. Fog can play an enabling role for
MUD, to mediate and automate the process of device onboard-
ing, and to enforce security policies ensuring such devices can
only establish communications subject to their intended use.

• Network: This covers the core networking VNFs and ancillary
systems, such as virtualized switches, routers, DHCP servers,
load balancers, WAN optimizers, and so on.

• NFV MANO: Unlike traditional NFV deployments, where ser-
vices are instantiated in environments with homogeneous IT
and network infrastructures, for many hyper-distributed IoT
environments, heterogeneity of devices and communications is
more the rule than the exception. Capturing this heterogene-
ity in simple, standard, and machine-readable ways is essen-
tial. YANG models provide this, since not only can network
elements be modeled but also fog nodes, elementary things us-
ing MUD specifications [53], as well as IoT services to be de-
ployed. The YANG model snippet in Figure 4.2 was used in
Barcelona, and was part of the catalog of services and device
models shown on the right of Figure 4.3.

The NFV MANO block in Figure 4.3 is based on ETSI’s three-
tier model:

– Management and orchestration.

– Service managers, supporting multiple vendors.

– The virtualized infrastructure manager (VIM) Traditional
VNFs in ETSI’s MANO terminology.

Traditional VNFs in ETSI’s MANO terminology correspond to
a subset of virtual functions (VFs) managed by our architecture,
with many of our VFs containing IoT-related functions rather
than only network functions. A certain level of atomic behavior
when updating many services at the edge is a necessity. The
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MANO system achieves this through transactional operations
across services involved. This is similar to a two-phase commit
across multiple databases, ensuring physical devices associated
to these services continue to function properly, and the system
as a whole stays in a consistent state.

Services are deployed by combining the YANG models, associ-
ated images for the VFs to be instantiated and configurations
of networks, message brokers and data flows, security policies,
databases, and so on supporting the service. Either a user will
specifically push a new service to a set of edge, network, or
data center nodes, or, depending on the KPIs and overall sys-
tem state, MANO will determine the best possible location for
services to be deployed. Because all fabric hardware resources
have NETCONF interfaces and are described through appropri-
ate YANG device models, from a deployment perspective, there
is no distinction between edge, network, or data center nodes.

4.3.2.1 Technologies for Implementing the Architecture

While previous paragraphs describe the main architectural compo-
nents, Table 4.1 shows various technologies that can be leveraged to
implement them, including ones used in the Barcelona pilot. YANG
models of Fog nodes or service components can be implemented by
various hardware and software vendors (or developed by the open
source community). These models can become part of our implemen-
tation. Indeed, several YANG models and service templates could be-
come part of the OFC interoperability trials [22], and, together with
the extended MANO architecture presented in this chapter, form part
of a reference framework for open implementations.

4.4 motivation and pilot implementation in the city of

barcelona

Barcelona realized that the more than 3000 street cabinets deployed
in the city form a natural infrastructure to build out their smart city
vision. Their goal is to have a single, extensible, and distributed plat-
form from Edge to Cloud to address opportunities that current and
future technologies for urban services will bring in an integrated way.
The incentives behind this approach are described in detail in [86],
but one of the aims is to reduce solution silos and the cost of op-
erating different solutions in the city. While [86] addresses multiple
use cases where Fog is mandatory, this section delves into the or-
chestration needs, and outlines the automation and uniform life cycle
management of two use cases spanning the cloud to Edge continuum
(Figure 4.4). These use cases were recently demonstrated in Barcelona,
and extend those described in [86].
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Component Technology Ecosystem

Analytics Cisco ParStream, Cisco Edge and Fog Fabric (EFF),

Apache Storm, GE Predix, SAP, etc.

Data filtering Various processes for anomaly detection including

and normalization Kalman filters, NearbySensor Agent for data

normalization, etc.

Data distribution RabbitMQ, Cisco EFF, Apache ActiveMQ, DDS, etc.

vProves (service netrounds probes, NearbySensor Assurance, etc.

assurance)

Data and service Specifically implemented during the project.

policy management

Identity management LDAP and distributed replicas, Cisco ISE,

Active Directory, etc.

Trusted compute TPM/TXT, OSSIM, Open Attestation, LUKS,

SELinux, AppArmor, QEMU, and secured

configuration files.

VNFs Cisco CSR1kv, Cisco Firewalls, Cisco ESR, Palo

Alto Firewalls, load balancers, etc.

Management and Cisco tail-f NSO, Puppet, Chef, etc.

orchestration

Service managers (VFMs) Cisco Elastic Services Controller (ESC), Ciena Blue

planet, Brocade, etc.

Virtualized infrastructure OpenStack, vSphere, etc.

manager (VIM)

Fog hardware Cisco IOx devices, Nebbiolo Technologies,

NearbySensor Box, ADLink, Darveen, etc.

YANG models Various models for services and devices: data

sharing, analytics, NearbySensor VFs, Fog nodes, etc.

Table 4.1: Potential technologies for implementing the main components de-
picted in Figure 4.3. In bold are the ones used in Barcelona, and
we also list other alternatives where applicable.

Figure 4.4: Fog architecture deployment.
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4.4.1 Dealing with Scale and Management Complexity

Fog nodes were housed inside cabinets, such as the one shown on the
eft of Figure 4.4. For resiliency, some services require more than one
Fog node per cabinet. A large fraction of cabinets will host instances
of the same service, so managing the life cycle of a single service
across the city may involve the configuration of thousands of Fog
nodes.

The development of an IoT service usually entails the integration
of multiple technologies supplied by a partner ecosystem, including
sensors, application-specific gateways, Fog and network nodes, data
brokers, security, and so on. Thus, managing the life cycle of an IoT
service (i.e., onboarding devices, performing day zero configurations,
as well as managing the state and configurations after the initial de-
ployment) can become quite complex - a challenge faced in Barcelona,
and other cities and industries.

The NFV and 5G communities have addressed similar challenges,
both heavily betting on the ETSI MANO architecture. We argue that
this architecture will not only facilitate the convergence of NFV, 5G/
MEC, and Fog, but will also offer the automation means to deal with
the scale and complexity posed by IoT. The goal is to hide underlying
complexity from administrators, and turn IoT service management
into simple and intuitive operations. The success of platforms such
as Amazon’s AWS Lambda, Google’s search engine, or legacy tech-
nologies like TV is largely due to the way they manage scale, and the
way they have abstracted the underlying complexity from end users.
The pilot conducted in Barcelona followed the same principles.

4.4.2 Setup in Barcelona

Figure 4 offers a schematic view of a setup used during the Barcelona
pilot. The left side shows a cabinet interior with several elements:

• A power distribution board with different monitoring elements
and circuit breakers.

• A box that enables decoupling and aggregating the physical
connectivity of different families of wired sensors, simplifying
the I/O requirements of the fog nodes.

• The fog nodes themselves.

• Others

The central part of the figure provides a logical representation of
the setup, and shows data flows for two different use cases demon-
strated in Barcelona. The bottom shows a set of “things” (e.g., sen-
sors and control and actuation elements), which can be located both
within and outside cabinets.
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We used Fog nodes supplied by different vendors (Table 4.1). The
example in the figure shows an industrial PC, connected through Eth-
ernet to the NearbySensor box. The top of the figure illustrates the
hypervisor as well as several TEEs, which belong to three different
tenants running in the Fog node. The right side shows part of the ex-
ternal setup for one of the use cases, including a pole, a camera, and
a snapshot of one of the videos captured by the latter.

We proceed to describe two use cases depicted in Figure 4.4, with
emphasis on automation enabling the data flows illustrated therein.

4.4.3 Use Case 1: Sensor Telemetry through Street Cabinets

From a data plane standpoint, this use case is depicted as sequence
A-D in Figure 4.4. Step A shows how specialized hardware at the
network edge can help aggregate and simplify communication with
different types of sensors (e.g., for monitoring temperature, power,
and access), as well as a number of controllers, such as circuit break-
ers and uninterruptible power supplies, using various protocols and
interfaces.

Data collected through the box in A is sent to an agent (B), which
normalizes the data. This agent is part of a TEE that belongs to the
city department in charge of monitoring the cabinets and the environ-
ment (tenant 1 in Figure 4.4), and can run in a Docker container or a
VM depending on security and performance requirements. Data pro-
cessed by the agent can be maintained and shared in a policy-based
and secure way with other processes running either on the fog node,
on other fog nodes, or in the Cloud (C). The data sharing and persis-
tence block on the top belongs to the administrative tenant in charge
of managing common services across tenants (tenant 2), such as data
sharing policies, system-level analytics, and the security of the Fog
node itself. Step D shows tenant 1 subscribed to different data top-
ics, enabling the gathering and examination of data from different
sources, and triggering actionable decisions based on the result of
the analysis. Applications (and their YANG service models) running
in B and D can be supplied by different providers.

In the example, the process in D analyzes - among other things
- power consumption obtained from monitors connected to the box
in A, and estimates upcoming values based on a Kalman filter (Fig-
ure 4.5). The goal of the analysis is three-fold:

• Estimate and control the power consumed to prevent spikes in
energy use from multiple devices.

• Dynamically manage which devices remain operational in case
of a power outage.

• Control the service level agreement (SLA) with the energy sup-
plier. Since the process- es run locally in the fog node, this anal-
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Figure 4.5: Power consumption data (in Watts) associated with sequence A-
D depicted in Figure 4.4. The dots represent the observed val-
ues B-C; the dotted curve represents estimated values and uncer-
tainty using a Kalman filter (D).

ysis and control will remain operative even if the node loses
backhaul connectivity to the cloud.

The deployment of services supporting the use cases depicted at
the center of Figure 4.4 was entirely automated, and managed using
the architecture shown in Figure 4.3. Configuration of Fog nodes was
performed as follows:

• Zero-touch provisioning including full installation of operating
system, initial configurations, security, and so on.

• Deploying and configuring initial function packs, such as data
sharing and persistence elements, a set of vProbes for service
assurance, and more.

• The tenant’s TEEs, the security configurations enforcing seg-
mentation and isolation between tenants, including their cor-
responding networks.

• Configuration of message brokers enabling the data workflows
(A-D) shown in the figure.

All stages required for deploying and configuring the IoT services
shown in Figure 4.4 were managed with a few clicks. More impor-
tantly, instantiations can be done in an individual cabinet or thou-
sands of them across the city once the service models and the cor-
responding images are available from the catalog illustrated on the
right side of Figure 4.3. This approach reduces the operating expen-
diture for managing a smart city infrastructure considerably.

4.4.4 Use Case 2: Physical Security of Fog Nodes

Physical security of cabinets and the devices inside is of utmost im-
portance for the city, so we implemented several security layers. This
section describes how unauthorized USB access to a fog node is de-
tected and recorded on video (cf. the right side of Figure 4.4).
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Cameras record continuously and send video to associated Fog
nodes, where they are stored in circular buffers. Only when an event
occurs, such as inserting a USB key, does the Fog-based system trig-
ger two video streams: what happened before the event (stored in the
circular buffer and what happens right after the event in real time.
The reasons for not streaming continuously to the Cloud, but deploy-
ing services at the Edge using fog, are cost, privacy, and data storage
overheads [86]. Actions taking place after the USB stick is plugged
in (step 1 in Figure 4.4) until the video is stored and made available
correspond with steps 2-7 in Figure 4.4: 2) the USB is detected, gen-
erating an event; 3) the event is captured by a SIEM agent; 4) and
5) reporting the event through the communication bus; 6) analysis of
the event and triggering the appropriate response; and 7) streaming
the videos to one or more predefined locations (e.g., in the cloud).
Communications between the use case components occur transpar-
ently, and there is no semantic separation between Fog and Cloud
deployed components.

An important aspect is the multi-tenant nature of the converged
Cloud/Network/Fog platform, as services supporting this use case
were deployed on the same Fog node used before. As in the previous
use case, not all services and hardware needed for implementing the
use case were managed by the same city department. The IT depart-
ment manages the services running in the cabinets, while the cameras
and their functionality are managed by another department. We lever-
aged common functions offered by the platform, including the data
sharing service, various security and service assurance functions, and
so on.

This use case demonstrates that, an IoT service is typically com-
posed of multiple services. Services can be managed by different ten-
ants or securely shared among multiple tenants (cf. the data sharing
service in Figure 4.4). Some services may be deployed and associated
solely with an IoT service and tenant (e.g., the circular buffer service
in Figure 4.4). Besides service composition and re-usability, the aim is
to turn the deployment and management of IoT services into almost
trivial tasks, which can be operated through a set of intuitive actions
(performing a few clicks on a dashboard). All these aspects are at the
heart of our converged architecture.

4.5 related work

The authors in [44] discuss how some of the MANO concepts can be
exploited to deliver end-to-end network services using a description-
based approach over a set of distributed resources. This work has
similarities with ours, although our focus is mainly IoT and Fog,
whereas [44] is centered on the orchestration and deployment of net-
work services. Note that the work discussed in this chapter sits at
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the intersection of NFV, 5G/MEC, and IoT and Fog, and extends the
concept beyond the data center and networking to fuse Cloud and
Fog. While MEC focuses mainly on the edge of the network [49], our
approach covers the continuum from Edge to Cloud.

Service configuration and life cycle management are important as-
pects of our platform. Several products such as Puppet, Chef, Ansi-
ble, and Salt provide configuration management and help automate
deployment of services. Other products like Terraform, CloudForma-
tion, and OpenStack provide infrastructure life cycle management ca-
pabilities (e.g., for day 0 configuration), which can be combined with
tools like Puppet or Chef (for day 1 onward). However, all these prod-
ucts mainly target IT infrastructures. In IoT, the fundamental require-
ments in terms of connectivity (I/O interfaces), security, applications,
and data management are significantly different from those that rule
the life cycle management of IT servers. The compute resources avail-
able in a Fog environment are typically much more heterogeneous,
and the criticality of some applications requires special treatment.

This heterogeneity, combined with the criticality of some of the
services connected to physical devices, creates new requirements for
service life cycle management that go far beyond what state-of-the-art
tools in the IT space currently offer. Our approach takes into account
this heterogeneity natively.

Finally, many of the members of the OFC are already offering fog
products. This is the case of Foghorn, Nebbiolo, and Cisco, just to
name a few [22]. At the time of writing, none of the products available
in the marketplace are focused on a converged NFV, 5G/MEC, Fog,
and Cloud paradigm, with emphasis on exposing the infrastructure
as a single and unified computing fabric.

4.6 summary

This chapter describes an architecture that addresses some of the
central challenges behind the convergence of NFV, 5G/MEC, IoT,
and Fog. By using a two-layer abstraction model, along with IoT-
specific modules enriching the NFV MANO architecture, we intro-
duce a promising paradigm to fuse Cloud, network, and Fog, and
apply this to a project in the city of Barcelona. For now, we focus
only on a small number of use cases. We expect that once we start
expanding this model to different domains and cities, more end-user
services will be developed, enabling the reutilization of service mod-
els and associated service catalogs.

The work described in this chapter is based on the following main
publication:

[86] Marcelo Yannuzzi, Frank van Lingen, Anuj Jain, Oriol Lluch
Parellada, Manel Mendoza Flores, David Carrera, Juan Luis Pérez,
Diego Montero, Pablo Chacin, Angelo Corsaro, and Albert Olive. A
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new era for cities with fog computing. IEEE Internet Computing, 21

(2):54–67, 2017. doi: 10.1109/MIC.2017.25. URL https://doi.org/10.

1109/MIC.2017.25

[79] Frank van Lingen, Marcelo Yannuzzi, Anuj Jain, Rik Irons-
Mclean, Oriol Lluch Parellada, David Carrera, Juan Luis Pérez, Al-
berto Gutierrez, Diego Montero, Josep Marti, Ricard Maso, and Juan Pe-
dro Rodriguez. The unavoidable convergence of nfv, 5g, and fog: A
model-driven approach to bridge cloud and edge. IEEE Communica-
tions Magazine, 55(8):28–35, 2017

https://doi.org/10.1109/MIC.2017.25
https://doi.org/10.1109/MIC.2017.25




5
D I S T R I B U T I O N A N D S C A L A B I L I T Y O F I O T
O P E R AT I O N S W I T H M O V I N G D ATA S O U R C E S

5.1 introduction

Several technologies relevant to the expansion of the Internet of Things
(IoT) have emerged in the last years, including network functions vir-
tualization (NFV), fifth generation (5G) wireless systems, and Fog
computing. The combination of these technologies opens a new range
of potential applications in the context of Smart Cities. There is a
fast growth in the number of projects planning to deliver new ser-
vices to citizens, based on the deployment of a large number of Fog
nodes near the edge, in the streets of modern cities, bridging the
gap between devices and Cloud-based services. Fog nodes can host
lightweight services on near real-time, like for instance the collection
and processing of streams of data. This technology is a foundational
enabler for the future development of advanced services such as for
instance traffic monitoring and planning through the combination of
street sensors data (e.g. vehicle tracking, air quality measurements)
and meteorological information. Although Fog nodes offer a con-
strained computing capacity compared to their Cloud counterparts,
they still have capabilities to process data in near real-time to pro-
vide localized service to users, minimizing the communication re-
quirements with the Cloud, or ensuring application resilience against
back-haul connectivity outages between the Fog and Cloud layers.

Modern cities demand new approaches to deliver localized services
to their citizens, and at the same time, network operators look for
new advanced services that can take advantage of the new hyper-
connected society that is expected for the coming 5G era. The incred-
ibly high bandwidth that 5G networks will offer to their users will

63
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restrict the possibility to define new services that run only in central-
ized Cloud-based locations. Therefore, the development of decentral-
ized architectures that leverage the Fog computing paradigm (com-
puting between the edge and the Cloud) is a mandatory requirement
for an efficient deployment of 5G technologies over the next couple
of years. In this context of highly connected cities with distributed
Fog-based computational capabilities, applications will require a su-
perior ability to adapt to the continuous changes that occur within
the dynamics of a modern city: the only way to provide the required
flexibility will be through the use of advanced Artificial Intelligence
techniques that help systems learn and model the behavior of crowds
in near real-time. It is only under these conditions, with the combina-
tion of 5G networks, the Fog computing paradigm and the exploita-
tion of AI techniques, that it will be possible to develop the complex
services that cities demand.

In this chapter, a distributed architecture for a traffic modeling
and prediction service is presented, designed for a city-wide scenario
based on the Fog computing paradigm. In this context, a set of ad-
vanced antennas are assumed (e.g. 5G stations [52] enabled with Fog
computing capabilities, acting as a Fog node) are distributed across
the city, and they are used to receive telemetry and location data as
generated by vehicles. Each vehicle sends data to the nearest antenna
and its associated Fog node. Therefore, data is collected and locally
processed in Fog nodes (either located at the Edge or in-between the
Edge and the Cloud as intermediate nodes), and then forwarded to
a central Cloud location for further analysis as well as data ware-
housing purposes. The proposed architecture combines a real-time
data distribution algorithm with enhanced resilience against back-
haul connectivity issues, and a traffic modeling technique based on
the use of Conditional Restricted Boltzmann Machines (CRBM) to
learn traffic patterns. In combination, these two techniques provide
resilient and completely decentralized city-wide traffic forecasting ca-
pabilities.

The proposed architecture is validated using real traffic logs from
one week of Floating Car Data (FCD) in the city of Barcelona, pro-
vided by one of the largest road-assistance companies in Spain, com-
prising thousands of vehicles from their fleet only in the city of Barce-
lona. The dataset (further described in Section 5.5.2) comprises data
collected over one week between 10/27/2014 and 11/01/2014 across
the Barcelona metropolitan area. Figure 5.1 shows a heat-map of the
vehicle tracking data, comprising over 890,000 data samples and a
fleet of more than 100 cars moving simultaneously around the city at
some times.

Using this FCD dataset, a simulation using the provided FCD across
several conditions are done, from scenarios in which no connectivity
failures occurred between the Fog nodes and the Cloud, to scenarios
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Figure 5.1: Barcelona metropolitan area map, combined with a heat-map
overlay of the FCD dataset used for the simulations presented
in this chapter. The dataset contains more than 890,000 data sam-
ples of road-assistance cars moving around the city.

with long and frequent connectivity outage periods. For each one of
those scenarios, the resilience and accuracy of the data distribution
algorithm and the learning methods have been analyzed.

While current frameworks dealing with FCD analytics focus on
how to distribute load towards anomaly detection, modeling and
trend prediction on Cloud infrastructures and leveraging Map-Reduce
mechanisms to handle traffic data, in this work the focus is on 1) the
scenario where analytics can be partial or completely performed on
the Edge instead of on the Cloud; and 2) the proper transmission
of data between Fog nodes on the Edge and the Cloud towards de-
livering data to be aggregated or learned models to be used. The
current case of use targets city-wide traffic data, but Edge-Cloud ar-
chitectures can be used for enhancing Smart City applications, like
power monitoring and control of elements in public spaces, connectiv-
ity on demand from smart phones towards public services, or sensor
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data recopilation from smart phones towards retrieving environmen-
tal data [86].

Experiments show that the here presented architecture for data dis-
tribution running in the Fog nodes is resilient to back-haul connectiv-
ity issues, and it is able to deliver data to the Cloud location even in
presence of severe connectivity problems. Additionally, the proposed
traffic modeling and forecasting method based on CBRMs, not only
is able to predict telemetry features at short terms but also exhibits
better behavior when modeling local data at Fog nodes instead of a
centralized model in the Cloud, useful when connectivity issues force
data to be delivered out of order to the Cloud, providing an extra de-
gree of autonomy to Fog nodes.

In summary, the three major contributions of this chapter are:

• Data Distribution algorithm for FCD collection in city-wide Fog
deployments. The algorithm is designed to be resilient to back-
haul connectivity issues, to avoid data to be lost under connec-
tivity outage periods, and to favor distributed data modeling in
the Fog. The chapter also provides an analysis of the behavior
of the algorithm under different scenarios of lost connectivity.

• A distributed traffic learning and forecasting model, particu-
larly designed for Fog deployments in the city, in which data col-
lected by the data distribution algorithm is fed into a distributed
set of Conditional Restricted Boltzmann Machines (CRBM). The
neural networks learn traffic patterns across the city and can be
leveraged to forecast future traffic conditions. The distributed
approach is superior to a Cloud-centralized schema in terms of
resilience against network connectivity outages.

• Validation of the two previous elements through the simulation
of different network stability conditions, using as a source real
FCD data collected in Barcelona for one week period in 2014.

The chapter is structured as follows: Section 5.2 introduces the
background on distributed architectures and IoT management. Sec-
tion 5.3 presents the proposed solution towards the current problem.
Section 5.4 describes in detail the components of the presented ap-
proach. Section 5.5 shows the different evaluation experiments for the
current proposal. Section 5.6 provides relevant related work. Finally,
Section 5.7 provides a summary of the chapter.

5.2 edge analytics and forecasting with crbms

5.2.1 Analytics on the Edge versus Cloud Analytics

An aspect to consider when computing analytics on the Fog is whether
the analytics are performed in the Edge, in the Cloud, or in an inter-
mediate level. Such analytics can be focused on aggregating data (e.g.
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counting and data-stream analytics), or in characterizing data (e.g.
modeling and machine learning analytics for prediction).

Computing on the Edge often implies Fog nodes to keep a critical
mass of data or partial data aggregations, depending on the complex-
ity of the analytics to be performed, plus enough computing power
to process data. Otherwise, modeling on the Cloud requires moving
data and local aggregations up, then returning the models and ana-
lytics if to be used in the Edge, depending on communications but
enabling more complex analytics. In those scenarios that data can-
not be directly processed on the Edge, but connectivity to the Cloud
needs to be economized, intermediate Fog nodes can be enabled in
between Edge and Cloud, to collect data and produce aggregated an-
alytics and models. The Fog computing paradigm allows the design
of a hierarchy of nodes from Edge to Cloud, placing those analyt-
ics and modeling processes in the most suitable level according to
connectivity and computing power. Figure 5.2 shows the Fog com-
puting paradigm on aggregation and data processing levels between
the Edge and the Cloud.

Figure 5.2: Fog computing and different levels between Edge and Cloud

Furthermore, in scenarios with low amount of data per node, ma-
chine learning methods may become under-trained if a critical amount
of useful examples is not met, or reaching this amount may take too
much time. Then, collecting data in upper levels and the Cloud, could
provide much faster a higher amount and more diverse data, with all
nodes cooperating to provide a valid training dataset. This would
be the case for a model trained from all collected data, or when ex-
amples from one node can complement examples from another to
avoid model over-fitting situations. On the other hand, scenarios with
enough data per node can venture to create machine learning models
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locally, becoming independent from other nodes or the connection
with the Cloud.

Finally, another aspect to consider when computing analytics in the
Edge or in the Cloud, is the frequency of updates. While on off-line
machine learning methodologies, a training dataset is compiled once
to produce a model that is distributed once, on-line machine learn-
ing methods require to define update policies indicating the period-
icity of model updates and replacements. The advantages of off-line
learning is that once the model is created (and distributed if applies),
no further operation is required, but if data changes over time such
models become outdated. The advantages of on-line learning is that
models can be created from few or no data, the updated as data keeps
coming, but the training process must be periodically repeated.

5.2.2 Conditional Restricted Boltzmann Machines

In this work Conditional Restricted Boltzmann Machines (CRBM)
have been used for modeling and forecasting, a Machine Learning
technique proposed by G. Taylor et al [74]. CRBMs are an extension of
a Restricted Boltzmann Machine, specially (but not only) designed to
handle sequential data. CRBM has been chosen among other time se-
ries methods because they provide 1) a representative non-simplistic
aggregated analytics involving data processing, not as simple as e.g.
data-stream sketches and not as complex as e.g. convolutional neural
networks or other machine learning ensembles; 2) a method to pro-
duce on-line exportable and updatable models, as the set of matrices
composing a CRBM model can be easily transported and re-trained;
and 3) the capability for long term forecasting, that might be useful
in scenarios where the Cloud requires to estimate the status on the
edge but communications are interrupted.

The CRBM modeling presented here uses a Gaussian Bernoulli
RBM (GB-RBM) to model the static frames of the input time series.
While standard RBMs model only binary data, GB-RBMs are used
to handle real and integral valued components. The GB-RBM is an
Energy-Based Model with Gaussian visible variables (inputs) and hid-
den Bernoulli variables (featurized representation). Variables in this
type of models are also called “units” or “neurons”. The GB-RBM
configuration was used as in Taylor’s [74] and Salakhutdinov’s [72]
approaches.

The CRBM models used are essentially a GB-RBM with extra in-
puts to model temporal dependencies. To be specific, to train a CRBM
forecasting model, a history window was kept then feed the model
with each current input plus n previous steps. The training process is
done through a Contrastive Gradient Descend [50] iterative process,
where each sample (with its n previous samples) is seen by the CRBM.
Through this, the CRBM learns the relation between input and history,
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Figure 5.3: Schema of CRBM training and prediction

allowing input prediction at k future steps, through a Gibbs sampling.
The advantage of CRBMs over other methods is that it directly han-
dles multi-dimensional input vectors, also allowing constant updates
and retraining. Figure 5.3 shows the basic CRBM schema.

CRBMs are used in other fields for characterizing and predicting
time series, like in Taylor’s work [75] for human motion modeling
or in Cai’s work [43] for financial data modeling, providing enough
experimental support to consider CRBMs a proved stochastic method
for time series forecasting, with dimensionality reduction capabilities
and able to be updated on-line.

5.3 system architecture

The solution proposed in this paper is based on the Fog computing
paradigm, combining a data distribution algorithm oriented towards
data collection resilient to back-haul connectivity issues, and a traffic
modeling approach providing distributed traffic forecasting capabili-
ties, based on the aforementioned Conditional Restricted Boltzmann
Machines (CRBM). Figure 5.4 shows the schematics of the proposed
architecture. In this architecture, the Fog nodes (including nodes in
the Edge) implement the control plane, providing the implementa-
tion for data collection algorithms and analytics engines (including
machine learning modules, here the CRBMs), also the mechanism
for pushing data and models towards upper levels and the Cloud.
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The Cloud level, containing the end-points for the Fog node hierar-
chy, provides the Data Store with scalability and distribution capa-
bilities, also fault-tolerance mechanisms; the System State monitoring
mechanisms, continuously providing status information for all the ar-
chitecture components; and analytics requiring global data and high
performance computing resources.

Figure 5.4: Schema of the proposed architecture at Fog level and Cloud level

5.3.1 Traffic modeling in the Edge vs. Cloud: tradeoffs

Given the proposed scenario, two approaches when modeling traffic
are considered: performing the analytics on the Edge or in the Cloud.
Computing models on the Cloud requires collecting all data from
Fog nodes, being constrained by possible transmission failures, while
computing models on the Edge requires some computing power to
perform the analytics. As shown in Figure 5.5, modeling requires data
susceptible of transmission disruption, or low-powered devices pow-
erful enough, depending on where modeling is taking place.

Location of models also depends on the network capacity and in-
tended use for analytics. One of the purposes of computing on the
Edge is to save data transmission by pushing only aggregated (mod-
eled) information to the Cloud. Infrastructure architects must con-
sider the Fog nodes capacity to produce such aggregations, in front
of network bandwidth and availability, so more aggregated data to-
wards low transmission volume requires higher computing power,
and vice-versa. Further, scenarios requiring analytic models on the
Edge, and analytics being aggregated on the Cloud (individualized
or generalist models requiring HPC resources), may require models
to be pushed back from Cloud to the Fog nodes. Then, those archi-



5.3 system architecture 71

Figure 5.5: General model in the Cloud vs localized models on the Edge

tectures depending on data/model transmissions along time must be
aware of back-haul disruption problems.

5.3.2 Modeling Architecture

A model is created by collecting data (from all nodes in the general
model, or from a single node on individual models), training or up-
dating a CRBM able to forecast t + 1 telemetry data from t . . . t − d
history, where t = time, d = history memory. As the Cloud collects
data from all nodes, a general model can be created from all col-
lected data (here location features for each data value are useful), or
individual models can be created for each node to specialize them.
In Fog nodes, local data is used to create a specialized model for
that node. The CRBM learns and forecasts the following features #
cars (volume of traffic during that time interval), and average speed,
from previous traffic volume and average speed, also includes infor-
mation about the location of the Fog node (latitude and longitude).
Further, information about the position of the FCD source is also
available, towards discriminating data from specific traffic areas or
streets when performing aggregations; while at this time a specific
distribution of antennas are considered to discriminate traffic areas
(heavy traffic streets, residential areas, etc), when antennas are arbi-
trarily distributed, data source position is required to perform proper
discrimination towards aggregations. Fog node location becomes use-
ful when creating a global model, being able to forecast information
from any location.
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The CRBM policy on data arrivals require that data is sorted by
time-stamp, as usually models learning from time series require. This
makes critical for intermediate Fog nodes and the Cloud to receive
data in order towards proper aggregation and learning. For empty
time-stamp gaps (when no data arrives for a certain time), data is
complemented with zeros: entries with the corresponding time-stamp,
the last observed latitude and longitude (considering that Fog nodes
are fixed in place), and 0 at each other feature. Empty gaps can re-
spond to “no data emitted” or “data didn’t reach the cloud”. At this
time, from the CRBM at the Cloud point of view, both situations are
indistinguishable not knowing if silence is due to a connection fail-
ure or no data to be received. So the standard policy is to fill “not
available data” with the default values, as cannot any other values
be assumed. This treated new batch of examples is then split into
mini-batches to be fed to the CRBM.

Additionally, CRBMs can be easily updated and re-trained, by it-
erating over the new provided information. Here an on-line training
approach is applied, where new produced data is used to update the
models. Either in the general model scenario or the localized mod-
els scenario, data is buffered and fed into the CRBM for training pe-
riodically. While localized models just keep their models updated,
the Cloud scenario requires transmitting its models to the edge. Fig-
ure 5.6 shows the updating schema between edge-cloud-edge on the
Cloud scenario.

Figure 5.6: Updating models in the Cloud-training scenario
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5.3.3 Data Distribution Algorithms

One of the principal contributions of this architecture, is the inclusion
of a real-time data distribution algorithm with enhanced resilience
against back-haul connectivity issues, to avoid data to be lost under
connectivity outage periods, and to favor distributed data modeling
in the Edge and intermediate Fog nodes.

The algorithm is based on the Fog computing paradigm and node
hierarchy between the Edge and the Cloud, to allow data collection
and modeling on Fog nodes when suffering connectivity issues, then
push data and models towards the Cloud for further analysis and
storage when connectivity allows it.

Data distribution among layers is driven by two key algorithms
presented as Algorithm 1 and 2, in charge of the operations for insert-
ing data and pushing data, present on each Fog node. The System
State monitor, placed in the Cloud level, is responsible to keep the
information of all Fog nodes, including network addresses and con-
nection state, also the overall timestamp of the system. The Cloud
and intermediate Fog nodes maintain timestamp tracking in order to
flag those batches of data arriving late, this is, belonging to a push
request previous to the one in course.

Each Fog node contains its own buffer where data is collected.
Nodes collecting data from different nature can possess different buffers,
to be processed each one independently from the other ones. For sim-
plicity, here nodes with one buffer of data are being shown, but this
process can be replicated for as many data streams as necessarily.
Then, each buffer is processed when reaching its capacity.

The Insert Data Algorithms (Alg. 1) is in charge of processing the
data incoming into the Fog node. For each stream of data arriving to
a Fog node, the algorithm if there is an already existing buffer ded-
icated to it, otherwise it creates one, and stores data until the buffer
is full. Once the buffer capacity is reached, the content is sent to the
Data Synchronization Module, where it is prepared to be pushed to-
wards the upper levels. At this point, the overall system timestamp is
updated, and all the sibling Fog nodes are requested to process their
buffers into their Data Synchronization Modules. At this step, if a
node is unreachable, its state changes to “disconnected”. After all the
registered buffers are processed, the algorithm notifies the Control
Plane on the Cloud level or upper Fog node (in the algorithm referred
as “Dispenser”) that a processing window has been performed.

The Push Data Algorithm (Alg. 2) is in charge of pushing the data
when a buffer reaches its capacity, or a Fog node is requested to do
that as a result of a sibling node’s buffer reaching its capacity. This
algorithm is called from the Insert Data Algorithm when the aforemen-
tioned conditions are met. On the Cloud level (or intermediate Fog
nodes), data received from each child node marked as “connected”
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is processed and flagged as “ordered”, while for nodes marked as
“disconnected” at some point, the arrival timestamp of the data is
checked by comparing its arrival time versus the overall timestamp,
then marked as “disordered” if corresponding. For batches of data
marked as “disordered”, it is responsibility of the analytics engines
to decide whether refuse or process them. For the current scenario,
CRBMs can decide whether to reorder data to have available as much
data as possible, or refuse it avoiding to increase the load on the
Cloud or intermediate nodes. Here it is decided to maintain the last
batches of ordered data as input for the CRBMs.

Algorithm 1 Fog node receive data

1: function insertData(stream, body)
2: Input: Data Stream name stream, Json data body
3: Output: Http Response Status
4: data_array← getStreamDataArray(stream)

5: if data_array = null then
6: data_array← addStreamDataArray(stream)

7: setStreamState(stream, Con f ig.ip)
8: end if
9: data_array.putDocument(body, timestamp)

10: if data_array. f ull() then
11: pushBu f f er(data_array, state, stream)

12: updateTmstp(stream, timestamp)
13: for all node in state.nodes do
14: node.pushBu f f er(node.stream.data_array,

node.stream.state, stream)

15: if error then
16: setStreamState(stream, node, f alse)
17: end if
18: end for
19: Dispenser.postCollect(stream, tmstp)
20: end if
21: return Http.Status(201)
22: end function

5.4 system components

In this section it is described in detail the components that are part of
the system architecture described in Section 5.3.

5.4.1 Fog Node Control Plane

This component runs in each Fog node, in a completely decentralized
mode. It manages the system state through the use of the distributed
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Algorithm 2 Fog node push buffer data function

1: function pushBuffer(data_array, state, stream)
2: Input: Node data array data_array, node state state, Data

Stream name stream
3: if state.connected then
4: storeArrayO f Data(data_array, stream)

5: else
6: for all data in data_array do
7: created_at← data.get(created_at)
8: if created_at > state.tmstp then
9: storeData(data, stream, true)

10: else
11: storeData(data, stream, f alse)
12: end if
13: end for
14: end if
15: end function

system state component described later in this section. It is imple-
mented as a web component that can be interfaced using REST APIs,
and it implements the core algorithms described in Section 5.3.3. The
REST APIs are composed of a Servlets Container and a REST Engine.
As a HTTP Web Server and Java Servlet container it is used Jetty [18],
which is a pure Java-based HTTP server and Java Servlet container.
Jetty is often used for machine-to-machine communications, usually
within larger software frameworks. As a REST Engine (JSON pro-
cessor) it is used Jackson [17], which is a high-performance suite of
data-processing tools for Java, including the flagship JSON parsing
and generation library, as well as additional modules. The Jackson
Project also has handlers to add data format support for JAX-RS im-
plementations like Jersey.

5.4.2 Data Store and Data Synchronization Module

A distributed data store is used to keep track of all the Fog nodes
produced data. For that purpose, CouchBase [4] has been chosen
because it provides the benefits of NoSQL data stores (highly dis-
tributed, high-availability properties, scalable), and it is document ori-
ented (which fits well for many different data sources and formats).
Queries on the data are available using a query DSL. The mechanism
to send queries to the platform has been integrated in the API that
resides in the central Cloud location.

The data synchronization between Fog nodes and Couchbase is
done by the Data Synchronization Module that is deployed with
CouchBase Mobile [6]. Couchbase Mobile is composed of Couchbase
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Lite [5], an embedded database that manages and stores data locally
on the Fog nodes, and the Sync Gateway [7] that provides synchro-
nization between Couchbase Lite and Couchbase Server.

Couchbase has native support for JSON documents. Each JSON
document can have a different structure, and multiple documents
with different structures can be stored in the same CouchBase bucket.
Document structure can be changed at any time, without changing
other documents in the database. A Bucket is defined as the owner of
a subset of the key space of a Couchbase cluster. These Buckets are
used to distribute information effectively across a cluster. A Bucket is
equivalent to a database. A common practice is to store documents
of different nature on different buckets. The architecture has the abil-
ity to store different data nature in different buckets via the Control
Plane in the Fog nodes. For the work presented in this paper one
bucket has been defined since all the data have the same nature.

5.4.3 Managing the Distributed System State

System State is the module that provides the information on the sta-
tus of all the components of the architecture at all times and is im-
plemented using etcd [12]. Etcd is a distributed reliable key-value
store that is automatically replicated with automated master election
and consensus establishment using the Raft algorithm, all changes in
stored data are reflected across the entire cluster, while the achieved
redundancy prevents failures of single cluster members from causing
data loss. Etcd also provides service discovery by allowing deployed
applications to announce themselves and the services they offer. Com-
munication with etcd is performed through an exposed REST-based
API, which internally uses JSON on top of HTTP.

5.4.3.1 Analytics Engine: local in Fog nodes or global in Cloud

Both Fog nodes and Cloud have a module for performing the pro-
posed analytics. Such module is in charge to buffer the data for train-
ing and updating CRBM models, store the current CRBM model in
each situation, forecast data using the models, also to transmit models
from Cloud to Fog nodes using the aforementioned REST API. Both
Fog and Cloud nodes have available the same implementation, ready
to receive data for training/updating or forecasting, and to produce
or receive a trained model. The analytics framework is hooked to the
data stream, buffering data for periodic model updates. Once a model
in the Cloud is trained or updated, it is transmitted to the correspond-
ing Fog nodes. If the model is trained or updated in the Fog nodes,
models are kept locally, as explained previously in section 5.3.2.

The analytics and machine learning framework for training CRBMs
is created using R from the Comprehensive R Archive Network [69].
The implementation of the CRBM methods is obtained from our im-
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plementation in R1, based on the G. Taylor’s original approach. Com-
munication between the REST API and the analytics is built using the
package R-Plumber [78]. While R-Plumber manages the connections
between API calls and handler functions, the well-known R packages
JSONlite [60] and HTTR [82] are used to serialize CRBM models (a
set of matrices) and transmit them.

5.5 evaluation

In this section we present 5 different experiments that illustrate the
behavior of the data distribution algorithms and the traffic model-
ing component. Across the different experiments, we show how the
Cloud-centric learning strategy can lead to incomplete datasets passed
along to the analytics engine. This, in turn, results in biased and inac-
curate models due to potential back-haul connectivity issues. There-
fore, the experiments show the advantages of a decentralized Fog-
based learning strategy to improve the accuracy of the models and
protect the system against connectivity outages.

5.5.1 Methodology

The data distribution layer was tested under two different conditions:
internal memory buffers of 100 elements (small buffer, continuous
synchronizations between the Fog node layer and the Cloud com-
ponents), and 10,000 elements (large buffer, reduced communication
patterns between the Edge and Cloud).

Deployed antennas cover different traffic areas where traffic can
be aggregated by coverage zone (using all received data), or by traffic
zones (discriminating received data by data source location) if specific
streets or delimited traffic areas are to be studied separately. Here we
emulated six different antennas (and their corresponding Fog nodes),
distributed across the metropolitan area of Barcelona, covering each
a different traffic area. Some of the coverage areas are slightly over-
lapped to guarantee that all the territory got covered by at least one
antenna. In all experiments, the FCD data was traversed over time,
re-creating the original sequence of events. At each step, data sam-
ple was sent to its corresponding nearest antenna. The distribution
of data across each Fog node for a configuration corresponding to a
node local buffer size of 100 data samples can be seen in Figure 5.7.

Different patterns of network connectivity issues between the Fog
nodes and Cloud components were emulated. Network failures were
modeled using a mean time between failures that follows a random
LogNormal distribution. Different configurations were used, with mean
values of 20, 30 and 40 minutes between failures. Figure 5.8 shows the
actual time between failure distribution used in the experiments. We

1 https://github.com/josepllberral/machine-learning-tools
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(a) Fog node 1

(b) Fog node 2

(c) Fog node 3

(d) Fog node 4

(e) Fog node 5

(f) Fog node 6

Figure 5.7: Data processed by each Fog node with 100 buffer items
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also modeled the duration of each connectivity failure: in this case,
we considered another LogNormal distribution with mean value of
10 minutes.

(a) Failure frequency - 20 min

(b) Failure frequency - 30 min

(c) Failure frequency - 40 min

Figure 5.8: Distribution of actual connectivity outages simulated between
the Fog nodes and Cloud layers. It follows a random LogNormal
distribution

Finally, we also modeled the number of nodes affected in every con-
nectivity outage, In this case, an exponential distribution was used for
each node, resulting affected all nodes with values above 0.5 (namely,
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low impact scenario). We also considered a second case in which the
impact of each failure was significantly higher, representing an sce-
nario in which extreme connectivity issues affect the city. For that
scenario, the threshold to decide if a node was affected by the back-
haul connectivity outage was set to 0.2 (namely, high impact scenario).

5.5.2 Validation dataset

With the purpose of validating the current architecture, we have cho-
sen a traffic monitoring and prediction case of use, for a set of 118

vehicles reporting their speed to the Fog node at different moments.
We are using real traffic logs from around one week of “Floating Car
Data” (FCD) collected in the city of Barcelona, monitoring the traffic
in 6 different locations, with 45094 records for 6 days. The collected
features include, for each specific Fog node, the number of cars re-
porting their presence to each node and the average speed for those
cars, also each record also includes the position for the Fog node col-
lecting it, and the timestamp. The two most relevant features to be
learned and forecasted are traffic volume and average speed, with an
average of 9 cars per record and between of 1 to 47 (when no cars are
reporting, no record is included in the dataset), and average mean
speeds of 19km/h and values between 0km/h and 124km/h. Notice
that records with speed limits higher than 60km/h are in the 99th per-
centile so we can consider them outliers to prevent them to alter our
analytics (also technically the maximum allowed speed in the city is
50km/h); reducing those records with speed > 60 to just 60 keeps
the average mean speed to 19km/h and values between 0km/h and
60km/h.

5.5.3 Evaluation Infrastructure

The experiments were run in a cluster of 8 servers, each featuring
two Xeon E5-2630v4 (broadwell) processors, clocked at 2.20GHz. Each
node counts with 128GB of DDR4-2400 R ECC RAM. All nodes were
interconnected using a non-blocking 10GbE switching fabric. Although
an external NFS folder was mounted on the systems, it was not used
as a backend for the experiments. Instead, all data was stored locally
using four 7.2K rpm 2TB SATA HDDs per nodes, mounted as four
independent volumes.

The application was deployed using Docker [56] containers that en-
capsulated every system component. Docker containers provided all
the necessary elements for the evaluation: network isolation, commu-
nication and network connectivity control of every component that
runs as an isolated process.
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5.5.4 Experiment 1: Percentage of generated data available in Cloud

In this first experiment we perform an exploratory analysis of the ar-
chitecture behavior and algorithms, from the point of view of the ratio
of the data available in the cloud (stored in the Data Store) versus the
data processed on the Fog nodes.

(a) Buffer 100 items - No connetivity issues - accumulate

(b) Buffer 10k items - No connetivity issues - accumulate

(c) Buffer 100 items - No connetivity issues - difference

(d) Buffer 10k items - No connetivity issues - difference

Figure 5.9: Representation of data in Cloud over time without connectivity
issues. Increasing buffer sizes in Fog nodes, the communication
pattern between the Fog nodes and the Cloud is changed, with
less frequent but more intense network traffic bursts when the
buffers are larger, and at the same time, delays in propagation
are also increased. (Experiment 1)
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Figure 5.9a and Figure 5.9b show the cumulative data processed
along the time by the Fog nodes and stored in the central Cloud for
buffers of 100 and 10k items respectively. As it can be observed, for
larger buffers there is a slight sawing in the graph because until the
buffer is not filled and launches the processing of all the nodes, which
takes more time than for smaller buffers, the processed data will not
upload to the Cloud.

From the point of view of the difference between the data generated
and the data available in the Cloud, Figure 5.9d shows this effect of
buffer filling more clearly showing in a linear way the increase of
the difference until it falls through the buffers processing. Figure 5.9c
validates that the difference between data generated versus data avail-
able in the cloud is small for smaller buffers, for this reason the effect
of the buffer processing is blurred.

Notice that the Figure 5.9a and Figure 5.9b are not linear, for the
reason that there is less data volume at night.

5.5.5 Experiment 2: Impact of connectivity issues - data affected

In this second experiments we visualize the amount of data affected
by connectivity issues, and therefore delayed more than desired, on
the proposed scenarios, showing how in some occasions percentage
of losses continuously reaches 100%, always depending on the buffer
dimensions. This is the data that at some moment could not be deliv-
ered to the Cloud when expected either because the node was discon-
nected when it went to process its full buffer or because it could not
be notified by another node to process it. Realize that may include
data delivered in order and data not delivered in order.

Figure 5.10a and Figure 5.10b show the percentage of data affected
by connectivity issues with a frequency of next failure of 20 min for
Fog nodes with buffers of 100 versus buffers of 10k items. As can be
seen, with larger buffers there is less affected data, this is due to the
fact that there is less volume of buffer processing and therefore less
probability that the Fog nodes are disconnected at that moment. On
the contrary, with smaller buffers many times more than the buffer is
processed the Fog node is disconnected.

Figure 5.10c and Figure 5.10d show the percentage for the same
frequency of next failure (20 min) but incrementing the number of
nodes failing. As described in Section 5.5.1, this is done modifying
the random exponential function decision value. Incrementing the
number of failing nodes to reach a high impact situation can be ob-
served as for small buffers the effect is much greater that for larger
buffers. The density of affectation is also greater between nodes with
the same buffer size, figure 5.10a and figure 5.10c more affected than
for figure 5.10b and figure 5.10d.
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(a) Buffer 100 items - 20 min - low impact

(b) Buffer 10k items - 20 min - low impact

(c) Buffer 100 items - 20 min - high impact

(d) Buffer 10k items - 20 min - high impact

Figure 5.10: Fraction of data sitting in the Fog node Layer is affected by back-
haul connectivity issues over time. Simulated time between er-
rors following a random LogNormal distribution with mean
values 20min. May include data delivered in order and data not
delivered in order to the Cloud. In Low impact scenario, few
Fog nodes are affected by the connectivity issues. In the high
impact scenario, the scope of connectivity outages is larger. (Ex-
periment 2)
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5.5.6 Experiment 3: Impact of connectivity issues - data delivered out of
order

In this third experiment, we revisit again the data loss ratios in differ-
ent scenarios, considering only the data delivered out of order from
the point of view of the Cloud. The evaluation carried out in this ex-
periment accounts only for the sets of data that could not be delivered
in order, this is important for cloud analytics because it can be used
to define confidence intervals on existing data in the data warehouse.
Notice that the amount of data disordered will be always less than
the data affected by connectivity issues (Experiment 2) because is not
taken into account the data in the buffers when a Fog node has to
process its full buffer and it is disconnected.

Figure 5.11a and figure 5.11b show the percentage of data disor-
dered with a frequency of next failure of 20 min for Fog nodes with
buffers of 100 versus buffers of 10k items. As in Experiment 2, with
larger buffers there is less disordered data due to the less volume
of buffer processing and with smaller buffers more disordered data
reach the Cloud.

In the same way, under a high impact situation figure 5.11c and
figure 5.11d show the same behavior as Experiment 2, for smaller
buffers the disorder is much greater that for larger buffers. The den-
sity of disorder is also greater between nodes with the same buffer
size figure 5.11a and figure 5.11c more affected than for figure 5.11b
and figure 5.11d.

As previously explained if overall density between this Experiment
and Experiment 2 is compared the density in the figures in Experi-
ment 2 are greater.

5.5.7 Experiment 4: Impact of connectivity issues - data contaminated by
out of order deliveries

In this experiment we evaluate all data that has been affected by out
of order delivery, directly or indirectly. Here we account the amount
of data that has been contaminated (incorrect mix will lead in bad
training) either because it was delivered out of order or because other
data that should have been mixed with it could not be pushed on
time. This is important, not for real time, but to support the idea
that building models in the Fog nodes are much more accurate that
building models in the Cloud.

Following the evaluation of the previous experiments (Experiment
2 and Experiment 3), figure 5.12a and figure 5.12b show with a fre-
quency of next failure of 20 min for Fog nodes with buffers of 100

versus buffers of 10k items the percentage of data affected. The data
with larger buffers there is less affected than smaller buffers due (as
in previous experiments) to the less volume of buffer processing.
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(a) Buffer 100 items - 20 min - low impact

(b) Buffer 10k items - 20 min - low impact

(c) Buffer 100 items - 20 min - high impact

(d) Buffer 10k items - 20 min - high impact

Figure 5.11: Fraction of data sitting in the Fog node Layer that is delivered
out-of-order to the Cloud layer because back-haul connectivity is-
sues over time. Simulated time between errors following a ran-
dom LogNormal distribution with mean values 20 min. Only
includes data not delivered in order to the Cloud. In Low im-
pact scenario, few Fog nodes are affected by the connectivity
issues. In the high impact scenario, the scope of connectivity
outages is larger. (Experiment 3)
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As previous experiments, under high impact situation figure 5.12c
and figure 5.12d show for smaller buffers much more affectation
than for larger buffers. Coherently with the rest of experiments . The
density of affectation is also greater between nodes with the same
buffer size figure 5.12a and figure 5.12c than for figure 5.12b and fig-
ure 5.12d.

This experiment presents the highest density of affected data com-
pared with Experiment 2 and Experiment 3. The amount of data con-
taminated by out of order deliveries, directly or indirectly is the high-
est.

5.5.8 Experiment 5: Traffic Modeling and Forecasting. Centralized vs Dis-
tributed.

Here we evaluate the modeling and forecasting methodology, to val-
idate how the proposed architecture allows modeling the input data.
As previously explained, the principal case of use consists on predict-
ing road traffic properties (i.e. volume of traffic and average speed)
per Fog node. We considered two different scenarios: a centralized
training process where all data is collected to create one general mod-
els, and a distributed training process where each Fog node produces
its local model.

In the following experiments we consider the scenario where data
is collected on the Cloud and a CRBM model is created, and the
scenario where the CRBM is trained in the Fog nodes. While the first
scenario considers no connection failures, becoming the best scenario,
the second considers that local models are independent to the ratio
of connection failures. In case of no failures, the both scenarios could
be performed on the Cloud: a global model and individual models
for each node from received data. In case of failures, we can rely on
locally trained models, not depending on failures. Then here we show
how a global model behaves versus local models.

The CRBM has been tuned after repeated experiments looking for
the best hyper-parameters, here hidden units = 30, learning rate =
0.01, momentum = 0.8 and number of training epochs = 4000, also
data is aggregated in vehicles and average speed per hour. The his-
torical window kept for prediction is 3 hours, and the forecasting is
produced through 30 iterations of Gibbs sampling.

Warm up time for initial CRBM training, also CRBM update (re-
training) periodicity is set up to 24 hours, after experimenting with
different periodicities, being 24 hours the best update interval. Note
that real data displays a daily (24 hour) repetitive pattern, so training
the model each 24 hours ensures a fairly balanced set of observations.
Additionally, the speed limit has been limited to 60km/h (99 percent
of observations) to neutralize outliers (for all s > 60, it is set to 60),
also noticing that maximum speed allowed inside the city is 50km/h,
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(a) Buffer 100 items - 20 min - low impact

(b) Buffer 10k items - 20 min - low impact

(c) Buffer 100 items - 20 min - high impact

(d) Buffer 10k items - 20 min - high impact

Figure 5.12: Fraction of data sitting in the Fog node Layer that is delivered in
incomplete state to the Cloud layer because backhaul connectivity
issues over time. Data delivered in incomplete state is data that
although it is delivered in-order to the Cloud, it contains miss-
ing parts that could not be delivered in time. This aspect is im-
portant because learning models can get biased because of lack
of completeness in the data seen. Simulated time between errors
following a random LogNormal distribution with mean values
20min. Only includes data delivered in order to the Cloud, but
with missing parts. In Low impact scenario, few Fog nodes are
affected by the connectivity issues. In the high impact scenario,
the scope of connectivity outages is larger. (Experiment 4)
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and those values could be considered towards anomaly detection for
traffic law enforcement in future works.

Table 5.1 shows (on the two top tables) the average Relative Abso-
lute Error (RAE, a.k.a. Mean Absolute Percent Error) for each node
using a global model, trained and updated using all nodes informa-
tion, against using local models for each node, trained and updated
only with local data. We distinguish the complete error and the 95th

percentile error, where we focus on the error for the 95 percent of
cases, as we observed that the error distribution produces a long tail,
altering the perception of the expected error. As CRBM has a stochas-
tic component, experiments have been run 10 times, and computed
the average of results. Figure 5.13 also displays the averaged values
in right column for better comprehension.

Figure 5.13: Average RAE for values on Table 5.1

We observe that local models produce better predictions than a
general model, indicating that each node has enough data for itself
to train a decent predictor. Such effect would allow a single node to
train or update its CRBM model in case of disconnection from the
cloud. On the other side, management systems on the cloud could
use the CRBM model to estimate the telemetry from the disconnected
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Number of received inputs from each Fog node

node1 node2 node3 node4 node5 node6 total

8614 8613 5614 5712 8575 7966 45094

Centralized modeling (One general model)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.1830406 0.5640958 1.0406101 0.9656460 0.6329655 0.7736946 0.6933421

average speed 0.5876019 0.4058793 1.7793430 0.4139850 0.3334604 0.3530163 0.6455477

traffic volume (95th) 0.1706984 0.5323832 0.8967587 0.8716846 0.5885903 0.6971613 0.6262127

average speed (95th) 0.5089208 0.3332018 1.1704180 0.3400571 0.2810072 0.2700172 0.4839370

Fog node modeling (One model per node)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.1555855 0.5851258 0.6656879 0.6936570 0.6192713 0.7624275 0.5802925

average speed 0.5436164 0.2711187 1.8857050 0.3521620 0.2454030 0.3343151 0.6053867

traffic volume (95th) 0.1394112 0.5423981 0.6077561 0.6287912 0.5654928 0.7018941 0.5309572

average speed (95th) 0.4206425 0.2248818 1.4680658 0.3243317 0.2126657 0.2462449 0.4828054

Centralized modeling (Avg Time to Failure 40 min)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.2886579 0.5971364 1.326132 1.1623673 0.7139560 0.8785106 0.8277935

average speed 0.6542469 0.4493091 1.675766 0.4447477 0.3855491 0.3717311 0.6635583

traffic volume (95th) 0.2618760 0.5700833 1.084638 0.9722413 0.6642756 0.7956382 0.7247920

average speed (95th) 0.5307863 0.3588561 1.193760 0.3657113 0.3242667 0.2837089 0.5095150

Centralized modeling (Avg Time to Failure 30 min)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.3047327 0.6216623 1.322312 1.1202736 0.6978688 0.8440265 0.8184793

average speed 0.6367097 0.4329232 1.609276 0.4533244 0.3696029 0.3841081 0.6476574

traffic volume (95th) 0.2775941 0.5908583 1.105833 0.9705806 0.6557692 0.8018136 0.7337415

average speed (95th) 0.5204882 0.3461248 1.233979 0.3884334 0.3201640 0.3288929 0.5230137

Centralized modeling (Avg Time to Failure 20 min)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.3720164 0.6402134 1.354118 1.0958144 0.7135374 0.8028318 0.8297553

average speed 0.6804612 0.4302883 1.746649 0.4494588 0.3640312 0.3713571 0.6737076

traffic volume (95th) 0.3465650 0.6013991 1.092760 0.9151707 0.6730144 0.7521853 0.7301824

average speed (95th) 0.6023073 0.3551524 1.210088 0.3834238 0.3073565 0.3230715 0.5302333

Centralized modeling (Avg Time to Failure 15 min)

node1 node2 node3 node4 node5 node6 average

traffic volume 0.3622710 0.6315523 1.305127 1.1988274 0.7254418 0.7950532 0.8363788

average speed 0.6991176 0.4623524 1.757799 0.4513180 0.3718768 0.3693187 0.6852970

traffic volume (95th) 0.3384074 0.5947155 1.076719 0.9626721 0.6999604 0.7611931 0.7389445

average speed (95th) 0.5895197 0.3799004 1.317271 0.3986128 0.3206143 0.3012697 0.5511980

Table 5.1: Average RAE (for all data and 95th percentile) on collected-data
modeling vs local modeling, per node (top tables). Average RAE
for forecasting on failure scenarios (bottom tables)
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Fog node. Notice that the error varies per node, as each node registers
information from a different part of the city: nodes 3 and 4 are located
in the periphery, receiving less data than the others and benefiting
from the general Cloud model.

Finally, to conclude the modeling evaluation, we consider how com-
munication failures affect the centralized modeling in the Cloud, by
considering that the same aforementioned failure conditions apply,
“destroying” part of the training/updating datasets. Here we consider
that the analytics module is not bound to delayed data synchroniza-
tion: CRBMs are trained/updated with real-time available data, and
data dispatched late (from previous iterations) is discarded, as consid-
ering it would imply to keep extra amount of historic data because
of the training pre-processing sorting and completing data. Figure 5.1
shows also (in the four bottom tables) the relative absolute error for
traffic volume and average speed prediction (for all error and error
95th percentile), for scenarios where the average time to failure is
〈15, 20, 30, 40〉 versus a no-failure scenario, with an average of 10 min-
utes of failure and exponential chances for a node to be affected. As
failures are stochastic, experiments have been run 10 times, and com-
puted the average of results.

As we can see, the error degrades with higher chances of failure.
We must take into account that given the several rounds of updates,
CRBMs are able to recover from unseen data up to a certain point,
depending on the variability of data in each node and the frequency
of failures.

5.5.8.1 Performance at the Edge

Devices at the Edge are characterized by low consumption and lim-
ited performance, as the Fog paradigm focuses on moving high per-
formance computing to the Cloud while “low cost” operations like
aggregation and filtering to the Edge. Machine learning modeling
and prediction can require high or low amount of resources depend-
ing on the used method and the amount of data to be processed.
The used CRBMs have the characteristic of being reasonably easy to
train in terms of complexity, as data can be split in mini-batches to
be passed by the network then computed the gradient difference, i.e.
matrix multiplications and subtractions subject to the size of data and
CRBM hidden units, then each piece of data is passed enough times
until achieve an acceptable accuracy level. As mentioned before, the
CRBMs for the current traffic data require 30 hidden units and less
than 4000 iteration to achieve lowest error values.

In order to test the viability of the proposed method into a low per-
formance environment for machine learning and aggregations, we
have deployed the framework into Edge devices composed by Rasp-
berry Pi 3B (Raspi) micro-computers, with computing power of 4xARM
Cortex-A53 @1.2GHz and 1GB RAM memory, with peak power con-
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sumption 3.7W (730mA). Each Raspi is prepared as a Fog Node re-
ceiving data from a given coverage area.

As shows Table 5.2, aggregating collected data in rounds of 1 hour
and re-training local CRBM models in round of 6 hours, require less
than 25% of a CPU and ∼ 21KBytes of RAM memory to aggregating
and training data, and times are below 5 seconds to perform the pro-
cess of aggregation and training, also predicting the new batches of
data using the local model. Take into account that the impact of the
amount of input data affects uniquely the Aggregation process and
Prediction process, as the CRBM models receive data normalized in
fixed time-steps.

Data Processing Time (seconds) Resources

Aggregating Prediction Training # of Inputs CPU (%) MEM (KB)

Fog node 1 0.07392797 0.09089618 3.776131 1434.8 15.75 20.8906

Fog node 2 0.07263155 0.08739262 3.765014 1434.6 16.22 20.5495

Fog node 3 0.06041346 0.08531480 3.745345 867.2 16.67 20.7227

Fog node 4 0.06405849 0.08406520 3.005376 962.6 17.14 21.5156

Fog node 5 0.07629604 0.08889236 3.762398 1427.2 17.55 21.6471

Fog node 6 0.07259803 0.08957825 3.762089 1313.6 18.00 21.8542

Table 5.2: Average computing resources and time spent per Edge process,
given hourly aggregation and prediction rounds, and 6 hour re-
training rounds, in each Fog node

5.5.8.2 Discussion on Modeling

Complex policies can be developed in the future like multi-level train-
ing if needed, where models are created on the Cloud and also locally
or intermediate nodes, and in case of failures Cloud models are se-
lectively discarded when transmitted to Fog nodes, local models are
pushed to the Cloud to update the centralized ones, or intermediate
models are distributed up and downwards. Here we shown that mod-
els can be trained in the Cloud from all data, also in lower levels from
local data.

In scenarios where partitions can change behavior along time and
models need to generalize, being trained with low probability situ-
ations to learn about patterns not seen by it but by others, helps to
create a non-over-fitted model with less precision but more accuracy.
However, in practice, this is something hard to achieve. As seen in
the experiments, local models tend to over-fit to their local samples,
usually performing better than global ones. So in case Fog nodes are
capable to perform the modeling as part of their analytics, another
policy would be to train at the edge then push local models to the
Cloud for centralized management purposes, and only re-train mod-
els on the Cloud for those nodes benefiting from extra data.

It is also in our road-map to plan scenarios where Fog nodes may
change location or move (e.g. Fog nodes on vehicles). So contemplat-
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ing a policy where local models can be updated with past data from
other nodes in that location could improve them.

5.5.9 Summary of results

The following is a summary of the most important aspects of the
results presented in this Section:

• Experiment 1: Shows the behavior of the data distribution algo-
rithm in terms of amount of data collected by the Fog nodes
and not available at the Cloud level. This factor is conditioned
by the size of the buffers in the Fog nodes, that in turn translate
into delays in propagating data to the Cloud. At the same time,
increasing buffer sizes, the communication pattern between the
Fog nodes and the Cloud is changed, with less frequent but
more intense network traffic bursts when the buffers are larger.

• Experiment 2: Shows the impact of network connectivity issues
between the Fog nodes and Cloud layers, resulting in limited
data propagation capabilities during the connectivity outage pe-
riods. This aspect is evaluated in terms of percentage of data
sitting in the Fog node layer that is affected by the connectivity
issues. Data affected is, at least, delayed on its delivery to the
Cloud layer. The importance of this aspect for the Traffic model-
ing components of the application is that it may delay the model
training process in the case of using a Cloud-centric modeling
strategy, what is expected to have limited impact in the overall
system. The Fog-centric model is not affected.

• Experiment 3: Similar to the previous experiment, in this case
we explore what is the fraction of data that could not be deliv-
ered in order to the Cloud layer. A set of data is not delivered
in order when other sets of data, both produced by the devices
in the edge during the same time range, are not delivered to
the cloud in the right order (being the out-of-order set deliv-
ered after the other sets). The importance of this aspect for the
Traffic modeling components of the application is that it may
degrade the quality of the trained model in the case of using a
Cloud-centric modeling strategy, what is expected to have mod-
erate impact in the overall system. The Fog-centric model is not
affected.

• Experiment 4: Similar to the previous experiment, in this case
we explore what is the fraction of data that was delivered in in-
complete state to the Cloud layer because of the sets that could
not be delivered in time. A set of data is in incomplete state
when it is exposed to the trained model without all the sets that
were generated in a given time range. The importance of this
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aspect for the Traffic modeling components of the application
is that it may produce a severe bias in the the trained model
in the case of using a Cloud-centric modeling strategy, what is
expected to have severe impact in the overall system. The Fog-
centric model is not affected.

• Experiment 5: Provides insights on the actual model accuracy
across different scenarios, both for the Cloud-centric and the
Fog-centric learning strategies. Results show that the Fog-centric
approach is more accurate and at the same time more robust
than the Cloud-centric approach, capable to be performed in
low computing-power devices.

5.6 related work

Several cities around the world are involved in projects towards smart-
city management. Platforms designed for management of smart cities
exist in cities like Nice, France, where the Connected Boulevard [46]
platform has been developed to optimize all aspects of city manage-
ment, including parking, traffic, street lighting, waste disposal, and
environmental quality. Also in Santander, Spain, the project Smart-
Santander [73], focuses on a European facility for research and exper-
imentation of architectures, technologies and applications for smart
cities, but without focusing yet on Fog computing. Further, other
cities like Songdo (South Korea), Masdar City (Abu Dhabi, UAE),
Paredes (Portugal), Manchester (UK), Boston (US), Tianjin (China)
and Singapore, announced smart-city related projects [76]. Although
approaches differ on each city, resilient and secure analytics between
the edge and data centers are a hot topic, revolving around a coherent
and affordable way of management [51]. The previous work [86], it is
focused on how Fog computing architectures can improve the deploy-
ment of distributed commercial solutions on smart cities where cloud
models fall short, through a Barcelona Supercomputing Center and
Cisco Systems joint initiative towards a Fog computing deployment
in the city of Barcelona.

The appearance of Floating Car Data (FCD) as data source is ex-
pected to provide support to many practical use cases in the near
future, leveraging Intelligent Transportation Systems telemetry. To
complement the current lack of sensorization in cars and communica-
tions infrastructure, works like [42] propose the use of smartphones
and Wi-Fi hotspots, also [35] proposes crowdsourcing architectures to
collect data from smart devices on vehicles for these same purposes,
or [36] studies vehicle-to-vehicle networks to handle the expected es-
calation of FCD data volume.

In the field of treating Floating Car Data, are found works like [88]
where the framework RTIC-C presents a high level architecture to
deploy traffic analytics, using Map-Reduce approaches for distribut-
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ing modeling and processing algorithms. The RTIC-C authors de-
fend the use of big data analytics on traffic data due to its increas-
ing volume and complexity, then they focus on distributing received
data for processing on anomaly detection and traffic trend predic-
tion. The presented framework focuses on the data transmission ar-
chitecture towards receiving traffic data streams properly for being
ingested by analytics methods, i.e. localized re-trainable CRBM pre-
diction mechanisms, and could complement high level frameworks
like those named here on generalist model scenarios.

Further, while most state of the art frameworks focus on processing
traffic data on dedicated HPC Cloud infrastructures, it is proposed to
study scenarios where analytics are partial or completely processed
in the Edge. Works like [57] and [83] present different traffic mod-
eling approaches, ensembles using bagging and Feed-Forward MLP
Neural Networks the prior and Spatial-Temporal Weighted k-Nearest
Neighbor the later, producing general models from the aggregated
datasets and distributing computation on the Cloud. Also, works
like [54] present a methodology where a Stack of AutoEncoders is
applied for traffic flow prediction at different granularities with good
results for t+1 forecasting. As presented in this work, localized mod-
els on the Edge can create in-situ specialized predictors adapted to
their coverage area, using re-trainable machine learning models.

Many Fog applications (e.g. event monitoring and forecasting, as
is the case on the presented work), rely on data stream processing
analytics. [85] presents general models and architectures for Fog data
streaming, and analyze the common properties of the most common
applications. An overview about device-to-device communication on
the Fog can also be found in [38], focusing on the physical plane of
such devices. [84] shows how connectivity issues are important in
this field, specifically in wireless communications, applying an algo-
rithm to prioritize which of the available data in a given field with
interconnected sensors is send to a mobile carrier and how to route it
when connections between data provider and the mobile carrier are
intermittent and short in time.

The use of machine learning for time series on Fog computing in-
frastructures and smart cities is relatively new, although data mining
on the Internet of Things has been previously planned and discussed,
e.g. [39] proposed the different layers of data management on IoT an-
alytics: data collection, data management, event processing and data
mining. Also applications of ML management on cities already exists
that could easily benefit from edge computing: from management of
power grids using machine learning in big cities from grid monitored
data [71], to reduction of data transmission in health-care monitoring
wearables by performing pattern mining on the edge [47], to illustrate
some examples.
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5.7 summary

Among the new technologies emerging around the Internet of Things
(IoT) to provide a new whole scenario for Smart City services, Fog
nodes become potential hosts for lightweight services on near real-
time close to the edge. Thanks to modern high bandwidth networks,
those previously centralized services can become decentralized, adapt-
ing to the constant changes on modern cities without compromising
fidelity towards centralized management and data warehousing sys-
tems.

Here it is presented a decentralized application towards smart-
cities traffic monitoring and forecasting. The architecture combines
a data distribution layer, connecting the Fog nodes with a centralized
Cloud focusing on resilience and near real-time communication, and
an on-line Machine Learning modeling technique to learn and predict
traffic telemetry. The application is designed to be deployed in a Fog-
based infrastructure, in which network antennas (e.g. 5G stations) are
combined with Fog nodes to provide near real-time computing capa-
bilities.

The presented approach has been validated and tested through
five experiments, illustrating the behavior of the data distribution al-
gorithm plus the traffic modeling analytics methodology. And more
important, here evidence of the need for a decentralized Fog-based
learning strategy are being provided, to improve the accuracy of the
trained models and to protect the system against back-haul connec-
tivity issues. It is observed that, when a centralized cloud-based ap-
proach is followed, network connectivity outages limiting the Fog-
Cloud communications can produce severe impact in the accuracy
of Cloud-learned models, as partial data delivery to the Cloud layer
misleads the training process, resulting in less accurate models.

The work described in this chapter has resulted in the following
main publication:

[66] Juan Luis Pérez, Alberto Gutierrez-Torre, Josep Ll. Berral, and
David Carrera. A resilient and distributed near real-time traffic fore-
casting application for fog computing environments. Future Genera-
tion Computer Systems, 87:198 – 212, 2018. ISSN 0167-739X. doi: https:
//doi.org/10.1016/j.future.2018.05.013. URL http://www.sciencedirect.

com/science/article/pii/S0167739X1732678X

http://www.sciencedirect.com/science/article/pii/S0167739X1732678X
http://www.sciencedirect.com/science/article/pii/S0167739X1732678X




6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusions

In this thesis we presented three complementary steps toward the de-
velopment of an unified and distributed orchestration layer for data
ingestion and processing based on the Fog Computing paradigm for
IoT in a moving data sources environment. In contribution one we
proposed the characterization of a platform for hosting IoT workloads
in the Cloud providing multi-tenant data stream processing capabil-
ities, the interfaces over an advanced data-centric technology, includ-
ing the building of a state-of-the-art infrastructure to evaluate the
performance and to validate the proposed solution. Second Contri-
bution studies an architectural approach following the Fog paradigm
that addresses some of the central challenges found in the first con-
tribution, we studied an extension of the model that addresses some
of the central challenges behind the converge of Fog and IoT. And in
the last contribution we designed a distributed and scalable platform
to perform IoT operations in a moving data environment. After the
study about data processing done in Cloud environments in the first
contribution and the study of the convenience of the Fog paradigm to
solve the IoT close to the Edge made in second contribution, we de-
fined the protocols, the interfaces and the data management to solve
the ingestion and processing of data in distributed and orchestrated
manner for the Fog Computing paradigm for IoT in a moving data
environment.

97
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6.1.1 Hosting IoT data-centric workloads in the Cloud

The first contribution of this thesis, presented in Chapter 3, consists
of a characterization of a platform for hosting IoT workloads in the
Cloud providing mutli-tenant data stream processing capabilities, the
interfaces over an advanced data-centric technology. The effectiveness
of the platform is demonstrated through a implementation and eval-
uation of the building of a state-of-the-art infrastructure.

IoT devices and sensors generate streams of data across a diversity
of locations and protocols that in the end reach a central platform
that is used to store and process these streams. Processing can be
done in real time, with transformations and enrichment happening
on-the-fly, but it can also happen after data is stored and organized
in repositories.

The proposed state-of-the-art platform for hosting Internet of Things
(IoT) workloads in the Cloud, ServIoTicy, provides multi-tenant data
stream processing capabilities, a REST API, data analytics, advanced
queries and multi-protocol support in a combination of advanced
data-centric services. The main focus is to provide a rich set of fea-
tures to store and process data through it REST API, allowing ob-
jects, services and humans to access the information produced by
the devices connected to the platform. Automatically provisioning re-
sources in the cloud for hosting these platforms as a service requires a
detailed understanding of all these components and tiers to allow for
auto-scaling and dynamic provisioning capabilities. ServIoTicy aims
to provide a technological platform for easily creating services based
on the Internet of Things (IoT), thus unleashing the full potential of
an Internet of Services (IoS) based on the IoT. ServIoTicy proposes an
architecture composed of a Web Tier (where resides the REST API), a
Data Store, a Data Indexing and a Stream Processing Topology.

Several technologies for implementing the main components of the
platform have been used and have been characterized. The NoSQL
database Couchbase for the distributed data store, the search engine
ElasticSearch for data indexing and Servlets Container and a REST
Engine for the Web Tier. We have provided a set or resource actua-
tions through four main HTTP operations to expose the objects and
their operations and for the lightweight-interchange format we used
the open-standard JSON.

To evaluate the proposed solution, the platform is deployed in two
sets of nodes: one set for running the client emulators and one set for
running the servers of the system under test.

A number of experiments are executed to demonstrate the effective-
ness of the proposed solution with the regards to the three objectives:
A detailed workload and resource characterization of the servIoTicy
major components (REST API tier, Distributed Data Store and Index-
ing Engine) from a point of view of scalability with the available re-
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sources; An evaluation of the efficiency of CouchBase as a distributed
data store in terms of response time delivered wit the load; and An
insight on the performance impact of a proper configuration of the
memory settings in ElasticSearch. The characterization has revealed
interesting details about the three main components involved in the
process of storing and retrieving data: the REST API, the data store
and the search and indexing engine. By the time the work presented
in this thesis was started there were no tools to achieve it and we had
to develop our own evaluation system. Currently we find Benchmark-
ing tools for IoT like the widely used TPCx-IoT [29].

6.1.2 Distribution of data processing under the Fog paradigm

The second contribution of this thesis, described in Chapter 4, is a
definition and development of the components related with interfaces
for life cycle management and data processing in a Fog Computing
environment. We have validated the relevance and necessity of Fog
for IoT under a city environment. The Barcelona City demo shows
that a platform like the one shown can efficiently address the majority
set of problems for cities.

The design is focused on common needs across verticals and in-
dustries. The target was to create a platform that can serve multiple
purposes and be ported and reused in other IoT domains. Also the
design was guided by four principles: Openness, virtualization, data-
app centric model and uniform management and service consolida-
tion. The design principles followed allow Fog computing to elevate
IoT from point solutions to manage services at the Edge.

We validated the relevance and necessity of Fog for some of the IoT
demanding. Although Cloud is seen as the go-to solution for many
IoT-related challenges, we have come to understand that Fog is cru-
cial. Our model offers a common and distributed data fabric across
the city for multiple departments (that is, tenants), and is based on
a platform that seamlessly combines Cloud computing and Fog com-
puting. We also have introduced an open and converged architecture
based on MANO that offers uniform management of IoT services
spanning the continuum from the Cloud to the Edge.

We have addressed the development of the systems required for
provisioning, deploying, managing, and maintaining the compute,
network, and storage resources needed for running Fog Services. We
also have demonstrated the strengths of a consolidated service plat-
form for IoT with a demo with the Barcelona City Hall to cover
the uses chases to address a set of specific IoT challenges. We ex-
amined the requirements of a growing number of urban services
where cloud-centric approaches are insufficient and Fog computing
is mandatory. We describe use cases (UCs) that were implemented
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and demonstrated in Barcelona, providing supporting evidence for
Fog computing.

The proposed architecture platform was demonstrated in a co-in-
novation project with the Barcelona City Council and several indus-
trial partners. We described use cases (UCs) that were implemented
and demonstrated in Barcelona, providing supporting evidence for
Fog computing. The word described an architectural approach that
addresses some of the technical challenges behind the convergent be-
tween Fog, Network Functions virtualization and Mobile Edge Com-
puting, bridging the gap between Cloud and Fog. We also introduced
a model-driven and service-oriented architecture aligned with the
OpenFog Consortium reference architecture.

During the writing of this thesis, the OpenFog Consortium’s Open-
Fog Reference Architecture for Fog Computing has been adopted as
an official standard by the IEEE Standards Association (IEEE-SA). The
new standard, known as IEEE 1934 [34], relies on the reference ar-
chitecture as a universal technical framework that enables the data-
intensive requirements of the Internet of Things (IoT), 5G and artifi-
cial intelligence (AI) applications.

6.1.3 Distribution and scalability of IoT operations with moving data sources

Finally, the third contribution of this thesis, presented in Chapter 5,
is a proposed architecture for a city-wide traffic service based on
the Fog Computing paradigm. Thanks to modern high bandwidth
networks and the architectures associated with them (MANO, MEC),
services can become decentralized and computation can be done on
the Edge.

After the first two contributions where we explore the trade-offs
and challenges in the design of architectures for IoT based in Cloud
and Fog paradigms we presented a converged Cloud/Fog architec-
ture that addresses the challenges currently IoT is facing and an ap-
plication running inside. The application is designed to be deployed
in a Fog-based infrastructure, in which network antennas (e.g. 5G sta-
tions) are combined with Fog nodes to provide near real-time com-
puting capabilities.

The contribution assumed an scenario in which a number of dis-
tributed antennas receive data generated by vehicles across the city.
In the Fog nodes data is collected, processed in local and intermediate
nodes, and finally forwarded to a central Cloud location for further
analysis. We proposed a combination of a data distribution algorithm,
resilient to black-haul connectivity issues, and a traffic modeling ap-
proach as an example of application running in the architecture.

In order to evaluate the architecture proposal, a number of exper-
iments have been executed in a containerized environment, illustrat-
ing the behavior of the data distribution algorithm plus the traffic
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modeling analytics methodology. We leveraged real traffic logs from
one week of Floating Car Data (FCD) generated in the city of Barce-
lona by a road-assistance service fleet comprising thousands of vehi-
cles. FCD was processed across several simulated conditions, ranging
from scenarios in which no connectivity failures occurred in the Fog
nodes, to situations with long and frequent connectivity outage peri-
ods.

For each scenario, the resilience and accuracy of both the data dis-
tribution algorithm, and the learning methods were analyzed. Results
showed that the data distribution process running in the Fog nodes is
resilient to back-haul connectivity issues and is able to deliver data to
the Cloud location even in presence of severe connectivity problems.
Additionally, the proposed traffic modeling and forecasting method
exhibited better behavior when run distributed in the Fog instead of
centralized in the Cloud, especially when connectivity issues occur
that force data to be delivered out of order to the Cloud.

6.2 future work

The work performed in this thesis opens several interesting proposals
that could be explored as part of future work.

• The architecture proposed in the third contribution could be
expanded in different ways for different needs. Parent-children
structures for Fog nodes could be implemented for applications
demanding precalculation in different layers. Also tree struc-
tures could be implemented for applications where analytics
need to perform in a tree structured path. We could also intro-
duce territorial criteria, sensor data received at the Edge nodes
may be provided by sensors installed at devices (fixedly or mov-
ably) located at particular territorial units, for example, differ-
ent sets of sensors may be located at different street segments
in a city to produce sensor data characterizing said street seg-
ment. Sensors located at street segments forming a complete
street may provide sensor data to Edge nodes with same middle
node as parent node. Middle nodes covering complete streets of
same district may be configured as children nodes of same mid-
dle node at an above level in the fog computing system. This
manner, different models covering (or characterizing) different
territorial units: street segment, complete street, district, city, etc.
may be analyzed at corresponding Fog levels.

• The architecture presented in the third contribution is aware of
the state of the whole system via the System State module. This
System State is distributed in the Cloud of the architecture. It
would be one step further to down the Distributed System State
to the Edge. Different possibilities open to this option, depend-
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ing on the computing capacity of each node, it could have a copy
of the system state in which they support it. Another possibility
in a multi-layer/tree Edge mapping would be to have the sys-
tem state of your neighbors nodes. We could also have a set of
nodes with the system status and mechanisms of knowledge of
the proximity of nodes to consult the closest.

• Another path to research would be to increase the data locality
for IoT architectures. The global data store is sitting in the Cloud
and would be a new path to research to explore the options
to allocate this Data Store to the Edge to open opportunities
for location global data near to Edge computation. Addressing
this scenario, the Fog nodes would not only have their primary
data and analytics, but would also have close the global data
of the general and/or partial analytics that now reside in the
Cloud. How to reach this data locality for different applications
residing in the architecture would be an opportunity to improve
computation where it is necessary.

• Many IoT systems are mission critical and pose grave risks
if hacked, so cybersecurity and data privacy are one of the
most important areas to improve and research. Blockchain, and
the combination of cryptographic processes behind it, offers an
ideal approach. Because blockchain is built for decentralized
control, a security scheme based on it should fit with the de-
mands of the Internet of Things. Blockchain is promising for
IoT security for the same reasons it works for cryptocurrency:
It provides assurances that data is legitimate, and the process
that introduces new data is well-defined. Blockchain technology
could provide a simple infrastructure for two devices to directly
transfer a piece of property such as money or data between one
another with a secured and reliable time-stamped contractual
handshake. It seems that a great future work field in security
for IoT would be the exploration of Blockchain as an option.
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