4,785 research outputs found

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Issues in the Design of a Pilot Concept-Based Query Interface for the Neuroinformatics Information Framework

    Get PDF
    This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Hybrid Search: Effectively Combining Keywords and Semantic Searches

    Get PDF
    This paper describes hybrid search, a search method supporting both document and knowledge retrieval via the flexible combination of ontologybased search and keyword-based matching. Hybrid search smoothly copes with lack of semantic coverage of document content, which is one of the main limitations of current semantic search methods. In this paper we define hybrid search formally, discuss its compatibility with the current semantic trends and present a reference implementation: K-Search. We then show how the method outperforms both keyword-based search and pure semantic search in terms of precision and recall in a set of experiments performed on a collection of about 18.000 technical documents. Experiments carried out with professional users show that users understand the paradigm and consider it very powerful and reliable. K-Search has been ported to two applications released at Rolls-Royce plc for searching technical documentation about jet engines

    CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

    Get PDF
    Autosuggest is an important feature in any search applications. Currently, most applications only suggest a single term based on how frequent that term appears in the indexed documents or how often it is searched upon. These approaches might not provide the most relevant suggestions because users often enter a series of related query terms to answer a question they have in mind. In this project, we implemented the Smart Solr Suggester plugin using a context-based approach that takes into account the relationships among search keywords. In particular, we used the keywords that the user has chosen so far in the search text box as the context to autosuggest their next incomplete keyword. This context-based approach uses the relationships between entities in the graph data that the user is searching on and therefore would provide more meaningful suggestions
    corecore