
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-21-2015

CONTEXT-BASED AUTOSUGGEST ON
GRAPH DATA
Hai Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Databases and Information Systems Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Nguyen, Hai, "CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA" (2015). Master's Projects. 398.
DOI: https://doi.org/10.31979/etd.37qm-5d6b
https://scholarworks.sjsu.edu/etd_projects/398

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/398?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


 

 

 
 

 
 

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA 
 
 

 

 

 

A Thesis 

Presented to 

The Faculty of the Department of Computer Science 

San José State University 

 

 

In Partial Fulfillment  

of the Requirements for the Degree  

Master of Science in Computer Science 

 

 

 

by  

Hai H. Nguyen 

May 2015



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2015  

Hai H. Nguyen 

ALL RIGHTS RESERVED



 

 

 

 

The Designated Thesis Committee Approves the Thesis Titled 

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA 

by  

Hai H. Nguyen  

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

SAN JOSÉ STATE UNIVERSITY  

May 2015  

 

__________________________________________________________ 

               Dr. Thanh Tran, Department of Computer Science                Date 

__________________________________________________________ 

               Dr. Chris Pollett, Department of Computer Science                Date 

__________________________________________________________ 

               Dr. Suneuy Kim, Department of Computer Science                Date 



 

 

ABSTRACT 

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA 

by Hai H. Nguyen 

Autosuggest is an important feature in any search applications. Currently, most 

applications only suggest a single term based on how frequent that term appears in the 

indexed documents or how often it is searched upon. These approaches might not provide 

the most relevant suggestions because users often enter a series of related query terms to 

answer a question they have in mind. In this project, we implemented the Smart Solr 

Suggester plugin using a context-based approach that takes into account the relationships 

among search keywords. In particular, we used the keywords that the user has chosen so 

far in the search text box as the context to autosuggest their next incomplete keyword. 

This context-based approach uses the relationships between entities in the graph data that 

the user is searching on and therefore would provide more meaningful suggestions.  
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1. Introduction 
 

Inspired by Dr. Thanh Tran’s paper about query rewriting on graph data [1], this 

project aims to implement an autosuggest feature that provides meaningful keyword 

suggestions for users searching for entities on graph data. Currently, as Figure 1 

demonstrates, Solr, a scalable search engine optimized to handle a large amount of text 

data [3], can only suggest a single term based on some predefined weight or alphabetical 

order by default. However, users normally input multiple terms into the search text box to 

find a specific entity. For example, a user searching for George Lucas who directs the 

Star Wars movie is likely to type “George Lucas Star Wars” into the search text box. 

Autosuggestions for the first term the user types in vary by applications, depending on 

how they rank terms. After the user has selected the first suggested search keyword, 

autosuggesting semantically meaningful second search keywords by using the first one as 

a context is the ultimate goal of this project. 

Figure 1 also shows that the suggestion list keeps changing as the user continuously 

adds more characters to the search text box. Therefore, in addition to providing 

meaningful suggestions, this implementation also aims to return results fast enough to 

keep up with the user’s input.    

 
Figure 1: Autosuggest Timeline 

 
To satisfy those two requirements, we decided to implement this autosuggest feature, 

which we call Smart Solr Suggester, as a plugin to the Solr search engine. We then used a 

large volume of graph data obtained from http://dbpedia.org/ to test the performance of 

this implementation. The next two subsections give more details about graph data.  
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1.1 An Overview about Graph Data and RDF 
 

Before discussing about graph data and RDF, it is important to talk about the 

Semantic Web. Everyday we come across hundreds, if not, thousands of pages connected 

via hyperlinks. At that level, the web is constructed by interconnected documents. And 

the Semantic Web, a term coined by the World Wide Web Inventor Tim Berners-Lee, is 

an effort led by W3C and many organizations to make the web become “a web of data.” 

The Semantic Web achieves that goal by letting different applications share and reuse 

data using a common framework [4]. That means there will be relationships among 

pieces of data just like the way documents are connected with each other. Data in the 

Semantic Web can be accessed using the general Web architecture. That is using the URI 

to define and access resources. There is a wide range of applications that Semantic Web 

technologies can be used on, and resource discovery is one of them. In resource 

discovery, one can use Semantic Web technologies to help improve search engine 

capabilities, and that is the area where this project wants to contribute to. 

Graph data (also referred to as Linked Data) is the content of the Semantic Web, and 

RDF (Resource Description Framework) is a framework for describing information about 

resources in graph data. Resources can be anything from documents to people, physical 

objects to abstract concepts [5]. Each resource is uniquely defined by a URI (Uniform 

resource identifier). For example, the URI http://www.example.com/bob#me can be used 

to provide data about Bob. Retrieving data from that URI tells us facts about Bob and his 

relationships with other entities. Data about Bob can also include other information such 

as his friends, interests, etc. By providing such a common framework, RDF makes it 

possible for us to publish and interlink data on the Web in a way that different 

applications can understand and process the information, giving ways to link different 

graph datasets. 

RDF achieves its goal by defining a data model that lets us make statements about 

resources. RDF statements are required to have the following structure: 

                                 <subject> <predicate> <object> 
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There are three kinds of nodes in an RDF graph: URIs, literals, and blank nodes, 

which refer to anonymous resources. The subject is a URI or a blank node. The predicate 

is an URI. The object is an URI, literal or a blank node. Object doesn’t necessarily mean 

object in English because a subject in one RDF statement can be an object of a property 

in another. From there, we can see that an RDF statement demonstrates a relationship 

between two resources, the subject and the object. The predicate represents their 

relationship, which goes from the subject to the object. A predicate is also called a 

property in RDF. Since RDF statements are comprised of three elements, they are often 

referred to as triples.  

Figure 3 shows a small graph data. Such a graph can be constructed from the 

following RDF statements: 
“<Bob> <is a> <person>. 
<Bob> <is a friend of> <Alice>. 
<Bob> <is born on> <the 4th of July 1990>. 
<Bob> <is interested in> <the Mona Lisa>. 
<the Mona Lisa> <was created by> <Leonardo da Vinci>. 
<the video ‘La Jocode a Washington’> <is about> <the Mona Lisa>.” [5] 
 
 

 
Figure 2: Informal Graph of Triples 
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A data graph includes nodes and arcs. Nodes represent the subjects and objects of the 

triples, and arcs represent the relationships/predicates. One can use graph data query 

language such as SPARQL (Simple Protocol and RDF Query Language) to retrieve and 

manipulate data stored in RDF format. For example, the following SPARQL query can 

be used to list all episodes of  “Game of Thrones” on HBO ordered by airdate. 
 
SELECT * 
  WHERE 
  { 
     ?e <http://dbpedia.org/ontology/series>     <http://dbpedia.org/resource/Game_Of_Thrones> . 
     ?e <http://dbpedia.org/ontology/releaseDate>    ?date . 
     ?e <http://dbpedia.org/ontology/episodeNumber>  ?number . 
     ?e <http://dbpedia.org/ontology/seasonNumber>   ?season 
  } 
  ORDER BY DESC(?date) 
 

Though SPARQL is powerful, an average user is unlikely to use it to retrieve data. 

He/she would prefer to enter some keywords into a simple search text box and expect the 

search engine to return the piece of information they’re looking for. In this project, we 

tested the Smart Solr Suggester plugin against a portion of the DBpedia dataset, a large 

multi-domain ontology that has been derived from the Wikipedia. 

2. Related Works 
 

In his paper on query rewriting [1], Dr. Tran and his colleagues tackled the problem 

of rewriting keyword search queries on graph data. For example, using the graph in 

Figure 4, the original keyword query “Publication John McCarty Tuning Award” can be 

rewritten to the following possible queries: 

“Article John McCarthy Turing Award”,  

“Article John McCarthy Tuning Award”,  

“Article John McCarty Turing Award”, and  

“Article John McCarty Tuning Award” [1]  

Out of those possible query rewrites, there’s one query matching a connected graph, 

which connects three nodes Article, John McCarthy, and Turing Award. That is the query 

“Article John McCarthy Turing Award,” so it becomes the best candidate query.  
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Figure 3: Example Graph Data 

Instead of taking into account “all possible segments of a (sub-) query rewrite” like 

other approaches, they used a noble probabilistic model that computes query rewrite 

scores that focuses only on “the previously observed context” [1]. They showed that their 

approach performs 3-4 times faster when testing on the IMDb dataset and 2 times faster 

when testing on the Wikipedia dataset than the existing solutions in query rewriting. In 

addition, it also improves keyword search on large datasets, producing 2-3 times faster 

keyword search performance together with higher precision and recall of keyword search 

results compared to existing methods [1].  

Another example that validates the use of previously chosen search keyword as a 

context is demonstrated in AGGREGO SEARCH [2]. In this work, the authors utilized an 

autocomplete strategy that suggests completions relevant not only to the first letters typed 

by the user but also to the structure of the query whose construction is in progress. Their 

autocomplete algorithm only suggests keywords that strictly follow the grammar in 

Figure 5.  

 
Figure 4: AGGREGO SEARCH Autocomplete Grammar 
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An example of a query constructed by such grammar looks as follows: 

“name of person at the head of company and author of article about ‘business intelligence’” 

This query can be interpreted into the following tree: 

 
Note that after a suggested element is selected by the first letters the user types in, the 

autocomplete algorithm moves to the neighbor nodes of the current one. While the 

autocomplete process is taking place, a SPARQL query is being constructed in the 

background. The final SPARQL query is sent to a triple store to retrieve the data once the 

user submits his query.  

These two works both deal with semantic search on graph data. While the first work 

concerns more about labels of actual entities, ignoring properties’ labels, the second work 

enforces the use of default connectors such as “of”, “and”, and treats properties’ labels 

equally as that of actual entities. Although each solves a different problem and uses a 

different approach, they both have demonstrated a common theme that users typically 

enter search keywords related to each other. Since this is happening on graph data, it 

means that these search keywords/terms belong to entities that are neighbors in the graph. 

3. Problem Definition, Existing Solution, and Proposed Solution 
A user searching for an entity named “John McCarthy” who won the “Turing Award” 

is likely to enter the following to the search textbox:  
John McCarthy Turing Award 

Our goal is to autosuggest search keywords that the user is likely to enter first, 

thereby saving the user some keystrokes and improving their search experience. Existing 
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autosuggest solutions rank suggested terms in alphabetical order or how often a term is 

searched upon. The following figure describes how autosuggest based one alphabetical 

order works. The keyword “Turing Award” might not even make it to list at all. These 

solutions work fine when autosuggesting the first search keyword (“John McCarthy”). 

However, for the second search keyword, can we do better?  

 
 

We proposed a semantically context-based approach that takes advantage of 

relationships between entities in graph data. After the user has chosen the first search 

keyword from the suggestion list, we use that keyword as the context to autosuggest the 

next meaningful keywords. The context is “John McCarthy” in our example. 

Assume the user continues to type in the first characters of the next search keyword. In 

our example, that could be “t,” “tu,” “tur,” depending on what keyword the user is typing. 

Our approach is to autosuggest search keywords that start with “t,” “tu,” or “tur, and are 

in the same entities that contain the context, or in the entities that are related to the ones 

containing the context. In particular, each entity is represented by an RDF document. 

Thus, finding search keywords in the same entity means finding terms starting with “t,” 

“tu,” or “tur,” in the same RDF document. RDF statements that have the value of the 

object as an URI represent relationships between one entity and another. 

For example, suppose the user chose “John McCarthy” from the suggestion list as the 

first search keyword. Thus, the context is now “John McCarthy”. The term “John 

McCarthy” appears in entities A and B. Entity A is related to entity X, and entity B is 

related to entity Y. Suppose the user continues to type in “t” as the first character of the 

second search keyword. Our approach is to make terms that begins with “t” and are in 

entities A, B, X, or Y appear first in the suggestion list for the second search keyword. 

The context and first terms in the suggestion list are more likely related to each other 

because they are in the same entities or in entities related to each other.  
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4. Context-based Autosuggest High-level View Implementation 
 
Below is the conceptual view of context-based autosuggest: 
 
Let 
C = set of entities that contain the context 
R = set of entities related to one or more entities in set C 
q = first characters of the 2nd keyword that the user has entered so far 
L = list of LookupResult  

(each LookupResult has a term that begins with q; a set D of entities that contain its term , and a 
score originally set to 0) 

 
for each lookupResult in L: 
     lookupResult.score = 10 * intersectSize(C,lookupResult.D) + 
            5 * intersectSize(R,lookupResult.D) 
sort L based on the score 
return L as the final suggestion list 
 

Search keywords appearing in the same documents containing the context are more 

related to the context than search keywords in documents related to documents 

containing the context. Therefore, we add 10 points to the score of a LookupResult if 

its term and the context are the same entity and add 5 points if its term is in an entity 

related to an entity containing the context. We multiply those points by the sizes of the 

corresponding intersected sets. Since the ranking is based the relative order of scores 

between LookupResults, the absolute score of LookupResults does not really 

matter. We chose 10 and 5 so that suggested terms in the same entities with the context 

weigh twice as much suggested terms in related entities.  

Speed is very important in autosuggestion because users tend to lose patience if it 

takes longer than 1 second to display suggestion results. Therefore, we aimed to 

implement this conceptual algorithm as efficient as possible. The time performance of 

this implementation depends on how fast we can retrieve C, R, L, D, and how 

efficient the intersectSize function is. We were looking for different tools that 

satisfy these requirements and came up with the conclusion that Solr is the best-fit 

technology. Given a term or a phrase, Solr can retrieve documents that contain that term 

or phrase very quickly. An entity can be represented as a Solr document with 

relationships preserved. Solr provides an existing suggest component that suggests search 

keywords in alphabetical order.  
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5. An Overview about Solr and its Existing Suggester  
 

Autosuggest only makes sense when implemented as part of a search engine so that it 

can help improve user experience in both keyword input and relevant search results. We 

decided to implement our autosuggest feature in Apache Solr, a specific NoSQL 

technology, because it is open-source, fast, scalable, designed to deal with large indexes 

with millions of documents. Solr is also optimized to search on a large amount of text 

data. In addition to providing a basic keyword search functionality, Solr also provides a 

great user experience by returning results very quickly, including spelling correction 

when the user misspells some of the query terms, recognizing synonyms of query terms, 

handling phrase queries and queries containing common words such as “a,” “an,” etc. 

very well. It also supports geospatial queries and faceting.  

Solr is a search engine built on top of Apache Lucene, a popular, open-source, Java-

based information retrieval library. In short, Solr uses Lucene to provide the core data 

structures for indexing documents and executing searches to find documents. Lucene is a 

library for building and managing an inverted index, which is the main data structure for 

matching query terms to text-based documents. Solr indexes text-based documents and 

returns documents based on search queries.  

5.1  Solr Document 
 

The input to and output from Solr are called Solr documents, which contain content 

of different fields. Solr documents can be in XML, JSON, or CSV formats. An important 

restriction is that Solr documents must have a flat structure, which means we cannot store 

nested fields. Below is an example of a Solr document in XML format.  
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Figure 5: Solr Example Document 

A Solr document consists of a series of fields. Each field has a name associated with it. 

We need to choose a field to be a unique field. For example, the id field in the above 

document can be used as a unique field like primary key in relational database. A pre-

defined schema must recognize any field in a Solr document because Solr uses that 

schema to perform text different combinations of analysis steps before sending terms into 

the inverted index. Each Solr index, also called core or collection, has an schema.xml 

file that specifies field names, field types, and field type definitions for all the fields in 

any document. We talk more about the specific schema.xml that we use for this project 

in the next section.  

5.2  Solr Inverted Index 
 

The main data structure of a search engine is a inverted index. Below is a visual 

presentation of an inverted index, in which keys are the terms and values are the ids of 

documents containing those terms. In addition to storing the document ids, the inverted 

index used by Solr also stores other useful information such as term frequency and term 

position. The inverted index in Solr is actually built by Lucene core components. Lucene 

inverted index is composed of a number of files, each of which stores different 

information. Data such as the term being indexed, the documents that contain the term, 

the frequency of that term, and its position are encoded in bit values using Lucene 

existing conventions. Storing which documents containing the term is useful to find those 

documents given a search keyword. However, that’s not enough because searching also 

involves retrieving documents in a relevant order. Therefore, information such as term 
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frequency is stored to compute tf-idf in relevance computation. In addition, term position 

is stored to support functionality such as phrase search.  

 
Figure 6: Inverted index - a key data structure supporting information retrieval 

5.3 Indexing  
 

Solr is a search engine, but technically, it is a Java web application that runs in any 

modern Java Servlet engines like Jetty or Tomcat. Figure 8 on next page describes the 

main components of Solr 4. Each of those components can be configured easily using the 

solrconfig.xml file. Basically, each main component consists of multiple sub-
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components. We can use different kinds of sub-components and change their order to 

meet our needs by specifying the names of the corresponding factory classes.  

 
Figure 7: Main Components of Solr 4 

Solr provides RESTful services built on Web standards such as XML, JSON, and 

HTTP, making it very convenient to access and use Solr’s core services such as 

pagination and sorting, faceting, autosuggest, spell-checking, hit highlighting, and 

geospatial search. In order to perform search on Solr, we first need to index the 

documents we want to search from by posting them to the Solr server’s /add or 
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/update endpoints. Requests sent to each endpoint are handled by a handler, whose 

components are specified in the solrconfig.xml file as well. In the case of indexing 

documents, each document will go over a processing pipeline and then be added into the 

inverted index, which is then saved to disk on a hard commit.   

5.4 Querying 
 

Since Solr is a search engine, it’s important to understand how search queries are sent 

to Solr and how Solr processes these queries. To submit search queries, client 

applications typically send GET requests that look as follows: 

 
 

 
Figure 8: An example Search Query GET Request 

With the above example request, the client application expects to get back a response 

in XML format that contains 10 documents that have the term “iPod”, have the value of 

the “manu” field to be “Belkin”. When returning the result documents, Solr returns all of 

the stored fields if we don’t specify which fields we want to get back. Stored fields are 

the fields that have their values stored exactly as the original format. Stored fields can be 

indexed or not, depending on the need of the application. For instance, in the above 

example, we request Solr to only include the name, price, features, and scores fields in 

the returned documents.  

Query requests are submitted to a Servlet engine such as Jetty, the default servlet that 

comes with the Solr distribution. Each request is routed to a specific handler, which is a 

Java class. Following is an example of the /select handler provided along with the Solr 



 

 22 

example collection. In this case it’s the SearchHandler class. A search handler consists 

of a sequence of components. In a normal search query request, the Query component is 

always required, and its results become input for standard components such as facet, 

more like this, hit highlighting, statistics and debug. In the /select handler example 

below, since we are not changing the components section, it uses the default search 

components in the SearchHandler class. 

 
Figure 9: An example of /select handler configuration 

 
Query parameters from the query requests are first extracted and used to create a list 

request parameters along with the default parameters (used these values when the client 

application doesn’t set them), appends parameters (these values are appended to the final 
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parameter list), and invariant parameters (these values are always used and will overwrite 

the values sent from client applications.) After obtaining the final search request 

parameters, the query is then passed to the Query component, which is always required. 

The Query component has access the SolrIndexSearcher. Any Solr instance always 

has one and only one active SolrIndexSearcher instance, which has a snapshot of the 

Lucene inverted index. When new documents are added into Solr, they are not 

immediately include in the active SolrIndexSearcher yet. Solr needs to open a new 

searcher in order to include the new updates. The process of opening a new searcher takes 

some time, therefore we need to be careful on how often we want to schedule a hard 

commit, which triggers opening a new searcher. 

In addition to configuring request handlers and search components, the file 

solrconfig.xml also includes a lot other configuration options such as commit policy, 

caching policy, warming new index searcher policy, and so on.  

5.5  Solr Existing Suggester 
 

Solr version 4.10.3 comes with a suggest component, which can be configured as 

below. Requests sent to the /suggest end point are handled by a search handler. We 

modified the list of components used by this search handler. In particular, we only 

included a search component named “suggest” in the processing pipeline. We also set the 

suggest parameter to true to enable the suggest component. A suggest component 

contains a list of suggesters. Each suggester is responsible for suggesting terms from a 

particular field. The example below suggests terms from the text field.   

A Solr suggester takes several configuration parameters. The three main parameters 

are lookupImpl, dictionaryImpl, and field. A LookupImpl component defines 

how terms are found in the suggestion dictionary. A DictionaryImpl component 

defines how terms are stored in the suggest dictionary. Field defines which field from 

each document to build the suggestion index from. The current implementation of Solr 

Suggester ranks suggested results either alphabetically or by the value of the 

weightField, and we wanted to improve that in Smart Solr Suggester by ranking 
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suggestion results by the level of meaningfulness or how close they are related to the first 

search keyword.  

 

 
In addition to these parameters, one can also specify a parameter named, “storeDir”, 

which will save the suggester index to a file after it’s built. It’s highly recommended to 

use this parameter because it takes some time to build the suggester index. If you have to 

restart the Solr server but didn’t save the suggester index into a file, when the server 

restarts again, it will have to go through the same build process. If the suggester index 

was saved, the system only takes a second to reload the suggester index from the saved 

file.    

Before discussing about the implementation of the Smart Solr Suggester plugin, it’s 

worth mentioning about the data that we used to test the performance and validity of our 

context-based approach. We also discuss about how processing data is done in a clever 

way that helps us tackle one of the issues mentioned at the end of Section 4. That is how 

to efficiently retrieve the set R of entities that are related to one or more entities in set C, 

which consists of entities that contain the context. 

6. Obtain, Process, Writing schema and Index Graph Data 

6.1 Obtaining Data From Dbpedia 
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Dbpedia.org is one of the most popular publicly available graph data providers. It has 

a total of almost 5 million entities including everything from people to things to abstract 

concepts. The data for each entity is pulled from Wikipedia. Dbpedia.org provides a RDF 

triples store for the public. We queried and downloaded about 1.5 million people, 74,000 

movies, 20,000 films, 30,000 bands, and 3,200 American directors. Data about each 

entity is stored in an RDF document. Because Solr doesn’t take RDF/XML format, we 

need to transform these RDF documents into Solr flat documents in XML. 

Below is an example of a RDF document about John McCarthy, an ice hockey player 

from the San Jose Sharks team. The value of the rdf:about attribute of the 

rdf:Description element is the URI of the current entity. Sub elements of the 

rdf:Description element are the properties of this entity. A property either has a 

literal value (number, string, date) or has an rdf:resource (an entity) attribute. Strictly 

speaking, the value of the rdf:resource attribute is a URI that represents the entity 

that this entity is related to. In the example below, “John McCarthy” has a property 

named dbpedia-owl:team , which has the rdf:resource attribute equals to 

http://dbpedia.org/resource/San_Jose_Sharks. dbpedia-owl is the name space of the 

dbpedia ontology. Basically, we can translate this RDF triple into the following 

relationship: John McCarthy is in team San Jose Sharks. 
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When transforming an RDF/XML document into a Solr XML document, we need to 

decide what field name, field type, field value, whether the field needs to be indexed or 

stored or both. In addition, all fields in a Solr document needs to be recognized by the 

fields specified in schema.xml, and we cannot manually check and add all property names. 

This is the reason why we decided how schema.xml should look like before even 

thinking about how to transform the downloaded RDF documents.  In addition, Solr 

schema.xml provides some neat tools that greatly support the data preprocessing tasks. 

 

6.2 Write schema.xml for the obtained Graph Data 
Below is the schema.xml that we used for the dbpedia data. The way this schema is 

laid out largely affects the XSLT template that we used to transform RDF XML 

documents to Solr documents. Note that uri is specified as uniqueKey. We use 

dynamic fields and copy fields in order to cover every field name possible and add some 

useful field names that we need to use later.  

 

 
For dynamic fields, we decided that there are two types of field names: ending in 

“_text” and ending in “_resource”. As the names imply, field names ending in “_text” 

correspond to properties that have literal value, and field names ending in “_resource” 
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correspond to properties that have a resource attribute. The former has field type 

“textSpell” and the latter has field “string”. Fields with field type “textSpell” are indexed 

and stored, but fields with field type “string” are stored only. We don’t want to modify 

the resource’s URI in anyway, so string is the best field type to use for them. The 

“textSpell” field type only performs minimal text analysis: keyword tokenization and 

transformation to lower-case. Other field names that don’t match any of these patterns are 

treated as string and won’t be indexed. A field is indexed means that its content is 

analyzed and stored in the inverted index. A field is stored means that its content is stored 

on disk with no modification at all, and its value won’t be stored into the inverted index. 

We index a field if we want to search upon its content, and we store a field if we really 

need to restore its original value. 

We then added two new fields: text and relatedDocs. The text field is a 

general-purpose indexed field. Instead of having to search for every field, we copy the 

content from every field ending in “_text” to the text field. When we perform a search 

query, we only search against this field for simplicity. Similarly, we copy the content of 

every field ending in “_resource” to the relatedDocs field, so it contains a list of every 

entity/resource’s URI that this entity is related to. These two fields make the retrieval of 

sets C and R (mentioned at the end of section 4) become instant.  

6.3 Transform RDF XML Documents to Solr Documents 
We wrote an XSLT template to transform these RDF documents into Solr XML 

documents. Each RDF/XML file might contain multiple entities. However, we are only 

interested in entities that have the /rdf:RDF/rdf:Description/rdfs:label 

element. The content of each entity is marked by the /rdf:RDF/rdf:Description 

element, so if it indeed has a /rdfs:label element, we will create a Solr document. 

The @rdf:about attribute of the /rdf:RDF/rdf:Description element is the URI of 

that entity, so we extract and use it as the URI field. Below are a snippet of the XSLT file 

that we used and an example of the transformed Solr XML document.   
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The transformed Solr XML documents have a flat structure as required by the Solr 

indexing system. There are two types of field name; one ending in “_text” and one ending 
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in “_resource”. The ones ending in “_text” are text fields, and the ones ending in 

“_resource” are considered as relationship fields. For example, the field: 
<field name=”dbpedia owl_resource”>http://dbpedia.org/resource/San_Jose_Sharks</field> 

implies that the current entity, identified by the URI: 

http://dbpedia.org/resource/John_McCarthy_(ice_hockey) is in team San Jose Sharks. 

During indexing time, Solr creates a new field named “text” and copies all fields ending 

with “_text” to it. In addition, Solr also creates a new field named “relatedDocs” and 

copies all fields ending with “_resource” to it. Therefore, the value of the “relatedDocs” 

field in each document contains the URIs of all of the entities related to the current entity.  

7. Smart Solr Suggester Implementation 

7.1 How to Suggest Meaningful Second Search Keywords 
 

After the user has chosen the first term from the alphabetical suggestion list, the client 

application marks it as the context. When the user continues to type the first letters of 

the second term, the client application sends requests to Solr server. Specifically, we send 

the request to the /suggest end point in this project. In those requests, we add the 

context parameter to the query string (&context=first_term). 

When the context parameter is not null, Smart Solr Suggester triggers the 

mechanism that suggests meaningful second search keywords on the top of the 

suggestion list. This mechanism includes two steps. 

The first step, as mentioned at the end of section 4, is to retrieve sets C and R given a 

context. This step can be done very quickly because this Solr is very fast at finding 

documents that contain a term. In addition, when indexing the documents in the previous 

section, we already included a relatedDocs field that contains the URI of all related 

entities. However, this step’s implementation for a single Solr instance is different from 

that for a cluster. 

The second step is to compute the score for each lookup result from the default 

alphabetical suggestion list. Each of these lookup results has a set D that consists of the 

URIs of all entities containing the lookup result’s term. This set exists because we encode 
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it when building the suggester index. The next subsection gives more details on how 

building the suggester index is done on single instance and cluster mode. Below is the 

snippet of code that shows where we check for the context and execute the Smart Solr 

Suggester. 

 

 
Note that in order to speed up the performance, we put LookupResult with score 

equal to 0 to one list and put LookupResult with score greater than 0 to another list. 

We then only sort the non-zero list and append the zero-list to it. This can be explained 

by the fact that the majority of LookupResult instances have score equal to 0, so it 

doesn’t make much sense to compare all of them against those having nonzero score. In 

addition, when sending LookupResult to client applications, we limit number of 

suggested terms to 25 because users don’t normally scroll down the suggestion list to find 

the search keyword they want to type but continue to type instead. By limiting the 

number of suggested terms, we save time transferring the data to client applications.  
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7.2 Dictionary Implementation 
Dictionary is an important sub-component of the suggest component. There are a 

number of different dictionary implementations in Solr: DocumentDictionary, 
DocumentExpressionDictionary, HighFrequencyDictionary, and 

FileDictionary. For our purpose, we found that DocumentDictionary suits our 

needs the most because it provides an easy access to the term and high flexibility to 

encode additional information into the suggester index. SmartDocumentDictionary 

extends DocumentDictionary. Its responsibility is to provide the lookup with a 

DocumentIterator, which includes a current term and any other information 

associated with that term. In this project, we encoded the URI of the related documents as 

a sequence of bytes and attach them to the end of the term. Below are the class diagram 

and a snippet of SmartDocumentDictionary implementation. 
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Note that we set the currentContainingDocs list to be the set of all entities that 

contain the current term. The implementation for setContainingDocs is different 

between single Solr instance and cluster mode and is discussed next.  

7.2.1 SmartDocumentDictionary - Single Solr Instance 

For index that uses one single Solr instance, the active index searcher knows about all 

documents in the index, so we use it to directly query for documents that contain the 

current term, thereby obtaining their corresponding URIs of the related entities. These 

queries are really fast because it uses an internal object to execute the queries, so I/O 

overhead is very minimal. As a result, building the suggester index in a single Solr 

instance mode is faster compared to that in a cluster mode. In addition, when query for 

the documents that contain the current term, we query set the querying field to be “text”. 

As discussed in the section about data and schema.xml, “text” is the field that contains 

data copied from every text field in the documents. A document might have a lot of text 

fields, and it takes a long time to iterate over all of them to find a certain term. Therefore, 

by aggregating all of them into one single field, we saved the iteration time.  
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7.2.2 SmartDocumentDictionary - Cluster Mode 

With a large amount of documents or entities, sometimes one Solr instance cannot 

handle all of the requests or even hold all of the data. As a result, Solr introduces 

SolrCloud, is a technology to run Solr in a cluster mode. In Solr, an index is also called a 

collection. A collection can be hosted on multiple shards, each of which is essentially a 

Solr server. When indexing a document to a Solr cluster, a document router decides 

which shard that document is indexed into. The document router does so by hashing the 

value of the unique field of that document. The hash function that the document router 

uses is MurmurHash 3, an efficient hash function that outputs a value within 32-bit. Each 

shard in the cluster is assign a range of number within 32-bit. The hash range is equally 

divided among shards. The document router routes a document to a shard if the hashed 

value of that document falls into the assigned range of this shard. Consequently, the local 

active SolrIndexSearcher in one Solr instance does not know anything about 

documents in other instances. Thus, we cannot use it to directly query for all documents 

that contain a particular term. To overcome this problem, we actually sent an HTTP 

request to the /select handler to query across all shards and find documents that 
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contain the current term when building the suggestion index. Though it only takes a 

millisecond or two to complete a request, this becomes a huge I/O overhead when have to 

build the suggestion index for millions of documents. The size of the overhead is 

proportional to the size of the number of documents in the inverted index. Below is a 

snippet of code that shows how we handled this situation. 

 

 

7.3 Lookup Implementation  
 

Lookup is another crucial sub-component of the suggest component. There are a 

number of existing lookup implementations: AnalyzingLookup, FuzzyLookup, 

AnalyzingInfixLookup, BlendedInfixLookup (an extension of 

AnalyzingInfixLookup), FSTLookup (an automaton-based lookup), and TSTLookup (a 

simple compact ternary trie based lookup). Solr documentation claims that FSTLookup is 

the fastest implementation and consumes the least amount of memory. However, we 

found that AnalyzingLookup performance is not too far behind, and it also provides 

some useful configurations for indexing and querying text analysis. Below is a quick 

comparison between the two implementations.   
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7.3.1 Comparison between AnalyzingLookup and FSTLookup 

FSTLookup is said to provide the lowest memory cost. However, it comes as a cost 

that FSTLookup doesn’t analyze the term or the query string, so the term “John 

McCarthy” will be indexed exactly as it is. Thus, a query for “jo” would not return that 

term. For each term, FSTLookup constructs an int[] that starts with the weight of that 

term and UTF-8 encoding for each character of the term. In our example, since we don't 

specify a numeric field to be used as the weight, it's always 0. So the term "John 

McCarthy" will be transformed to the following  
int[] = [0,4a,6f,68,6e,20,4d,63,43,61,72,74,68,79]  

FSTLookup then adds that int[] to a finite state automaton builder. Each term is 

added the same, and eventually FSTLookup has an automaton that represents the 

suggester index. Since we're not utilizing the weights, it doesn't matter much in this case. 

But the weights are actually arranged into buckets so that the FSTLookup would look for 

the arc that has highest weight. If all weights are the same (like in this case), it will fall 

back to have suggest results sorted alphabetically. The automaton that the FSTLookup 

built represents each term's int[] in its graph, with each int represents a node.  There's 

an arc between two nodes if the two nodes are in the same int[]. 

FSTLookup saves memory because it doesn't store any output or value in the nodes. 

During lookup time, the automaton traverses its graph, and if a path matches the query's 

characters, then it collects all the paths from the sub-graph at the point to become 

suggestions. FSTLookup then simply translates those UTF-8 int[] back to String, and 

those are the suggestion results. 

AnalyzingSuggester uses the same automaton builder and lookup mechanism as 

FSTLookup except that it does store value in the leaf's nodes. For the term "John 

McCarthy", if we choose to apply a lowercase filter in the index analyzer, we'll have the 

analyzed form as an  

int[] = [6a,6f,68,6e,20,6d,63,63,61,72,74,68,79] (Note the 

difference between this array and the one above). 



 

 36 

The items in the analyzed form will be used as the nodes to build the automaton, and 

the value of the leaf's node for that sequence is a byte[], which encodes the weight, 

payload, and surface form. Surface form is the original text before it was analyzed ("John 

McCarthy" in this case). The idea is that a suggest query for "jo" would return terms start 

with "Jo" like "John".  

Overall, these two FST (Finite State Transducer) based suggesters are the foundation 

for other lookup implementations such as FuzzyLookup, AnalyzingInfixLookup, 

and BlendedInfixLookup to extend from. AnalyzingSuggester and FSTLookup 

should have roughly the same performance because they use the same indexing and 

lookup mechanism. Using AnalyzingSuggester might cost us more memory, but that 

is worth it because we can suggest text in their original forms while suggest queries don’t 

have to match the original forms. Therefore, we decided to extend 

AnalyzingSuggester to become SmartAnalyzingSuggester as a lookup 

implementation for our Solr Suggester Plugin.  

8. Results 
 

Below are the snapshots that show how Smart Solr Suggester works. All of them 

indicate that the user has chosen “John McCarthy” as the first search keyword. In the first 

snapshot, the user continues typing the letter “t”. Smart Solr Suggester automatically 

suggests “Turing Award” at the top of the list followed by alphabetical order terms. 

That’s because there is a relation in one of the “John McCarthy” entity that links to an 

entity having the term “Turing Award.” Similarly, in the second snapshot, Smart Solr 

Suggester automatically displays “Lisp (programming language)” on the top of the list 

when the user enters “l” for the second search keyword. The last snapshot shows similar 

result when the user enters “s” as the first character of the second search keyword. It 

suggested “San Jose Sharks” because that term is in an entity (San Jose Sharks hockey 

team) that is related to the entity containing the context “John McCarthy.” 
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Table 1 below shows the average time to index and build the suggestion index for 

1,253,425 documents. If we computed the indexing time alone, the cluster mode might 

takes less time to index because each shard only needs to handle a half amount of the 

documents. However, it takes roughly 5 times longer to build the suggestion index in the 

cluster mode because we need to query across all shards to find the documents containing 

the current term. This cluster consists of only 2 shards hosted on the same machine, so 

the communication time is reduced as much as possible. However, in a situation where 

we have more shards and they are located far away from each other, this could be an 

issue. Therefore, we hope to find a better solution for building the suggestion index in the 

cluster mode.  

 
Number of documents Single Solr Instance Cluster with 2 shards 

1,253,425 10 minutes 12 seconds 49 minutes 18 seconds 

Table 1: Indexing and Building Suggestion Index Time 

 
Table 2 below shows the time it takes to retrieve the suggestion list for the first search 

keyword. We noticed that the cluster mode takes a little longer to retrieve the suggestion 

list. That is expected because after finding all of the suggested terms, each shard has to 

send their results to the shard where the original request was sent to, and then results 

from all these shards are merged to create the final suggestion list. The communication 

time between shards and the merging time make the cluster mode slower.  
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Term Single Solr Instance Cluster with 2 shards 
 Lookup time Total time Lookup time Total time 

“g” 173 184 188 200 
“ge” 61 66 74 85 

“geo” 40 45 61 73 
“geor” 36 43 51 55 

“georg” 43 55 66 78 
“george” 35 40 55 58 

“george l” 4 8 15 27 
“george lu” 3 7 18 23 

Table 2: Single Term Lookup Time (in milliseconds) 

Finally, table 3 shows time performance of Smart Solr Suggester between a single 

Solr instance and a Solr cluster of 2 shards. The time measured here is how long it takes 

to retrieve the suggestion list after the user has entered the first characters of the second 

search keyword. In this case, the cluster seems to outperform the single Solr instance. 

That is because the single Solr instance has to compute the score for all of the terms, 

rearrange, and sort them. However, in the cluster mode, that work is split into half for 

each shard to handle. Therefore, even though there’s communication and merging 

overheads in the cluster mode, those are compensated by the reduced amount of work 

that each shard has to do. 

 
Two terms Single Solr Instance Cluster with 2 shards 

“context, first letters” Lookup time Total time Lookup time Total time 
“George Lucas, s” à Star Wars (known for) 275 287 265 268 
“George Lucas, st” à Star Wars 51 57 67 71 
“John Lasseter, c”à Cars (film)  201 205 157 161 
“John McCarthy, t” à Turing Award (award) 222 235 144 148 
“John McCarthy, l”à Lisp (known for) 165 177 149 161 
“John McCarthy, a” à Artificial Intelligence  302 315 205 208 
“John McCarthy, s” à San Jose Sharks (team) 308 313 179 182 
“Steve McQueen, t” à The Sand Pebble  339 351 160 163 
“Steve McQueen, 1” à 12 Years a Slave 6 18 17 21 
“James Cameron, t” à The Abyss, Titanic  236 248 172 184 
“John Lasseter, t” à Toy Story, Tin Toy 210 215 150 154 

Table 3: Two-term Lookup Time (in milliseconds) 
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9. Conclusion and Future Work 
 

In this project, we attempted to implement and test the context-based autosuggest 

approach as a suggest plugin in Solr. With over 1 million documents, the Smart Solr 

Suggester seems to perform reasonably well in terms of speed. We were indeed able to 

retrieve more meaningful second search keywords using the first keyword as a context. 

There are still some areas in Smart Solr Suggester that can be improved, but that depends 

on the needs of the specific applications. Smart Solr Suggester has proved that it is 

possible to improve the existing Solr Suggester in a way that meets your needs, and in 

this case, it is searching for entities. In addition, we also found that performing 

autosuggest in a Solr cluster has both advantages and disadvantages. While it takes longer 

to build a suggester index in the cluster mode, the benefits come when it takes less time 

to retrieve the suggestion list compared to running autosuggest on a single Solr instance. 

For future direction, we hope to combine the implementation of this project with another 

project directed by Dr. Tran that uses the output of Smart Solr Suggester as it its input to 

actually return highly relevant entities. 
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