
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-21-2015

CONTEXT-BASED AUTOSUGGEST ON
GRAPH DATA
Hai Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Databases and Information Systems Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Nguyen, Hai, "CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA" (2015). Master's Projects. 398.
DOI: https://doi.org/10.31979/etd.37qm-5d6b
https://scholarworks.sjsu.edu/etd_projects/398

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/398?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Hai H. Nguyen

May 2015

Copyright © 2015

Hai H. Nguyen

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

by

Hai H. Nguyen

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2015

__

 Dr. Thanh Tran, Department of Computer Science Date

__

 Dr. Chris Pollett, Department of Computer Science Date

__

 Dr. Suneuy Kim, Department of Computer Science Date

ABSTRACT

CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

by Hai H. Nguyen

Autosuggest is an important feature in any search applications. Currently, most

applications only suggest a single term based on how frequent that term appears in the

indexed documents or how often it is searched upon. These approaches might not provide

the most relevant suggestions because users often enter a series of related query terms to

answer a question they have in mind. In this project, we implemented the Smart Solr

Suggester plugin using a context-based approach that takes into account the relationships

among search keywords. In particular, we used the keywords that the user has chosen so

far in the search text box as the context to autosuggest their next incomplete keyword.

This context-based approach uses the relationships between entities in the graph data that

the user is searching on and therefore would provide more meaningful suggestions.

 v

ACKNOWLEDGEMENTS

I would like to thank my project advisor, Dr. Thanh Tran, for introducing me to this

interesting project that allows me to get to know more about the field of information

retrieval and to work on open-source software such as Solr. In addition to constantly

providing me with insightful feedbacks, Dr. Tran’s knowledge and experience in Big

Data have encouraged me to go beyond what I myself could imagine. I am very grateful

for all of that.

I also would like to thank Dr. Chris Pollett and Dr. Suneuy Kim for spending your

valuable time reviewing my report and being my committee members.

Finally, I would like to thank my parents for giving me the opportunity to study in the

U.S. and for their continuing support and encouragement throughout my studies here.

They have been my great source of inspiration.

 6

Table of Contents
1.	
 Introduction	
 ..	
 9	

1.1	
 An	
 Overview	
 about	
 Graph	
 Data	
 and	
 RDF	
 ...	
 10	

2.	
 Related	
 Works	
 ..	
 12	

3.	
 Problem	
 Definition,	
 Existing	
 Solution,	
 and	
 Proposed	
 Solution	
 	
 14	

4.	
 Context-­‐based	
 Autosuggest	
 High-­‐level	
 View	
 Implementation	
 	
 16	

5.	
 An	
 Overview	
 about	
 Solr	
 and	
 its	
 Existing	
 Suggester	
 ...	
 17	

5.1	
 Solr	
 Document	
 ..	
 17	

5.2	
 Solr	
 Inverted	
 Index	
 ...	
 18	

5.3	
 Indexing	
 ...	
 19	

5.4	
 Querying	
 ..	
 21	

5.5	
 Solr	
 Existing	
 Suggester	
 ...	
 23	

6.	
 Obtain,	
 Process,	
 Writing	
 schema	
 and	
 Index	
 Graph	
 Data	
 ...	
 24	

6.1	
 Obtaining	
 Data	
 From	
 Dbpedia	
 ..	
 24	

6.2	
 Write	
 schema.xml	
 for	
 the	
 obtained	
 Graph	
 Data	
 ..	
 26	

6.3	
 Transform	
 RDF	
 XML	
 Documents	
 to	
 Solr	
 Documents	
 ...	
 27	

7.	
 Smart	
 Solr	
 Suggester	
 Implementation	
 ...	
 29	

7.1	
 How	
 to	
 Suggest	
 Meaningful	
 Second	
 Search	
 Keywords	
 ...	
 29	

7.2	
 Dictionary	
 Implementation	
 ..	
 31	

7.2.1 SmartDocumentDictionary - Single Solr Instance	
 ..	
 32	

7.2.2 SmartDocumentDictionary - Cluster Mode	
 ..	
 33	

7.3	
 Lookup	
 Implementation	
 ...	
 34	

7.3.1 Comparison between AnalyzingLookup and FSTLookup	
 ...	
 35	

8.	
 Results	
 ..	
 36	

9.	
 Conclusion	
 and	
 Future	
 Work	
 ..	
 39	

 7

List of Figures

Figure 1: Autosuggest Timeline .. 9	

Figure 2: Informal Graph of Triples ... 11	

Figure 3: Example Graph Data ... 13	

Figure 4: AGGREGO SEARCH Autocomplete Grammar ... 13	

Figure 5: Solr Example Document ... 18	

Figure 6: Inverted index - a key data structure supporting information retrieval 19	

Figure 7: Main Components of Solr 4 .. 20	

Figure 8: An example Search Query GET Request .. 21	

Figure 9: An example of /select handler configuration .. 22	

 8

List of Tables

Table 1: Indexing and Building Suggestion Index Time .. 37
Table 2: Single Term Lookup Time (in milliseconds) .. 38
Table 3: Two-term Lookup Time (in milliseconds) ... 38

 9

1. Introduction

Inspired by Dr. Thanh Tran’s paper about query rewriting on graph data [1], this

project aims to implement an autosuggest feature that provides meaningful keyword

suggestions for users searching for entities on graph data. Currently, as Figure 1

demonstrates, Solr, a scalable search engine optimized to handle a large amount of text

data [3], can only suggest a single term based on some predefined weight or alphabetical

order by default. However, users normally input multiple terms into the search text box to

find a specific entity. For example, a user searching for George Lucas who directs the

Star Wars movie is likely to type “George Lucas Star Wars” into the search text box.

Autosuggestions for the first term the user types in vary by applications, depending on

how they rank terms. After the user has selected the first suggested search keyword,

autosuggesting semantically meaningful second search keywords by using the first one as

a context is the ultimate goal of this project.

Figure 1 also shows that the suggestion list keeps changing as the user continuously

adds more characters to the search text box. Therefore, in addition to providing

meaningful suggestions, this implementation also aims to return results fast enough to

keep up with the user’s input.

Figure 1: Autosuggest Timeline

To satisfy those two requirements, we decided to implement this autosuggest feature,

which we call Smart Solr Suggester, as a plugin to the Solr search engine. We then used a

large volume of graph data obtained from http://dbpedia.org/ to test the performance of

this implementation. The next two subsections give more details about graph data.

 10

1.1 An Overview about Graph Data and RDF

Before discussing about graph data and RDF, it is important to talk about the

Semantic Web. Everyday we come across hundreds, if not, thousands of pages connected

via hyperlinks. At that level, the web is constructed by interconnected documents. And

the Semantic Web, a term coined by the World Wide Web Inventor Tim Berners-Lee, is

an effort led by W3C and many organizations to make the web become “a web of data.”

The Semantic Web achieves that goal by letting different applications share and reuse

data using a common framework [4]. That means there will be relationships among

pieces of data just like the way documents are connected with each other. Data in the

Semantic Web can be accessed using the general Web architecture. That is using the URI

to define and access resources. There is a wide range of applications that Semantic Web

technologies can be used on, and resource discovery is one of them. In resource

discovery, one can use Semantic Web technologies to help improve search engine

capabilities, and that is the area where this project wants to contribute to.

Graph data (also referred to as Linked Data) is the content of the Semantic Web, and

RDF (Resource Description Framework) is a framework for describing information about

resources in graph data. Resources can be anything from documents to people, physical

objects to abstract concepts [5]. Each resource is uniquely defined by a URI (Uniform

resource identifier). For example, the URI http://www.example.com/bob#me can be used

to provide data about Bob. Retrieving data from that URI tells us facts about Bob and his

relationships with other entities. Data about Bob can also include other information such

as his friends, interests, etc. By providing such a common framework, RDF makes it

possible for us to publish and interlink data on the Web in a way that different

applications can understand and process the information, giving ways to link different

graph datasets.

RDF achieves its goal by defining a data model that lets us make statements about

resources. RDF statements are required to have the following structure:

 <subject> <predicate> <object>

 11

There are three kinds of nodes in an RDF graph: URIs, literals, and blank nodes,

which refer to anonymous resources. The subject is a URI or a blank node. The predicate

is an URI. The object is an URI, literal or a blank node. Object doesn’t necessarily mean

object in English because a subject in one RDF statement can be an object of a property

in another. From there, we can see that an RDF statement demonstrates a relationship

between two resources, the subject and the object. The predicate represents their

relationship, which goes from the subject to the object. A predicate is also called a

property in RDF. Since RDF statements are comprised of three elements, they are often

referred to as triples.

Figure 3 shows a small graph data. Such a graph can be constructed from the

following RDF statements:
“<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.
<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.
<the Mona Lisa> <was created by> <Leonardo da Vinci>.
<the video ‘La Jocode a Washington’> <is about> <the Mona Lisa>.” [5]

Figure 2: Informal Graph of Triples

 12

A data graph includes nodes and arcs. Nodes represent the subjects and objects of the

triples, and arcs represent the relationships/predicates. One can use graph data query

language such as SPARQL (Simple Protocol and RDF Query Language) to retrieve and

manipulate data stored in RDF format. For example, the following SPARQL query can

be used to list all episodes of “Game of Thrones” on HBO ordered by airdate.

SELECT *
 WHERE
 {
 ?e <http://dbpedia.org/ontology/series> <http://dbpedia.org/resource/Game_Of_Thrones> .
 ?e <http://dbpedia.org/ontology/releaseDate> ?date .
 ?e <http://dbpedia.org/ontology/episodeNumber> ?number .
 ?e <http://dbpedia.org/ontology/seasonNumber> ?season
 }
 ORDER BY DESC(?date)

Though SPARQL is powerful, an average user is unlikely to use it to retrieve data.

He/she would prefer to enter some keywords into a simple search text box and expect the

search engine to return the piece of information they’re looking for. In this project, we

tested the Smart Solr Suggester plugin against a portion of the DBpedia dataset, a large

multi-domain ontology that has been derived from the Wikipedia.

2. Related Works

In his paper on query rewriting [1], Dr. Tran and his colleagues tackled the problem

of rewriting keyword search queries on graph data. For example, using the graph in

Figure 4, the original keyword query “Publication John McCarty Tuning Award” can be

rewritten to the following possible queries:

“Article John McCarthy Turing Award”,

“Article John McCarthy Tuning Award”,

“Article John McCarty Turing Award”, and

“Article John McCarty Tuning Award” [1]

Out of those possible query rewrites, there’s one query matching a connected graph,

which connects three nodes Article, John McCarthy, and Turing Award. That is the query

“Article John McCarthy Turing Award,” so it becomes the best candidate query.

 13

Figure 3: Example Graph Data

Instead of taking into account “all possible segments of a (sub-) query rewrite” like

other approaches, they used a noble probabilistic model that computes query rewrite

scores that focuses only on “the previously observed context” [1]. They showed that their

approach performs 3-4 times faster when testing on the IMDb dataset and 2 times faster

when testing on the Wikipedia dataset than the existing solutions in query rewriting. In

addition, it also improves keyword search on large datasets, producing 2-3 times faster

keyword search performance together with higher precision and recall of keyword search

results compared to existing methods [1].

Another example that validates the use of previously chosen search keyword as a

context is demonstrated in AGGREGO SEARCH [2]. In this work, the authors utilized an

autocomplete strategy that suggests completions relevant not only to the first letters typed

by the user but also to the structure of the query whose construction is in progress. Their

autocomplete algorithm only suggests keywords that strictly follow the grammar in

Figure 5.

Figure 4: AGGREGO SEARCH Autocomplete Grammar

 14

An example of a query constructed by such grammar looks as follows:

“name of person at the head of company and author of article about ‘business intelligence’”

This query can be interpreted into the following tree:

Note that after a suggested element is selected by the first letters the user types in, the

autocomplete algorithm moves to the neighbor nodes of the current one. While the

autocomplete process is taking place, a SPARQL query is being constructed in the

background. The final SPARQL query is sent to a triple store to retrieve the data once the

user submits his query.

These two works both deal with semantic search on graph data. While the first work

concerns more about labels of actual entities, ignoring properties’ labels, the second work

enforces the use of default connectors such as “of”, “and”, and treats properties’ labels

equally as that of actual entities. Although each solves a different problem and uses a

different approach, they both have demonstrated a common theme that users typically

enter search keywords related to each other. Since this is happening on graph data, it

means that these search keywords/terms belong to entities that are neighbors in the graph.

3. Problem Definition, Existing Solution, and Proposed Solution
A user searching for an entity named “John McCarthy” who won the “Turing Award”

is likely to enter the following to the search textbox:
John McCarthy Turing Award

Our goal is to autosuggest search keywords that the user is likely to enter first,

thereby saving the user some keystrokes and improving their search experience. Existing

 15

autosuggest solutions rank suggested terms in alphabetical order or how often a term is

searched upon. The following figure describes how autosuggest based one alphabetical

order works. The keyword “Turing Award” might not even make it to list at all. These

solutions work fine when autosuggesting the first search keyword (“John McCarthy”).

However, for the second search keyword, can we do better?

We proposed a semantically context-based approach that takes advantage of

relationships between entities in graph data. After the user has chosen the first search

keyword from the suggestion list, we use that keyword as the context to autosuggest the

next meaningful keywords. The context is “John McCarthy” in our example.

Assume the user continues to type in the first characters of the next search keyword. In

our example, that could be “t,” “tu,” “tur,” depending on what keyword the user is typing.

Our approach is to autosuggest search keywords that start with “t,” “tu,” or “tur, and are

in the same entities that contain the context, or in the entities that are related to the ones

containing the context. In particular, each entity is represented by an RDF document.

Thus, finding search keywords in the same entity means finding terms starting with “t,”

“tu,” or “tur,” in the same RDF document. RDF statements that have the value of the

object as an URI represent relationships between one entity and another.

For example, suppose the user chose “John McCarthy” from the suggestion list as the

first search keyword. Thus, the context is now “John McCarthy”. The term “John

McCarthy” appears in entities A and B. Entity A is related to entity X, and entity B is

related to entity Y. Suppose the user continues to type in “t” as the first character of the

second search keyword. Our approach is to make terms that begins with “t” and are in

entities A, B, X, or Y appear first in the suggestion list for the second search keyword.

The context and first terms in the suggestion list are more likely related to each other

because they are in the same entities or in entities related to each other.

 16

4. Context-based Autosuggest High-level View Implementation

Below is the conceptual view of context-based autosuggest:

Let
C = set of entities that contain the context
R = set of entities related to one or more entities in set C
q = first characters of the 2nd keyword that the user has entered so far
L = list of LookupResult

(each LookupResult has a term that begins with q; a set D of entities that contain its term , and a
score originally set to 0)

for each lookupResult in L:
 lookupResult.score = 10 * intersectSize(C,lookupResult.D) +
 5 * intersectSize(R,lookupResult.D)
sort L based on the score
return L as the final suggestion list

Search keywords appearing in the same documents containing the context are more

related to the context than search keywords in documents related to documents

containing the context. Therefore, we add 10 points to the score of a LookupResult if

its term and the context are the same entity and add 5 points if its term is in an entity

related to an entity containing the context. We multiply those points by the sizes of the

corresponding intersected sets. Since the ranking is based the relative order of scores

between LookupResults, the absolute score of LookupResults does not really

matter. We chose 10 and 5 so that suggested terms in the same entities with the context

weigh twice as much suggested terms in related entities.

Speed is very important in autosuggestion because users tend to lose patience if it

takes longer than 1 second to display suggestion results. Therefore, we aimed to

implement this conceptual algorithm as efficient as possible. The time performance of

this implementation depends on how fast we can retrieve C, R, L, D, and how

efficient the intersectSize function is. We were looking for different tools that

satisfy these requirements and came up with the conclusion that Solr is the best-fit

technology. Given a term or a phrase, Solr can retrieve documents that contain that term

or phrase very quickly. An entity can be represented as a Solr document with

relationships preserved. Solr provides an existing suggest component that suggests search

keywords in alphabetical order.

 17

5. An Overview about Solr and its Existing Suggester

Autosuggest only makes sense when implemented as part of a search engine so that it

can help improve user experience in both keyword input and relevant search results. We

decided to implement our autosuggest feature in Apache Solr, a specific NoSQL

technology, because it is open-source, fast, scalable, designed to deal with large indexes

with millions of documents. Solr is also optimized to search on a large amount of text

data. In addition to providing a basic keyword search functionality, Solr also provides a

great user experience by returning results very quickly, including spelling correction

when the user misspells some of the query terms, recognizing synonyms of query terms,

handling phrase queries and queries containing common words such as “a,” “an,” etc.

very well. It also supports geospatial queries and faceting.

Solr is a search engine built on top of Apache Lucene, a popular, open-source, Java-

based information retrieval library. In short, Solr uses Lucene to provide the core data

structures for indexing documents and executing searches to find documents. Lucene is a

library for building and managing an inverted index, which is the main data structure for

matching query terms to text-based documents. Solr indexes text-based documents and

returns documents based on search queries.

5.1 Solr Document

The input to and output from Solr are called Solr documents, which contain content

of different fields. Solr documents can be in XML, JSON, or CSV formats. An important

restriction is that Solr documents must have a flat structure, which means we cannot store

nested fields. Below is an example of a Solr document in XML format.

 18

Figure 5: Solr Example Document

A Solr document consists of a series of fields. Each field has a name associated with it.

We need to choose a field to be a unique field. For example, the id field in the above

document can be used as a unique field like primary key in relational database. A pre-

defined schema must recognize any field in a Solr document because Solr uses that

schema to perform text different combinations of analysis steps before sending terms into

the inverted index. Each Solr index, also called core or collection, has an schema.xml

file that specifies field names, field types, and field type definitions for all the fields in

any document. We talk more about the specific schema.xml that we use for this project

in the next section.

5.2 Solr Inverted Index

The main data structure of a search engine is a inverted index. Below is a visual

presentation of an inverted index, in which keys are the terms and values are the ids of

documents containing those terms. In addition to storing the document ids, the inverted

index used by Solr also stores other useful information such as term frequency and term

position. The inverted index in Solr is actually built by Lucene core components. Lucene

inverted index is composed of a number of files, each of which stores different

information. Data such as the term being indexed, the documents that contain the term,

the frequency of that term, and its position are encoded in bit values using Lucene

existing conventions. Storing which documents containing the term is useful to find those

documents given a search keyword. However, that’s not enough because searching also

involves retrieving documents in a relevant order. Therefore, information such as term

 19

frequency is stored to compute tf-idf in relevance computation. In addition, term position

is stored to support functionality such as phrase search.

Figure 6: Inverted index - a key data structure supporting information retrieval

5.3 Indexing

Solr is a search engine, but technically, it is a Java web application that runs in any

modern Java Servlet engines like Jetty or Tomcat. Figure 8 on next page describes the

main components of Solr 4. Each of those components can be configured easily using the

solrconfig.xml file. Basically, each main component consists of multiple sub-

 20

components. We can use different kinds of sub-components and change their order to

meet our needs by specifying the names of the corresponding factory classes.

Figure 7: Main Components of Solr 4

Solr provides RESTful services built on Web standards such as XML, JSON, and

HTTP, making it very convenient to access and use Solr’s core services such as

pagination and sorting, faceting, autosuggest, spell-checking, hit highlighting, and

geospatial search. In order to perform search on Solr, we first need to index the

documents we want to search from by posting them to the Solr server’s /add or

 21

/update endpoints. Requests sent to each endpoint are handled by a handler, whose

components are specified in the solrconfig.xml file as well. In the case of indexing

documents, each document will go over a processing pipeline and then be added into the

inverted index, which is then saved to disk on a hard commit.

5.4 Querying

Since Solr is a search engine, it’s important to understand how search queries are sent

to Solr and how Solr processes these queries. To submit search queries, client

applications typically send GET requests that look as follows:

Figure 8: An example Search Query GET Request

With the above example request, the client application expects to get back a response

in XML format that contains 10 documents that have the term “iPod”, have the value of

the “manu” field to be “Belkin”. When returning the result documents, Solr returns all of

the stored fields if we don’t specify which fields we want to get back. Stored fields are

the fields that have their values stored exactly as the original format. Stored fields can be

indexed or not, depending on the need of the application. For instance, in the above

example, we request Solr to only include the name, price, features, and scores fields in

the returned documents.

Query requests are submitted to a Servlet engine such as Jetty, the default servlet that

comes with the Solr distribution. Each request is routed to a specific handler, which is a

Java class. Following is an example of the /select handler provided along with the Solr

 22

example collection. In this case it’s the SearchHandler class. A search handler consists

of a sequence of components. In a normal search query request, the Query component is

always required, and its results become input for standard components such as facet,

more like this, hit highlighting, statistics and debug. In the /select handler example

below, since we are not changing the components section, it uses the default search

components in the SearchHandler class.

Figure 9: An example of /select handler configuration

Query parameters from the query requests are first extracted and used to create a list

request parameters along with the default parameters (used these values when the client

application doesn’t set them), appends parameters (these values are appended to the final

 23

parameter list), and invariant parameters (these values are always used and will overwrite

the values sent from client applications.) After obtaining the final search request

parameters, the query is then passed to the Query component, which is always required.

The Query component has access the SolrIndexSearcher. Any Solr instance always

has one and only one active SolrIndexSearcher instance, which has a snapshot of the

Lucene inverted index. When new documents are added into Solr, they are not

immediately include in the active SolrIndexSearcher yet. Solr needs to open a new

searcher in order to include the new updates. The process of opening a new searcher takes

some time, therefore we need to be careful on how often we want to schedule a hard

commit, which triggers opening a new searcher.

In addition to configuring request handlers and search components, the file

solrconfig.xml also includes a lot other configuration options such as commit policy,

caching policy, warming new index searcher policy, and so on.

5.5 Solr Existing Suggester

Solr version 4.10.3 comes with a suggest component, which can be configured as

below. Requests sent to the /suggest end point are handled by a search handler. We

modified the list of components used by this search handler. In particular, we only

included a search component named “suggest” in the processing pipeline. We also set the

suggest parameter to true to enable the suggest component. A suggest component

contains a list of suggesters. Each suggester is responsible for suggesting terms from a

particular field. The example below suggests terms from the text field.

A Solr suggester takes several configuration parameters. The three main parameters

are lookupImpl, dictionaryImpl, and field. A LookupImpl component defines

how terms are found in the suggestion dictionary. A DictionaryImpl component

defines how terms are stored in the suggest dictionary. Field defines which field from

each document to build the suggestion index from. The current implementation of Solr

Suggester ranks suggested results either alphabetically or by the value of the

weightField, and we wanted to improve that in Smart Solr Suggester by ranking

 24

suggestion results by the level of meaningfulness or how close they are related to the first

search keyword.

In addition to these parameters, one can also specify a parameter named, “storeDir”,

which will save the suggester index to a file after it’s built. It’s highly recommended to

use this parameter because it takes some time to build the suggester index. If you have to

restart the Solr server but didn’t save the suggester index into a file, when the server

restarts again, it will have to go through the same build process. If the suggester index

was saved, the system only takes a second to reload the suggester index from the saved

file.

Before discussing about the implementation of the Smart Solr Suggester plugin, it’s

worth mentioning about the data that we used to test the performance and validity of our

context-based approach. We also discuss about how processing data is done in a clever

way that helps us tackle one of the issues mentioned at the end of Section 4. That is how

to efficiently retrieve the set R of entities that are related to one or more entities in set C,

which consists of entities that contain the context.

6. Obtain, Process, Writing schema and Index Graph Data

6.1 Obtaining Data From Dbpedia

 25

Dbpedia.org is one of the most popular publicly available graph data providers. It has

a total of almost 5 million entities including everything from people to things to abstract

concepts. The data for each entity is pulled from Wikipedia. Dbpedia.org provides a RDF

triples store for the public. We queried and downloaded about 1.5 million people, 74,000

movies, 20,000 films, 30,000 bands, and 3,200 American directors. Data about each

entity is stored in an RDF document. Because Solr doesn’t take RDF/XML format, we

need to transform these RDF documents into Solr flat documents in XML.

Below is an example of a RDF document about John McCarthy, an ice hockey player

from the San Jose Sharks team. The value of the rdf:about attribute of the

rdf:Description element is the URI of the current entity. Sub elements of the

rdf:Description element are the properties of this entity. A property either has a

literal value (number, string, date) or has an rdf:resource (an entity) attribute. Strictly

speaking, the value of the rdf:resource attribute is a URI that represents the entity

that this entity is related to. In the example below, “John McCarthy” has a property

named dbpedia-owl:team , which has the rdf:resource attribute equals to

http://dbpedia.org/resource/San_Jose_Sharks. dbpedia-owl is the name space of the

dbpedia ontology. Basically, we can translate this RDF triple into the following

relationship: John McCarthy is in team San Jose Sharks.

 26

When transforming an RDF/XML document into a Solr XML document, we need to

decide what field name, field type, field value, whether the field needs to be indexed or

stored or both. In addition, all fields in a Solr document needs to be recognized by the

fields specified in schema.xml, and we cannot manually check and add all property names.

This is the reason why we decided how schema.xml should look like before even

thinking about how to transform the downloaded RDF documents. In addition, Solr

schema.xml provides some neat tools that greatly support the data preprocessing tasks.

6.2 Write schema.xml for the obtained Graph Data
Below is the schema.xml that we used for the dbpedia data. The way this schema is

laid out largely affects the XSLT template that we used to transform RDF XML

documents to Solr documents. Note that uri is specified as uniqueKey. We use

dynamic fields and copy fields in order to cover every field name possible and add some

useful field names that we need to use later.

For dynamic fields, we decided that there are two types of field names: ending in

“_text” and ending in “_resource”. As the names imply, field names ending in “_text”

correspond to properties that have literal value, and field names ending in “_resource”

 27

correspond to properties that have a resource attribute. The former has field type

“textSpell” and the latter has field “string”. Fields with field type “textSpell” are indexed

and stored, but fields with field type “string” are stored only. We don’t want to modify

the resource’s URI in anyway, so string is the best field type to use for them. The

“textSpell” field type only performs minimal text analysis: keyword tokenization and

transformation to lower-case. Other field names that don’t match any of these patterns are

treated as string and won’t be indexed. A field is indexed means that its content is

analyzed and stored in the inverted index. A field is stored means that its content is stored

on disk with no modification at all, and its value won’t be stored into the inverted index.

We index a field if we want to search upon its content, and we store a field if we really

need to restore its original value.

We then added two new fields: text and relatedDocs. The text field is a

general-purpose indexed field. Instead of having to search for every field, we copy the

content from every field ending in “_text” to the text field. When we perform a search

query, we only search against this field for simplicity. Similarly, we copy the content of

every field ending in “_resource” to the relatedDocs field, so it contains a list of every

entity/resource’s URI that this entity is related to. These two fields make the retrieval of

sets C and R (mentioned at the end of section 4) become instant.

6.3 Transform RDF XML Documents to Solr Documents
We wrote an XSLT template to transform these RDF documents into Solr XML

documents. Each RDF/XML file might contain multiple entities. However, we are only

interested in entities that have the /rdf:RDF/rdf:Description/rdfs:label

element. The content of each entity is marked by the /rdf:RDF/rdf:Description

element, so if it indeed has a /rdfs:label element, we will create a Solr document.

The @rdf:about attribute of the /rdf:RDF/rdf:Description element is the URI of

that entity, so we extract and use it as the URI field. Below are a snippet of the XSLT file

that we used and an example of the transformed Solr XML document.

 28

The transformed Solr XML documents have a flat structure as required by the Solr

indexing system. There are two types of field name; one ending in “_text” and one ending

 29

in “_resource”. The ones ending in “_text” are text fields, and the ones ending in

“_resource” are considered as relationship fields. For example, the field:
<field name=”dbpedia owl_resource”>http://dbpedia.org/resource/San_Jose_Sharks</field>

implies that the current entity, identified by the URI:

http://dbpedia.org/resource/John_McCarthy_(ice_hockey) is in team San Jose Sharks.

During indexing time, Solr creates a new field named “text” and copies all fields ending

with “_text” to it. In addition, Solr also creates a new field named “relatedDocs” and

copies all fields ending with “_resource” to it. Therefore, the value of the “relatedDocs”

field in each document contains the URIs of all of the entities related to the current entity.

7. Smart Solr Suggester Implementation

7.1 How to Suggest Meaningful Second Search Keywords

After the user has chosen the first term from the alphabetical suggestion list, the client

application marks it as the context. When the user continues to type the first letters of

the second term, the client application sends requests to Solr server. Specifically, we send

the request to the /suggest end point in this project. In those requests, we add the

context parameter to the query string (&context=first_term).

When the context parameter is not null, Smart Solr Suggester triggers the

mechanism that suggests meaningful second search keywords on the top of the

suggestion list. This mechanism includes two steps.

The first step, as mentioned at the end of section 4, is to retrieve sets C and R given a

context. This step can be done very quickly because this Solr is very fast at finding

documents that contain a term. In addition, when indexing the documents in the previous

section, we already included a relatedDocs field that contains the URI of all related

entities. However, this step’s implementation for a single Solr instance is different from

that for a cluster.

The second step is to compute the score for each lookup result from the default

alphabetical suggestion list. Each of these lookup results has a set D that consists of the

URIs of all entities containing the lookup result’s term. This set exists because we encode

 30

it when building the suggester index. The next subsection gives more details on how

building the suggester index is done on single instance and cluster mode. Below is the

snippet of code that shows where we check for the context and execute the Smart Solr

Suggester.

Note that in order to speed up the performance, we put LookupResult with score

equal to 0 to one list and put LookupResult with score greater than 0 to another list.

We then only sort the non-zero list and append the zero-list to it. This can be explained

by the fact that the majority of LookupResult instances have score equal to 0, so it

doesn’t make much sense to compare all of them against those having nonzero score. In

addition, when sending LookupResult to client applications, we limit number of

suggested terms to 25 because users don’t normally scroll down the suggestion list to find

the search keyword they want to type but continue to type instead. By limiting the

number of suggested terms, we save time transferring the data to client applications.

 31

7.2 Dictionary Implementation
Dictionary is an important sub-component of the suggest component. There are a

number of different dictionary implementations in Solr: DocumentDictionary,
DocumentExpressionDictionary, HighFrequencyDictionary, and

FileDictionary. For our purpose, we found that DocumentDictionary suits our

needs the most because it provides an easy access to the term and high flexibility to

encode additional information into the suggester index. SmartDocumentDictionary

extends DocumentDictionary. Its responsibility is to provide the lookup with a

DocumentIterator, which includes a current term and any other information

associated with that term. In this project, we encoded the URI of the related documents as

a sequence of bytes and attach them to the end of the term. Below are the class diagram

and a snippet of SmartDocumentDictionary implementation.

 32

Note that we set the currentContainingDocs list to be the set of all entities that

contain the current term. The implementation for setContainingDocs is different

between single Solr instance and cluster mode and is discussed next.

7.2.1 SmartDocumentDictionary - Single Solr Instance

For index that uses one single Solr instance, the active index searcher knows about all

documents in the index, so we use it to directly query for documents that contain the

current term, thereby obtaining their corresponding URIs of the related entities. These

queries are really fast because it uses an internal object to execute the queries, so I/O

overhead is very minimal. As a result, building the suggester index in a single Solr

instance mode is faster compared to that in a cluster mode. In addition, when query for

the documents that contain the current term, we query set the querying field to be “text”.

As discussed in the section about data and schema.xml, “text” is the field that contains

data copied from every text field in the documents. A document might have a lot of text

fields, and it takes a long time to iterate over all of them to find a certain term. Therefore,

by aggregating all of them into one single field, we saved the iteration time.

 33

7.2.2 SmartDocumentDictionary - Cluster Mode

With a large amount of documents or entities, sometimes one Solr instance cannot

handle all of the requests or even hold all of the data. As a result, Solr introduces

SolrCloud, is a technology to run Solr in a cluster mode. In Solr, an index is also called a

collection. A collection can be hosted on multiple shards, each of which is essentially a

Solr server. When indexing a document to a Solr cluster, a document router decides

which shard that document is indexed into. The document router does so by hashing the

value of the unique field of that document. The hash function that the document router

uses is MurmurHash 3, an efficient hash function that outputs a value within 32-bit. Each

shard in the cluster is assign a range of number within 32-bit. The hash range is equally

divided among shards. The document router routes a document to a shard if the hashed

value of that document falls into the assigned range of this shard. Consequently, the local

active SolrIndexSearcher in one Solr instance does not know anything about

documents in other instances. Thus, we cannot use it to directly query for all documents

that contain a particular term. To overcome this problem, we actually sent an HTTP

request to the /select handler to query across all shards and find documents that

 34

contain the current term when building the suggestion index. Though it only takes a

millisecond or two to complete a request, this becomes a huge I/O overhead when have to

build the suggestion index for millions of documents. The size of the overhead is

proportional to the size of the number of documents in the inverted index. Below is a

snippet of code that shows how we handled this situation.

7.3 Lookup Implementation

Lookup is another crucial sub-component of the suggest component. There are a

number of existing lookup implementations: AnalyzingLookup, FuzzyLookup,

AnalyzingInfixLookup, BlendedInfixLookup (an extension of

AnalyzingInfixLookup), FSTLookup (an automaton-based lookup), and TSTLookup (a

simple compact ternary trie based lookup). Solr documentation claims that FSTLookup is

the fastest implementation and consumes the least amount of memory. However, we

found that AnalyzingLookup performance is not too far behind, and it also provides

some useful configurations for indexing and querying text analysis. Below is a quick

comparison between the two implementations.

 35

7.3.1 Comparison between AnalyzingLookup and FSTLookup

FSTLookup is said to provide the lowest memory cost. However, it comes as a cost

that FSTLookup doesn’t analyze the term or the query string, so the term “John

McCarthy” will be indexed exactly as it is. Thus, a query for “jo” would not return that

term. For each term, FSTLookup constructs an int[] that starts with the weight of that

term and UTF-8 encoding for each character of the term. In our example, since we don't

specify a numeric field to be used as the weight, it's always 0. So the term "John

McCarthy" will be transformed to the following
int[] = [0,4a,6f,68,6e,20,4d,63,43,61,72,74,68,79]

FSTLookup then adds that int[] to a finite state automaton builder. Each term is

added the same, and eventually FSTLookup has an automaton that represents the

suggester index. Since we're not utilizing the weights, it doesn't matter much in this case.

But the weights are actually arranged into buckets so that the FSTLookup would look for

the arc that has highest weight. If all weights are the same (like in this case), it will fall

back to have suggest results sorted alphabetically. The automaton that the FSTLookup

built represents each term's int[] in its graph, with each int represents a node. There's

an arc between two nodes if the two nodes are in the same int[].

FSTLookup saves memory because it doesn't store any output or value in the nodes.

During lookup time, the automaton traverses its graph, and if a path matches the query's

characters, then it collects all the paths from the sub-graph at the point to become

suggestions. FSTLookup then simply translates those UTF-8 int[] back to String, and

those are the suggestion results.

AnalyzingSuggester uses the same automaton builder and lookup mechanism as

FSTLookup except that it does store value in the leaf's nodes. For the term "John

McCarthy", if we choose to apply a lowercase filter in the index analyzer, we'll have the

analyzed form as an

int[] = [6a,6f,68,6e,20,6d,63,63,61,72,74,68,79] (Note the

difference between this array and the one above).

 36

The items in the analyzed form will be used as the nodes to build the automaton, and

the value of the leaf's node for that sequence is a byte[], which encodes the weight,

payload, and surface form. Surface form is the original text before it was analyzed ("John

McCarthy" in this case). The idea is that a suggest query for "jo" would return terms start

with "Jo" like "John".

Overall, these two FST (Finite State Transducer) based suggesters are the foundation

for other lookup implementations such as FuzzyLookup, AnalyzingInfixLookup,

and BlendedInfixLookup to extend from. AnalyzingSuggester and FSTLookup

should have roughly the same performance because they use the same indexing and

lookup mechanism. Using AnalyzingSuggester might cost us more memory, but that

is worth it because we can suggest text in their original forms while suggest queries don’t

have to match the original forms. Therefore, we decided to extend

AnalyzingSuggester to become SmartAnalyzingSuggester as a lookup

implementation for our Solr Suggester Plugin.

8. Results

Below are the snapshots that show how Smart Solr Suggester works. All of them

indicate that the user has chosen “John McCarthy” as the first search keyword. In the first

snapshot, the user continues typing the letter “t”. Smart Solr Suggester automatically

suggests “Turing Award” at the top of the list followed by alphabetical order terms.

That’s because there is a relation in one of the “John McCarthy” entity that links to an

entity having the term “Turing Award.” Similarly, in the second snapshot, Smart Solr

Suggester automatically displays “Lisp (programming language)” on the top of the list

when the user enters “l” for the second search keyword. The last snapshot shows similar

result when the user enters “s” as the first character of the second search keyword. It

suggested “San Jose Sharks” because that term is in an entity (San Jose Sharks hockey

team) that is related to the entity containing the context “John McCarthy.”

 37

Table 1 below shows the average time to index and build the suggestion index for

1,253,425 documents. If we computed the indexing time alone, the cluster mode might

takes less time to index because each shard only needs to handle a half amount of the

documents. However, it takes roughly 5 times longer to build the suggestion index in the

cluster mode because we need to query across all shards to find the documents containing

the current term. This cluster consists of only 2 shards hosted on the same machine, so

the communication time is reduced as much as possible. However, in a situation where

we have more shards and they are located far away from each other, this could be an

issue. Therefore, we hope to find a better solution for building the suggestion index in the

cluster mode.

Number of documents Single Solr Instance Cluster with 2 shards

1,253,425 10 minutes 12 seconds 49 minutes 18 seconds

Table 1: Indexing and Building Suggestion Index Time

Table 2 below shows the time it takes to retrieve the suggestion list for the first search

keyword. We noticed that the cluster mode takes a little longer to retrieve the suggestion

list. That is expected because after finding all of the suggested terms, each shard has to

send their results to the shard where the original request was sent to, and then results

from all these shards are merged to create the final suggestion list. The communication

time between shards and the merging time make the cluster mode slower.

 38

Term Single Solr Instance Cluster with 2 shards
 Lookup time Total time Lookup time Total time

“g” 173 184 188 200
“ge” 61 66 74 85

“geo” 40 45 61 73
“geor” 36 43 51 55

“georg” 43 55 66 78
“george” 35 40 55 58

“george l” 4 8 15 27
“george lu” 3 7 18 23

Table 2: Single Term Lookup Time (in milliseconds)

Finally, table 3 shows time performance of Smart Solr Suggester between a single

Solr instance and a Solr cluster of 2 shards. The time measured here is how long it takes

to retrieve the suggestion list after the user has entered the first characters of the second

search keyword. In this case, the cluster seems to outperform the single Solr instance.

That is because the single Solr instance has to compute the score for all of the terms,

rearrange, and sort them. However, in the cluster mode, that work is split into half for

each shard to handle. Therefore, even though there’s communication and merging

overheads in the cluster mode, those are compensated by the reduced amount of work

that each shard has to do.

Two terms Single Solr Instance Cluster with 2 shards

“context, first letters” Lookup time Total time Lookup time Total time
“George Lucas, s” à Star Wars (known for) 275 287 265 268
“George Lucas, st” à Star Wars 51 57 67 71
“John Lasseter, c”à Cars (film) 201 205 157 161
“John McCarthy, t” à Turing Award (award) 222 235 144 148
“John McCarthy, l”à Lisp (known for) 165 177 149 161
“John McCarthy, a” à Artificial Intelligence 302 315 205 208
“John McCarthy, s” à San Jose Sharks (team) 308 313 179 182
“Steve McQueen, t” à The Sand Pebble 339 351 160 163
“Steve McQueen, 1” à 12 Years a Slave 6 18 17 21
“James Cameron, t” à The Abyss, Titanic 236 248 172 184
“John Lasseter, t” à Toy Story, Tin Toy 210 215 150 154

Table 3: Two-term Lookup Time (in milliseconds)

 39

9. Conclusion and Future Work

In this project, we attempted to implement and test the context-based autosuggest

approach as a suggest plugin in Solr. With over 1 million documents, the Smart Solr

Suggester seems to perform reasonably well in terms of speed. We were indeed able to

retrieve more meaningful second search keywords using the first keyword as a context.

There are still some areas in Smart Solr Suggester that can be improved, but that depends

on the needs of the specific applications. Smart Solr Suggester has proved that it is

possible to improve the existing Solr Suggester in a way that meets your needs, and in

this case, it is searching for entities. In addition, we also found that performing

autosuggest in a Solr cluster has both advantages and disadvantages. While it takes longer

to build a suggester index in the cluster mode, the benefits come when it takes less time

to retrieve the suggestion list compared to running autosuggest on a single Solr instance.

For future direction, we hope to combine the implementation of this project with another

project directed by Dr. Tran that uses the output of Smart Solr Suggester as it its input to

actually return highly relevant entities.

 40

Literature references:

[1] L. Zhang, T. Tran, and A. Rettinger. Probabilistic Query Rewriting for Efficient and
Effective Keyword Search on Graph Data.

[2] Gregory Smits, Olivier Pivert, et al. AGGREGO SEARCH: Interactive Keyword
Query Construction

[3] Grainger, Trey and Timothy Potter. Solr In Action. Print.

[4] “W3C Semantic Web Frequently Asked Questions.” W3C Semantic Web FAQ. Web.
01 May 2015.

[5] “RDF 1.1 Primer.” RDF Primer. Web. 01 May 2015.

	San Jose State University
	SJSU ScholarWorks
	Spring 5-21-2015

	CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA
	Hai Nguyen
	Recommended Citation

	Microsoft Word - Hai_Nguyen_CS298_Project_Report.docx

