169 research outputs found

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context

    Workshop - Systems Design Meets Equation-based Languages

    Get PDF

    BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed

    Full text link

    Modeling and Simulation Methodologies for Digital Twin in Industry 4.0

    Get PDF
    The concept of Industry 4.0 represents an innovative vision of what will be the factory of the future. The principles of this new paradigm are based on interoperability and data exchange between dierent industrial equipment. In this context, Cyber- Physical Systems (CPSs) cover one of the main roles in this revolution. The combination of models and the integration of real data coming from the field allows to obtain the virtual copy of the real plant, also called Digital Twin. The entire factory can be seen as a set of CPSs and the resulting system is also called Cyber-Physical Production System (CPPS). This CPPS represents the Digital Twin of the factory with which it would be possible analyze the real factory. The interoperability between the real industrial equipment and the Digital Twin allows to make predictions concerning the quality of the products. More in details, these analyses are related to the variability of production quality, prediction of the maintenance cycle, the accurate estimation of energy consumption and other extra-functional properties of the system. Several tools [2] allow to model a production line, considering dierent aspects of the factory (i.e. geometrical properties, the information flows etc.) However, these simulators do not provide natively any solution for the design integration of CPSs, making impossible to have precise analysis concerning the real factory. Furthermore, for the best of our knowledge, there are no solution regarding a clear integration of data coming from real equipment into CPS models that composes the entire production line. In this context, the goal of this thesis aims to define an unified methodology to design and simulate the Digital Twin of a plant, integrating data coming from real equipment. In detail, the presented methodologies focus mainly on: integration of heterogeneous models in production line simulators; Integration of heterogeneous models with ad-hoc simulation strategies; Multi-level simulation approach of CPS and integration of real data coming from sensors into models. All the presented contributions produce an environment that allows to perform simulation of the plant based not only on synthetic data, but also on real data coming from equipments

    Design of Large Scale Virtual Equipment for Interactive HIL Control System Labs

    Get PDF

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling

    Development of robust building energy demand-side control strategy under uncertainty

    Get PDF
    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.Ph.D.Committee Chair: Augenbroe, Gofried; Committee Member: Brown, Jason; Committee Member: Jeter, Sheldon; Committee Member: Paredis,Christiaan; Committee Member: Sastry, Chellur

    Activity Report: Automatic Control 2013

    Get PDF
    • …
    corecore