
University of Verona
Department of Computer Science

Graduate School of Natural Science and Engineering

Doctoral Program in Computer Science

Cycle XXXIII

Modeling and Simulation Methodologies for
Digital Twin in Industry 4.0

S.S.D. ING-INF/05

Coordinator:
Prof. Massimo Merro

Tutor:
Prof. Franco Fummi

Doctoral
Student:

Stefano Centomo

Abstract

The concept of Industry 4.0 [1] represents an innovative vision of what will be the
factory of the future. The principles of this new paradigm are based on interoperabil-
ity and data exchange between different industrial equipment. In this context, Cyber-
Physical Systems (CPSs) cover one of the main roles in this revolution. The combina-
tion of models and the integration of real data coming from the field allows to obtain
the virtual copy of the real plant, also called Digital Twin. The entire factory can be
seen as a set of CPSs and the resulting system is also called Cyber-Physical Production
System (CPPS). This CPPS represents the Digital Twin of the factory with which it
would be possible analyze the real factory. The interoperability between the real indus-
trial equipment and the Digital Twin allows to make predictions concerning the quality
of the products. More in details, these analyses are related to the variability of pro-
duction quality, prediction of the maintenance cycle, the accurate estimation of energy
consumption and other extra-functional properties of the system.

Several tools [2] allow to model a production line, considering different aspects of
the factory (i.e. geometrical properties, the information flows etc.)

However, these simulators do not provide natively any solution for the design inte-
gration of CPSs, making impossible to have precise analysis concerning the real factory.
Furthermore, for the best of our knowledge, there are no solution regarding a clear inte-
gration of data coming from real equipment into CPS models that composes the entire
production line.

In this context, the goal of this thesis aims to define an unified methodology to de-
sign and simulate the Digital Twin of a plant, integrating data coming from real equip-
ment. In detail, the presented methodologies focus mainly on: integration of heteroge-
neous models in production line simulators; Integration of heterogeneous models with
ad-hoc simulation strategies; Multi-level simulation approach of CPS and integration of
real data coming from sensors into models.

All the presented contributions produce an environment that allows to perform sim-
ulation of the plant based not only on synthetic data, but also on real data coming from
equipments.

Contents

Part I Preliminary

1 Introduction . 3
1.1 Introduction . 3
1.2 Objectives & Methodology Flow . 5

Part II Homogeneous Models

2 Integrating synthetic and real components of a cyber-physical production system 9
2.1 Introduction . 9
2.2 Background . 11

2.2.1 OPC UA Communication Protocol . 11
2.2.2 AutomationML . 12
2.2.3 Functional Mockup Interface . 15
2.2.4 MATLAB/Simulink . 15
2.2.5 Tecnomatix Plant Simulation . 16

2.3 Methodology . 16
2.3.1 Mapping Simulink components in AutomationML . 16
2.3.2 AML to MATLAB . 20
2.3.3 OPC UA server from FMU . 22

2.4 Experimental Results . 23
2.5 Simple producer-consumer . 24
2.6 The ICE lab model . 27
2.7 Conclusions . 28

Part III Heterogeneous Models

3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function
Interfaces . 33
3.1 Introduction . 33

3.2 Related Works . 34
3.2.1 Running example . 35
3.2.2 FMI-Standard . 35
3.2.3 Simulink C MEX S-Functions . 37
3.2.4 Automatic abstraction of HDL IPs . 37

3.3 Methodology . 38
3.3.1 Data-type abstraction . 41
3.3.2 Automatic generation of Functional Mockup Units 42
3.3.3 Automatic generation of C MEX S-Functions. 46

3.4 Experimental Results . 48
3.5 Conclusions and Future Outlook . 50

4 Generation of Functional Mockup Units for Transactional Cyber-Physical
Virtual Platforms . 53
4.1 Introduction . 53
4.2 Background and Related Work . 55

4.2.1 Functional Mock-up Interface (FMI) Standard 2.0 for co-simulation 55
4.2.2 Simulation coordination in the FMI standard . 56
4.2.3 Related Work . 58

4.3 FMI Standard Advantages and Limitations . 59
4.4 Methodology . 60

4.4.1 Functional Mock-up Units (FMUs) generation and timing backward
propagation . 60

4.4.2 A better coordinator for discrete systems . 62
4.5 Methodology Application . 63
4.6 Recent Development and Discussion . 67
4.7 Concluding remarks . 69

5 Cyber-Physical Systems Integration in a Production Line Simulator 71
5.1 Introduction . 71
5.2 Plant Simulation and Integration Alternatives . 72

5.2.1 Production Line Simulators . 72
5.2.2 Siemens Plant Simulation: SimTalk C-Interface . 73
5.2.3 Functional Mockup Interface (FMI) . 74

5.3 Integration Methodology . 75
5.3.1 Cyber System: Modelling and FMU Generation . 76
5.3.2 Physical System: Modelling and FMU Generation . 77
5.3.3 Cyber-Physical System: Coordination and Integration 77

5.4 Methodology Application . 78
5.4.1 Bending machine CPS . 79
5.4.2 Alternatives Taxonomy . 81
5.4.3 Simulation speed . 81

IV

5.4.4 Simulation errors . 82
5.5 Conclusions . 82

6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual
Platforms . 83
6.1 Introduction . 83
6.2 Background . 84

6.2.1 Related work . 84
6.2.2 Code Generation for Virtual Platform Integration . 85
6.2.3 Interface technologies for system simulation . 86

6.3 Integration methodology . 87
6.3.1 Mapping HDL primitives to FMI and S-Functions . 87
6.3.2 Monolithic model approach . 88
6.3.3 Hub-based approach . 90
6.3.4 Alternatives Taxonomy . 91

6.4 Methodology Application . 92
6.4.1 Simulation performance . 93
6.4.2 Design Space Exploration . 94

6.5 Conclusions . 96

7 Improving FMI-based simulation by Exploiting System–level Information 97
7.1 Introduction . 97
7.2 Preliminaries . 99

7.2.1 Standardized interfaces and the FMI standard . 99
7.2.2 FMI Standard for co-simulation . 99
7.2.3 Simulation coordination in the FMI standard . 100
7.2.4 Specification Languages for Hardware Platforms . 101
7.2.5 Automatic abstraction of digital components . 102

7.3 Methodology Overview . 104
7.3.1 Running Example . 106

7.4 Generation of Cycle-Accurate FMUs . 107
7.4.1 Data-type mapping . 108
7.4.2 Automatic generation of Functional Mockup Units 109

7.5 Generation of Transactional FMUs . 111
7.6 Generating the coordinators . 112

7.6.1 Cycle-Accurate Coordinator . 114
7.6.2 Smart Coordinator . 115

7.7 Experimental Results . 116
7.7.1 Experimental setup . 116
7.7.2 Experiments overview . 117
7.7.3 In-depth analysis of the experimental results . 118

V

Part IV Multi-Level Modeling and Simulation

8 From Multi-Level to Abstract-Based Simulation of a Production Line 123
8.1 Introduction . 123
8.2 Background . 123
8.3 Multi-Level Modeling and Simulation . 125

8.3.1 Application of Multi-Level Simulation to a Production Line 126
8.4 Abstract-Based Modeling and Simulation . 126

8.4.1 Application of Abstract-Based Simulation to Production Line 127
8.5 Experimental Results . 127

8.5.1 Multi-Level Experiment . 128
8.5.2 Abstract-based Experiment . 129
8.5.3 Simulation Results Comparison . 130

8.6 Concluding Remarks . 131

9 A Design Methodology of Multi-level Digital Twins . 133
9.1 Introduction . 133
9.2 Background . 135

9.2.1 AutomationML - IEC 62714 . 135
9.2.2 CAEX - IEC 62424-2 . 135
9.2.3 Plant and Kinematics Simulators . 136
9.2.4 Running Example . 137

9.3 Methodology in Action . 138
9.3.1 Plant Topology Generation . 138
9.3.2 Plant OPC-UA Infrastructure Generation . 141
9.3.3 Process PLC Infrastructure Generation . 143

9.4 Experiments . 144
9.5 Conclusion . 146

Part V From Real Data to Information

10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation
Techniques . 149
10.1 Introduction . 149
10.2 IIoT Data Analysis . 151

10.2.1 Severity levels . 151
10.2.2 Measurement points . 152
10.2.3 P-F intervals . 153
10.2.4 Common variables in condition monitoring . 154

10.3 Predictive Maintenance . 155
10.4 Experimental Validation . 158

VI

10.4.1 Experiment Setup . 158
10.4.2 Abstract model of a real machine . 159
10.4.3 Methodology validation with a mutation analysis technique 160
10.4.4 Experiment results . 160

10.5 Conclusions . 162

11 The Design of a Digital-Twin for Predictive Maintenance . 163
11.1 Introduction . 163
11.2 Background & State of the art . 165

11.2.1 Technologies . 165
11.2.2 Related Work . 166

11.3 Modeling The Problem. 167
11.4 From Sensor Data to Severity Levels . 167
11.5 Monitoring State Machine (MSM) . 169
11.6 Developed Technique . 169

11.6.1 Predictive Maintenance Supervisor . 169
11.7 Alternative Use of MSM and PSM . 172

11.7.1 Structure Validation Mode . 172
11.7.2 Condition-based-Maintenance Continuous Mode . 172
11.7.3 Predictive Maintenance Structure Training Mode . 173
11.7.4 Predictive Maintenance Mode . 173

11.8 Methodology Application . 173
11.8.1 Experimental Setup . 173
11.8.2 Abstract Model of a Real Machine . 175
11.8.3 Structure Validation Mode in Action . 176
11.8.4 Experimental results . 176
11.8.5 Standards . 177

11.9 Conclusions . 178

Part VI Unified Example& Conclusions

12 Industrial Computer Engineering Laboratory & Conclusions 181

13 Published Contributions . 183

References . 185

List of Figures . 193

List of Tables . 195

VII

Part I

Preliminary

1

Introduction

1.1 Introduction

The concept of Industry 4.0 [1] represents an innovative vision of what will be the factory of
the future. A smart factory should be able to optimize efficiency and productivity by extending
the capabilities of both manufacturing devices and people. By focusing on creating an agile,
iterative production process through data collection, smart factories can aid decision-making
processes with stronger evidence. By continuously improving the productivity of manufactur-
ing processes, smart factories can lower costs, reduce downtime and minimize waste. Identify-
ing and reducing misplaced or underused production capacities mean opportunities for growth
without investing in additional monetary and/or physical resources. This concept defines a set of
design principles needed to enable industrial plant transformation into smart factories, capable
to take decisions based on the status of the plant.

• Interoperability: This first principle explores the ability of machines, devices, sensors, and
people to connect and communicate with each other via the Internet of Things (IoT). Con-
nect your Smart Tools , sensors and operators on the shop floor to collect valuable data and
integrate it with your Manufacturing Execution System (MES),Enterprise Resource Plan-
ning (ERP) or other smart factory solution for real-time analysis. It creates a network of
interconnected data-generating points that can be accessed and manipulated anytime any-
where. This principle dwells on the technology’s ability to provide enhanced information
for future decision-making.
• Modularity: This is the essence of the production by order. It provides the possibility to

change certain parts of a product or an equipment during production in accordance with
customer’s desires. This principle allows to obtain a dynamic and reconfigurable production
line.
• Virtualization: The ability of information systems to create a virtual copy of the physical

world by enriching digital plant models with sensor data. This requires the aggregation of
raw sensor data to higher-value context information. In other words, embracing this indus-
trial revolution’s design principle helps monitor processes on the shop floor and allows the
management to instantly adjust and optimize for higher efficiency.

4 1 Introduction

Analysis
&

Prediction

Optimization

Reconfiguration

Virtual
Factory

Real
Factory

Network

Sensing

Controlling

Simulation
of

Production Line

Fig. 1.1: Role of Digital Twin in Industry 4.0.

• Decentralization: The decentralization of decisions stems from the ability of Cyber-
Physical Systems (CPSs) to make decisions on their own and to perform their tasks as
autonomous as possible. Only in case of exceptions, interferences, or conflicting goals,
tasks are delegated to a higher level. A decentralized system is also highly adaptable and
scalable which determines how efficiently can you respond to industry changes.

The virtualization of the production plant covers a central role in this new revolution. This
virtual copy is also called Digital Twin and has the role to mime, predict and optimize what is
happening in the real plant (see Figure 1.1).

The entire factory can be represented as a set of CPSs and the resulting system is also
called Cyber-Physical Production System (CPPS). This CPPS represents the Digital Twin of
the Factory with which it would be possible to make analysis regarding the real factory [3].
The interoperability between the real industrial equipment and the Digital Twin [4] allows to
make predictions concerning the quality of the products. Several tools [2, 5] allow to model
a production line, considering different aspects of the factory (i.e. geometrical properties, the
information flows). However, these design principles define only guidelines and actually they
are not totally explored in research with methodologies, tools or solutions.

For instance, plant modeling tools [2, 5] do not allow to model the plant with a certain level
of details. Some works defines coupling solutions between physical and production simulators,
but without defining a unified flow to design and simulate the entire factory. Furthermore, most
of the works defined only simple equipment models without considering the integration of raw
data coming from real equipment. In particular, the problem of model realignment with the data
coming from sensors. Scope of this thesis is the investigation on Digital Twin in Industry 4.0 in
order to define a set of methodologies to enable virtualization and the interoperability principle.

1.2 Objectives & Methodology Flow 5

1.2 Objectives&Methodology Flow

This thesis proposes a set of methodologies to define solutions for the design of Digital Twin in
Industry 4.0 (see Figure 1.2). These novel solutions can be summarized in

• Design methodology for Digital Twin;
• Integration of equipment models;
• Integration of real data to enable Predictive Maintenance.

The entire flow is based on the definition and integration of modeling information of the
plant in AutomationML, a neutral standard used to exchange data between different designers
and stakeholders. Figure 1.2 shows all the different flows that cover the proposed methodolo-
gies. On the top of the Figure, there is the abstracted description of the factory, in Automa-
tionML. We have first to distinguish between the information of the plant (topology and mate-
rial) and the information of each node that composes the entire factory (equipment models) that
needs to be integrated in AutomationML. The proposed metholodogies focus mainly on:

1© Homogeneous Models;
2© Heterogeneous Models;
3© Multi-Level Models;
4© From Real Data to Information.

Each equipment that composes the entire factory can be seen as a CPS, where the cyber part
controls physical processes.

The term Homogeneous model is used to represents CPS that are modeled using a unique
framework or language. For instance, environments that support model-based design paradigm

Real Plant

Predictive Maintenance Supervisor

Monitoring
State Machine

AutomationML
Equipment Models

OPC-UA
Server

OPC-UA
Server

Virtual Factory Real Factory

Plant Topology

Virtual Plant

Homogeneous

Heterogeneous

Multi-Level
Abstracted

Model
Refined
Model

Real
Equipment

Real
Equipment

Real
Equipment

OPC-UA
Server

Monitoring
State Machine

Monitoring
State Machine

Data

Data

Data

Data

Data

Data

Digital Twin

Real
Equipment

OPC-UA
ServerData

1

4

3

2

4

4

Fig. 1.2: Overview of the proposed methodologies. Circles represents the aspects discussed in this thesis.

6 1 Introduction

like Ptolemy, Modelica, or Simulink. The proposed approach allows to obtain synthetic nodes,
through the OPC Unified Architecture (OPC UA) transmission protocol, that can be used to
evaluate equipment models or production recipes effects on the production line.

With the term Heterogeneous Models, we refer to CPSs that are modeled considering dif-
ferent tools for cyber and physical models. In particular, the use of Hardware Description Lan-
guages (HDLs) to model the cyber part and tools to model dynamic systems for the physical
process. In this scenario, we focused mostly on the definition of simulation strategies, moving
from co-simulation environments to simulation. Moreover, the investigation on the definition
and automatic generation of ad-hoc simulation coordinator based on system-level information.

In the Multi-level approach, the use multiple descriptions of the same system is discussed.
The goal of this approach is to reduce the global complexity of the system by considering
two descriptions of the same system with different levels of detail. This approach is based
mainly on a simple idea: switching between two models, referring to the same system, to reduce
computational effort or increment the level of details when desired.

Finally, with From Real Data to Information the investigation on the integration of real data
coming from the field. This part seems to be far from what has been explained, but the Digital
Twin can not be based only on models. It needs data from the field to be synchronized to analyze
the status of the plant. The interconnection within models and real data is necessary for the
Digital Twin in order to perform predictions or take decisions regarding equipment maintenance
or production plans. From the Digital Twin perspective, raw data needs to be manipulated and
transformed in order to dig up information that can be used to plan strategies. This part of the
thesis aims to put a first step in this direction, defining a methodology to retrieve equipment
status from real data coming from sensors.

The thesis is structured as follows: Part II introduces the proposed approach for the auto-
matic generation of synthetic nodes by integrating Homogeneous Models in AutomationML.
Part III explores the modeling and simulation of Heterogeneous Models, with a particular focus
on the discrete part of the system, proposing solutions regarding ad-hoc coordinators based on
system-level information. The Multi-level approach is shown in Part IV. Part V explains the ob-
tained approach regarding the detection of information from raw data coming from equipment
sensors. Finally, Part VI sum-up all the proposed methodologies in a unified example, drawing
conclusions, while reporting the publications developed during this thesis in Chapter 13.

Part II

Homogeneous Models

2

Integrating synthetic and real components of a cyber-physical
production system

2.1 Introduction

Since their first introduction in 2003 by Michael Grieves, Digital Twins have come a long way.
They are one of the fundamental pillar of the Fourth Industrial Revolution and for a good reason,
as they can make things like smart manufacturing a realistic thing.

When we talk about smart manufacturing, we refer to a series of technologies that through
the usage of interconnected Cyber-Physical Systems manage to reach a great production flexibil-
ity and things like customized products can be automatically produced by an already operational
assembly line, which is impossible with the current mass production as it would require a com-
plete manual readjustment of the assembly line machines. This is only one aspect of Industry
4.0. There are a lot of other technologies involved like Cloud Computing, Big Data analysis,
etc., each of them having a specific role for covering a specific aspect.

Digital twins saw many implementations, all of them having usage of models in common.
Machine models can be created in many ways at various degrees of abstraction. The impor-
tant aspect is that these models have to communicate with each other and work together. We
call this Machine-to-Machine communication and this is what let them to self-configure de-
pending on the condition of the other machines. The most promising protocol for realizing
Machine-to-Machine (M2M) communication is OPC Unified Architecture (OPC UA), which
offers a platform-independent service-oriented infrastructure. AutomationML [6–8] represents
a new standard that allows to exchange information of equipment of plant, between different
vendors or designers to make models and in general plant descriptions to be freely exchanged
by modeling tools.

This research work analyzes these technologies and a then presents a case study about the
automatic generation of synthetic OPC UA server. Figure 2.1 shows the proposed methodol-
ogy. The model is defined in a vendor-neutral standard, AutomationML,then synthesized in
MATLAB-Simulink, and exported as a stand-alone block with the use of Functional Mock-up
Interface (FMI) standard. Finally, the obtained block,called Functional Mock-up Unit (FMU), is
wrapped into an OPC UA server. The automatic generation of an OPC UA server from a FMU
and its integration within a real virtual twin is also presented. Figure 2.1 reports the overview
of the proposed methodology.

10 2 Integrating synthetic and real components of a cyber-physical production system

OPC-UA

Server

FMU
Interface

(.xml)

Functionality

(.so)

Information

Model

FMU

Integration

AML Description

InterfaceFunctionality

AML- FMI

MappingModel

Synthesis

FMU

AML- OPC-UA

Mapping

1

23

4

Fig. 2.1: Overview of the proposed methodology.

The benefits of the proposed approach are :

• Integration of Simulink semantic in AutomationML vendor-neutral standard;
• Automatic synthesis flow of mechanical models from AutomationML;
• Fully automatic generation of synthetic OPC UA servers for equipment evaluation.

The presented work focuses on mapping Simulink into AutomationML as a proof-of-
concept, buts supporting other modeling frameworks can be done by following a similar flow.

The sematic gap between AutomationML and Simulink has been filled with the definition
of a special AutomationML class called SimulinkRoleClassLib.

A Simulink model can be the AutomationML Editor using this SimulinkRoleClassLib.
The use of FMI standard allows to export the synthesized model as a standalone block called

FMU.
This can be embedded inside an OPC UA server automatically, and then be added to a

production plant simulator to perform production product evaluation. A real digital twin inte-
gration example is then presented using Siemens Tecnomatix Plant Simulation, by adding an
automatically generated FMU to the plant description of the ICE lab of University of Verona.

Some works tried to generate simulable models from an AutomationML description [9].
The problem of this approach is that while it’s very powerful and flexible, it requires the defi-
nition and usage of complex ontologies. In [8] the authors explored the usage of semantic web
technologies to support AutomationML model exchange, but the major issue comes from lacks
in the definition of the used onthology.

2.2 Background 11

This research work is organized as follows: Section 2.2 introduces the main concepts needed
to properly understand the rest of the work, like a general overview of the aforementioned
standards.Section 2.3 will discuss about the proposed methodology, while Section 2.4 will show
practical appliance of the work to a real world example, the ICE laboratory from University of
Verona. Finally, Section 2.7 will present some remarks and shows possible future works.

2.2 Background

2.2.1 OPC UA Communication Protocol

OPC Unified Architecture (OPC UA, [10]) aims to standardize M2M communication [11].
Definition of OPC specifications [12] started to simplify and to standardize data exchange

between software applications in industrial environment. The rapid diffusion of the first ver-
sion of OPC specifications was due to the choice of Microsoft DCOM as the technological basis.
However, exactly this point raised the majority of criticism regarding OPC because it was too
focused on Microsoft, platform-dependent and not firewall-capable, and thus not suitable for
use in cross-domain scenarios and for the Internet. When XML and Web Services technologies
have become available, the OPC Foundation adopted them as an opportunity to eliminate the
shortcomings of DCOM. Since 2003 the OPC XML Data Access (DA) specification has offered a
first service-oriented architectural approach besides the “classic” DCOM-based OPC technology.
This Web services-based concept enabled applications to communicate independently of the
manufacturer and platform.

Few years later, the OPC Foundation has introduced the OPC UA standard which is based
on a service-oriented, technology and platform-independent approach, creating new and easy
possibilities of communicating with Linux/Unix systems or embedded controls on other plat-
forms and for implementing OPC connections over the Internet. The new possibilities of us-
ing OPC components on non-Windows platforms, embedding them in devices or implementing
a standardized OPC communication across firewall boundaries allow speaking of a change of
paradigms in OPC technology. OPC UA servers can be varied and scaled in their scope of func-
tions, size, performance and the platforms they support. For embedded systems with limited
memory capacities, slim OPC UA servers with a small set of UA services can be implemented;
at the company level, in contrast, where memory resources are not that important, very powerful
OPC UA servers can be used with the full functionality.

OPC UA specifications now offer a security model, which wasn’t available in the previous
versions of OPC specifications; the OPC UA security governs the authentication of clients and
servers and ensures data integrity, trustworthiness and authorization within OPC communication
relationships [13].

The OPC UA architecture models Clients and Servers as interacting partners. Each system
may contain multiple Clients and Servers. Each Client may interact concurrently with one or
more Servers, and each Server may interact concurrently with one or more Clients. An ap-
plication may combine Server and Client components to allow interaction with other Servers
and Clients. Server to Server [14] interactions in the Client Server model are interactions in

12 2 Integrating synthetic and real components of a cyber-physical production system

which one Server acts as a Client of another Server. Server to Server interactions allow for the
development of servers that:

• exchange information with each other on a peer-to-peer basis, this could include for example
redundancy;
• are chained in a layered architecture of Servers to provide aggregation of data from lower-

layer Servers, higher-layer data constructs to Clients, concentration interfaces to Clients for
single points of access to multiple underlying Servers.

OPC UA can be used at different levels of the automation pyramid for different applications
within the same environment. At the plant floor level, an OPC UA server may run in a con-
troller providing data from field devices to OPC UA clients (e.g. HMIs, SCADA). On top of
the plant floor at operation level, an OPC UA application may be a client collecting data from
the server at the lower level, performing special calculations and generating alarms; an example
is represented by an OPC UA client integrated in an ERP system, obtaining information about
used devices in the plant floor (e.g. working hours) and creating a maintenance request.

Device 1
OPC UA Client

Device 3
OPC UA Server

Device 4
OPC UA Server

Device 2
OPC UA Server

Request Subscription

Response Notify

Message Oriented Infrastructure

Subscriber

Condition Monitoring

Subscriber

Optimization

Publisher DataSetWriter

DataSet

Objects of the application

Information Model

Fig. 2.2: OPC UA stack example

2.2.2 AutomationML

AutomationML is a standard based on XML which aims to provide reliable data exchange in the
engineering process of production systems [15]. An interesting aspect of AML is that it doesn’t
develop any new data format for achieving its purpose, but instead it uses already existing for-
mats, adapted and extended when needed, then merged properly. So far, the representation of

2.2 Background 13

plant specific data in general and in special the plant structure, geometry and kinematics, and
logic description is possible. Additional representations for networks, mechatronics systems,
and others are in progress. Within IEC62714 all parts of AML are going to be standardized inter-
nationally. AutomationML has a lean and distributed file architecture. It does not define any new
file format but combines existing established XML data formats which have been proven in use
for their specific domain. This is why the normative part of the IEC62714-1:2018 document
consists of 32 pages only. The data formats for the following modelling domains are:

• object topologies including hierarchies, properties and relations of objects: CAEX according
to IEC 62424
• geometries and kinematics of objects: COLLADA 1.4.1 and 1.5.0 (ISO/PAS
17506:2012)
• discrete behavior of objects: PLCopen XML 2.0 and 2.0.1; in addition,
IEC62714-4 will allow the usage of IEC61131-10

CAEX according to IEC62424 forms the base of AutomationML. It stores object-oriented engi-
neering information, e.g. a plant hierarchy structure (see AutomationML topology). Each CAEX
object can contain properties and reference geometry, kinematics or logics information stored in
third party XML files. This enables cross-domain modelling and is designed for future extension.

Topologies

Object hierarchies in CAEX form the core of AutomationML (as in figure 2.3). A CAEX object
is a data representation of any asset. It can model physical assets, e.g. a motor, a robot, a tank;
or abstract assets like a function block, a model or a folder. CAEX allows to link those objects to
systems, since every physical or logical system is characterized by internal elements (objects)
which may contain further internal elements, and all elements may have interfaces, attributes
and connections with each other. Finally, CAEX allows the modeling of any plant topology,
communication topology, process topology, resource topology etc.

Geometry and kinematics

As mentioned above AutomationML exploits the international standard COLLADA 1.4.1 and
1.5.0 for the representation of geometry and kinematics information which is standardized as
ISO/PAS 17506:2012. Therefore, AutomationML has developed a two-stage process:

1. relevant geometries and kinematics are modelled as COLLADA files.
2. these files and the data objects within them are referenced out of the CAEX file.

COLLADA stands for COLLAborative Design Activity. It was developed by the KHRONOS
association under the leadership of Sony as an intermediate format within the scope of digital
content creation in the gaming industry.

It is designed to enable the representation of 3D objects within 3D scenes covering all rel-
evant visual, kinematic, and dynamic properties needed for object animation and simulation.

14 2 Integrating synthetic and real components of a cyber-physical production system

InstanceHierarchy
IH

InternalElement
IE

IE

IE

IE

IE

IE

IE

IE

IE

ROLE

ROLE

ROLE

ROLE

ROLE

ROLE

ROLE

ROLE

ROLE

Project

Demo Cell Work Cell

Sequence Unit

Unit

Unit110_Geostation

130_EvacuationUnit Unit

Console Unit

100_TransportEntry Ressource

110_WorkingCell Ressource

120_TransportExit Ressource

Line

Fig. 2.3: Example of a plant topology in AML.

COLLADA is an XML-based data format with a modular structure enabling the definition of li-
braries of visual and kinematic elements. It can contain libraries for the representation of ge-
ometries, materials, lights, cameras, visual scenes, kinematic models, kinematic scenes, and
others.

The most important feature of AutomationML is the clear identifiability of objects in
COLLADA files, which allows the integration of these files into AutomationML. Several data
objects within a COLLADA file have a unique identification (ID) like geometries, visual scenes,
kinematic models and kinematic scenes.

In order to reference these objects, AutomationML has defined a special interface class
within the AutomationMLInterfaceClassLib named COLLADAInterface which shall be
applied to derive the needed interfaces for geometry integration. This interface class itself is de-
rived from the interface class ExternalDataConnector and therefore has an attribute refURI.
This attribute can be used to reference into a COLLADA file, thereby referring to an ID of an ob-
ject modelled in the COLLADA file.
Thus, the value of the refURI attribute shall contain a string structured like
file:///filename.dae#ID. The attribute refType is used to differentiate between various
ways of embedding objects in a modeled scene. It can provide information on how static an
object in the scene is in relation to other objects, e.g. whether a work piece and the conveyor
belt move at the same time.

Modeling behaviour

AutomationML with its object-centric modelling approach enables a dedicated storing of logic
information on object level. For this purpose, certain object semantics as well as object interface
semantics are developed. In addition to that, logic models are identified, commonly used in the

2.2 Background 15

engineering process of a production system, and made exchangeable, but also transformable
among each other. This allows and supports an information enrichment process in terms of
logic information that is required for the scope of AutomationML. All concepts are going to be
standardized in IEC 62714-4.

Logic information is an important aspect for raw system planning, electrical design, HMI de-
velopment, PLC and robot control programming, for simulation purposes, and virtual commis-
sioning. To support the different phases in the iterative production system engineering process
covering different levels of detail, AutomationML needs to be able to store logic information
from different tools and disciplines.

2.2.3 Functional Mockup Interface

The FMI standard defines an interface that allows to encapsulate models from different tools.
The primary goal is to support the exchange of simulation models between suppliers and OEMs
even if a large variety of different tools are used. Actually the 2.0 version of the standard has
been released, and it consists of two main parts: Model Exchange and Co-Simulation.

The Model Exchange interface provides a method to generate C-code in the form of an input
output block. This method is used by different simulators to export only the descriptions of their
models without exposing their internal solver algorithm which, in general, is closed source.

The Co-Simulation interface provides a method to export a model in the form of a block
including also a mathematical solver needed to execute correctly that model. This allows a sim-
ulator to load and execute other models correctly even when the correct solver is not available.
The provided model description is very similar to the Model Exchange one. The main difference
between the two approaches is the location of the solver: in the first case it is provided by the
simulator tool while in the second is integrated into the model exported.

A component which implements the interface is called FMU.

2.2.4 MATLAB/Simulink

MATLAB is a multi-paradigm numerical computing environment, featuring a proprietary script-
ing language developed by MathWorks. MATLAB allows matrix manipulations, plotting of func-
tions and data, implementation of algorithms, creation of user interfaces, and interfacing with
programs written in other languages. The environment is highly configurable and extensible
with plugins, and in fact one of the most popular one is Simulink, which frequently comes di-
rectly with the default MATLAB installation. Simulink adds graphical multi-domain simulation
and model-based design for dynamic and Embedded Systems. In Model-Based Design, a sys-
tem model is at the center of the workflow. Model-Based Design enables fast and cost-effective
development of dynamic systems, including control systems, signal processing systems, and
communications systems. Model-Based Design allows you to:

• use a common design environment across project teams
• link designs directly to requirements
• refine algorithms through multi-domain simulation

16 2 Integrating synthetic and real components of a cyber-physical production system

• automatically generate embedded software code and documentation

Till version 2019b Simulink had a plugin, called “Tool-Coupling Co-Simulation FMU Ex-
port”, that allowed to export a model as an FMU, supporting the Co-Simulation technique. The
problem is that this approach required to have a local MATLAB installation to effectively simu-
late the model, and it wasn’t a robust approach. Starting from MATLAB 2020a, Simulink allows
to export a standalone FMU without requiring an external MATLAB instance, but embedding a
fixed-step solver.

2.2.5 Tecnomatix Plant Simulation

Tecnomatix Plant Simulation is a computer application developed by Siemens PLM Soft-
ware for modeling, simulating, analyzing, visualizing and optimizing production systems
and processes, the flow of materials and logistic operations. By using Tecnomatix Plant
Simulation, users can optimize material flow, resource utilization and logistics for all lev-
els of plant planning from global production facilities, through local plants, to specific lines.
Tecnomatix Plant Simulation belongs to the Product Lifecycle Management Software
(PLM) portfolio. Plant Simulation is a Material Flow simulation or Discrete Event Sim-
ulation (DES) Software. Material flow refers to the description of the transportation of raw
materials, pre-fabricates, parts, components, integrated objects and final products as a flow of
entities. This means that a computer model allows to execute experiments and to run through
“what if scenarios” without either having to experiment with the real production environment
or, when applied within the planning phase, long before the real system exists.

2.3 Methodology

This section describes the methodology adopted to implement the synthetic OPC UA node,
starting from AutomationML. First, the semantic map between Simulink and AutomationML
is explained. Then, the entire generation flow is discussed. Detailed steps are explained for the
actual AutomationML document parsing and also a look at the final OPC UA server, discussing
the adopted solutions.

2.3.1 Mapping Simulink components in AutomationML

This section discusses about the semantic mapping between Simulink and AutomationML.
AutomationML, or more precisely CAEX, uses the concept of Role to define semantics. A role
describes an abstract functionality without defining the underlying technical implementation.
Thus, it has to be seen as an indicator for the semantics of an object which can be described
in an abstract way. Roles can include general attributes (size, number of axes, etc.) and
interfaces (PPRConnector, . . .) to describe the interaction possibilities of the element which
assigns this role. Roles are organized hierarchically in libraries and can have interrelations to
other roles and further elements to describe their dependencies.

2.3 Methodology 17

Fig. 2.4: The final result of SimulinkRoleClassLib

AutomationML defines some basic role sets by default. These roles are based on the general
role class library (AutomationMLBaseRoleClassLib) defined in the AutomationML stan-
dard. The role class AutomationMLBaseRole in the AutomationMLBaseRoleClassLib is
a basic abstract role type and the base class for all standard or user-defined role classes. All
AML objects shall be associated directly or indirectly to the role class AutomationMLBaseRole
to have a common basis, e.g. for simplifying the implementation. Role class libraries can be
defined for general use cases but can also relate to specific domains. They don’t need to be
standardized or defined by AutomationML but can also be created by user groups or sin-
gle users of AutomationML. The main contribution of this work is the definition of a spe-
cific AutomationML RoleClassLib, called SimulinkRoleClassLib, that contains all the
Simulink components semantic with their respective properties (see figure 2.4).

Mapping of Constant

Simulink Constant, represents a simple component that gives as output a constant value.
Inside the Library Browser, the Constant can be found in Sources section, thus the cor-
respondent RoleClass path will be SimulinkRoleClassLib/Sources/Constant. As the

18 2 Integrating synthetic and real components of a cyber-physical production system

Fig. 2.5: Attributes of the Simulink Constant component

Fig. 2.6: The Constant RoleClass Fig. 2.7: The Constant RoleClass only mapped attribute

Constant component doesn’t have any input port, in the correspondent AML RoleClass only
the output port was instantiated (2.6). Attributes of this component are very simple, the only in-
teresting one being Constant value, mapped in AML through a xs:string data type (2.7).
In general, all the attributes will be mapped as strings, because Simulink accepts only strings
(that will be parsed by MATLAB internally).

2.3 Methodology 19

Mapping of Gain

Another simple yet fundamental component being mapped is the Simulink Gain (2.8). In
this case, the component has both an input and an output port (2.10) representing the initial
value and the value multiplied by the gain, and the gain’s value itself is stored in the appro-
priate attribute (2.9). It is worth mentioning the port attributes, common to all I/O ports in

Fig. 2.8: Attributes of the Simulink Gain component Fig. 2.9: The Gain RoleClass only mapped attribute

Fig. 2.10: The Gain RoleClass Fig. 2.11: The Gain input port attributes

SimulinkRoleClassLib. Being instance of the Port base AML interface, all shares the fol-
lowing attributes:

• Direction

It can be In, Out or InOut and it specifies if that port receives or sends data.
• Cardinality

This combined attribute specifies how many connections the port is supposed to have.
• Category

This specifies the type of the data that’s passing through that port.

In addition to these, a fourth attribute was added, SimulinkName. This is because MATLAB uses
special names for manually linking components’ ports. When Simulink components are used,
ports gets numbered starting from 1, both for inputs and outputs, in the way shown in 2.12.

20 2 Integrating synthetic and real components of a cyber-physical production system

Fig. 2.12: How the ports gets named for a Simulink component

Mapping of Disk Friction Clutch

This component belongs to the Simscape library, an extension toolbox of Simulink, which
provides a lot of specific and complex blocks for modeling and simulating multidomain physical
systems (mechanical, rotational, electrical etc.).

Fig. 2.13: Attributes of the Simscape Disk Friction Clutch
component Fig. 2.14: The Disk Friction Clutch RoleClass

This component has a lot of attributes, distributed among tabs. Inside AutomationML this
logical division can be achieved through “composite” attributes as shown in 2.15. Being a
Simscape component, the SimulinkName attribute is different. In fact here ports get named
by position plus number, so the first port at the right will be named RConn1, while the second
will be RConn2 and so on. The same goes for the left sided ports, the only difference being the
first letter which will be L, so we’ll have LConn1, LConn2, etc. as shown in 2.16.

2.3.2 AML to MATLAB

First thing to do is analyzing the AutomationML document and grab the useful information for
converting it to a MATLAB script. Being AutomationML a combination of CAEX, COLLADA and
PLCOpenXML, parsing it is equal to parsing XML. Before beginning to write a parser, research was
done in order to understand if there were already existing parsers, also seeing if they could be

2.3 Methodology 21

Fig. 2.15: The Disk Friction Clutch mapped attributes

Fig. 2.16: Port names for Simscape components

reused for our purpose. The methodology has been implemented in an automatic parser written
in C++.

The conversion from an AutomationML model written with SimulinkRoleClassLib to a
MATLAB script takes place in a dedicated class, called AML2MATLAB. Before the actual conversion
process, the MATLAB scripting commands for generating Simulink models are explained.

MATLAB script

MATLAB provides two basic primitives respectively for adding and connecting Simulink blocks:

• add_block()

• add_line()

In addition to these commands there are a set of other methods needed to set model parameters,
auto-arrange the model’s layout, and so on.

The add_block() primitive takes n parameters as input, with the first one being the
Simulink absolute path of the object, the second one the relative path of the model along
with the block instance name, and from the third onwards the object’s parameters, expressed as

’NAME_OF_THE_PARAMETER’,’PARAMETER_VALUE’

22 2 Integrating synthetic and real components of a cyber-physical production system

Listing 2.1: Matlab script that generates simple Simulink model.

1 model = ’AdderAndMultiplier’;
2
3 new_system(model);
4 open_system(model);
5
6 add_block(’simulink/Commonly Used Blocks/In1’,[model,’/Input’]);
7 add_block(’simulink/Commonly Used Blocks/Sum’,[model,’/Sum’]);
8 add_block(’simulink/Commonly Used Blocks/Product’,[model,’/Product’]);
9 add_block(’simulink/Commonly Used Blocks/Out1’,[model,’/Output’]);

10
11 add_line(model,’Input/1’,’Sum/1’);
12 add_line(model,’Input/1’,’Product/1’);
13 add_line(model,’Input/1’,’Product/2’);
14 add_line(model,’Product/1’,’Sum/2’);
15 add_line(model,’Sum/1’,’Output/1’);

The add_line() primitive takes three input. The first is the name of the system, the
second is the origin of the line (RefPartnerSideA in AML) and the third is the endpoint
(RefPartnerSideB in AML).

Fig. 2.17: The result of the script reported in listing 2.1

Listing 2.1 shows a simple matlab script that represents the simple model shown in fig-
ure 2.17. Lines 6,9 represent the instantiation of all the blocks that composes the model. All the
blocks are then linked add_line function (lines 11,15).

2.3.3 OPC UA server from FMU

The generated model can be easily exported as an FMU through a set of predefined function,
using MATLAB GUI or also through a set of function and embbeded in the matlab script. Now
that the Simulink script has been produced, it can be run inside the MATLAB environment to
produce a standalone co-simulation FMU. The limitation of MATLAB FMU exporter is that the
encapsulated solver used a fixed-step strategy that is not precise like the variable-step solvers.

For the simulation of the generated FMU inside an OPC UA server, a wrapper is needed.
The wrapper has to load the FMU, read its I/O variables, start an OPC UA server and put those
I/O variables in it. This routine has to be executed with a certain frequency and for each loop

2.4 Experimental Results 23

executing a simulation step, using the values from the OPC UA server for I/O, as shown in
2.18. This wrapper has been developed using C++, using FMI4CPP to manage the FMU and the

Start

Generated FMU (*.fmu)

Load FMU Start OPC UA server

Load I/O variables Add I/O variables to
server

Ctrl+C

Loop FMU
using OPC UA server

variables

Ctrl+C

Loop OPC UA server
keeping the variables

updated

End

Fig. 2.18: Structure of the wrapper routine.

open62541 OPC UA stack [16] to create the OPC UA node.

2.4 Experimental Results

In this Section the result of the model generation flow is integrated first into a simple model
and then into the Digital Twin of the ICE lab, an educational lab of University of Verona for

24 2 Integrating synthetic and real components of a cyber-physical production system

demoing Industry 4.0 concepts and research. Both the examples are made using Tecnomatix
Plant Simulation.

The model which gets integrated into both project is the Two Speed Transmission which
represent an electric mechanical engine with two speeds gearbox. It was first mapped to
AutomationML using the SimulinkRoleClassLib, then parsed with amlparser and the re-
sulting script was run inside MATLAB, thus generating an FMU. This FMU is then hosted by running
FMU2OPCUA.

2.5 Simple producer-consumer

The simple model (2.19) is composed of a Source which produces Mobile Units (MUs) in a cer-
tain amount, a Station which represents a generic processing step and a Drain which consumes
the processed unit.

Fig. 2.19: The simple model scheme.

Plant Simulation offers an integrated OPC UA client (the one on the top right of 2.19) which
is fairly simple to use. Once added to the model, its dialog window asks for the IP address
and the port (2.20). Global model variables can be directly connected to the ones exposed by
the server through the Items dialog as shown below in 2.21. By doing this way, whenever the
server variables’ values change, the Plant Simulation variables written in the far-right column
gets updated with the same value automatically.

2.5 Simple producer-consumer 25

Fig. 2.20: OPC UA client main dialog.

Fig. 2.21: Model variable - Server variable connections.

On the Station block in the middle, a method is added on the exit control section, which
means that whenever an MU exits the machine the method is going to get called. As the
FMU2OPCUA program supports different simulation modes, one can either choose to produce
a predefined input signals set based on time and use the SimulationTime exposed variable to
change signal values accordingly, or just rely upon the default stop experiment time and just set
values in that restricted time slice. There’s also another way which was the chosen one, which is
the manual mode. In this mode the simulation gets controlled by the client through the DoStep
port.

26 2 Integrating synthetic and real components of a cyber-physical production system

Fig. 2.22: The Brake and the Gear signals for the Station.

In this case, the response is quiet, as the maximum gear value reached is 1 and the brake gets
up till 0.5, so when the simulation time is 10 the SpeedOutput will already be 0. The result
is that for every MU produced by the source, 10 seconds will pass when entering the station,
regardless of the simulation speed.

2.6 The ICE lab model 27

2.6 The ICE lab model

Fig. 2.23: The ICE lab Digital Twin.

The ICE lab model is quite complicated as shown in 2.23. It’s composed of many parts:

• A vertical storage
• The conveyor belt system and a mini pallet
• An electronic control panel
• A milling machine
• Two 3D printers
• An assembly station
• A robotic vision system

This digital twin simulates the following process:

1. The MUs stored in the vertical storage are taken on the mini pallet
2. When the mini pallet reaches the stations, it gets processed
3. The milling station is where the FMU has been inserted

The Two Speed Transmission model can be used to mimic the processing time of the milling
machine. Different “recipes” can be used, each one representing a different signal set, selectable
from a menu on the top right corner. This is useful for simulating the different effects that
different input signal sets can have on the processing times.

28 2 Integrating synthetic and real components of a cyber-physical production system

Fig. 2.24: Recipe 1. Fig. 2.25: Recipe 2.

Fig. 2.26: Recipe 3. Fig. 2.27: Recipe 4.

Fig. 2.28: The four recipes input signals

Four recipes were made, represented in 2.28. Figure 2.33 reports the different output ob-
tained with the recipes.

It can be observed that when the gear reaches value 2, the speed output goes up to 250−300,
while in the first recipe it doesn’t even go beyond 30. In the first recipe the gear has a maximum
value of 1 and it lasts 2 seconds, while the brake is also more powerful reaching 0.50. In the
other recipes the relation between the speed and the brake intensity and duration can be easily
observable. The As the brake gets 0 after the 5th second of simulation, the speed slowly goes
down to 0 because of the inertia.

Note that the timing reported in the graphs are the ones of Plant Simulation, which is running
at 47× the real speed, while the FMU is running at real time, so for example in the second recipe
the actual time that the motor took for reaching a speed value of 0 is 30 seconds.

2.7 Conclusions

This work proposed a flow to model generic models in a vendor neutral language as AutomationML
and showed a semi-automatic flow of model generation and simulation.

This work showed the possibility to map a Simulink model into AutomationML without
the use of ontologies [9].

Then, it showed the integration of OPC UA protocol that enable the interconnection with real
equipment and synthetic equipment.

2.7 Conclusions 29

Fig. 2.29: Recipe 1 Output Fig. 2.30: Recipe 2 Output

Fig. 2.31: Recipe 3 Output. Fig. 2.32: Recipe 4 Output.

Fig. 2.33: Output of the four recipes.

There are many possible areas of improvement in this flow, and also some ideas that could
be useful in some scenarios. Improvements that can be applied to the prototypes for making
them usable software products are:

• Map in the SimulinkRoleClassLib the entire Simulink library
• Further expand the AML lib with Simscape library
• Add correspondent mapping behavior in the JSON files
• Implement support for subsystems during the MATLAB model generation
• Making AML parser better in supporting SystemUnits and multiple RoleClasses

In addition to these improvements, there are also some ideas based on this work that could be
worth exploring, such as:

• Explore the possibility to develop a MATLAB plugin that exports a Simulink model in
AutomationML

• After having implemented support for subsystems, implement support to combine different
models in AML, expressing a full production chain
• Mapping other modeling languages such as Modelica

Part III

Heterogeneous Models

3

Automatic Integration of HDL IPs in Simulink using FMI and
S-Function Interfaces

3.1 Introduction

Model-based design is nowadays one of the most used approach to tackle heterogeneity and
complexity of modern systems [17]. High-level models are step-by-step refined to reach the
final system implementation. Over the years, Simulink by Mathworks [18] became the stan-
dard “de-facto” in Model-based systems engineering. It provides a nice graphical environment
that allows designers to easily model physical systems and their controllers. It provides many
different libraries (i.e., toolboxes) full of models and functionalities useful to build and ana-
lyze simulations. These features lead it to became the favorite tool of many control and system
engineers.

However, Simulink does not provide mechanisms that allows to simulate computational sys-
tems. For instance, it does not natively allow to simulate the exact behavior of a SW running
on top of an actual HW platform. A task that can be necessary to accurately evaluate timing
of HW/SW components controlling cyber-Physical systems [19]. Thus, to perform such kind
of analysis in Simulink it will be necessary to exploit HW-in-the-loop and co-simulation tech-
niques. These require specific expertise and are extremely error prone and time consuming:
as such, they may negatively impact the time-to-market. This limitation must be overcome as
cyber-physical systems and smart devices are everyday more used to control physical processes.
In this work we propose a methodology to automatically generate Simulink-compliant blocks
from HW Description Language (HDL) models.

The methodology starts from either a Verilog or a VHDL Register Transfer Level (RTL)
model. The HDL model is automatically abstracted into an equivalent cycle-accurate C++

model by a state-of-the-art abstraction methodology [20]. We extend this code-generation step
to map the abstracted models into two interfacing technologies supported by Simulink: the
Functional Mock-up Interface (FMI) [21] and the proprietary C MEX S-Functions.

The models of HW devices generated by the presented methodology can be easily imported
within Simulink. Thus, they provide a simpler and more efficient alternative to co-simulation
and HW-in-the-loop techniques. To show the advantages of the approach we compared the
performance in terms of simulation speed on a set of HDL benchmarks. First, we integrated
them within Simulink by co-simulating them using a commercial HDL simulator. Then we

34 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

integrated the benchmarks by applying the proposed methodology. The experimental results
showed up to one order of magnitude speed-up with respect to state-of-the-art co-simulation
environments, while preserving accuracy.

Section 3.2 presents some literature about heterogeneous systems simulation, the necessary
background and will introduce a running example used throughout the paper. Section 3.3 will
present the methodology and its application to the running example. Section 3.4 reports the
experimental evaluation of the methodology. After discussing our results, in Section 3.5 we
draw some conclusions and give an overview about our ongoing and future research directions.

3.2 Related Works

Model-Based Systems Engineering [22, 23] requires a multitude of tools to be integrated at
each design step. This is imposed by the amount of heterogeneous domains involved in modern
systems [24]. Many design steps (e.g., validation or performance estimation, etc.) require holis-
tic system simulation, usually achieved through co-simulation [25]. Multiple domain-specific
simulators are connected to each other; one of the simulator takes care of coordinating and
synchronizing all the involved simulators to achieve the complete system emulation. At the
state-of-the-practice, Mathworks Simulink [18] is the standard de-facto system simulation tool.
For this reason, many attempt to extend its capability to specific domains have been carried out.
It has been connected to network simulators [26,27], digital HW simulators [28], instruction-set
simulators [29] and many other different kinds of simulators. Furthermore, it has been coupled
also with other specific multi-physics simulators. For instance, Haoping et al. used Synopsys
Saber [30], Wang et al. proposed an approach using Adams [31] or While in [32] it has been pre-
sented a scenario mixing PSpice with Simulink. Another work shows the benefits of coupling
Simulink with a Manufacturing Simulator, with the objective of obtaining more accurate esti-
mation about the production quality of a manufacturing system [33]. Other approaches propose
solutions to couple complex computational systems with Simulink in order to model and verify
cyber-physical systems. In [34] Kawahara et al. connected SysML and Simulink to test and ver-
ify the correctness of an embedded system. In [35] Tudoret et al. uses the SIGNAL program-
ming language to model real-time constraints of a software controlling a a physical scenario
designed using Simulink. Kung et al. coupled an HDL commercial simulator with Simulink for
early validation of HW constraints [36]. All the approaches mentioned above use co-simulation
techniques that have been proven to be computational demanding, while its setup may be an
error-prone and time consuming processes [24]. As such, some alternative approaches have
been defined: they aim at integrating models by translating and importing them into the target
simulation environment [37, 38]. However none of the previous works provides neither ab-
straction nor automation. These features are focal in the approaches presented in [39, 40]: the
heterogeneous models of the system components are translated into a homogeneous holistic
representation of the cyber-physical system to simulate. However, these approaches requires
that the designer can access the original source code of each single part of the system: a rare
eventuality in real design flows. The methodology presented in this chapter aims at exploiting

3.2 Related Works 35

tools integration, while providing automation. It automatically integrates cycle-accurate mod-
els of digital HW components within Mathworks Simulink through automatic abstraction and
translation of the original HW IP cores, and then automatically enriching the generated code to
interface it with the target simulator.

3.2.1 Running example

For the sake of clarity, in the following of the chapter we pair the presentation with a running
example that represents a IP core HDL description. Its code is depicted in Listing 3.1. It is a
Verilog model of a HW module counting the number of positive bits in a 64-bit integer given as
input to the module. It carries on such a task by employing a synchronous process performing
combinational operations and an asynchronous process controlling the counting algorithm. It
has been written to provide a minimal while complete example for the proposed methodology.

3.2.2 FMI-Standard

The basic blocks of a FMI-based simulation environment are called Functional Mock-up Units
(FMUs). Multiple FMUs can be imported within simulation environments such as Simulink that
takes care of managing FMUs execution. Each FMU may implement the Model Exchange or
the Co-simulation version of the FMI standard. A Model Exchange FMU requires an external
solver to simulate. A Co-simulation FMU must provide the solver within its functionalities.
This work focuses only on the Co-simulation version of the standard, being more suitable to
model discrete behavior.

A co-simulation FMU is composed by an XML file and a dynamic library implementing
its functionality. The XML file specifies all the variables that are exposed to the simulation
environment by the FMU [21]. For each variable, the XML file must specify its name, causality
(e.g., input, output, parameter, etc.), its type and a value reference. The supported variable types
are 32 bit integer, real, string and boolean. The value reference of a variable is required to be
unique for all variables of each type: each variable will be uniquely identified by its type and
value reference pair.

The dynamic library must be generated using C-like linking. It must implement the func-
tionality through a set of functions defined by the standard:

• The fmi2SetupExperiment function is usually used to initialize the internal variables of
the FMU

• The fmi2Set function sets the value of an internal variable of the FMU i.e., assigns a value
to an input.

• The fmi2Get function gets the value of an internal variable of the FMU i.e., returns the
value of an output.

• The fmi2DoStep advances the simulation time of the component executing the behavior
defined by the model.

36 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Listing 3.1: Original Verilog code of the running example.

1 module bit_counter(clk,reset,number,nready,result,rready);
2
3 input clk, reset, nready;
4 input [63:0] number;
5 output reg rready;
6 output reg [4:0] result;
7
8 integer state, next_state , index;
9 localparam state_reset=0, state_counting=1, state_output=2;

10
11 always @ (posedge clk or negedge reset) begin
12 if(reset == 1’b0)
13 state <= state_reset;
14 else begin
15 state <= next_state;
16 case(next_state)
17 state_reset: begin
18 index <= 0;
19 result <= 5’b00000;
20 rready <= 1’b0;
21 end
22 state_counting: begin
23 if(number[index] == 1’b1)
24 result = result + 1;
25 index = index + 1;
26 rready <= 1’b0;
27 end
28 state_output:
29 rready <= 1’b1;
30 endcase
31 end
32 end
33
34 always @ (state or nready or index or number) begin
35 case(state)
36 state_reset:
37 if(nready == 1’b1) next_state <= state_counting;
38 else next_state <= state_reset;
39 state_counting:
40 if(index > 63) next_state <= state_output;
41 else next_state <= state_counting;
42 state_output:
43 next_state <= state_output;
44 endcase
45 end
46 endmodule

While the standard defines the signature of all the functions to implement, it does not define
the sequence in which these functions should be called. It rather defines only some limitations
on the possible combinations.

3.2 Related Works 37

In the last months the FMI Steering Committee announced a new version of the standard
(i.e., version 3.0) introducing a new interface called Hybrid Co-Simulation, and inspired by the
some recent research [41]. It should introduce the possibility to easily handle Discrete-Event
Systems. As of today, this new interface is in a pre-alpha status and some of the currently
proposed features might end up to be not approved in the final version of the standard update.

3.2.3 Simulink C MEX S-Functions

C MEX S-Functions are the main mechanism provided by Mathworks Simulink to import cus-
tom C/C++ code. They provide similar concepts with respect to the FMI standard. However,
they do not impose the signature of the functions to implement. S-Functions require to fill a
configuration file specifying, among other parameters, the signature of some functions (i.e.,
callback methods) that will be used by the simulators to execute the functionality. In this work
we will use two of these callback methods, that are:

• the Initialization function performs initialization actions at the simulation startup. Its name
is specified in the configuration file through the mdlStart method.

• The Outputs function is a C function that takes as parameter a set of input values and a set
of references to output variables. It defines the functionality the S-Function must implement
at each simulation time. It is specified through the mdlOutputs callback method.

The simulator executes the initialization function when the model is instantiated. Then, it
executes its output function at each simulation step. Thus, the order in which the input-reading,
execution, and output-writing operations are performed is managed internally to the output
function by the programmer.

3.2.4 Automatic abstraction of HDL IPs

Efficient HDL simulation has been achieved in the recent years by applying automatic abstrac-
tion [42] and code generation [43, 44]. HDL models are translated into functionally equivalent,
cycle-accurate C/C++ models.

Since this work aims at generating cycle-accurate models based on the FMI Standard or
Mathworks’ S-Functions, state-of-the-art abstraction and code generation techniques are suit-
able to be reused. This work relies on the technique described in [20] to generate the C++

models that will be later wrapped within FMUs or S-Functions. The approach in [20] works as
follow:

• a front-end phase parses and analyzes the input HDL model. It extracts the digital processes
described in the model and all the dependencies between processes (e.g., sensitivity lists,
signal writing and reading, etc.). Dependencies analysis is required in order to manage de-
scriptions involving both synchronous and asynchronous processes.

• The analysis produces a dependencies graph: it is used to generate a process scheduling
that allows to reproduce the cycle-accurate behavior of the model. The scheduling gener-
ation starts from synchronous processes and then proceeds considering the dependencies

38 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

of already scheduled processes. Furthermore, the scheduling generation procedure resolves
eventual circular dependencies between processes: resolution feasibility is guaranteed by
synthesizability of the considered HDL models. As such, the RTL protocol is abstracted
into a Transaction-level protocol [42] and the abstracted model is externally synchronous
while reproducing asynchronicity internally.

• The model is translated into C++. Each process is translated into an equivalent C++ im-
plementation. A mechanism based on replicated variables, flags and supporting functions is
automatically generated to emulate processes concurrency. Each transaction is executed by
the execution of a function (i.e., simulate function) to which is passed a pointer to a pay-
load data structure (i.e., model_iostruct). This structure contains a field for each input
or output port of the original model (except for the clock signal, being it abstracted away).
As such, each simulation cycle starts by populating the input/output data structure, then the
simulation function is called and at its completion the data structure is read.

Listing 3.2 sketches the code generated by applying [20] to the guiding example in List-
ing 3.1. The simulate function (Lines 1-10) performs an input phase to read the values
in the io_exchange structure. Then, execution of synchronous processes is managed by
synch_elaboration function (Lines 12-20). Concurrency is reproduced by combining the
flag_elaboration (Lines 22-29) and update_event_queue (Lines 31-53) functions that
manages variables replication and the supporting flags.

We extend the last step of the approach (i.e., automatic C++ code generation) to embed
generated models within FMU and S-Functions.

3.3 Methodology

We present two different code-generation alternative to integrate cycle-accurate descriptions
within Mathworks Simulink models. Both alternatives rely on C++ models generated when
applying the automatic abstraction of HDL IP cores described above. The C++ models are
automatically customized to be compliant with one of the two interfacing technology supported
by Simulink: FMI Standard and C MEX S-Functions. In the former case, the cycle-accurate
model can be imported within Simulink as a FMU using the native FMI interface introduced in
the latest versions of the simulator. In the latter case, the model becomes a native Simulink block
that can be easily integrated within any model. Figure 3.1 gives an overview of the abstraction,
code generation and interfacing flow presented in this paper.

When using HDLs for simulation, constructs are meant to describe HW simulation events.
These primitives may represent internal events of the device, or interface-level events of the
IP. The latters are those events that are visible to whatever interacts with the IP. They may be
the model initialization, input reading or output writing operations and, in the case of cycle-
accurate models, the execution of a simulation cycle with the consequent temporal progress
of the model. We summarizes in Table 3.1 the mapping defined between the HDL constructs
necessary to interact with an IP, and the primitives defined by the two target interfaces.

3.3 Methodology 39

Listing 3.2: Automatically generated RTL processes scheduler.

1 void bit_counter::simulate(bit_counter_iostruct * io_exchange)
2 {
3 input_phase(io_exchange);
4 synch_elaboration();
5 while (process_in_queue) {
6 flag_elaboration();
7 update_event_queue();
8 }
9 output_phase(io_exchange);

10 }
11
12 void bit_counter::synch_elaboration()
13 {
14 process();
15 flag_elaboration();
16 flag_neg_reset = false;
17 flag_number = false;
18 flag_nready = false;
19 update_event_queue();
20 }
21
22 void bit_counter::flag_elaboration()
23 {
24 if (flag_neg_reset) process();
25 if (flag_state || flag_nready ||
26 flag_index || flag_number)
27 process_0();
28 if (flag_result_out_sig) result_update_process();
29 }
30
31 void bit_counter::update_event_queue()
32 {
33 process_in_queue = false;
34 if (index != index_new)
35 {
36 index = index_new;
37 flag_index = true;
38 process_in_queue = true;
39 } else flag_index = false;
40 next_state = next_state_new;
41 if (result_out_sig != result_out_sig_new)
42 {
43 result_out_sig = result_out_sig_new;
44 flag_result_out_sig = true;
45 process_in_queue = true;
46 } else flag_result_out_sig = false;
47 if (state != state_new)
48 {
49 state = state_new;
50 flag_state = true;
51 process_in_queue = true;
52 } else flag_state = false;
53 }

40 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Functional
Abstraction

Datatype
Abstraction Abstracted

HDL
Description

(HIF)

HDL
Description

(HIF)

HDL
Description
(VHDL/Verilog)

FMI
WRAPPER

(C)

Abstracted
HDL
(C++)

S-Function
Wrapper

(C)

Abstracted
HDL
(C++)

Matlab
Generation

Script
(.m)

XML
Interface

(.xml)

FMU

S-Function Block

FMU
Generation

S-Function
Block Generation

Fig. 3.1: Main steps of the proposed methodology. The boxes represent the different files involved and generated
during the different steps of the methodology. Green boxes identifies models at the Register Transfer Level of Ab-
straction; orange boxes represents abstracted models; blue boxes represents interface-specific files. The different
transformation steps of the methodology are represented by the arrows and their corresponding labels. Checked
arrows represent steps reused from the methodology in [20], solid arrows represents novel steps. For automation
reasons, the flow is built on top of HIFSuite [44], and the different manipulations are performed on the Heteroge-
neous Intermediate Format (HIF) provided by the suite.

Table 3.1: Mapping of HDL events onto FMI and S-Functions primitives.

HDL simulation
Events

FMI Standard
Primitives

S-Functions
Primitives

Initialization
Sequence of assignments
in initialization mode

Initialization function defined by
the mdlStart callback method

Simulation Cycle
Execution

fmi2DoStep
Output function defined by
the mdlOutputs callback method

Input Signals
Reading

fmi2SetInteger and
fmi2SetBoolean

Parameters passed to
Compute Output function by value

Output Signals
Writing

fmi2GetInteger and
fmi2GetBoolean

Parameters passed to Compute
Output function by reference

• During model initialization, a HDL simulator instantiates all the necessary data-structures
required to carry on the simulation and it assigns initial values to signals defined by the
model. Two functions can be used to reproduce it through APIs defined by the FMI Stan-
dard: fmi2Instantiate allocates any internal data-structure that may be required by the
model to simulate. The fmi2SetupExperiment function is used to set variables initial val-
ues. The same is reproduced by S-Functions using the mdlStart callback method. The
function specified will perform a set of assignments setting variables to their default values.

3.3 Methodology 41

Table 3.2: Mapping of HDL data-types to FMI and Simulink.

HDL data-types C/C++
FMI Standard
data-types

Simulink
data-types

Boolean, Bit,
Logic

bool Boolean int8

Unsigned,
Bit Vector,
Logic Vector

uint64_t,
uint32_t,
uint16_t,
or uint8_t

Integer
uint32,
uint16,
or uint8

• The Simulation of a cycle execution is reproduced by an FMU through its implementation
of the fmi2DoStep function. C MEX S-Functions reproduces it using the mdlOutputs
callback method that implements the IP core output function.

• HDLs input signal reading is reproduced by an FMU thanks to the fmi2Set functions. This
work relies only on two functions: fmi2SetInteger and fmi2SetBoolean. S-Functions
use parameters of their output functions to get input. More precisely, all the parameters that
are passed by value to the output function are intended to be input values.

• HDLs output signal writing is reproduced by an FMU through the fmi2Get functions. This
work uses the fmi2GetInteger and fmi2GetBoolean functions. S-Functions use param-
eters of their output functions to return output values: all the parameters that are passed by
reference to the output function are intended to store output values after a cycle execution.

We now detail the features of the code generated by the proposed methodology.

3.3.1 Data-type abstraction

Simulink relies on the continuous dataflow model of computation, where blocks are connected
through typed connections. However, Simulink, and C MEX S-Functions, supports only a lim-
ited set of data-types1 for such connections. HW-specific data-types (e.g., many-valued logic,
bit, logic vectors, etc.) are not supported. Also integers are limited in bit span and only signed
and unsigned int8_t, int16_t, int32_t are supported. Furthermore, a boolean data-type is
not provided. On the other hand, the FMI standard provides the Boolean data-type but integers
are supported only as 32 bit signed values by the current FMI standard API. It is thus necessary
to map types of the IP cores interface onto the supported types.

Table 3.2 summarizes the mapping chosen between HDL-specific, FMI and Simulink data-
types. The HDL to C/C++ automatic abstraction provides also data-types abstraction: HW-
specific data-types are represented as described in the Table’s second column. Boolean, single
bit and multi-valued logic values are abstracted to boolean values (i.e., bool in C/C++). This
is mapped onto FMI’s Boolean type and onto the int Simulink type, as the boolean type not
provided in this latter case.

1 https://www.mathworks.com/help/simulink/ug/data-types-supported-by-simulink.html

42 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Any unsigned, bit vector or logic vector is abstracted into a corresponding C/C++ standard
unsigned integer (i.e., uint64_t, uint32_t, uint16_t, and uint8_t). The standard unsigned
integer chosen is the one using the minimum amount of bit capable to represent the original
value. If the original type span is greater than 64 bits, then the port is splitted into multiple
ports with a span not greater than 64 bit before being abstracted. When generating FMUs,
this is mapped onto the Integer type, while the C/C++ standard integer is preserved when
generating C MEX S-Functions. Both the FMI Standard and Simulink supports at most 32 bits
integers: if a port is wider than 32 bits it is splitted into multiple ports.

Consider the running example in Listing 3.1, and the resulting FMU XML definition file
(i.e., Listing 3.3) and S-Function (i.e., Listing 3.7). Lines 3 to 6 of Listing 3.1 defines the
types of the ports. Single-bit multi-valued logic ports, such as nready and rready are mapped
onto boolean variables to build the corresponding FMU (Listing 3.3, lines 34-38 and 40-44),
while they are mapped onto int when generating the corresponding S-Function (Listing 3.62

line 4 and Listing 3.7 lines 3 and 6). Logic vectors, such as number and result are mapped
onto Integer (Listing 3.3, lines 10 to 26). number has a width greater than 32-bit: it has been
split into two different 32-bit variables: number_1 and number_2 (lines 10-14 and 16-20 in
Listing 3.3). Something similar has been done to generate the equivalent S-Function (lines 4-5
in Listing 3.7).

3.3.2 Automatic generation of Functional Mockup Units

In an FMU input and output variables are specified by using an XML description. This step
automatically generates such a file:

• the input HDL model is parsed and analyzed to identify its top-level design unit.

• All the input and output ports specified in the top-level unit are analyzed and their types are
manipulated according to the mapping described in the previous Section and sketched in
Table 3.2.

• The header part of the XML file is printed according to the information gathered during
the HDL model analysis. The header part contains the name (i.e., modelName) and the
identifier (i.e., guid), some misc information about the FMU and the co-simulation features
it provides.

• For each port it is specified its causzality (i.e., input or output), its description, the port name,
its value reference and its variability (i.e., continue or discrete). Then, a XML tag specifies
the port type. The tag is chosen according to the mapping described above, thus only the
Integer or Boolean tags are generated by the methodology. The parameter starts is
inserted in the tag to specify the variable initial value.

Listing 3.3 reports the XML automatically generated from the bit_counter running exam-
ple. The header part is composed by lines 1-6, while the variables corresponding to the original

2 Names of input and output parameters of the output function are fixed by Simulink. Inputs are named uN and
outputs are named yM, where N and M are Natural numbers. Output variables must be arrays, being them passed
by reference to the output function.

3.3 Methodology 43

Listing 3.3: modelDescription.xml file of the bit_counter module.

1 <fmiModelDescription copyright="generated by HIFSuite"
2 guid="e820d24d -aeaf-47fa-b9b2-a185950d71a9"
3 modelName="bit_counter"
4 fmiVersion="2.0">
5
6 <CoSimulation/>
7
8 <ModelVariables>
9

10 <ScalarVariable causality="input" description="int"
11 name="number_1" valueReference="0"
12 variability="discrete">
13 <Integer max="18446744073709551615" min="0" start="0"/>
14 </ScalarVariable>
15
16 <ScalarVariable causality="input" description="int"
17 name="number_2" valueReference="1"
18 variability="discrete">
19 <Integer max="18446744073709551615" min="0" start="0"/>
20 </ScalarVariable>
21
22 <ScalarVariable causality="output" description="int"
23 name="result" valueReference="2"
24 variability="discrete" initial="approx" >
25 <Integer max="255" min="0" start="0"/>
26 </ScalarVariable>
27
28 <ScalarVariable causality="input" description="bool"
29 name="reset" valueReference="0"
30 variability="discrete">
31 <Boolean start="false"/>
32 </ScalarVariable>
33
34 <ScalarVariable causality="input" description="bool"
35 name="nready" valueReference="1"
36 variability="discrete">
37 <Boolean start="false"/>
38 </ScalarVariable>
39
40 <ScalarVariable causality="output" description="bool"
41 name="rready" valueReference="2"
42 variability="discrete" initial="approx">
43 <Boolean start="false"/>
44 </ScalarVariable>
45
46 </ModelVariables>
47 <ModelStructure/>
48 </fmiModelDescription>

44 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Verilog ports are specified from line 8 to 46. Variables number_1 and number_2 are the result
of the manipulations applied to the number port to make it compliant with the 32-bit limitation
imposed by the FMI Standard. It is worth noticing that the clock variable is not present: this is
due to the RTL to cycle-accurate abstraction applied to obtain the starting C++ code.

Each variable is uniquely identified by the pair composed by its type (i.e., Boolean or In-
teger) and its value reference. For this reason, different variables may have the same value
reference if they belong to different types. It is the case for the number_1 and reset variables
in lines 10-14 and 28-32. While this intuitively may lead to ambiguity, it is properly managed
by the input and output C functions defined by the FMI standard and implemented by the C++

model implementation.
Other than the XML file, the FMU must provide the implementation of the C API, defined

by the standard, in the form of a dynamic library. The methodology continues by manipulating
the C++ code generated during the automatic model abstraction summarized in Section 3.3.1.
A sketch of the starting C++ code was reported in Listing 3.2. The functions provided by
the scheduler embedded after abstraction must be “wrapped” within the FMI Standard API.
Listing 3.4 reports a sketch of the C/C++ code generated for our running example:

• A constant is defined with the value of the FMU’s GUID (i.e., MODEL_GUID). Any operation
using the GUID of the model uses this constant (line 3).

• A C structure called ModelInstance is declared and used as a container for all the infor-
mation necessary to store during the model execution. It contains a pointer to an instance
of the model implementation, a pointer to the input/output data-structure used by the ab-
stracted model to communicate, some other information such as the local time and number
of executed cycles (line 5 to 12).

• The fmi2DoStep function is implemented (lines 14-17): it takes care of simulating one
execution cycle of the model and update the FMU internal time (lines 19-26).

• The fmi2SetInteger, fmi2GetInteger, fmi2SetBoolean and
fmi2GetBoolean are implemented to manage the input and output phases (lines 29-43).
Listing 3.5 exemplifies the implementation of the fmi2SetInteger function for the run-
ning example. vr is the array of size nvr containing the value references of the integer
variables to set. The value array contains nvr integers that are the values to be set. The
for loop (lines 10-21) takes care of setting the correct values to the specified variables. The
structure of the other input and output functions recall the one presented.

The generated C++ code must be compiled to produce a shared library. Note that, it is pos-
sible to compile different libraries supporting many different architectures. The library Applica-
tion Binary Interface (ABI) must be compatible with the C API. As such, it can be compiled by
using any C++ compiler, however its linking must be compatible to the C linking and it must
not perform names mangling.

Finally, the shared libraries and the XML files can be compressed and packet within an
.fmu file. Such a file can be imported by any simulator supporting the FMI Co-Simulation 2.0
Standard, such as Simulink using the new native interface developed by Mathworks or any other
FMI-compliant toolbox.

3.3 Methodology 45

Listing 3.4: Skeleton of the FMI implementation of the bit_counter module.

1 #include <fmi2Functions.h>
2 #include "inc/bit_counter.hh"
3 #define MODEL_GUID "352e3781-f5a3-4914-abd7 -687397bff7fe"
4 ...
5 typedef struct ModelInstance{
6 bit_counter * model;
7 bit_counter::bit_counter_iostruct * iostruct;
8 char * instanceName;
9 int32_t cycle_number;

10 fmi2Real time;
11 ...
12 } ModelInstance;
13 ...
14 fmi2Status fmi2DoStep(fmi2Component c,
15 fmi2Real currentCommunicationPoint ,
16 fmi2Real communicationStepSize ,
17 fmi2Boolean noSetFMUStatePriorToCurrentPoint)
18 {
19 bit_counter::bit_counter_iostruct * iostruct;
20
21 ModelInstance * comp = (ModelInstance *) c;
22 bit_counter * model = comp->model;
23 iostruct = comp->iostruct;
24 model->simulate(iostruct, comp->cycle_number);
25 comp->time = comp->time + communicationStepSize;
26 return fmi2OK;
27 }
28 ...
29 fmi2Status fmi2GetInteger(fmi2Component c,
30 fmi2ValueReference * vr,
31 size_t nvr,
32 fmi2Integer * value)
33 {
34 ... // Implementation of read port operations.
35 }
36 ...
37 fmi2Status fmi2SetInteger(fmi2Component c,
38 fmi2ValueReference * vr,
39 size_t nvr,
40 fmi2Integer * value)
41 {
42 ... // Implementation of write port operations.
43 }

3.3.3 Automatic generation of C MEX S-Functions.

While the just discussed FMI-based generation alternative is portable to multiple tools, the sec-
ond code generation alternative relies on proprietary C MEX S-Functions. S-Functions allows
to specify custom Simulink blocks expressing their functionalities as C/C++ functions. Being a
native Simulink technologies S-Functions generation is simpler, but not portable. As for FMUs,
S-Functions generation starts from the C/C++ models generated after applying the HDL to

46 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Listing 3.5: Skeleton of the fmi2SetInteger function implementation for the bit_counter module.

1 fmi2Status fmi2SetInteger(
2 fmi2Component c, fmi2ValueReference * vr,
3 size_t nvr, fmi2Integer * value) {
4 bit_counter::bit_counter_iostruct * iostruct;
5
6 ModelInstance * comp = (ModelInstance *) c;
7 iostruct = comp->iostruct;
8 size_t i = 0L;
9 // Check for errors...

10 for (i = 0L; i < nvr; i = i + 1L) {
11 switch ((int32_t) (*(i + vr))) {
12 case ((int32_t)0L):
13 iostruct ->number = *(i + value);
14 break;
15 case ((int32_t)1L):
16 iostruct ->result = *(i + value);
17 break;
18 default:
19 break;
20 };
21 }
22 return fmi2OK;
23 }

Listing 3.6: Matlab generation script for the running example.

1 def = legacy_code(’initialize’);
2 def.SFunctionName = ’bit_counter_mex_system’;
3 def.StartFcnSpec = ’createbit_counter()’;
4 def.OutputFcnSpec = ’void bit_counter_Output(
5 int8 u1, int8 u2, uint32 u3, uint32 u4,
6 int8 y1[1], uint8 y2[1])’;
7 def.TerminateFcnSpec = ’delete_bit_counter()’;
8 def.HeaderFiles = {’bit_counter.hh’};
9 def.SourceFiles = {’bit_counter.cc’};

10 def.IncPaths = {’inc’};
11 def.SrcPaths = {’src’};
12 ...
13 def.SampleTime = [10*10^-6 0];
14 def.Options.language = ’C++’;
15 ...

C/C++ automatic abstraction. Then, a MATLAB .m file must be generated to specify which
functions will implement the required callback methods. The MATLAB function described in
the file generates the Simulink block. While the entire specification of such a configuration file
is available in the Simulink documentation, Listing 3.6 reports the main part of the MATLAB
file generated by the proposed methodology:

• the name of the block that will implement the model is specified by the SFunctionName
attribute.

3.3 Methodology 47

Listing 3.7: Output function for the C MEX S-Function implementing the bit_counter model.

1 ...
2 void bit_counter_output(int8_t reset,
3 int8_t nready,
4 uint32_t number_1 ,
5 uint32_t number_2 ,
6 int8_t * rready,
7 uint8_t * result)
8
9 {

10
11 input_phase(reset, nready, number_1 , number_2);
12 synch_elaboration();
13
14 while (process_in_queue) {
15 flag_elaboration();
16 update_event_queue();
17 }
18
19 output_phase(rready, result);
20 }
21 ...

• The C/C++ initialization function responsible of allocating resources and initialize the data-
structure of the module is specified by the callback method StartFcnSpec. This function
is also responsible of initializing the Simulink block once instantiated.

• The concrete implementation (i.e. output function) of the system is specified by the OutputFncSpec
callback method. The function must take care also of managing input and output of the
block. For this reason, input and output variables are specified in its signature as param-
eters. The input variables are passed by value, while output variables are passed through
reference. The input variable names have the prefix u, while output variable names are pre-
fixed y. The data-types of the variables are assigned according to the mapping discussed
above.

• Some other parameters must be generated to specify the location of the source and header
files, the input language and (optionally) the methodology provide a sample time to the
block. If it is not specified, it must be specified manually by the user before generating the
block from MATLAB.

The functions specified in the MATLAB file are implemented by manipulating the abstracted
model. In particular, the initialization function is automatically generated to perform all the as-
signments necessary to initialize the block. Then, the output function generated “wraps” the
main simulation function generated by the abstraction procedure, as well as the input and
output phase. Listing 3.7 shows the implementation of the output function generated for the
bit_counter example. The reset, nready, number_1 and number_2 parameters are input
variables corresponding to u1, u2, u3 and u4 of line 5 of Listing 3.6. The rready and result
variables are output of the block and corresponds to the y1 and y2 parameters of line 6 of

48 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

Table 3.3: Characteristics of the benchmarks and time required for the automatic code generation.

Benchmark LoC
Ports

Interface
bits

Generation
time (s)

Input Output Input Output FMU S-Func.
DES56 1186 6 8 132 169 110.61 89.46
AES 1854 6 2 260 129 57.59 40.95
CAMELLIA 284 7 2 260 129 14.15 2.94
XTEA 374 6 2 195 64 15.74 5.26
ECC 180 9 2 26 64 21.72 8.31
MLITE CPU 2122 5 5 36 98 28.42 17.66
SMART DEVICE 3498 4 9 35 52 105.17 72.04

Listing 3.6. Variable types are chosen accordingly to the mapping proposed above. Line 11 of
Listing 3.7 assign the input value parameters to the internal variables of the system, while lines
14 to 17 are executing a simulation cycle of the model. Finally, line 19 set the output values.

Once both the C++ implementation and the MATLAB file have been generated, the latter
can be executed to generate the Simulink block reproducing the cycle-accurate behavior of the
initial HDL description. The block can be easily integrated within any Simulink model.

3.4 Experimental Results

The methodology has been implemented on a prototypical tool. It has been developed extend-
ing the methodology proposed by [20] and exploiting an academic license of HIFSuite [44]. It
has been tested on a subset of the benchmarks used in [20] that we were able to find as open-
source IPs on the OpenCores.org portal (i.e., DES56, AES, CAMELLIA, XTEA, MLITE CPU).
Furthermore, we tested the methodology on two custom benchmarks: an IP implementing Er-
ror Correction Code algorithm (i.e., ECC) and the SMART DEVICE IP. The latter is a more
complex system composed by a MOS Technology 6502 micro-controller, a ROM memory, a
RAM memory and a bus connecting the CPU to some peripherals. Table 3.3 reports for each
benchmark the number of lines of code (LoC) of the original HDL IP, the number of input and
output RTL ports and the number of bits in the IP interface. Furthermore, the Table reports,
for each benchmark, the code generation time (in seconds) required by the prototypical tool we
implemented to automatize the proposed methodology. The table reports the time required to
generate both FMUs and S-Functions.

Each benchmark has been integrated within a Simulink model acting as a testbench for
the IP. The model relies on a Stateflow diagram to generate input and react to output signals
of the IP. Initially they have been integrated using their original HDL description. They have
been simulated by building a co-simulation environment involving Simulink and a commercial
HDL simulator. Then, benchmarks underwent the proposed methodology to generate both their
equivalent FMUs and S-Functions. Last two columns of Table 3.3 show that the tool imple-
menting our methodology is capable of automatically generate FMUs or C MEX S-Functions

3.4 Experimental Results 49

Table 3.4: Results obtained on the set of benchmarks.

Benchmark
Co-simulation

(seconds)
FMI

(seconds)
Speed-up

S-Function
(seconds)

Speed-up

DES56 61.40 7.87 7.80x 3.79 16.20x
AES 55.47 10.83 5.12x 6.07 9.13x
CAMELLIA 36.74 4.99 7.36x 3.07 11.97x
XTEA 36.43 4.63 7.87x 2.69 13.54x
ECC 30.22 4.84 6.24x 2.79 10.83x
MLITE CPU 40.79 4.60 8.87x 3.27 12.47x
SMART DEVICE 64.09 14.30 4.48x 7.53 8.51x

from some quite complex HDL IPs in a very small amount of time. In fact, all the benchmarks
required less than two minutes for the automatic code-generation step.

We replaced and compared the HDL simulation with both the equivalent FMUs and S-
Functions. All the simulations have been performed using Matlab R2018a on a 64-bit machine
running Ubuntu 16.04, equipped with 16 GB of memory and an Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz.

Table 3.4 reports the obtained simulation results. It shows the time required to emulate the
behavior of one second of the real system execution when using co-simulation, the FMI stan-
dard and S-Functions to import the benchmarks in the Simulink model. Furthermore, it reports
the speed-up achieved using the models automatically generated by applying the methodology
proposed in this paper.

The simulation environments obtained by applying our automatic generation technique of
Simulink blocks always outperform co-simulation. This is mainly due to two reasons. First,
the methodology relies on an automatic abstraction technique that performs many different op-
timizations. The generated C/C++ code is managed by a highly optimized scheduler that is
obtained through a deep static analysis performed on the process dependency graph of the HDL
description [20]. Furthermore, slow and inefficient HDL data-types are replaced through ab-
straction by faster and more efficient C-native data-types. Second, interprocess communication
is computationally demanding. During simulation the operating system must perform many
different context switch operations each time two different simulators of the co-simulation en-
vironment need to synchronize with each other. When co-simulating an HDL description with
Simulink it happens at each clock cycle. On the other hand, both FMI standard and C MEX
S-Functions relies on internal Simulink data-structure, and as such no interprocess communica-
tion is required.

Table 3.4 compares also the two different alternatives proposed by this paper. S-Function
implementations are always faster than FMI. This seems reasonable since C MEX S-Functions
are custom (and proprietary) interfaces thought to be used specifically within Simunlink, while
the FMI Standard is meant to be portable on different tools. As such, it is reasonable to assume
that S-Functions are better integrated and optimized for the target simulation environment. Still,
FMUs provided good performance and their automatic generation is justified by the frequent

50 3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces

need of tool-independent models. Furthermore, as Simulink recently started to support FMUs
natively, we can imagine a future improvement on their performance.

Finally, it may be interesting to compare the speed-up achieved by applying our methodol-
ogy w.r.t. the results in [20]. Speed-up values in [20], ranges from 7.7x to an impressive 441.3x
while the speed-up values presented in Table 3.4 are lower even though both works rely on the
same abstraction methodology. The main reason for this loss of performance improvement is
due to the target simulation environment. In [20] system simulation relies on highly optimized
and customized virtual platforms, exploiting the advantages of the discrete-event model of com-
putation. As such, it is possible to perform strong optimization by allowing variable length of
transactions. This feature allows to perform automatic protocol abstraction, as presented by
Bombieri et. al. [42]. Protocol abstraction allows to execute a single transaction for each phase
of the communication protocol of the original IP. In fact, [20] reaches its best performance when
it can perform also protocol abstraction.

However, protocol abstraction is not yet available to us since this work targets dynamic-
system simulation environments, such as Simulink. Such a simulator relies on the synchronous
data-flow model of computation, rather than discrete-events. As such, the blocks generated by
the presented methodology are constrained to execute periodically with a fixed time-step. Aim-
ing at preserving cycle accuracy w.r.t. the model, it is thus necessary to choose a simulation time
granularity that allows to reproduce any possible transaction of the communication protocol of
the IP. Since HDL IPs are usually reactive at each clock cycle, for instance to manage a reset
signal, the fixed simulation time step for the generated Simulink blocks must be equal to the
clock period. As a conclusion, it is necessary to sacrifice part of the simulation speed to gain
the possibility to perform still efficient cycle-accurate simulation within Mathworks Simulink.
However, in the next session we will introduce some ongoing works that aims at improving
such limitations.

3.5 Conclusions and Future Outlook

In this chapter we presented the basic steps towards the integration of HDL in Simulink. The
main contribution is a fully automatic methodology for the generation of Simulink blocks start-
ing from HDL descriptions. The generated blocks are functionally equivalent and cycle-accurate
with respect to the original models. This enables the possibility to “import” timing accurate
models of HW/SW devices within Simulink system models: a feature that may contribute in
decreasing design time of complex heterogeneous systems by providing an efficient alternative
to co-simulation and HW-in-the-loop methodologies.

The methodology has been implemented into an automatic tool and then applied to a set
of benchmarks. It shows both effectiveness and efficiency by providing up to 16x speed-up
with respect to state-of-the-art co-simulation environments. Thus, it is a good starting point to
develop a set of techniques to integrate efficient cyber-physical virtual platform to use in variety
of design steps. Ongoing activities with particular interest on the FMI standard, try to cover
different aspects of cyber-physical systems simulation starting from this work.

3.5 Conclusions and Future Outlook 51

While this work focused only on the generation of a single components, in [45] we focused
on the integration of multiple Cyber FMUs within Simulink. During the modeling phase of
a Control Platform of a Physical System, a designer models the Hardware Platform reusing
existing components and composing them together. In this work we consider a set of HDL IPs
exported as FMUs that represent components of a Virtual Platform (i.e. CPU, Memory, Bus,
etc.). This allows the designer to switch between these components directly within Simulink
environment, and to evaluate the performances of the components. As such, it enables early
design space exploration. In [45] we deal with the problems caused by the co-existence of
different Models of Computation: the data-flow used by Simulink and the discrete-event model
used by FMUs generated from HW IP cores.

In the same direction, we are trying to extend the work presented in this chapter to allow
coarser synchronization mechanisms when using FMI. In [46] we identify some of the limita-
tions of the FMI standard that prevent a more efficient synchronization mechanism. The main
issue we identified is the fact that the simulation of an FMU is imposed unidirectionally from
the Master Algorithm to the FMU. More in details, the Master Algorithm decides the size of the
simulation step of the FMU. On the other hand, a coarser synchronization may be provided by
Transactional models that may not allow to know a priori the exact time of the next transaction
of the model. Thus, they cannot be managed by a Master Algorithm compliant with the current
version of the FMI standard. In practice, an FMU cannot communicate its internal time to the
Master Algorithm if it is different by the one imposed by the fmi2DoStep invocation. In [46]
we enable backward time propagation between the FMU and Master Algorithm in order to cap-
ture this information. Thus, we allow to manage Transactional models. The work also presents a
novel simulation strategy for the Master Algorithm based on the backward timing propagation.
Interestingly, we achieved this goal by acting on the modeling within the rules imposed by the
current standard.

Future works will focus on the lacks of the standard 2.0 trying to better optimize the sim-
ulation strategies of the Master Algorithm. In particular, we are exploring some specification
languages to pair with the FMI standard to express more information about HW platforms.
We are exploring the possibility of using UML and/or SysML to define the protocol, and the
IP-XACT standard to model the interconnections between the components of a platform that
will be simulated as FMUs. With this increased level of information we aim at improving the
simulation strategy, thus obtaining highly specialized master algorithm that could better fit each
particular scenario.

The integration of HW components within cyber-physical system simulators are applicable
to many fields. One of our ongoing activities aims at exploiting the FMI standard to integrate
cyber models into commercial production line simulators. This to better estimate the quality
deviation of the manufacturing processes [47]. In future, these activities could collapse to model
different levels of abstraction of models, with ad-hoc simulation algorithms and integrate them
in production line models.

4

Generation of Functional Mockup Units for Transactional
Cyber-Physical Virtual Platforms

4.1 Introduction

Cyber-Physical Systems (CPSs) are shaping todays world. They are an enabling technology for
many different ongoing technological disruptions, such as smart manufacturing, autonomous
driving, etc. As such, improving design methodologies for CPSs is crucial to advance a wide
set of system engineering sub-disciplines [48].

System design requires models to be simulated providing designers with the feedback neces-
sary to evaluate the quality of their ideas [49]. The heterogeneity of CPSs makes modeling and
simulation pretty intricate tasks [50]. To achieve holistic simulation of such heterogeneous sys-
tems, designers must either rely on complex co-simulation environment aggregating specialized
simulators for the many design domains involved in the system, or to produce a single holistic
model of the system [51]. However, the latter solution requires to access, often unavailable,
open specifications for every component of the system. On the other hand, co-simulation re-
quires interfacing different simulation tools. Such tools often provides incompatible interfaces,
thus requiring time-consuming adapters [52].

In this scenario, the Functional Mock-up Interface (FMI) standard for co-simulation emerged
as one of the most promising technologies to interface heterogeneous simulators [21]. It defines
an Application Programming Interface (API) that must be implemented by the simulator. As
such, FMI is well suited to build Cyber-Physical Virtual Platforms emulating both the “cyber”
and “physical” parts of a CPS [53].

Even though the FMI standard proved to be a powerful tool to build such Cyber-Physical
Virtual Platform, its focus is still strongly oriented to the simulation of continuous dynamic sys-
tems [54]. Thus, simulation of digital components still requires adapting the use of the standard
to replicate the semantics of HW simulators [53]. Improvements to support Hardware Descrip-
tion Language (HDL) models in FMI have been addressed [53,55]. However, the advantages in
terms of simulation speed of higher-level models, such as Transaction-level models [56], have
not been exploited so far due to some limitations of the standard. This chapter aims at analy-
ing and discussing such limitations. Then, it proposes a set of adjustments in the use of FMI
constructs defined in the current standard for co-simulation (i.e., version 2.0). Furthermore, it
presents a simulation coordination scheme that exploits such adjustments. These contributions

54 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

«Cyber»
sub-system

«Physical»
sub-system

Master Algorithm

FMU 1
outin

FMU 2
outin

FMU n
outin

«Cyber»
sub-system

«Physical»
sub-system

Smart
Master Algorithm

FMU n
outin

Local time

FMU 1
outin

Local time

FMU 2
outin

Local time

Backward
Local Time

Propagation

Improved Coordinator

Time evolution Time evolution

Transaction 1 Transaction 2 Transaction 3

Lighter
Synchronization

Cycle accurate
Cyber-Physical VP

Transaction-level accurate
Cyber-Physical VP

Fig. 4.1: Overview of the contribution.

together allows generating Transaction-level Functional Functional Mock-up Units (FMUs) for
Cyber-Physical Virtual Platforms.

In the last few months, the FMI Steering Committee announced a new interface (version
3.0) that aims to introduce the hybrid co-simulation concept [41]. However, it is still in alpha
release and, as highlighter by the analysis presented in this chapter (Section 4.6), it still require
many improvements to effectively enhance the support of digital components into FMI-based
simulation environments. On top of the time that will be necessary to develop the new standard,
any new version of the standard will also require time to be accepted from all the tools support-
ing the previous standard. Meanwhile, using the current version 2.0, as we do in the approach
presented by this chapter, guarantees compatibility with the current version of the tools.

Figure 4.1 summarizes the contributions of this work. On the left, the CPS to be designed is
simulated by using a Cycle-accurate Cyber-Physical Virtual Platform. The virtual platform is
composed by exploiting the FMI standard. It is composed of both the models of the “cyber” and
the “physical” sub-systems of the model. In this work we focus on the “cyber” part of the system
modeled by aggregating different FMUs, each of them representing a digital components of the
system. The simulation is managed by a Master Algorithm coordinating the FMUs. The time
evolution of the virtual platform on the left-sideis accurate with respect to the clock cycle of the
system: each simulation step simulates a single clock cycle, synchronizing at each step. This
work improves the left side configuration by proposing two modifications to the platform and
its components:

• The functionality within the FMUs composing the digital part of the system are abstracted
to transaction-level. Their interfaces are modified to make them communicate their internal
local time backward to the master algorithm.

4.2 Background and Related Work 55

• The master algorithm is improved to exploit the information about the local time of the
FMUs in the model.

These modifications allow to produce the Transaction-level accurate Cyber-Physical Virtual
Platform on the right-side of the figure. The platform synchronizes at each transaction defined
by the communication protocol. Thus, it benefits the lighter synchronization for improving the
simulation speed.

The Chapter is organized as follows: Section 4.2 gives the necessary background about FMI,
and summarize the state of the art. Section 4.3 discuss the advantages and the limitations in the
current version of the FMI standard and discuss a set of possible improvements. Section 4.4
presents the methodology proposed by this paper. The presented approach is implemented by
building an automatic tool-chain and then experimentally evaluated in Section 4.5. Then, Sec-
tion 4.6 updates the discussion we previously presented [57] about the current support for digital
models within FMI-based simulation environment. It presents the current efforts being made by
the FMI Steering Committee to develop a novel version of the standard, and it discuss the im-
provements necessary to improve the support of discrete models into hybrid systems. Finally,
in Section 4.7 we draw some conclusions.

4.2 Background and Related Work

FMI is a tool-independent standard aiming to enhance the interoperability between tools of
different vendors in the field of systems design [21, 58]. It supports both model exchange and
co-simulation of dynamic models produced by using different tools and languages. The standard
has been originally developed by Daimler AG, and maintained initially by the MODELISAR
Consortium, and by the Modelica association after the MODELISAR European Project ended.
The latest version of the standard is the 2.0 of 2014. Currently, the version 3.0 is under devel-
opment. The basic blocks of any FMI-based simulation environment are called FMUs. Multiple
FMUs can be imported within a simulation tool to be executed. Each FMU may implement only
one of the two variations of the current standard: Model Exchange or Co-Simulation. Model ex-
change FMUs describe functionalities by using differential, algebraic and discrete equations
with time-, state- and step-events [58]. The equations must be solved by an external solver, that
is thus required to simulate model exchange FMUs. Meanwhile, Co-simulation FMUs must
model the functionality and implement the solver as well. As such, the model described within
a co-simulation FMU does not require any external solver.

At its current state, the standard for model exchange does not suit well for describing
discrete-event models [53]. Thus, chapter focuses on co-simulation which main features and
structure are described hereby.

4.2.1 FMI Standard 2.0 for co-simulation

Practically, an FMU is an archive containing an XML file describing the component interface
and a dynamic library providing its implementation. Furthermore, the dynamic library con-
tained in any FMU for co-simulation must implement also the solver necessary to execute the

56 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

Step Completed

Step Canceled

Step in Progress

Terminated Error

State Initialized

Step Failed

fmi2DoStep = Pending

Status=
Error

Status = Cancel

Status = Discard

Status=Ok

fmi2Get
fmi2Set
fmi2DoStep = Ok

fmi2Terminate

fmi2Terminate

Fig. 4.2: Statechart representation of the coordinator algorithm for a FMU.

functionality. The XML file must specify all the variables of the FMU visible to the simulation
environment [21]. Each variable is characterized by a name, causality (e.g., input, output, pa-
rameter, etc.), a type and a value reference. The value reference of a variable must be unique
among the variables of each type. Each variable is uniquely identified by the pair made of its
type and value reference. The dynamic library must implement the functionality by implement-
ing a set of functions defined by the standard. The most important, among the many defined in
the current version of the standard, are:

• fmi2SetupExperiment: initializes the internal variables of the FMU.

• fmi2Set: sets the value of an internal variable of the FMU i.e., it assigns a value to an input.

• fmi2Get: gets the value of an internal variable of the FMU i.e., it returns the value of an
output.

• fmi2DoStep: advances the simulation time of the component executing the behavior de-
fined by the model.

The dynamic library must be generated using C-like linking [55], as such the functionality
is usually expressed by using either C or C++. The standard defines the signature for all the
C functions to be implemented by the dynamic library. However, it does not impose how they
should be used, as it rather defines only some limitations on the possible combinations.

4.2.2 Simulation coordination in the FMI standard

Any model having one or more FMUs requires a coordination mechanism compliant with the
FMI standard. Version 2.0 of the standard [21,58] defines the concept of master algorithm as the
module of managing communication and synchronization for sets of FMUs. Communication is
managed by the master algorithm by invoking the fmi2Get and fmi2Set functions of the co-
simulation API. Meanwhile, synchronization and simulation advancement is implemented by

4.2 Background and Related Work 57

Listing 4.1: Sketch of the C implementation of a basic master algorithm compliant with the FMI standard. The
algorithm executes a thousands iterations, each of those advances the local and global time of 10 time units.

1 int main(int ac, char * av[]){
2 fmi2Component component_1 = load_fmu("./component_1.fmu");
3 fmi2Component component_2 = load_fmu("./component_2.fmu");
4 ...
5 fmi2Status st;
6 ...
7 st = fmi2SetupExperiment(component_1);
8 st = fmi2SetupExperiment(component_2);
9 ...

10 time = 0; step = 10;
11 ...
12 fmi2Integer in_1, in_2, out_1, out_2;
13 // Simulation starts here.
14 for(int i = 0; i < 1000; ++i) {
15 st = fmi2GetInteger(component_1 , 0, &out_1);
16 st = fmi2GetInteger(component_2 , 0, &out_2);
17 in_1 = out_2; in_2 = out_1;
18 st = fmi2SetInteger(component_1 , 1, in_1);
19 st = fmi2SetInteger(component_2 , 1, in_2);
20 st = fmi2DoStep(component_1 , time, step);
21 st = fmi2DoStep(component_2 , time, step);
22 time = time + step;
23 }
24 }

carrying on the components execution by invoking the fmi2DoStep functions of the FMUs
composing the model being simulated. The standard defines some rules about how the master
algorithm should be. However, the exact definition of the algorithm is not part of the standard.
In fact, the rules explicitly defined are mostly imposing some limitations on the structure.

Figure 4.2 reports a statechart simplified version of the master algorithm. It shows the func-
tions that the algorithm must invoke for each FMU in the model. The figure reports only the
execution of a initialized FMU that already successfully went through the FMU setup state.
Once a FMU has been initialized, its execution reaches the Step Completed atomic state within
the State Initialized sub-machine. The master algorithm may invoke the fmi2Get or the fmi2Set
functions, respectively reading or writing values of the FMU external variables. Otherwise, the
algorithm may invoke the fmi2DoStep function by passing as a parameter the amount of time that
must be simulated. Then, the machine moves to the Step in Progress state. The FMU simulates
by executing its functionality: if the step is not canceled or discarded, and no errors are catched
during the FMU execution, the fmi2DoStep returns and the machine goes back to the Step Com-
pleted state, and the FMU advances its own local time according to the one previously passed
as a parameter. These steps iterate until no fmi2Terminate function is invoked. A simulation tool
may implement the simplest coordinator for FMI by iterating this process for each FMU, or it
may implement some more complex mechanism, still adhering to the state-chart in Figure 4.2.
Finally, the standard explicitly states that is not legal to call a fmi2Get function after fmi2Set
functions without calling the fmi2DoStep in between.

58 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

Listing 4.1 shows a C implementation of a trivial master algorithm using the functions de-
fined by the FMI standard for co-simulation. The procedure loads the FMUs instantiating two
variable of type fmi2Component that will points to the FMU implementations (Lines 3–6). The
status variable is declared (Line 8): every function defined in the standard returns a status. The
master algorithm initializes the FMUs, the timing variables and defines four integer variables
(Lines 10–15). Then, a thousand simulation cycles are executed: the algorithm reads the output
from the FMUs and assigns it to the input variables (Lines 18–20). Then, it sets the input vari-
ables of the FMUs (Lines 21–22). Finally, the algorithm executes the functionalities, advancing
the global time of the FMUs and update the global time (Lines 23–25).

4.2.3 Related Work

Some of the FMI standard weaknesses have been first identified in [59].The main issues con-
cern the managing of hybrid and discrete-event systems. The analysis highlights how FMI is
more suited for physical, continuous-time (or discretized) systems, rather than discrete-event
systems. Thus, it is tricky to use FMI when models require discrete events. The semantic gap
between continuous-time models, and discrete-event models in FMI has been addressed [54]
by proposing to use of tokens synchronizing the FMUs in the model when discrete-events hap-
pen. However, such a mechanism introduce many synchronization points in the execution thus
slowing down the simulation. This may be particularly inconvenient when simulating models
coming from HDL descriptions, as we showed in [53]. In the same work we proposed an ad-hoc
synchronization methodology to reproduce the cycle-accurate behavior of HDL descriptions. It
manages the synchronization locally to each FMU, while the data are exchanged by an addi-
tional FMU acting as a communication hub for the data in the system. The approach relies on
automatic code generation to generate the FMUs implementing such mechanism. Automatic
code generation of FMUs for co-simulation from HDL descriptions has been previously pre-
sented [55,60]: it relies on a state-of-the-art abstraction technique [20] to translate HDL models
into C descriptions. The generated descriptions are finally wrapped by an interface using the
FMI co-simulation API. While none of the approaches described above is proposing modifi-
cations to the standard, a number of papers do it. [41] proposes an additional mechanism to
add to the FMI standard, aside to the model exchange and the co-simulation mechanisms. The
novel mechanism is called Hybrid Co-simulation, and it is thought to manage hybrid models.
The authors of [61] proposed some modifications to the API specified by the FMI standard for
co-simulation. In particular, they proposed adding a interrupt and preempt mechanism to the
fmi2DoStep. It allows the execution of an FMU to be interrupted when events must be managed.

To the best of our knowledge, none of the previous work proposed to raise the abstrac-
tion level of FMUs to the transactional level. This is due to the fact that the master algorithm
must always know in advance the next step size for each FMU [59, 62]. This chapter shows
how we overcame this limitation, enabling transactional level Cyber-Physical Virtual Platforms
assembled relying on more abstract FMUs.

4.3 FMI Standard Advantages and Limitations 59

4.3 FMI Standard Advantages and Limitations

As a first contribution of this paper, we discuss the standard’s features useful to create cyber-
physical virtual platform. Then we will discuss some limitations that make integration of virtual
platforms difficult. Our discussion will be from a “cyber” point of view, as we aim at high-
lighting the weaknesses of the standard when dealing with discrete-event and cycle-accurate
components.

Indeed the standard allows to ease the integration of different tools. It simplifies the interfac-
ing of heterogeneous description. It allows the designer to care only marginally about commu-
nication and synchronization between simulators. Furthermore, it is reasonable to assume that
complex CPSs are designed by multiple teams of designers. For instance, a team might be in
charge of the physical part while the other designs the computational infrastructure. The FMI
standard allows to easily integrate the models produced by different teams, to build a holistic
simulation of the system.

However, as hinted in Section 4.2.3, the standard has been strongly oriented to continuous
systems and dynamics. We can identify different drawbacks when modeling discrete compo-
nents, and in particular when simulating digital components.

The set of data types provided by the standard is limited. When modeling digital HW it
happens to use multi-valued logic values, or signals that uses an arbitrary number of bits. Mean-
while, FMI allows only integer, real, string and boolean. Thus, HDL data-types must be mapped
on the provided types. Different mappings have been already proposed in the past. Multi-valued
logics as well as arbitrary long bit vectors have been mapped onto strings [63], and (more ef-
ficiently) abstracted to unsigned integer [55]. Still, none of the previous mapping is ideal even
though they partially solve the problem.

The data-types provided by FMI are even more insufficient when modeling digital HW mod-
els at higher levels of abstraction, or when modeling SW. In such case, models may require
aggregate data types, e.g., to represent sockets’ payloads in transaction-level description, or
classes of SW models. In this case, FMI does not provide any other solution than breaking
down any aggregated type into its basic components.

The standard does not provide any mechanism to specify the Model of Computation em-
ployed by the FMU to implement the functionality. In the case of a digital HW description
assignments are concurrent. However, simulators usually rely on sequential models of compu-
tation (e.g., data-flows). When aggregating digital HW components using FMI, complex syn-
chronization structures must be built [53, 54] to guarantee the functional equivalence of the
aggregated model of the system.

It is not possible to retrieve the internal time of an FMU. The master algorithm “imposes”
to each FMU its internal timing. The main issue is related to the fmi2DoStep function behavior:
it is called by the master algorithm and it carries on the simulation time while executing an
FMU functionality. The execution of an FMU cannot be preempted by external events. Neither
the FMU is allowed to simulate an amount of time different with respect to the one imposed
by the master algorithm, since the FMU cannot communicate back to the master algorithm its
effective internal timing. For this reason, the master algorithm must alway be able to know

60 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

HDL models
of HW IPs

«Cyber»
sub-system

«Physical»
sub-system

Master Algorithm

Cycle accurate
Cyber-Physical VP

Transaction
-accurate
HW IPs

State-of-the-art
code generation

Protocol
abstraction

Cycle-
accurate

FMUs

State-of-the-art
Cyber-Physical Virtual Platform integration

«Cyber»
sub-system

«Physical»
sub-system

Smart
Master Algorithm

Transaction-level accurate
Cyber-Physical VP

Transaction
-accurate

FMUs

Interface
enrichment

Coordination
through backward
timing propagation

Fig. 4.3: Overview of the proposed approach, and comparison with the state-of-the-art methodology presented
in [55].

exactly the length of the next time step of each FMU. This forces the master algorithm to call
the fmi2DoStep function of an FMI using the shortest time step available, or to perform multiple
step revisions. Thus, this limitation leads to an higher number of synchronization points in the
simulation and makes impossible to use advanced synchronization techniques, such as temporal
decoupling. Thus, it is not well suited to manage discrete events that might be generated by
system’s components. In the case of HW description, this usually forces to simulate each FMU
with a time granularity equal to the clock cycle [53].

4.4 Methodology

Figure 4.3 summarizes the proposed methodology. It starts from a set of HDL Intellectual Prop-
ertys (IPs) models. An approach we precedently presented [55] (i.e., red box in Figure 4.3) was
simply translating the IPs into C models then wrapped into FMUs. Here we present a more ad-
vanced approach where HDL IPs undergoes an abstraction and manipulation process (colored
arrows in Figure 4.3). The produced models rely on a transaction-level synchronization mecha-
nism. Finally, these FMUs are inserted within the Cyber-Physical Virtual Platform, where they
will be coordinated by a master algorithm that is aware of the shifting in synchronization and
communication granularity achieved by applying the transformations.

4.4.1 FMUs generation and timing backward propagation

As identified in Section 4.3 FMUs cannot propagate their local time back to the coordinator.
This is a major issue that must be tackled to achieve an efficient discrete-event simulation. In
fact, solving such issue will allow the master algorithm to decide the next simulation step length

4.4 Methodology 61

Listing 4.2: modelDescription.xml file of the component_1 with time port.

1 ...
2 <ModelVariables>
3
4 <!-- Input Ports -->
5 <ScalarVariable name="in_1"
6 causality="input" \
7 valueReference="0">
8 <Boolean start="false"/>
9 </ScalarVariable>

10
11 <ScalarVariable name="in_2"
12 causality="input"
13 valueReference="1">
14 <Boolean start="false"/>
15 </ScalarVariable>
16
17 <!-- Output Ports -->
18 <ScalarVariable name="fmi2TLifaceTime"
19 causality="output"
20 valueReference="-1">
21 <Integer start="0"/>
22 </ScalarVariable>
23
24 <ScalarVariable name="out_1"
25 causality="output"
26 valueReference="0">
27 <Integer start="0"/>
28 </ScalarVariable>
29
30 <ScalarVariable name="out_2"
31 causality="output"
32 vr="1">
33 <Integer start="0"/>
34 </ScalarVariable>
35
36 </ModelVariables>
37 ...

more efficiently. Furthermore, it will allow each FMU to simulate in a decoupled way, without
defining the simulation step size. As such, when the Master Algorithm calls the fmi2DoStep,
a FMU can simulate until it does not need to synchronize or communicate with other system
components.

The proposed methodology starts by generating Transaction-Level models starting from HW
descriptions. This is achieved by using the methodology defined in [64]. It takes as input a HDL
model described at the Register Transfer Level (RTL) together with its communication protocol,
and it generates a functionally equivalent Transactional Level Modeling (TLM) description. The
HW descriptions can be provided by using the most common HDLs (i.e., VHDL or Verilog).
The protocol of a component can be specified in different ways. The state-of-the-art implemen-
tations of the RTL-to-TLM abstraction methodology relies on ad-hoc protocol specification lan-
guages [20]. The resulting description is a C++ class representing a Transaction-Level model
of the original component. Each transaction of the system is executed by invoking its simulate
function, and it emulates one transaction of the specified protocol. The internal time of the
model is annotated as Integer datatype, which represents the number of clock-cycles executed

62 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

in the last transaction. The abstraction procedure computes the number of clock cycles for each
transaction, and annotate it within the generated model.

The interface of the model is isolated in a structure embedded inside the C++ class. The
structure contains a set of fields representing the original ports of the HW models. The data-
types of these fields are abstracted into C native data-types. For instance, a 32-bit logic_vector
datatype is abstracted into uint32_t C datatype. The methodology relies on automatic abstrac-
tion of HDL data-type [20] to perform this transformation. Furthermore, the interface structure
also contains the time annotation of the model.

Our methodology goes on by wrapping the generated C++ class within the FMI functions.
Thus, it generates the set of fmi2Set and fmi2Get necessary to write and read, respectively, input
and output variables from and to the components. It also generates the fmi2DoStep function
that calls the generated simulate function emulating a component transaction. The fmi2DoStep
function still accepts the step length to stay compliant with the standard. However, it ignores it
as the actual internal time of the FMU is computed by the simulate function.

The methodology generates also the XML file for the FMU. The original ports of the HW
model are mapped in the FMI data-types: the Boolean and Integer FMI types are used to repre-
sent respectively single bit (or logic) and bit (or logic) vectors. The value reference, is assigned
to each port starting from 0 for each data-type. Listing 4.2 depicts the definitions of the ports in
the XML file for a component originally having two input and two output ports.

The methodology enriches the interface of the FMU with the internal time annotation of the
transaction-level model, that is exposed as a new Integer port of the FMUs (see Listing 4.2,
line 18-22). The value reference -1 is reserved for the timing port. This assures that it can be
uniquely identified once the FMU is loaded by a simulator. Furthermore, the timing port is
called fmi2TLifaceTime in order to decrease the chances of name clashing with the other ports
of the FMU. This last solution is helpful to increase also the readability of the produced FMUs.

4.4.2 A better coordinator for discrete systems

Listing 4.1 depicts a trivial Master Algorithm able to executes cycle-accurate FMUs. It must
synchronize the components of the system at each clock cycle. Thus, the time step of each
fmi2doStep is set to be equal to the clock period of the system being modeled. Such a solution
is indeed precise; however, it uses an unnecessarily high number of synchronization points.
The backward propagation of the FMUs internal time can be exploited to reduce the number of
synchronization points.

Figure 4.4 shows the execution scheme of the proposed Smart Master Algorithm. Its core
is the FMU Coordinator: it is in charge of storing the internal time values of the FMUs in the
system, and it decides at each simulation step which components must be executed. Initially,
the Smart Master Algorithm simulates all the FMUs, without defining a step size. All the FMUs
return to the coordinator their internal time after their first execution. Then, the Smart Master
Algorithm iterates the following steps (as in Figure 4.4).

• 1© Time-Data Storing: the internal time and the new data of each FMUs are retrieved from
the master algorithm and passed to the FMU Coordinator that stores them.

4.5 Methodology Application 63

Smart
Master Algorithm Time-Data

Storage

Time-Data
Storing

1

2
3

4
Data

Propagation

Synchronization
Global Time
Elaboration

Component_1
(FMU)

Time

Data
Data

Component_2
(FMU)

Time

Data
Data

FMU
coordinator

…

Component_N
(FMU)

Time

Data
Data

Fig. 4.4: Scheme of the Smart Master Algorithm with the FMU Coordinator of Transaction-Level FMUs.

• 2© Global Time Elaboration: the FMU Coordinator elaborates the new Global Time of the
simulation as the minimum value among all the internal times of the FMUs.

• 3© Synchronization: any FMU having the internal time equal to the Global Time is inserted
into the list of runnable FMUs. Data read after the last execution of each runnable FMU,
and previously stored by the coordinator, are shared with the system (i.e., the values become
valid for the entire system).

• 4© Data Propagation: the Smart Master Algorithm propagates the data and simulates the
FMUs present in the list of runnable FMUs.

Listing 4.3 shows a sketch of the proposed Smart Master Algorithm. It reports only the most
important parts of a possible C++ implementation of the coordination mechanism. Initially
(Lines 2–9) it declares a status variable, an integer variable tracking the global time, and an array
of components. The FMUs composing the system are stored in the array after being loaded.
Furthermore, an array is declared to store the local times of each FMU. The same position in
the two arrays refers always to the same FMU. Then, the coordinator initializes the simulation
(Lines 11–16) by executing all the components once without advancing the global time. This
step allows to generate the first set of events of the system, thus firing the event-based simulation
mechanism, thus populating the set of runnable FMUs. For each execution, the local time is
retrieved (Lines 13) and stored (Line 14). Then, all the output values written by the FMU are
retrieved and stored (Line 15). Then, the system is simulated (Lines 18–39). At each simulation
cycle a set containing the runnable FMUs is created empty, and populated after the global time
has been update (Lines 19–25). Then, data previously produced by the runnable FMUs are
propagated (Line 27). Finally, each runnable FMU is executed (Lines 28–37).

4.5 Methodology Application

We implemented the methodology by assembling a tool-chain performing the abstraction, ma-
nipulation and translation steps. We relied on the API provided by the HIFSuite framework [44]

64 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

Listing 4.3: Sketch of the C++ implementation of the Smart Master Algorithm exploiting backward timing propa-
gation.

1 ...
2 fmi2Status st;
3 unsigned int global_time=0;
4
5 fmi2Component components[num];
6 components[0]=load_fmu("./component_1.fmu");
7 components[1]=load_fmu("./component_2.fmu");
8
9 unsigned int local_time_vector[num];

10
11 for(int i=0; i < num; i++) {
12 st=fmi2DoStep(components[i], global_time , 0);
13 st=fmi2GetInteger(component[i], -1, &local_time);
14 local_time_vector[i]=local_time;
15 retrieve_and_store_output(component[i]);
16 }
17
18 while(global_time < 1000) {
19 set< fmi2Component > runnable_FMUs;
20 global_time=find_minimum(local_time_vector[0]);
21
22 for(int i=0; i < num; i++) {
23 if(local_time_vector[i] == global_time)
24 runnable_FMUs.insert(components[i]);
25 }
26
27 propagate_data(runnable_FMUs);
28 set< fmi2Component >::iterator it;
29 for(it=runnable_FMUs.begin;
30 it != runnable_FMUs.end; it++)
31 {
32 fmi2Component * component=*it;
33 st=writeInputs(component);
34 st=fmi2DoStep(component , global_time , 0);
35 st=fmi2GetInteger(component[i], -1, &local_time);
36 local_time_vector[i]=local_time;
37 retrieve_and_store_output(component[i]);
38 }
39 }
40 ...

to extended the automatic code generation presented in [55]. The automatic abstraction of HDL
descriptions is performed by specifying the components’ protocols to generate the correspond-
ing transaction-level C++ descriptions as defined in [64]. The models produced by the abstrac-
tion are enriched with the timing backward propagation mechanism. Finally, a tool wraps the
model within the FMI APIs for co-simulation. We applied the tool-chain to a set of benchmarks
varying with respect to two dimensions: the protocol latency and the number of FMUs com-
posing the system. We aim at estimating the scalability of the proposed approach with respect
to these two dimensions. We implemented the same functionality within each HW component

4.5 Methodology Application 65

Table 4.1: Execution time of FMUs simulation using trivial Master Algorithm, with different number of iterations.

iterations
(clock cycles)

Execution of FMUs (seconds)

2 5 10 20 40

100 K 4.76 10.75 21.89 43.34 82.46

1 M 41.87 104.13 198.74 405.25 834.34

10 M 421.93 1021.64 2015.55 4129.17 8322.22

20 M 886.78 2062.32 4267.29 8219.65 16466.54

Table 4.2: Execution Time Comparison of Normal Master Algorithm and Smart Master Algorithm with different
protocol latencies. In all the scenarios, 10 million clock cycles of the system have been simulated.

Base Latency
(clock cycles)

Execution of FMUs (seconds)
2 5 10 20 40

Trivial Smart Trivial Smart Trivial Smart Trivial Smart Trivial Smart
20 421.93 115.54 1021.64 250.23 2015.55 465.48 4129.17 889.39 8322.22 1752.71

speed-up: 3.65x 4.08x 4.33x 4.64x 4.75x
50 421.93 60.28 1021.64 135.65 2015.55 253.43 4129.17 481.36 8322.22 964.92

speed-up: 7.00x 7.53x 7.95x 8.58x 8.62x
100 421.93 44.71 1021.64 95.57 2015.55 179.34 4129.17 344.25 8322.22 702.17

speed-up: 9.44x 10.69x 11.24x 11.99x 11.85x

of the system, since the paper focuses on the interfaces of the components, rather than on their
internal functionalities. The internal functionality is kept extremely simple in order to let the
communication and synchronization overhead to be predominant in the simulation. Each com-
ponent is simply counting the number of clock cycles until its pre-defined latency is reached.
For each experiment, we have considered components with different latencies. In the experi-
ments we refer to the base latency of an experiment as the minimum latency of the component
in that experiment.

We generate two FMUs of different types for the same HW model: the cycle-accurate FMU
and the transaction-level FMU with backward timing propagation. All the experiments have
been performed on a 64-bit machine running Ubuntu Linux 16.04, equipped with 16 GB of
memory and an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz.

Table 4.1 reports the execution time by using the Trivial Master Algorithm, with different
cycle-accurate FMUs and different numbers of iterations. The protocol latency dimension is not
considered in this Table because the Trivial Master Algorithm simulates only cycle-accurate
FMUs. Using the Trivial Master Algorithm the protocol latency does not affect the coordination
overhead in the simulation. The results show that moving in both the dimensions (number of
FMUs or iterations) the execution time increases almost linearly.

Table 4.2 compares the simulation speed achievable by using the Trivial and the Smart Mas-
ter Algorithm. The performance obtained by using the Smart Master Algorithm depends on the
protocol latency. On the contrary, the Trivial Master Algorithm performance is not influenced
by such dimension. The Smart Master algorithm with the transaction-level FMUs achieves up

66 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

20 50 100
050

200

500

1,000

1,500

Protocol base latency

Si
m

ul
at

io
n

tim
e

(s
)

2 FMUs
5 FMUs
10 FMUs
20FMUs
40 FMUs

Fig. 4.5: Trend of the simulation overhead using the Smart Master Algorithm with respect to the protocol latency.

2 5 10 20 40

100

500

1,000

1,500

FMUs composing the system

Si
m

ul
at

io
n

tim
e

(s
)

Latency 20
Latency 50

Latency 100

Fig. 4.6: Scalability of the Smart Master Algorithm with respect to the number of FMUs.

to 11x speed-up when using the largest protocol latencies considered. Reducing the protocol
latencies of the transaction-level FMUs, the Smart Master Algorithm is less beneficial because
of the increasing number of synchronization points. Of course, when the protocol latency is
equal to one clock cycle (e.g., when modeling combinatorial circuits) we have a degenerate
case: the transaction-level and the cycle-accurate implementations will have the same amount
of synchronization points. As such, only in that case, the Smarter Master Algorithm is slightly
outperformed by the trivial one, due to the higher amount of computation required by the coor-
dinator.

4.6 Recent Development and Discussion 67

Listing 4.4: Datatypes comparison between FMI Standard 2.0 and the new 3.0 versions.

1 //FMI 2.0 DataTypes
2 typedef double fmi2Real;
3 typedef int fmi2Integer;
4 typedef int fmi2Boolean;
5 typedef char fmi2Char;
6 typedef const fmi2Char* fmi2String;
7 typedef char fmi2Byte;
8
9 // FMI 3.0 Datatypes

10 typedef float fmi3Float32;
11 typedef double fmi3Float64;
12 typedef int8_t fmi3Int8;
13 typedef uint8_t fmi3UInt8;
14 typedef int16_t fmi3Int16;
15 typedef uint16_t fmi3UInt16;
16 typedef int32_t fmi3Int32;
17 typedef uint32_t fmi3UInt32;
18 typedef int64_t fmi3Int64;
19 typedef uint64_t fmi3UInt64;
20 typedef int fmi3Boolean;
21 typedef char fmi3Char;
22 typedef const fmi3Char* fmi3String;
23 typedef char fmi3Byte;
24 typedef const fmi3Byte* fmi3Binary;

Figures 4.5 and 4.6 give a graphical representation of how the simulation overhead changes
when changing the protocol base latencies and the number of FMUs respectively. The vertical
axes of both table reports the simulation time, while the horizontal axes reports the two con-
sidered dimensions. The trends in Figure 4.5 show how performance improve by increasing the
latency. This is because a longer latency allows for more temporal decoupling, thus less syn-
chronization and communication overhead. Figure 4.6 shows that the simulation time increases
linearly with the number of involved FMUs. Thus, it shows the minimal impact of the more
sophisticated master algorithm proposed in this paper.

4.6 Recent Development and Discussion

In 2018 the FMI Steering Committee has announced a new version of the standard, called FMI
3.0. The committee also published the list of new standard intended additional features1. In our
opinion, among the proposed features, the most interesting aiming at providing a better support
for digital components are:

• new datatypes.
• Structured ports and multi-dimensional variable.
• Intermediate output values and support for hybrid co-simulation.

1 https://fmi-standard.org/news/2018/05/30/fmi-3-0-alpha-feature-list.html

https://fmi-standard.org/news/2018/05/30/fmi-3-0-alpha-feature-list.html

68 4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms

The Steering Committee also underlines that not all the mentioned features might be introduced
in the final version of the new standard. Still, the entire project is now stored in a public reposi-
tory2, it is thus possible to monitor the status of the development for the new standard. Currently,
only new datatypes have been added to the features list. In details, it is now possible to specify
integer values spanning from a single byte Integer (fmi3Uint8,fmi3Int8) to 64 bits Integer
fmi3Uint64, fmi3Int64).

Listing 4.4 shows a comparison between the datatypes provided by the standard 2.0 and the
new standard 3.0. Only lines 2-7 were present already in the previous standard. The new 3.0
standard extends the previously existing datatypes by adding the definitions reported in lines
10-24. It is important noticing that some of the new definitions replace those of the former stan-
dard. For instance, fmi2Integer (line 3) has been replaced with all the primitive C types that
allows addressing specific amount of bytes (lines 12-19). These new datatypes allow choosing
between Signed or Unsigned and from a single byte to 64 bits Integer. fmi2Real (line 2) has
been splitted into fmi3Float32 and fmi3Float64 (lines 10-11), where 32-64 represent the
size of the datatype (Floating-Point single precision or Double precision). Moreover, the intro-
duction of these new datatypes implies consequentially the introduction of new methods for
data-exchange (i.e. fmi3GetUint8, fmi3SetUint8, etc.). On the other hand, it is not clear if
the new standard will provide compatibility with FMUs written by using the previous standards.
One of the main purpose of the FMI standard is to support exchange of models among differ-
ent teams, organizations and tools. As such, it is our opinion that will be necessary to provide
interoperability between models produced by different organization, or by the same in different
times, and that may thus rely on different versions of the standard. Furthermore, we also think
that keeping the possibility of using more generic types, such as generic integer or generic real,
may help designers in the initial phases of the modeling process when some details may still be
unknown. Moreover, it is our opinion that providing the possibility of using generic integer and
real types may makes the standard more attractive to users whose background is not in com-
puter science. Another novel addition is the fmi3Binary data type. It is a opaque binary data
type that may be useful to carry the information from complex sensors data to computational
components, to model complex binary streams, or to model communication of closed-source
components.

Structured ports and multi-dimensional variables are listed in the intended features list. Of
course, supporting multi-dimensional variables will drastically move forward the standard to-
ward the possibility of representing communication mechanisms typical of computing systems.
In fact, it should provide the possibility of representing arrays, records and other software typ-
ical data structures. The same will be true for hardware bus-based communication, that can be
represented by structured ports, similarly to what happens with the payload structures used in
transactional models. For instance, structured ports will allow to simplify the approach pre-
sented in this chapter by using a single port representing the entire payload of the component
modeled in a transactional FMU. However, at the current state of the work, the development

2 https://github.com/modelica/fmi-standard/

https://github.com/modelica/fmi-standard/

4.7 Concluding remarks 69

of structured ports and multi-dimensional variables has been only announced, and any further
detail has not been presented yet.

The possibility of accessing internal data in the middle of the doStep function is an ex-
tremely promising feature to enable hybrid co-simulation. In fact, accessing internal events of
module being simulated enable the possibility of modeling mechanisms similar to interrupt, that
are crucial to model reactive systems. Furthermore, such a feature will enable a better managing
of events and time. Since important events may be visible to the master algorithm even before
the termination of a FMU execution, the master algorithm can speculate by increasing the length
of the FMU execution. This feature will also make obsolete the solution proposed in this chap-
ter: here, an FMU simulates until the first interesting event, and then the master algorithm must
retrieve the internal FMU time by the additional port proposed in Section 4.4. With the new
feature, the master algorithm may impose a longer FMU execution, while monitoring eventual
internal events of interest thus decreasing the number of required synchronization and com-
munication points. Then, better mechanisms of handling the co-existence of FMUs governed
by different model of computation, as well as mixed continuous- and discrete-time dynamics
must be incorporated. However, even though some extensions have been proposed in the liter-
ature [41, 61], at its current state, the implementation does not clarify if such extensions will
be integrated into the new standard. Integrating such features will be crucial to support digital
models within FMI-based simulation frameworks. Otherwise, users will continue to be forced
performing sophisticated manipulations to models, such as those proposed in this chapter.

4.7 Concluding remarks

This chapter showed discussed the current version of the FMI standard, and proposed a method-
ology to extend it to simulate FMUs representing digital components at transaction-level. The
approach adds some information to the FMUs interface. Then, it adopts an ad-hoc master algo-
rithm that is still conformed to the standard.

The experimental results showed the positive impact of the methodology. However, the ap-
proach requires design effort to explicitly force the standard to accept the transaction-level
FMUs we defined. The analysis of the current effort to extend the standard shows both the
importance of the proposed extensions, as well as the necessity to better target such extensions
to support discrete-event models. Meanwhile, the proposed methodology will allow to cover
where the current standard is still lacking.

5

Cyber-Physical Systems Integration in a Production Line Simulator

5.1 Introduction

Industry 4.0 represents the fourth industrial revolution and its goal is to evolve the actual fac-
tories into smart factory systems [1]. A smart factory is a factory that can make analysis and
rational decisions to optimize and maximize the entire production. To be able to do that the
smart factory requires a simulable model of the factory, usually called Digital Twin. A Digital
Twin is a combination of Cyber-Physical System(CPS), where each CPS represents a process
of the real factory. Nowadays, there are several tools developed by different stakeholders, that
allow to model a production line [2]. All these modeling tools use Model-based design ap-
proaches, thus giving to modelers intuitive and easy-to-use environments. Unfortunately, these
tools do not provide mechanisms to simulate Cyber-Physical Systems making impossible to
model the production line processes with more details. Because of this limitation, the result-
ing simulation is not accurate enough in order to make precise analysis and planning optimal
strategies. For instance, [4], couples real equipments with a production line simulator. The ap-
proach is promising but it does not consider the models of the physical processes, thus making
the solution not usable to make accurate analysis. Mosterman et al. [65] proposed an example
of a simple logistic production line, modeling the entire process by using Simulink. This is a
complex solution, but not easily reusable in different scenario.
Some others [66,67] try to fill this weakness by using co-simulation techniques. Co-simulation
approches require complex environments and they are extremely error prone in the connection
of components and time consuming. For this reason, in this work we present a methodology to
integrate Cyber-Physical Systems in a Production Line Simulator but avoiding Co-simulation
issues (see Figure 5.1). The proposed methodology starts from the modeling phase of the CPS
by using specific domain languages and tools. For the digital system this methodology starts
from VHDL or Verilog models at Register Transfer Level (RTL). On the contrary, the physical
system is modeled by using OpenModelica tool [68], a state-of-the-art tool for this field. Both of
the systems are then exported by using the FMI technology [21], as FMUs. Finally, the method-
ology relies on a coordinator written in C language, that manages the FMUs representing the
two systems on the production line side. This work adopts Siemens Plant Simulation [69], that
provides proprietary C-Interface. With this interface, it is possible to import C dynamic libraries

72 5 Cyber-Physical Systems Integration in a Production Line Simulator

Production Line Simulator

C

Source DrainProcess Process

CPS

Cyber System
(FMU)

Physical System
(FMU)Integration

Coordinator

Fig. 5.1: Overview of the CPS integration in a production line simulator

(.dll) inside Plant Simulation. The proposed coordinator, and the FMUs, are then compiled as
a C dynamic library and integrated in the simulator. The resulting dynamic Library contains a
CPS, which represents a process of the production line. To enable the CPS integration, there are
some issues to face with:

• FMU Generation for homogeneous and standardize communication;
• FMU Coordination;
• Integration of the CPS in the simulation environment;
• Timing scale differences among plant, cyber and physical models.

The paper examines and solves all such issues, allowing the designer to easily integrate
CPS in a plant simulator, thus enabling precise analyses about the production line in order to
optimize all the manufacturing processes.

The experimental results show the benefits of the integration of CPS in a plant simulator, in
terms of simulation accuracy. The paper is organized as follow: Section 5.2 presents the nec-
essary background about Production Line Simulators and about the FMI standard. Section 5.3
explains the integration methodology of the CPSs in Siemens Plant Simulation. Section 5.4
shows experimental results related to the proposed methodology, while Section 5.5 reports con-
clusions and possible future works.

5.2 Plant Simulation and Integration Alternatives

This Section presents two main background concepts: an overview of production line simula-
tors, particularly Siemens Plant Simulation, and a brief description of the FMI standard. The
two concepts are necessary to understand the methodology explained in section 5.3.

5.2.1 Production Line Simulators

In these years several providers proposed different tools to model Manufacturing processes [2,
5]. Report [5] summaries periodically all tools by proposing comparisons on their main char-

5.2 Plant Simulation and Integration Alternatives 73

Listing 5.1: Sketch of Simtalk method that use an external library

1 openConsole
2
3 var lib_path := to_str("../library.dll")
4 var lib_ref : loadLibrary(lib_path)
5
6 var op1 : integer := 2
7 var op2 : integer := 3
8
9 var result := callLibrary(lib_ref, "add", op1, op2)

10
11 end

acteristics. The last report showed the main differences between tools in terms of provided
functionalities, usability, multiprocessing execution, costs and other characteristics. These data
help in the selection of the most suited plant simulator with respect to the parameters to be eval-
uated. A production line is mainly the composition of a chain of production processes. These
processes require handling information like geometric properties of the products, the process-
ing time, the energy consumption, the failure rate, etc.. The simulation of production systems,
with this information, allows making decisions in order to optimize the entire production line
in terms of cost, quality and productivity. These simulators have some common principles such
as:

• Layout Planning: Represents the geometrical structure of the production line. All of these
simulators have a library of components (i.e., generic processes, assembly stations, buffers,
etc.) which is possible to model the factory, by considering physical constraints.

• Material Flow/Fluid Simulation: Represents the transportation of the products from a pro-
cess to the others. This is made possible with components like line transporters or pipe,
depending if the product of the production line is solid or fluid.

• Process Simulation: Represents the physical transformation made by the processes to prod-
ucts.

All of these simulators use the Discrete-event Model of Computation. When a product enters in
one of the production process chain, an event is triggered and that specific process can execute
the relative action.

5.2.2 Siemens Plant Simulation: SimTalk C-Interface

Plant Simulation [69] is the widely used production line simulator developed by Siemens. It
offers an internal programming language called SimTalk. This language gives the entire con-
trol over the simulation in order to customize the production line models. SimTalk allows to
define methods that can be used inside every available object of the Plant Simulation library.
In particular, it is possible to couple SimTalk methods with occurring events (i.e. Entrance or
Exit of a product from a process) in every object of the production line model. Furthermore,

74 5 Cyber-Physical Systems Integration in a Production Line Simulator

Listing 5.2: Simple C function implemented using SimTalk C-Interface

1 #include "cwinfunc.h" // C-Interface library
2
3 extern "C" __declspec(dllexport)
4 void add(UF_Value *ret, UF_Value *arg){
5
6 int op1 = arg[0].value.integer;
7 int op2 = arg[1].value.integer;
8
9 ret->type = UF_INTEGER;

10 ret->value.integer = op1 + op2;
11 }

it is also possible to import dynamic libraries written in C, with a proprietary interface, called
C-Interface.

SimTalk provides a callLibrary method that permits to call a function of an external dy-
namic library that is implemented using the C-Interface (Listing 5.1, line 9). Listing 5.2 shows
a sketch of a function written in C implemented by using SimTalk C-Interface. The function has
two parameters that represent the input and the output values, in order to respect the C-interface
structure (Listing 5.2, line 4). The UF_VALUE is a structure defined by SimTalk C-Interface and it
has to be used as the datatype of the function parameters. The UF_VALUE structure is composed
of two fields: type and value. The type field represents the datatype of the parameters (List-
ing 5.2, line 9), while the value field represents the value of the parameters (Listing 5.2, line
10). SimTalk C-Interface allows the functions to have multiple inputs but only one output value.
[2, 5] show comparisons between different simulators. From the survey [5] and the simulator
comparison [2], we decided to adopt Siemens Plant Simulation for the purpose of this work be-
cause of SimTalk utilities. In particular the C-Interface is a very usable modeling environment
that allows to extend the tool by creating models not natively supported.

5.2.3 Functional Mockup Interface (FMI)

In the state-of-art there are some solutions that try to uniform the interfaces and functionalities
of the models. For instance, IP-XACT [70] is a standard for the definition of of Hardware
model interface, but it does not consider their functionalities. Other solutions, like S-functions
provided by Mathworks, define both interface and functionality of the models, but they are
proprietary and are not supported by other tools.

The Functional Mockup Interface [21] is a relatively new standard that defines an interface
that allows to export and imports models from different tools. The main goal of the standard is
the simulation of heterogeneous systems. A component which implements the interface is called
FMU. The standard defines two different interfaces: Model Exchange and Co-Simulation. An
FMU may implement one or the other. In a Model Exchange FMU the simulation environment
has to provides an external numeric solver. With Co-Simulation FMU the numeric solver is pro-
vided inside the model. This work considers only Co-Simulation Interface being more portable
and easier to use. An FMU is composed of two parts: an XML file and a dynamic library.
The XML file contains the information about the interface of the FMU, that will be visible to

5.3 Integration Methodology 75

Listing 5.3: Sketch of SimTalk method that uses CPS library functions

1 openConsole
2
3 var libPath := to_str("../CPS.dll")
4 var CPSLib : loadLibrary(libPath)
5
6 //get properties from the product
7 var prodType := product.prodType
8
9

10 //simulate the CPS with the product properties
11 callLibrary(CPSLib, "simulateCPS",prodType)
12
13
14 //Get the properties
15 var time:=callLibrary(CPSLib,"getTime")
16 var energy:=callLibrary(CPSLib,"getEnery")
17 var prodProperty:=callLibrary(CPSLib,"getProdProp")
18
19
20 //Set the properties in Plant Simulation Objects
21 SingleProcess.time:=time
22 SingleProcess.energy:=energy
23 //Set the new properties of the product
24 product.property:=prodProperty
25 end

the simulation environment [21]. Each port of the interface has different properties like name,
causality (e.g., input, output, parameter, etc.), a type and a value reference. The value reference
of a port represents a numeric identificator that must be unique. The dynamic library must im-
plement the functionality through a set of functions defined by the standard. The most relevant
functions are:

• fmi2SetupExperiment: initializes the initial condition of the FMU.

• fmi2Set: sets the value of an input port of the FMU.

• fmi2Get: gets the value of an output port of the FMU.

• fmi2DoStep: executes the model contained in the FMU.

5.3 Integration Methodology

The integration relies on the FMI standard [21], and SimTalk C-Interface. The Cyber and the
Physical systems are modeled and exported as FMUs. Then, a coordination algorithm with the
SimTalk C-Interface is implemented, in the view of enabling the integration with the production
line simulator.

76 5 Cyber-Physical Systems Integration in a Production Line Simulator

Listing 5.4: Sketch of an FMU coordinator using FMISupport library with SimTalk C-Interface

1 #include "cwinfunc.h" //C-Interface library
2 #include "FMISupport.h" //FMUs Support library
3
4 extern "C" __declspec(dllexport)
5 void simulateCPS(UF_Value *ret, UF_Value *arg)
6 {
7
8 Product prod=getProductProperties(arg);
9 bool eventFlag=false;

10
11 time = 0;
12 while(!eventFlag)
13 {
14
15 //FMU Simulation
16 fmuDoStep(cyberFMU,time,step);
17 fmuDoStep(physicalFMU ,time,step);
18
19 //Data Exchange between FMUs and product
20 eventFlag=dataExchange(cyberFMU,physicalFMU ,prod);
21
22 time=time+step;
23
24 }
25 }

5.3.1 Cyber System: Modelling and FMU Generation

Cyber Systems are designed by using HDL languages (VHDL & Verilog) usually at Register
Transfer Level (RTL). The entire Cyber System needs to be exported as a portable FMU, to
allow the integration with the Physical System.

Thus, a first step is required to translate the HDL model into a C/C++ equivalent model,
in order to simply wrap it with the FMI interface. In the years, the translation issue has been
addressed by different works. For instance, [71] considered only the translation from VHDL
to C. Verilog is not supported. In [72], VHDL and Verilog are both considered, but no other
manipulation tools are provided.

This methodology relies on HIFSuite framework [44]. HIFSuite provides a set of manipu-
lation tools for VHDL and Verilog models and also offers a set of APIs that allows to extend
its functionalities. Some of these manipulations allow generating semantic equivalent models
written in C++ [20]. After the manipulation and generation of C++ code, HIFSuite can also
generate the XML file and the C wrapper, necessary for the composition of the FMU [53, 55].
As explain in Section 5.2 an FMU is a zip file that contains an XML file and a dynamic li-
brary. Then, the resulting C++ and C code is compiled in order to obtain the dynamic library.
Finally, to generate the FMU, the XML and the dynamic library are zipped together. The used
abstraction [20] changes the model of computation of the Cyber System from event-driven to
cycle-accurate or even transaction-level, but preserving the initial behavior. This step is funda-
mental for the correct FMU integration with the other FMUs.

5.3 Integration Methodology 77

5.3.2 Physical System: Modelling and FMU Generation

Physical Systems can be modeled by using two different solutions, depending on the complexity
of the system to be represented. ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5.1)

The first solution is used for Linear Time-Invariant (LTI) systems represented by a set of equa-
tions (see Eq. 5.1) and four matrices (A,B,C,D). The first equation represents the evolution of
the internal states of the system. The second represents the output function, that depends on the
input and the actual state of the system. To easily model LTI systems, we provided a C template,
which allows to define these four matrices. The template uses a fixed step integration as numeric
solver for the LTI system. The template is then wrapped with the FMI interface and compiled
as dynamic library, to obtain an FMU of the system.

The second solution is used when dealing with more complex dynamic systems. In this cases
a modeling framework like OpenModelica [68] can be used. OpenModelica is an open-source
Model-based design environment. It offers a library of components that allows to model the
physical system as the composition of these blocks, by using the Model-based design paradigm.
Figure 5.2 shows a simple OpenModelica model that represents a second-order dynamical sys-
tem, with a PID, secondOrder and feedback block. The model has one input port, "u", and one
output port, "y". Furthermore, OpenModelica exports the system as an FMU. OpenModelica ex-
poses the input and the output ports in the XML file of the FMU. The obtained Physical System
uses Synchronous Data Flow Model of Computation (MoC) and it needs to be synchronized
with Cycle-accurate MoC of the Cyber System [53].

5.3.3 Cyber-Physical System: Coordination and Integration

The two FMUs, representing respectively the Cyber and the Physical system, required to be
connected and simulated together to obtain a CPS behavior. In order to do that an FMU co-
ordinator is needed. For this methodology, we have developed a C library called FMISupport
that allows managing Co-Simulation FMUs. The coordinator has to be integrated into Plant
Simulation using the SimTalk C-Interface, to allow precise analysis concerning the production
process. Listing 5.4 sketches a basic coordinator algorithm that uses the FMISupport library
and SimTalk C-Interface. The function simulate_CPS is defined with the C-Interface signa-
ture and it represents the simulation function of the CPS (Listing 5.4, line 5). This function is
called by a SimTalk method (Listing 5.3, line 11) associated to the Entrance event of a product
in a process called SingleProcess. The properties of this product (i.e. type of the product, ge-
ometric properties, etc.) are passed to the simulateCPS function as parameter, and saved in a
local structure (Listing 5.4, line 5-8). Then, the two FMUs are simulated for the same amount
of time, using the fmuDoStep function provided by the FMISupport library (Listing 5.4, lines
16-17). After the simulation step of the line, data are exchanged between the FMUs and the
product (Listing 5.4, line 20). The simulation stops when a certain event is reached. This event

78 5 Cyber-Physical Systems Integration in a Production Line Simulator

Fig. 5.2: Example of an OpenModelica Model

represents, for example, the end of the physical process. The time of the entire process could
depend on the product properties of the line. For instance, if the process has to deal with dif-
ferent types of product, it could affect the processing time. Furthermore, the processing time
could also affect the energy consumption of the process. SimTalk C-interface does not define
a structure to return more than one value for each function. Because of this limitation related
to SimTalk C-interface, it is needed to define a get function for each desired property. For that
reason, some functions are defined in the Coordinator to retrieve the information related to the
product and the process. Regarding the process, this methodology focuses on two aspects: the
processing time and the energy consumption. In Listing 5.3 it is possible to see the SimTalk
method that uses the CPS Library implemented in Listing 5.4. The SimTalk method retrieves
the product properties (Listing 5.3, line 7) and then calls the simulateCPS with the product
properties as parameter (Listing 5.3, line 11). After the execution of the simulateCPS, the
SimTalk method retrieves the processing time, the energy consumption and the new product
properties (Listing 5.3, lines 15-17). Finally, the SimTalk method propagates the properties to
the product and to the SingleProcess (Listing 5.3, lines 20-24).

5.4 Methodology Application

The proposed methodology has been applied to a three-process production line. Metal sheets
cross the line that must bend sheets to a desired angle. Involved processes are the following:

• Sensing: it analyzes sheets to discover their bend angle which is written over an applied
barcode;

• Bending: it reads angles from barcodes, then it computes the bending actions and it controls
the bending machine;

• Checking: it ensures that sheets have been correctly bent; thresholds are defined to separate
correct, acceptable and damaged sheets.

This example has been chosen because it contains the three-steps sequence common to many
production lines: generation, production and validation of items.Plant Simulation models this
production line with different nodes, as shown in Figure 5.3:

• Source node provides metal sheets to the line;

5.4 Methodology Application 79

Fig. 5.3: Overview of proposed production line in Plant Simulation

• Drain node receives manufactured metal sheets;

• SingleProcess nodes represent the three processes above.

Plant Simulation provides SimTalk to describe production line functionalities: this leads to
a high-level simulation which is very fast but not much detailed. The proposed methodology
integrates CPSs into SingleProcess nodes to get simulations enriched with time, energy and me-
chanical wear. This is done by using the SimTalk C-interface which permits to call customized
C-functions directly from the simulator.

5.4.1 Bending machine CPS

This CPS consists of a digital virtual platform and an analog model of a bending machine. The
digital platform is composed of M6502 CPU, RAM and ROM memory, bus, sensor and bender
I/O interfaces as shown in Figure 5.4. CPU can access bus peripherals by MMIO. For The bend-
ing machine there are two models obtained by using two solutions proposed in Section 5.3.2.
The first model is a partial model of the bending machine and it is described using the C tem-
plate, defining the values of the four matrices A,B,C,D (Section 5.3.2, Eq. 5.1). This model
allows to have faster simulation but does not have accurate details about the energy consump-
tion of the equipment. The second model is more detailed than the first it is described using
OpenModelica tool [68], integrating information concerning the energy consumption. These
models are characterized by different bending speeds according to bending direction, different
power consumption, different bending times, increasing bending error due to bender wear. Two
versions of this CPS are provided:

• Partial platform: it is composed of the digital platform and a partial bending machine model,
described as LTI system.

• Complete platform: it is composed of the digital platform and the complete bending machine
model, described using OpenModelica;

The CPU reads the angle from the previously applied barcode, then computes the bending
action as delta angle and bend direction. The bending action is provided to the bending ma-
chine through the bus. When the bending process completes, metal sheet can advance to the
next node. This behavior is shown in figure 5.4. The models of the digital platform are written
in VHDL and Verilog. The entire digital platform is automatically abstracted into their C++

cycle-accurate level representation by state-of-the-art [53] and then wrapped in order to ob-

80 5 Cyber-Physical Systems Integration in a Production Line Simulator

Single Process

Digital Platform (FMU) Bender (FMU)

Memory

CPU

Bender
I/O

Sensor

A
P
B

B
U
S

Data
Exchange

BendingSensing

Fig. 5.4: Overview of bending machine CPS

Table 5.1: Properties evaluated by the different simulation line versions

Version Functionality Time Energy
Mechanical

Wear
SimTalk ≈

Partial Platform ≈ ≈

Complete Platform

Table 5.2: Execution Time comparison of different approaches.

Metal Sheets
SimTalk Partial Platform

Complete Platform
Basic Coordinator Optimized Coordinator

Total Time Time per Sheet Total Time Time per Sheet Total Time Time per Sheet Total Time Time per Sheet
10 0.01 0.0001 18.17 1.8165 48.33 4.8334 1.40 0.1404
100 0.01 0.0001 202.35 2.0235 499.89 4.9989 2.85 0.0285
500 0.03 0.0001 1021.89 2.0438 2562.85 5.1257 9.06 0.0181
1000 0.06 0.0001 2290.06 2.2901 6364.07 6.3641 17.04 0.0170

tain the Digital Platform FMU. The CPU Software is cross-compiled stored inside the Digital
Platform FMU. The two models of the Bending machine, partial and complete, are exported
as FMUs using the C template and the OpenModelica framework. The Digital platform FMU
and one of the Bender FMUs, are manually interconnected with a coordinator(see Listing 5.4).
The FMUs and the coordinator are wrapped using the SimTalk C-interface exposing the func-
tions needed to simulate the CPS (simulateCPS) and retrieve the properties (i.e.,getTime and
getEnergy). Finally, the entire code is compiled into a dynamic Library ready to be loaded
from the simulator (see Section 5.3.3). A model composed of only the bending machine analog
model is not provided. This is due to the digital platform simulation time that is negligible
when compared with the one required to simulate the bending machine model.

5.4 Methodology Application 81

Table 5.3: Simulation times and percentage of errors of the proposed approaches, respect to the real bending ma-
chine.

Metal Sheets
Partial Platform Compl. Plat. Basic Compl. Plat. Opt.

Sim Err. Time/Sheet Sim Err. Time/Sheet Sim Err. Time/Sheet
10 0.00% 1.8165 0.00% 4.8334 0.00% 0.1404

100 33.33% 2.0235 0.00% 4.9989 25.00% 0.0285
500 42.86% 2.0438 0.00% 5.1257 33.93% 0.0181
1000 40.30% 2.2901 0.00% 6.3641 19.40% 0.0170

5.4.2 Alternatives Taxonomy

Table 5.1 summarizes all aspects supported by the different modeling alternatives proposed in
this paper. It compares the standard Plant Simulation production line model with CPS-enriched
ones. The SimTalk approach can only simulate bending functionalities and it provides an esti-
mation of the simulated time. This is the highest level of abstraction because a bending machine
simulable model is not used. With a CPS model, more information can be retrieved. Partial Plat-
form grants detailed information about CPU processing time. Partial bending machine model
used in Partial Platform provides only an estimation of energy and mechanical wear but it can
give the precise bending time. With Complete Platform instead, it is possible to get detailed
information about all properties. This is possible thanks to the refined model.

5.4.3 Simulation speed

Simulation data are analyzed from different points of view to demonstrate the usability of this
work. First adopted method is to measure the simulation times and the required times to simulate
the bending of a single metal sheet: it is important that simulated line can advance its time at
least as the real factory does.

Table 5.2 reports the simulation time respect to the total number of processed metal sheet.
This paper proposes two different coordinators for the Complete Platform: the Basic and the
Optimized Coordinator. The difference between Basic and Optimized Coordinator concerns
the step size used to simulate an entire operation of the bending machine FMU. The Basic
Coordinator always uses a step size equal to the clock period of the digital FMU. The Optimized
Coordinator adopts longer steps during bendings, that decouple the simulation of the FMUs
and reduce the number of synchronization point. The Complete Platform with the Optimized
Coordinator achieves up to 374x speed-up, respect the Basic Coordinator, with 1000 bending
operations. The real bending machine requires on average ∼ 1 second at every new sheet (∼ 1.8
seconds in the worst case). This leads to about 3 seconds per metal sheet considering also
times required to transport sheets between nodes. In table 5.2, Complete Platform with Basic
Coordinator requires more than 3 seconds to simulates a single bending operation. This result
does not met real-time requirements in order to plan strategies on the real factory. In conclusion,
SimTalk, Partial platform and Complete platform with Optimized Coordinator are solutions that
can be adopted to advance in parallel to real production line.

82 5 Cyber-Physical Systems Integration in a Production Line Simulator

100 200 400 600 800 1,000
0

20

40

60

80

100

120

Number of metal sheets

N
um

be
ro

fc
or

re
ct

m
et

al
sh

ee
ts

SimTalk
Partial

Compl. Basic
Compl. Optimized

Fig. 5.5: Number of correct metal sheets

5.4.4 Simulation errors

The second analysis focuses on the measurements of simulation results: an abstracted model
leads to less detailed simulations. Figure 5.5 shows the number of correct metal sheets produced
by the proposed approaches. Complete Platform with Basic Coordinator represents the correct
trend: it is the most detailed simulation, but requires a lot of time and can not be used in a real-
time context. SimTalk version grows almost linearly because it does not take care of mechanical
wear. Partial Platform leads to smaller error thanks to its approximated wear model. Complete
Platform with Optimized Coordinator leads to an error smaller than Partial Platform one. It
is due to different approximations done by analog numeric solvers when changing step size.
Thus, Complete Platform with Optimized Coordinator represents an optimal trade-off solution
between simulation time and the percentage of errors.

5.5 Conclusions

We presented a methodology for the integration of Cyber-Physical Systems in a production line
simulator. This work represents an efficient alternative to co-simulation methodologies for the
modeling of Digital Twin concerning Industry 4.0.

The methodology has been implemented and applied to a common use case scenario in man-
ufacturing process. The results obtained from the simulation clearly show the benefits from the
integration of Cyber-physical systems in terms of accuracy. CPS integration allows to estimate
properties of the production line that could not be estimated elsewhere. The simulation time
required to compute the CPS is 100 times faster then the real processing time. These promising
results enable the possibility to make precise analysis in order to plan a strategy to optimize the
entire production line. Future work will focus on improving the simulation speed proposing a
new coordination of the FMUs and mixing models with different levels of abstraction.

6

Automatic Integration of Cycle-Accurate Models into
Cyber-Physical Virtual Platforms

6.1 Introduction

Virtual platforms are powerful tools to co-design HW/SW devices [73] as they allow to execute
SW while considering constraints imposed by the architecture [74]. In the case of CPSs, digital
HW/SW is used to control physical processes. Thus, virtual platforms for CPSs must be able
to capture evolution of both continuous (i.e., physical processes) and discrete (i.e., HW/SW de-
vices) parts of the system. Unfortunately, virtual platforms for CPSs are not yet available and
control SW designers still prefer to rely on multi-domain dynamic system simulators, such as
Simulink, that allow them to design control strategies without considering architectural details.
Of course, a given architecture may introduce timing artifacts that make control strategy inef-
fective, thus forcing re-implementation [75]. Cyber-physical virtual platforms would be thus
beneficial to reduce this risk if they allow simulating together the timing-accurate behavior
of HW/SW devices and the continuous dynamics of physical components of the CPS being
simulated. Such a simulation environment may be obtained by integrating models of HW com-
ponents within dynamic system simulators. It is thus necessary to overcome the semantic gap
between cycle-accurate HW models and data-flow continuous-time models [76].

This work assumes that cycle-accurate HW models are originally described as RTL IPs using
HDL. Therefore it faces the problem of mapping the HDL constructs onto the target simulation
environment primitives. Then, it defines two different synchronization techniques to reconcile
the concurrent semantics of HDLs with the sequential execution of data-flows.

As depicted in Figure 6.1, the approach starts from a set of discrete-event HDL mod-
els of HW IPs, and a data-flow continuous-time model of the physical processes (i.e., plant
and environment). Each discrete-event HW model undergoes a state-of-the-art abstraction pro-
cess [20,43,44] to produce its cycle-accurate C++ representation. Then, the novel synchroniza-
tion and code generation techniques are used to integrate cycle-accurate models to data-flow
models. We adopt Simulink as target simulation environment, being the most popular simulator
among system engineers. However alternative code-generation steps are presented to provide
either Mathworks’ C MEX S-function implementations, or portable FMUs compliant with the
FMI standard [21]. The approach is completely automatic: this and the other advantages will be
shown in the experimental section of this paper.

84 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

Fig. 6.1: Structure of the target simulation environment.

6.2 Background

6.2.1 Related work

As of today Virtual platforms focus on digital HW/SW systems [77] and support of continuous-
time models is limited to analog devices [24, 78], and Micro-Electro Mechanical Systems [79].
CPSs SW development is still strongly based on top-down methodologies [19], and Model-
based design tools such as Mathworks’ Simulink [18], rely on abstract models thus impos-
ing HW-in-the-loop techniques to perform precise timing estimation of the computational unit.
Naderlinger [80] proposes xTask blocks, i.e. Simulink S-Functions representing time-annotated
SW tasks: the approach is promising but it is still an approximation based on manual timing
estimations. Alternatively, virtual platforms development can rely on Analog-Mixed Signals
HDLs: [81] proposes Verilog-AMS and VHDL-AMS as modeling languages for heterogeneous
systems. However, system and control engineers are reluctant to rewrite their models.

Co-simulation is widely used to emulate heterogeneous systems [25]. Standardized inter-
faces, i.e. FMI, allow to build complex simulation environments. Integration of SystemC models
using FMI has been explored [82]: however, SystemC is a modeling rather than a design lan-
guage. [76] formalizes the FMI primitives and proposes a synchronization mechanism to enable
co-simulation of discrete-event models and data-flow descriptions. However, it is thought to be
used in top-down design flows, without reusing IPs. The automatic generation of cycle-accurate
FMI and Simulink blocks from HW models has been proposed by us in [83]. However, we did
not address the problem of composing multiple blocks preserving functional equivalence, that
is a major target of this paper.

6.2 Background 85

Fig. 6.2: Flow diagram implemented by HDL
simulators. Fig. 6.3: Statechart representation of

HDL simulation.

Fig. 6.4: HDL simulation statechart af-
ter abstraction.

Fig. 6.5: Execution schemes involved in the RTL to cycle-accurate abstraction and translation methodology.

6.2.2 Code Generation for Virtual Platform Integration

Tools as Carbon Model Studio [43], Verilator [72], HIFSuite [44] and methodologies have been
proposed to automatically translate HDL IPs into cycle-accurate C++ models.

The abstraction methodology presented in [20] is used as a starting point for this work:
it produces a C++ model that is cycle-accurate with respect to a starting HDL description. Its
interface is a function executing a simulation cycle at each call. Inputs and Outputs are managed
by a payload structure passed to the function as a parameter. Figure 6.5 depicts the different
computation schemes involved in this abstraction. Figure 6.2 is the flow chart representing the
HDL scheduler. Green boxes highlight the steps executed at each clock cycle. Figure 6.3 is the
state chart implementing the scheduler in Figure 6.2. Figure 6.4 shows the state chart obtained
by applying the abstraction methodology to the one in Figure 6.3: it has a unique state and a
self-transition executing the set of green boxes in Figure 6.2 at each simulation function call.
Circled numbers of Figures 6.5 and 6.6 will be used in the following of the paper to highlight
the relations between execution schemes.

86 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

Fig. 6.6: Statechart representation of the calling sequence of Co-simulation C functions to simulate an initialized
FMU.

6.2.3 Interface technologies for system simulation

This work exploits two standardized interfaces to import and connect heterogeneous models:
the FMI standard 2.0 [21], and Mathworks’ proprietary C MEX S-Functions [18]. Both provide
C-based interfaces to model components functionality.

FMUs [21] are the basic blocks of a simulation environment based on the FMI standard.
Each FMU represents a component and it contains all the information necessary to be simulated.
It may implement either the Model Exchange or the Co-Simulation version of the FMI standard:
this work focuses only on Co-Simulation version, as it is more suitable for discrete-time models.
An FMU consists of an XML file and a C-based implementation. The XML file describes the
variables exposed by the FMU. The functional implementation of an FMU is based on the FMI
standard C interface defining a set of functions implementing system behavior in terms of input-
reading, output-writing and execution operations. The standard does not define how functions
are scheduled at each simulation step: it rather specifies some constraints. As such, the same set
of FMUs may act differently [84] on different simulators. The simulation evolves according to
the state chart in Figure 6.6. Circled numbers, red thicker lines and bold text in Figure 6.6 will
be used in the following Sections of this paper.

S-Functions rely on similar concepts, although they provides a simpler interface. A configu-
ration file specifies the functions in charge of managing the simulation. The simulator executes
the initialization function when the model is instantiated. Then, at each simulation step, it exe-
cutes its output function in which the designer specifies the order of the input-reading, execution,
and output-writing operations.

6.3 Integration methodology 87

6.3 Integration methodology

This work provides different alternative and engineers can tail the virtual platform integration
process to best suit their needs. We evaluate the proposed approaches and the state-of-the-art
and we identified the following list of desired features:

• Automatic reuse of components by automatically importing previously designed HW IPs
into a virtual platform.

• Automatic generation of model: to allow HW engineers to model each device or IP in their
favorite HDL.

• Seamless integration to allow system engineers to import HW IPs into a virtual platform
with no prior knowledge about internal details of devices, thus enabling Compositional
design.

• Portability of generated models to support different systems simulators that may be used by
different engineer teams, thus not being bonded to a specific vendor.

This paper addresses the generation of “cyber models” targeting:

• Portable FMUs: the code generated after performing automatic abstraction is mapped onto
FMI standard primitives.

• Mathworks’ S-Functions: the code generated by automatic RTL to cycle-accurate abstrac-
tion is mapped onto vendor-specific primitives provided with Mathworks’ Simulink.

Finally, synchronization between different cyber modules into a platform can be managed
by two alternative approaches:

• in the Monolithic model approach IPs composing the computational infrastructure of the
system are integrated before applying the RTL to cycle-accurate abstraction. It will pro-
duce a single module, where synchronization and communication between IPs is managed
internally [20, 24].

• The Hub-based approach allows to keep IPs separated. An additional module (called Hub)
takes care of connecting the cyber modules with each other and to the physical sub-model
of the system. It aims at overcoming the gap between the sequential semantics of data-flows
and the concurrent semantics of HDLs.

The hub-based approach has two variations since an interface may grant complete (e.g.,
S-Functions) or partial (e.g., FMI standard) freedom about the sequence of primitive calls.

To integrate HDL IPs into dynamic system simulators we first introduce a mapping be-
tween the starting HDLs and the target interfacing technologies. This is necessary to create the
modules to integrate. Then, we define two synchronization approaches providing alternative
features.

6.3.1 Mapping HDL primitives to FMI and S-Functions

Figure 6.5 summarizes the two different execution schemes involved in the RTL to cycle-
accurate abstraction for digital IPs. Figure 6.6 shows the execution scheme imposed by the

88 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

Table 6.1: Mapping of HDLs simulation events onto the primitives offered by the FMI standard and S-Functions.

HDL simulation
Events

FMI Standard
Primitives

S-Functions
Primitives

Initialization
Sequence of assignments
in initialization mode

Initialization function defined by
the mdlStart callback method

Input Signals
Reading

fmi2SetInteger
Parameters passed to
Compute Output function by value

Output Signals
Writing

fmi2GetInteger
parameters passed to Compute
Output function by reference

Simulation Cycle
Execution

fmi2DoStep
Output function defined by
the mdlOutputs callback method

FMI standard. S-functions rely on a similar schema and differs only on primitives naming. Cir-
cled numbers in figures label relations among schemes: 1© labels the initialization phases, 2©

input and output phases and 3© the execution phase. Labels in Figure 6.6 show that the Step
Completed and Step In Progress states are necessary to reproduce HDL semantic.

Table 6.1 reports the FMI and S-Function primitives used to map HDL events. That is how
correspondences highlighted by circled numbers in Figures 6.5 and 6.6 are implemented.

HDL model initialization (i.e., 1©) is reproduced by two FMI primitives. The fmi2Instantiate
function allocates the memory necessary to load the model, and creates the indexes identifying
the external variables of the FMU. The fmi2SetupExperiment function leads internal values
to their initial configuration. To reproduce the same behavior in an S-Function it implements
a setup function specified by the mdlStart method of the S-Function configuration file. The
setup function leads internal values to their initial configuration.

HDL input and output events (i.e., 2©) are reproduced in FMI by the fmi2SetInteger and
fmi2GetInteger functions, respectively. They are called by the simulator at each simulation
cycle for all the variables exported by the FMU as input or output variable. After the data-type
abstraction is performed to generate the C cycle-accurate models, all the variables are integer.
S-Functions input and output variables are parameters of the output function. Inputs are passed
to the function by value, while outputs by reference.

Simulation of cycle-accurate models is a sequence of periodic executions (i.e., 3©). Once a
cycle-accurate model is transformed into an FMU, the fmi2DoStep primitive is called at each
clock cycle. The same behavior is reproduced using S-Functions by defining an output function,
specified by the mdlOutputs callback method. The output function takes the input values and
the references of the output variables as parameters.

6.3.2 Monolithic model approach

Blocks (i.e., FMU or S-Function) generated applying the mapping discussed above can be in-
serted in a data-flow model, such as the ones used in Simulink. Designers may be led to model a
system using different HW IPs trivially connecting the generated blocks according to the struc-
ture in Figure 6.7, without any particular precaution. This may lead to errors: synchronization
problems arise while trying to represent HW models using data-flow-based tools because of

6.3 Integration methodology 89

Fig. 6.7: Naïve structure of Simulink model with multiple computational components.

Fig. 6.8 Fig. 6.9

Fig. 6.10: State charts representing the FSMs used to manage synchronization locally to (a) FMUs and (b) S-
functions.

the different execution semantics involved. Data-flow models are intrinsically sequential, while
HDL semantics is concurrent.

A first approach delegates integration to the abstraction procedure applied to create cycle-
accurate models. It schedules, and thus integrates, any set of synchronous and asynchronous
processes of an HDL hierarchical model. Thus, different HW IPs can be hierarchically com-
posed into a unique HDL description and abstracted into its equivalent cycle-accurate model.
Finally, it undergoes the mapping proposed above.

This solution manages the synchronization and communication between digital HW compo-
nents internally to the monolithic model of the HW platform. Unfortunately, it requires defining
the entire HW architecture of the system before its integration in the cyber-physical virtual
platform. Thus, the designer must sacrifice the possibility to replace components freely.

90 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

Fig. 6.11: Structure of the simulation environment combining the continuous-time model of the physical plant and
a computational infrastructure composed by multiple FMUs.

6.3.3 Hub-based approach

The second solution reconciles the models of computation involved, by enabling concurrent
execution of components within data-flows. The main idea is to decouple IPs execution from
their synchronization and communication. IPs must read their inputs and perform one execution
step to produce their outputs before to exchange data with each other.

All the clusters of communicating IPs are identified. Communication, synchronization,
and data exchange are managed globally for each cluster by using a dedicated module called
Hub. Then, the synchronization is managed locally to each module by using a Finite State
Machine (FSM).

Two situations may occur while integrating modules into a CPS simulator using integra-
tion technologies when considering the algorithm regulating the input-reading, execution and
output-writing phases (e.g., the FMI master algorithm for co-simulation): the algorithm can be
fixed or it can be configurable. If the algorithm is fixed, all the possible sequences of primitive
calls must be managed. Otherwise, some optimization may be possible. Figure 6.10 shows the
FSMs managing the two cases. The machine in Figure 6.8 is used when the scheduler is fixed,
the machine in Figure 6.9 is used otherwise. The reference FMI standard toolbox available for
Simulink [18] fixes the sequence of actions for each simulation cycle to execution, output, input:
thus requiring the first solution. S-Functions grant more freedom: the solely “output function”
is executed at each simulation cycle. It takes care internally of reading input, executing and
writing output: it thus allows to use the second solution.

The states in Figure 6.10 are hereby described referring to the mapping defined above for
the FMI standard:

• Hub Routing: the Hub updates its output variables using the values of its input variables
read at the previous execution: it mimics the signals propagation defined when binding
signals in RTL models. FMUs implementing components of the platform do not perform
any computation.

6.3 Integration methodology 91

• Data Propagation: the values written by the hub are stored into Simulink memory units,
allowing to break algebraic loops. FMUs implementing components and the hub are not
performing any computation.

• Model Execution: the FMUs modeling components execute one simulation cycle, write their
output variables and update their input values reading memories output values.

• Data Gathering: the hub updates its inputs reading values from the components FMUs and
the Simulink model.

Circled numbers in Figure 6.10 highlight relations between FSM states and the execution
schemes to reproduce (Figure 6.5). Data Propagation (4©) has no correspondence in previous
schemes being an artifact stalling the execution to assure correct values propagation. The 4-state
FSM can manage the most critical family of scheduling sequences allowed by the FMI standard,
i.e., simulation cycles with input reading operations scheduled after the model execution.

On the other hand, if the scheduler is not using a critical sequence it is possible to use the
2-state FSM. The latter is the case when executing S-Functions where we are free to impose
input-reading as the initial action of each simulation step.

Each module (i.e., FMU or S-Function) contains both its cycle-accurate implementation
and the chosen FSM. It is now possible to define a schematic structure overcoming problems
emerged using the structure in Figure 6.7. Multiple modules representing different IPs are con-
nected to each other as depicted in Figure 6.11. Such a structure is required by the Hub-based
approach to faithfully reproduce the communication scheme between multiple HDL models.
All the input or output ports of modules produced from IPs are connected to the module imple-
menting the hub. The latter takes care of propagating values from each module to the others,
and from the modules implementing the HW infrastructure of the system to the remainder of
the model. Finally, the simulation step of each module is set to be equal to the device’s clock
period divided by the number of states in the FSM. In this way, the hub module “parallelizes”
components’ executions, while interfacing them to the sequential semantics of the model.

6.3.4 Alternatives Taxonomy

Table 6.2 summarizes the desired features supported by the different alternatives proposed by
this paper. It compares them to the state-of-the-art, (i.e. token-based synchronization method-
ology [76]). The approach found in the literature is thought to be used in a top-down scenario,
where components reuse is not considered. Despite its portability, granted by the FMI Standard,
it does not support automatic generation and seamless integration since it requires to enrich in-
terfaces of discrete-event models adding event ports.

The other entries in the table point out the features of solutions combining the interfacing
technologies and synchronization approaches proposed above. Contrary to S-Functions, FMI-
based solutions are always portable. Both interfacing techniques, as well as both the synchro-
nization approaches, allow component reuse and automatic model generation. The Hub-based
approach provides seamless integration: it allows to easily modify the structure of the digital
devices minimizing the number of model regenerations. The monolithic models require to re-
generate the module at each change of the HW architecture. As such, the former is more suitable

92 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

Table 6.2: Comparison between feature of the state-of-the-art [76] methodology and the proposed approaches.

Interface
Technology

Synch.
Approach

Components
Reuse

Automatic
generation

Seamless
integration

Portability

FMI

Token-based
[76]

× × ×

Monolithic
Model

×

Hub-based

S-Functions

Monolithic
Model

× ×

Hub-based ×

for design-space exploration. However, Section 6.4 will show that monolithic models provide
faster simulation.

6.4 Methodology Application

The methodology has been implemented in a tool on top of HIFSuite [44] to exploit its already
available abstraction features [20]. The tool has been applied to a case study composed of a
physical plant controlled by a SW running on a CPU. The case study has been composed to be
representative of many CPS families, and Figure 6.12 shows its structure.

Our approaches have been used to integrate accurate models of the digital components into
Simulink, building a cycle-accurate cyber-physical virtual platform. Then, we use this case
study to evaluate the efficiency of the proposed methodology regarding simulation speed, while
the effectiveness of the methodology is shown by exploiting a cycle-accurate virtual platform
to perform some design-space exploration steps.

Fig. 6.12: Architecture of the CPS used as case study. Colors represents the original modeling languages of the
components: blue for Verilog, yellow for VHDL, green for Simulink, while red closed source HDL IPs.

6.4 Methodology Application 93

Table 6.3: Simulation overhead necessary to simulate one minute of the system by using different modeling alter-
natives.

#
Interface

Technology
Synchronization

Methodology
Configuration

Execution
Time (s)

0 – –
Stateflow controller
in Simulink model

0.32

1

S-Functions
Hub-based

4 C MEX Compiled
S-Functions

4.29

2
3 C MEX Compiled

S-Functions
3.78

3
2 C MEX Compiled

S-Functions
3.63

4
Monolithic

Model
1 C MEX Compiled

S-Function
1.98

5

FMI

Token-based
[76]

4 FMUs 10.74
6 3 FMUs 8.88
7 2 FMUs 5.16
8

Hub-based
4 FMUs 15.94

9 3 FMUs 13.14
10 2 FMUs 11.90

11
Monolithic

Model
1 FMU 2.61

6.4.1 Simulation performance

Last column of Table 6.3 reports the time (seconds) required to simulate 1 second of the real
system by using different alternatives of the virtual platform. The first column enumerates sce-
narios. All the simulations have been executed on an Intel i7-3770 CPU at 3.40GHz and 16 GB
of DDR3 Ram Machine running Linux Ubuntu 16.04 and Mathworks’ Simulink 8.8.

Simulation time is obviously minimized when modeling the entire system within Simulink
(Scenario 0). However, Section 6.4.2 will point out how this model lacks in accuracy.

Scenarios 5 to 7 relies on the FMI standard and the state-of-the-art synchronization method-
ology in [76]. They can be compared to scenarios implementing the hub-based synchronization
(Scenarios 1 to 3 using S-Functions and 8 to 10 using FMI). S-Functions always outperform
both alternatives. The token-based approach is slightly faster than the FMI-implemented hub-
based technique. However, [76] is purely top-down, and it does not easily support reuse of
components. Moreover, generation of FMUs cannot be automatized, depending on FMUs in-
stantiation. All the approaches we proposed are instead thought to maximize component reuse,
automatic generation, and integration.

Scalability is analyzed by comparing Scenarios 1, 5 and 8, respectively to Scenarios 3, 7
and 10. The analysis is shown in Figure 6.13 reporting the simulation time of each approach (y-
axis), given the number of instantiated units (x-axis). The constant overhead required by each

94 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

1 2 3 4
0

5

10

15
16

Number of units

Si
m

ul
at

io
n

tim
e

(s
)

Hub w/ FMI
Token w/ FMI

Hub w/ S-Functions

Fig. 6.13: Scalability of the proposed approaches.

approach must be evaluated when two units are instantiated. The Hub-based synchronization
has a heavier constant overhead w.r.t. to [76] when using the same interface technology, i.e.
FMUs. Nonetheless, the Token-based approach overhead grows faster adding units: from 5.16
to 10.74 seconds (2.08x) for [76], from 11.90 to 15.94 seconds (1.33x) for the Hub-based ap-
proach using FMI: the Hub-based approach seems to be more suitable when virtual platforms
are composed of many digital modules. The Hub-based synchronization implemented using
S-Functions outperforms both the others. S-Functions introduce lighter overhead than FMUs.
Furthermore, doubling the number of units the simulation time grows slower: from 3.63 (Sce-
nario 3) to 4.29 seconds (Scenario 1) (1.18x).

Finally, Scenarios 4 and 11 synchronize IPs by exploiting automatic abstraction and inte-
gration. They provide the fastest virtual platforms and they are the best choice to effectively
execute SW and not to explore alternative platforms.

6.4.2 Design Space Exploration

Figure 6.19 summarizes the development and refinement steps carried on to obtain the controller
HW/SW implementation. It aims at showing the benefits of embedding cycle-accurate models
within cyber-physical virtual platforms:

• The system is originally modeled by using Simulink (Scenario 0 of Table 6.3). The HW/SW
controller is modeled using Stateflow. Figure 6.14 shows the model’s time evolution. The
Controller easily manages the system leading to stability after around 450 seconds.

• The model is refined by introducing the FMUs implementing the cycle-accurate models
of HW components. A SW running on the CPU implements the controller. HW resources
are very limited: fixed-point arithmetic is not available, and the bus causes a communica-
tion bottleneck. Figure 6.15 shows the new model evolution: the SW cannot produce the
actuation signals in time to control the system due to architectural constraints.

6.4 Methodology Application 95

Fig. 6.14: Time evolution of the ideal
Simulink model.

Fig. 6.15: HW-aware model evolution.

Fig. 6.16: Time evolution of the model after
the architectural optimization.

Fig. 6.17: Time evolution of the model using
the Network Interface.

Fig. 6.18: Time evolution of the model after the SW opti-
mization.

Fig. 6.19: Time evolution of the CPS model in the different phases of SW design exploration and optimization.

• Analyzing the previous model execution may help designers: SW-implemented multipli-
cations was burdening the SW. As such, the designer inserts a further IP providing HW
fixed-point arithmetic. Figure 6.16 shows the system reaching stability after 400 seconds.

• Previous models were not considering the Network Interface peripheral that requires a SW-
implemented polling mechanism. The peripheral is imported as an FMU using the Hub-
based mechanism. The SW is modified to send data through the network. Figure 6.17 shows
that the polling mechanism introduces overhead causing the controller inability to control
the system.

• The SW has been modified to run while the Network Interface is sending data. The previous
model allows identifying the part of computation that can be executed while waiting for the
peripheral to complete. In the evolution depicted in Figure 6.18 the system is now stable
after 700 seconds.

The steps just presented show the importance of relying on accurate models when develop-
ing control SW for CPS. They highlight the positive impact of automatic integration of cycle-
accurate models into cyber-physical virtual platforms.

96 6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms

6.5 Conclusions

This paper enables integration of cycle-accurate models within dynamic system simulators,
to create cyber-physical virtual platforms. It proposes two integration solution to efficiently
synchronize the discrete-event and data-flow models of computation. We evaluated the different
techniques by using the same case study, highlighting for each alternative its advantages and
drawbacks. This analysis may guide designers to choose the solution better suited to any design
phase.

Experiments showed the benefits of using cyber-physical virtual platforms. In particular,
a case study clearly shows the importance of using cycle-accurate models when developing
timed-constrained control SW for CPSs.

7

Improving FMI-based simulation by Exploiting System–level
Information

7.1 Introduction

CPSs are complex, heterogeneous systems that interact with the physical environment, under
the control of complex software. Thus, their correctness depends on either their physical part as
well as the software controlling them [85]. In this context, virtual platforms play a crucial role
during the system design flow. A virtual platform [73] is an executable model able to emulate
the behavior of the system for which a piece of software is being written. Traditionally, they are
used for classical embedded systems to emulate the behavior of a hardware platform running
the software being developed. In the case of digital devices, virtual platforms are already a
widely mature technology, and a well-known practice [86]. Unfortunately, the heterogeneity
characterizing CPSs makes way more difficult building virtual platforms providing efficient
system-level simulation [87].

In fact, emulating heterogeneous systems requires the integration of different simulation
paradigms. This as been so far achieved by developing, either academic [88] and commer-
cial [18], heterogeneous modeling and simulation tools. However, these tools are strongly ori-
ented to strictly top-down design flow, where abstract models are produced for the entire system,
and then refined into implementations [89]. Thus, designers are forced to rely on abstract mod-
els as starting point of the design, hindering the possibility to re-use previously designed and
validated implementations [87]. This is particularly limiting when designing the digital HW/SW
platforms embedded in the CPS being developed. In fact, a very powerful and efficient practice
in the design of embedded devices proved to be the re-use and integration [90] of previously
designed, validated and tested components, i.e., IP modules or IPs.

Integration of reused IPs and high-level physical models for simulation, is crucial to im-
prove design of CPSs and it is the target of this work as summarized in Figure 7.1. This paper
proposes a set of methodologies to build cyber-physical virtual platforms integrating abstract
models of the physical parts of the system, and digital subsystems modeled by reusing hardware
components’ models. The IPs components composing the digital subsystem are abstracted and
integrated to build a virtual platform through automatic code generation. The generated code is
enriched to provide a standardized interface that can be used to import the model into system-

98 7 Improving FMI-based simulation by Exploiting System–level Information

Digital Subsystem

IP IP

IP IP

Digital
subsystem’s

Virtual Platform

Architecture
Information
(IP-XACT)

Protocol
Information

(UML)

Standardized
Interface

Physical
subsystem’s

Model

Cyber-Physical Virtual Platform

Coordinator

Control SW

Fig. 7.1: Target simulation environment produced by this work. A cyber-physical virtual platforms allowing the sim-
ulation of complex CPS, while allowing integration of previously designed IP components. The cyber-physical vir-
tual platforms must allow running control software for validation purposes. Architectural and protocol informations
are used to automatically generate standardized interfaces, and the system-level coordinator enabling heterogenous
co-simulation.

level simulators. This work targets both the generation of portable interfaces compliant with the
FMI standard.

In our previous work [46,55], we introduced the automatic code generation of cyber-physical
virtual platforms. In this paper, we build a structured methodology allowing to apply opti-
mizations to the virtual platforms by exploiting system–level information. In particular, the
optimizations are enabled by providing information about the architecture and the communi-
cation protocols of the system. For each available piece of information, this paper shows the
enabled optimizations. Information stored into IP-XACT models of the architecture will allow
to optimize the automatically generated standardized interfaces of the components. Meanwhile,
protocol information modeled as UML timing diagrams is used to optimize the coordination
between the digital and the physical subsystems. Therefore, the virtual platforms produced by
the presented approach are both able to emulate accurately the entire system, and allow reuse
of components. Thus, providing a crucial tool for the early validation of control software.

The following of the paper is organized as follow. Section 7.2 introduces the background and
the related work. Section 7.3 provides the overview of the different steps of the contribution,
while describing their connections. Furthermore, it introduces a case study used through the
paper as a running example to describe the different steps. The steps are then deeply described in
Sections 7.4 to 7.6. Finally,Section 7.7 presents an experimental evaluation of the contribution.

7.2 Preliminaries 99

7.2 Preliminaries

This section first introduce the interfaces available to build system-level executable models for
CPSs, and it will specifically focus on the details of the FMI standard. Then, it recalls the main
concepts about the specification languages typically involved in the design of hardware plat-
forms, and about the automatic abstraction techniques for hardware descriptions. Finally, this
section summarizes the major results related to this work available in the literature, highlighting
the novelty of the presented work.

7.2.1 Standardized interfaces and the FMI standard

The ability to interface different models is crucial for effective system–level design. For this rea-
son, many co-simulation technologies have been proposed in the last decades [91]. However,
most of the time, co-simulation environments relied on interfaces tailored on the specific simu-
lation tools being interfaced. Custom co-simulation interfaces come with two major drawbacks.
On one hand, designers are forced to either use tools for which they already developed inter-
faces, or to put effort in developing new interfaces. On the other hand, custom interfaces were
developed with weak formal support and thus, they do not provide strong correctness assurance.

In this context, the FMI standard has been proposed to enhance the interoperability between
tools of different vendors for systems design [21]. It aims at providing support for model ex-
change and co-simulation of dynamic models that may be produced by using different tools and
languages.

FMI-based simulation environment is a composition of FMUs. Multiple FMUs can be im-
ported within a simulation tool to be executed. Each FMU must implement one of the two
interfaces defined by the current standard: Model Exchange or Co-Simulation. Both types of
FMU must contain an XML file describing the interface of the component modeled within the
FMU, and the model of its functionalities. The main differences between the two types of FMU
lay in the latter. Model exchange FMUs describe functionalities by using differential, algebraic
and discrete equations with time-, state- and step-events. The behavior specified in a model
exchange FMUs is reproduced by using external solver. On the contrary, co-simulation FMU
must contain within the model both the functionality and implementation of the solver. As such,
co-simulation FMU must contain an executable specification of the component being modeled.

The FMI standard has been originally developed by a community mostly focused on the
physical side of CPS. For this reason, at its latest release, the standard is better tailored for
expressing continuous-time behavior rather than discrete systems. This is particularly evident
in the standard for model exchange. However, as the co-simulation standard requires to embed
solvers within FMUs, it is better suited to support discrete-time models. For this reason, in this
work we focus on the co-simulation FMI standard, which main features are described hereby.

7.2.2 FMI Standard for co-simulation

An FMU for co-simulation usually models a system component. It must contain an XML file
describing the component interface, and the implementation of its functionality as a dynamic

100 7 Improving FMI-based simulation by Exploiting System–level Information

library written in C, implementing both the model of the functionalities and the solver necessary
to execute the model. The XML file must specify all the variables and parameters of the model
that the FMU makes visible to the simulation environment [21]. For each variable, it specify
its name, causality (e.g., input, output, parameter, etc.), its type and a value reference (i.e., a
variable identifier that must be unique among the variable of the same time). The simulator
identifies each variable by its type and value reference pair.

The dynamic library must implement the set of functions defined by the standard. In other
words, the standard for co-simulation defines a set of function signatures that must be imple-
mented within the dynamic library contained in the FMU. The functions most relevant for this
work are:

• fmi2SetupExperiment: initializes the internal variables of the FMU.

• fmi2Set: sets the value of an internal variable of the FMU i.e., it assigns a value to an input.

• fmi2Get: gets the value of an internal variable of the FMU i.e., it returns the value of an
output.

• fmi2DoStep: advances the simulation time of the component executing the behavior de-
fined by the model.

While the standard defines the signature of all the functions to implement, it does not im-
poses their usage. However, the standard defines some limitations on the order in which the
functions can be invoked by the simulator.

7.2.3 Simulation coordination in the FMI standard

A FMU, regardless whether it is a model exchange or co-simulation FMU, to be simulated
must be loaded by a coordinator managing the communication and the synchronization be-
tween FMUs. Coordinators must implement communication and synchronization mechanisms
compliant with the FMI standard, which defines [21] the concept of master algorithm as the
actor in charge of exchanging data between FMUs and synchronizing the simulation of the in-
volved solvers. The fmi2Get and fmi2Set functions are invoked by the master algorithm to
read and write data to the FMU. Meanwhile, the fmi2DoStep functions of the FMUs in the
system are invoked to advance the simulation. The exact definition of the master algorithm is
not part of the standard which only imposes some limitations to the order of functions to be
called.

The master algorithm initialize the FMUs in the system by calling their fmi2SetupExperiment
functions. Then for each initialized FMU, the algorithm follows the execution defined by the
statechart in Figure 7.2. The execution starts from the Step Completed atomic state within the
State Initialized sub-machine. The master algorithm may invoke the fmi2Get or the fmi2Set func-
tions to read or write values of the FMU external variables, or the fmi2DoStep function to execute
a simulation step of the FMU. The standard forbids to call a fmi2Get function immediately after
calling the fmi2Set function. When calling the fmi2DoStep function, the algorithm passes the
amount of time to be simulated as a parameter. The machine moves to the Step in Progress state
and the FMU executes its functionality. Whenever the step is not canceled nor discarded, and

7.2 Preliminaries 101

Step Completed

Step Canceled

Step in Progress

Terminated Error

State Initialized

Step Failed

fmi2DoStep = Pending

Status=
Error

Status = Cancel

Status = Discard

Status=Ok

fmi2Get
fmi2Set
fmi2DoStep = Ok

fmi2Terminate

fmi2Terminate

Fig. 7.2: Statechart of the FMI standard’s master algorithm.

whenever no errors happens during the execution, execution goes back to the Step Completed
state and the FMU advances its own local time. While the fmi2Terminate function is not invoke,
the execution continues indefinitely.

A simulation tool may implement a coordinator for FMI executing in any order, as long as
it complies with the rules summarized above. Thus, the standard allows many different master
algorithms, each of them providing different executions.

7.2.4 Specification Languages for Hardware Platforms

A large variety of languages have been produced to model HW/SW platforms [87]. Each of
them, specialized in capturing different views and aspects of the design [92]. In this work,
we rely on IP-XACT [93] and SysML [94] to specify, respectively, the architecture and the
communication protocol of a HW platform.

Platform specification using IP-XACT

IP-XACT [93] is a standard (IEEE P1685) defining a XML-based format for describing HW
IPs to support the design of digital platforms and System on a Chips (SoCs).

An IP-XACT component describes one or more implementations of an IP. Each IP is iden-
tified by four elements: vendor, library, name, and version which compose the IP’s VLNV iden-
tifier used by IP-XACT editors and tools to uniquely identify IPs. A component model the IP
by describing its interface. Thus, it lists the component ports. Each port is characterized by a
name and it may be either a wire in the case the IP is express at RTL, or transactional is used

102 7 Improving FMI-based simulation by Exploiting System–level Information

by a transactional model. A special type of IP-XACT component is a Bus definition. It defines
a set of interfaces and communication protocols.

IP-XACT supports compositionality and hierarchy, as a design is specified as a (potentially)
hierarchical assembly of components. Components are connected by connecting their ports, or
their transactional interfaces. As such, a IP-XACT design models the architecture of a system
built by assembling, and usually reusing, hw IPs. In order to enhance reuse, it provides many
constructs to support multiple IP configurations and abstractions. Furthermore, the standard
provides a native extension mechanism that allowed to extend the language to support reconfig-
urable computing [95], extra-functional characterization of IPs [96], and modeling of software
features [97].

These features gave the IP-XACT standard vast popularity among HW/SW systems design-
ers, to the point that Xilinx’s Vivado design suite relies entirely on IP-XACT to store and track
projects of HW/SW platforms and IPs [98]. In many industrial context, IP-XACT have been
used to produce new systems integrating IPs [99], or to track data throughout the production
process [100].

Timing diagrams for protocol specification

Timing diagrams are a type of interaction specification diagram, showing the timing of the dif-
ferent interactions between components, and events in a system [101]. They have been widely
used in hardware design, and they are the primary feedback of HDL simulation. Timing dia-
grams express the timing correspondence between events (i.e., changes of values) in the system.
As such, since when digital design moved from to chips to SoC, timing diagrams are largely
used to specify protocols.

Many different formats of timing diagrams have been proposed by different tools. In this
work, we rely on UML timing diagrams: they supports all the major features of timing diagrams,
while at the same time they have an open specification, as well as usable editors and a well-
defined XML schema for importing and exporting diagrams into different tools.

7.2.5 Automatic abstraction of digital components

Fast simulation of HDL models is crucial to build effective system design methodologies. The
effort put by researchers to speed up HDL simulation resulted into highly effective abstraction
and code generation. Usually, HDL models are translated into functionally equivalent, highly
efficient C/C++ models [43, 102]. Meanwhile, the most effective approaches abstract models
from the cycle-accurate to the transaction-level [42], before generating C/C++ executable mod-
els. This work relies [20] to translate and abstract HDL descriptions into the C++ models re-
quired in the proposed methodology. Listing 7.2 shows the skeleton of the C++ code generated
to emulate the RTL behavior in Listing 7.1, which is the skeleton of a generic Verilog module.
To produce Listing 7.2 from Listing 7.1, the approach in [20] works as follow:

• the input HDL description is parsed to extract its digital processes, the dependencies among
processes (e.g., sensitivity lists, signal writing and reading, etc.), identifying both syn-
chronous and asynchronous behaviors.

7.2 Preliminaries 103

Listing 7.1: Generic verilog component with Amba interface.

1 module component(// AMBA Interface
2 input pclk,
3 input presetn,
4 input [31:0] paddr,
5 input psel,
6 input penable,
7 input pwrite,
8 input [31:0] pwdata,
9 output reg pready,

10 output reg [31:0] prdata);
11
12 integer state, next_state;
13
14 always @ (posedge pclk or negedge presetn) begin
15 if(presetn == 1’b0) state <= state_reset;
16 else begin
17 // Combinational implementation
18 end
19 end
20
21 always @ (state) begin
22 case(state)
23 // FSM implementation.
24 endcase
25 end
26 endmodule

• the parsing of the HDL model produces a dependencies graph. The graph is used to define
a process scheduling able to reproduce the cycle-accurate behavior of the original HDL
description. The scheduling starts from synchronous processes and proceeds considering the
dependencies of already scheduled processes. The methodology assumes synthesizable RTL
models as input descriptions, thus guaranteeing the absence of cycles in the dependency
graph. The scheduling and the processes build an externally synchronous model reproducing
asynchronicity internally.
• the user may electively choose to abstract the communication protocol of the model. If so,

the RTL protocol is abstracted into a Transaction-level protocol [42]. However, this step
requires the specification of the component protocol. Otherwise, the model is intepreted as
cycle-accurate.
• The model is translated into C++. Each process is translated into an C++ function; repli-

cated variables, control flags and supporting functions implements the scheduling mimick-
ing concurrent behavior of HW. Each transaction starts executing simulate function to
which is passed a pointer to a payload data structure (i.e., component_iostruct). The
structure is composed by a field for each input or output port of the original model. Each
simulation cycle starts by populating the input/output data structure, then the simulation
function is called and at its completion the data structure is read.

104 7 Improving FMI-based simulation by Exploiting System–level Information

Listing 7.2: C++ processes scheduler automatically generated to emulate the RTL behavior of the verilog model in
Listing 7.1.

1 void component::simulate(component_iostruct * io_exchange){
2 input_phase(io_exchange);
3 synch_elaboration();
4 while (process_in_queue) {
5 flag_elaboration();
6 update_event_queue();
7 }
8 output_phase(io_exchange);
9 }

10
11 void component::synch_elaboration() {
12 process(); // Combinational implementation
13 flag_elaboration();
14 flag_neg_reset = false;
15 flag_in = false;
16 }
17
18 void component::flag_elaboration() {
19 if (flag_neg_reset) process();
20 if (flag_state)
21 process_0(); // FSM implementation
22 if (flag_result_out_sig) result_update_process();
23 }
24
25 void component::update_event_queue() {
26 process_in_queue = false;
27 next_state = next_state_new;
28 if (result_out_sig != result_out_sig_new) {
29 out_sig = out_sig_new;
30 flag_out_sig = true;
31 process_in_queue = true;
32 } else flag_result_out_sig = false;
33 if (state != state_new) {
34 state = state_new;
35 flag_state = true;
36 process_in_queue = true;
37 } else flag_state = false;
38 }

This work enriches the code generation step to embed the generated models within an FMU.
Thus, making it FMI-compliant.

7.3 Methodology Overview

The main target of this work is to exploits as much as possible the available system-level in-
formation, to automatically generate highly optimized virtual platforms for CPSs. Thus, for
each piece of information available we aim at systematically improving the virtual platform by
maximizing the simulation speed.

7.3 Methodology Overview 105

Cycle-accurate co-simulation
(e.g., HDL Simulator + Simulink)

HDL Models
(VHDL, Verilog)

Continuous-time
models

Cycle-
Accurate
Models

System’s
IP-XACT
Models

+
Cycle-accurate co-simulation
(FMI-compliant environment)

Transactional
Models

System’s
IP-XACT
Models

+ Smart co-simulation
(FMI-compliant environment)

Protocols
Timing

diagrams
+

Fig. 7.3: Overview of the Contribution. The paper proposes to exploit system-level information to build FMI-
based alternatives to build cyber-physical virtual platforms overcoming the limitation of typical cycle-accurate co-
simulation elying on the co-execution of HDL and dynamical systems simulators. From the bottom, up to the top,
co-simulation environment exploits an increasing amount of system-level information and, consiquently, improving
the simulation performance.

Figure 7.3 summarizes the increasing amount of system-level information exploited by this
work to build more and more efficient virtual prototypes of a CPS. Notice, this work focuses
on the cyber part of the system (i.e., the embedded device). As such, we hypothesize the
continuous-time models of the physical part of the system are given. From the bottom to the
top, the device is specified by its components modeled by using any HDL. In such case, a
virtual-platform is built by establishing a co-simulation scenario using a HDL simulator able
to communicate with a system simulator able to execute the models of the physical part of the
system, such as Mathwork’s Simulink. In such a case, as the simulation of the HDL models
is cycle-accurate, so will be the co-simulation. Indeed, the integration of the components, as
well as the integration between the cyber and physical parts is going to be performed manu-
ally by the designer. Such a scenario, represents the current state of the practice when building
virtual-platforms for CPSs.

Exploiting state-of-the-art translation methodologies, HDL models can be translated into
cycle-accurate C++ models. Section 7.4 presents the methodology to automatically wrap cycle-
accurate C++ models to build cycle-accurate FMUs. Such FMUs can be integrated manually
by the designer in any FMI compliant simulator. However, further system-level information al-
lows making the integration step automatic. In particular, whenever the IP-XACT model of the
device is available, Section 7.6 will show how to automatically generate the interconnections
and the coordinator necessary to integrate the set of cycle-accurate FMU emulating the differ-
ent components of the system. Thus, having both the cycle-accurate models and the IP-XACT
models of the device, the proposed methodologies allow assembling a complete cycle-accurate
virtual-platform entirely based on FMI.

Finally, the designer may be provided with also the timing diagrams describing the com-
munication protocols necessary to implement every permitted operation by the device. This
will allows to produce transactional models of the components exploiting automatic abstrac-
tion. Section 7.5 presents our approach to generate transactional FMU, also able to provide
temporal decoupling for faster simulation. In this case, we propose to automatically generates
a virtual platform composed of transactional FMUs, which simulation is governed by a smart
coordinator, i.e., a coordinator ad-hoc for the specific system being designed. Indeed, such a

106 7 Improving FMI-based simulation by Exploiting System–level Information

Physical Environment

Embedded Device

AMBA APB Bus

CPU

Sensor Crypto
Core UART

Memory

Master APB Interface

slave iface 1 slave iface 2 slave iface 3

Sensing

Fig. 7.4: Case study used throughout the paper.

coordinator will provide maximal efficiency during the simulation. The automatic generation
of such a smart coordinator is presented in Section 7.6. As we explicitly target the standard
FMI, the smart coordinator will be the master algorithm governing the simulation of the FMUs
modeling the system.

The following of the paper provides the details of the different steps of the methodology
introduced in this Section. For the sake of clarity, the steps descriptions are accompanied by
their application to the following case study.

7.3.1 Running Example

The explanation of the methodology is paired with its application to a case study acting as
running example throughout the paper. Figure 7.4 summarizes the structure of the system used
as case study. It is a digital device, embedded within a physical environment to be monitored.
The system is composed by a subsystem composed of a general purpose CPU dialoging with
a memory to execute the software loaded in the memory. The CPU and memory subsystem
is connected to a bus implementing the ARM Peripherals Bus (APB) protocol. The CPU and
memory subsystem acts as master for the bus communication. The Bus is connected to three pe-
ripherals, i.e., a sensor sensing signals from the environment; a cryptographical core encrypting
the data sensed by the sensor; a Unified Asynchronous Receiver-Transmitter (UART), sending
the encrypted data to the external world through a serial port.

The components have different features, as well as different communication and synchro-
nization patterns:

7.4 Generation of Cycle-Accurate FMUs 107

Table 7.1: Mapping of HDL events onto FMI primitives.

Hardware simulation
Events

FMI Standard
Primitives

Initialization
Sequence of assignments
in initialization mode

Simulation cycle execution
and time progress

fmi2DoStep

Input signals reading
fmi2SetInteger and
fmi2SetBoolean

Output signals writing
fmi2GetInteger and
fmi2GetBoolean

• the CPU and memory subsystem fetches, decondes and executes the operational codes
stored in the memory, and representing the software being executed. For this reason, CPU
and memory must synchronize at every clock cycle. As such, at every level of abstraction,
they must be executed at each simulated clock cycle in order to preserve functional equiva-
lence.
• The sensor samples the environment periodically, and it also periodically quantize and send

the data to the CPU and memory subsystem. As such, its latency is fixed, but larger than
one clock cycle and the communication and synchronization happens periodically.
• The cryptographical core latency depends on the input data it receives. As such, its latency

and communication patterns may vary unpredictably. When it completes an operation, it
sends an interrupt to the CPU and memory subsystem.
• The UART component may operate in different modes. Such modes are set by the CPU

that sets the UART internal registers through the bus. As such, the latency is variable but
predictable for each operation.

In the case study co-exist different execution patterns, i.e., periodic with single clock latency,
periodic with multiple clock latency, variable and unpredictable latency, and finally variable but
predictable latency. The case study has been built to be representative for many systems. For
instance, we avoided using a fixed-latency cryptographical core, as it would have made the ap-
plication of the proposed methodology trivial. The HDL implementations of the hardware IPs
follows the same structure with the verilog generic component in Listing 7.1. They are charac-
terized by both synchronous and asynchronous processes, as well as asynchronous signals with
different widths. Thus, for the sake of compactness, while presenting the methodology we will
use Listing 7.1 as a generalization of any HDL model in the case study.

7.4 Generation of Cycle-Accurate FMUs

HDLs constructs are meant to describe hardware simulation events. These primitives may repre-
sent internal events of the device, or interface-level events of the IP. The internal events are man-
aged by the state-of-the-art automatic abstraction and translation procedure in Section 7.2.5. On

108 7 Improving FMI-based simulation by Exploiting System–level Information

Table 7.2: Mapping of HDL data-types to the FMI Standard.

Hardware-specific
data-types

C/C++
data-types

FMI Standard
data-types

Boolean, Bit,
Logic

bool Boolean

Unsigned,
Bit Vector,
Logic Vector

uint64_t,
uint32_t,
uint16_t,
or uint8_t

Integer

the other hand, we must handle the external events described in the model to make them man-
ageable by any FMI-compliant simulator. These events are the model initialization, the input
reading or output writing operations and the execution of a simulation cycle and time progress.

Table 7.1 reports the mapping of HDL simulation phases, limited to its external events,
onto the corresponding primitives defined by the FMI standard. The IP initialization is realized
as a set of assignments while the FMI is in initialization mode. The simulation, as well as
the progress of time is implemented within the generated fmi2DoStep function. Finally, any
operation related to input and output of values to and from the IP is mapped onto the fmi2Set
and fmi2Get functions. The following of this section details how FMUs compliant with this
mapping are built starting from the original HDL model.

7.4.1 Data-type mapping

The FMI standard provides the boolean and integer data-types, while HW-specific data-types
(e.g., many-valued logic, bit, logic vectors, etc.), and custom range integers are not supported.
Integers are supported only as 32 bit signed values by the FMI standard API. These differences
make necessary defining a precise mapping of data-types between the languages used to express
the IPs and the FMI standard data-types. This mapping is summarized in Table 7.2. It is impor-
tant considering that the HDL to C/C++ automatic translation (Section 7.2.5) already define the
first step of the mapping, from HDL specific types to C/C++ native data-types, as reported in
the second column of Table 7.2.

Boolean, single bit and multi-valued logic values are represented by boolean values (i.e.,
bool in C/C++). Any signed is represented by a signed integer, while any unsigned, bit or
logic vector is represented by an unsigned integer (i.e., uint64_t, uint32_t, uint16_t, and
uint8_t). The mapping relies on fixed width integers due to the possibility of explicitly choose
the amount of bits (i.e., type width) used for the representation. The specific type of integer
chosen will be the one with the minimal width necessary to represent the original value. In the
case the original IP has a port or signal whose type width is greater that 64, the IP undergoes an
intermediate manipulation. The port or signal in the original model is splitted into multiple ports
with a span not greater than 64 bit and then each port or signal introduced by this manipulation
is mapped according to the corresponding type.

7.4 Generation of Cycle-Accurate FMUs 109

Listing 7.3: modelDescription.xml file generated from the generic component in Listing 7.1.
1 <? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF−8" ?>

2 < f m i M o d e l D e s c r i p t i o n d e s c r i p t i o n =" component d e s i g n " f m i V e r s i o n=" 2 . 0 " gu id=" f123−ab02 " modelName=" component ">

3 <C o S i m u l a t i o n c a n B e I n s t a n t i a t e d O n l y O n c e P e r P r o c e s s=" f a l s e " canGetAndSetFMUstate=" f a l s e ">

4 <L o g C a t e g o r i e s>

5 <C a t e g o r y name=" l o g A l l " / >

6 < / L o g C a t e g o r i e s>

7 <M o d e l V a r i a b l e s>

8 < S c a l a r V a r i a b l e c a u s a l i t y =" i n p u t " d e s c r i p t i o n =" i n t " name=" pwdata " v a l u e R e f e r e n c e=" 0 " v a r i a b i l i t y =" d i s c r e t e ">

9 < I n t e g e r max=" 2^32−1 " min=" 0 " s t a r t =" 0 " / >

10 < / S c a l a r V a r i a b l e >

11 < S c a l a r V a r i a b l e c a u s a l i t y =" i n p u t " d e s c r i p t i o n =" i n t " name=" paddr " v a l u e R e f e r e n c e=" 1 " v a r i a b i l i t y =" d i s c r e t e ">

12 < I n t e g e r max=" 2^32−1 " min=" 0 " s t a r t =" 0 " / >

13 < / S c a l a r V a r i a b l e >

14 < S c a l a r V a r i a b l e c a u s a l i t y =" i n p u t " d e s c r i p t i o n =" boo l " name=" p c l k " v a l u e R e f e r e n c e=" 0 " v a r i a b i l i t y =" d i s c r e t e ">

15 <Boolean s t a r t =" f a l s e " / >

16 < / S c a l a r V a r i a b l e >

17 < S c a l a r V a r i a b l e c a u s a l i t y =" o u t p u t " d e s c r i p t i o n =" i n t " name=" p r d a t a " v a l u e R e f e r e n c e=" 2 " v a r i a b i l i t y =" d i s c r e t e ">

18 < I n t e g e r max=" 2^32−1 " min=" 0 " s t a r t =" 0 " / >

19 < / S c a l a r V a r i a b l e >

20 . . .
21 < / M o d e l V a r i a b l e s>

22 <M o d e l S t r u c t u r e / >

23 < / f m i M o d e l D e s c r i p t i o n>

Afterward, the C/C++ data-types can be mapped into the data-types defined by the FMI
standard. C/C++’s bool values are translated into the FMI’s Boolean data-type. The C/C++

fixed with integers are mapped into the onto the Integer type. However, FMI supports only 32
bits integers in the interfaces definition. Thus, it is necessary to split into multiple 32 bit ports
any port having a width higher than 32 bits.

Consider Listing 7.1, and its corresponding XML model description (Listing 7.6): lines 3–5
of Listing 7.1 defines the ports types. Single-bit multi-valued logic ports, such as the reset
are mapped onto boolean variables to build the corresponding FMU (Listing 7.6, lines 14–
15). Logic vectors, such as in and out are mapped onto Integer (Listing 7.6, lines 8–13 and
17–18). The in port’s width is greater than 32-bit: it must be split into two different 32-bit
variables:in_1 and in_2 (lines 8–13 in Listing 7.6).

7.4.2 Automatic generation of Functional Mockup Units

Any FMU specifies the input and output variables through an XML description, that can be
automatically generated as follows:

• parse the input HDL model and identify its top-level design unit.
• Analyze the input and output ports specified in the top-level unit. Manipulate them and their

types according to the mapping described above and in Table 7.2.
• Print the header part containing the name (i.e., modelName), the identifier (i.e., guid), and

the co-simulation features the FMU provides.
• For each port, specify its causality (i.e., input or output), its description, the port name, its

value reference and its variability (i.e., continue or discrete). Then, specify the port type
through the correct XML tag, chosen according to the mapping described above. Finally,
for each port, the parameter starts specifies its variable initial value.

Listing 7.6 reports the XML automatically generated from the generic component in List-
ing 7.1. Lines 1–6 are the header, while lines 7–20 list the interface variables of the model.

110 7 Improving FMI-based simulation by Exploiting System–level Information

Listing 7.4: Skeleton of the FMU obtained from the generic verilog model, by wrapping the code in Listing 7.2.
1 # i n c l u d e < f m i 2 F u n c t i o n s . h>

2 # i n c l u d e " i n c / component . hh "
3 # d e f i n e MODEL_GUID " 352 e3781−f5a3 −4914−abd7 −687397 b f f 7 f e "
4 . . .
5 t y p e d e f s t r u c t M o d e l I n s t a n c e {
6 component ∗ model ;
7 component : : c o m p o n e n t _ i o s t r u c t ∗ i o s t r u c t ;
8 char ∗ i n s t anceName ;
9 i n t 3 2 _ t cyc le_number ;

10 fmi2Rea l t ime ;
11 . . .
12 } M o d e l I n s t a n c e ;
13 . . .
14 f m i 2 S t a t u s fmi2DoStep (fmi2Component c , fmi2Rea l c u r r e n t C o m m u n i c a t i o n P o i n t , fmi2Rea l c o m m u n i c a t i o n S t e p S i z e)
15 {
16 M o d e l I n s t a n c e ∗ comp = (M o d e l I n s t a n c e ∗) c ;
17 component ∗ model = comp−>model ;
18 component : : c o m p o n e n t _ i o s t r u c t ∗ i o s t r u c t = comp−> i o s t r u c t ;
19 model−> s i m u l a t e (i o s t r u c t , comp−>cyc le_number) ;
20 comp−> t ime = comp−> t ime + c o m m u n i c a t i o n S t e p S i z e ;
21 re turn fmi2OK ;
22 }
23 . . .
24 f m i 2 S t a t u s f m i 2 G e t I n t e g e r (fmi2Component c , f m i 2 V a l u e R e f e r e n c e ∗ vr , s i z e _ t nvr , f m i 2 I n t e g e r ∗ v a l u e)
25 {
26 . . . / / I m p l e m e n t a t i o n o f read p o r t o p e r a t i o n s .
27 }
28 . . .
29 f m i 2 S t a t u s f m i 2 S e t I n t e g e r (fmi2Component c , f m i 2 V a l u e R e f e r e n c e ∗ vr , s i z e _ t nvr , f m i 2 I n t e g e r ∗ v a l u e)
30 {
31 . . . / / I m p l e m e n t a t i o n o f w r i t e p o r t o p e r a t i o n s .
32 }

Variables in_1 and in_2 result from the manipulations of port in, due the 32-bit limitation im-
posed by the FMI standard. The clock variable is not present, as the clock has been abstracted to
produce the starting C++ code in Listing 7.2. Each variable is uniquely identified by its type and
its value reference pair. For this reason, different variables may have the same value reference
if they belong to different types, as for the in_1 and reset variables.

The methodology continues by manipulating the C++ code generated through automatic
model abstraction and translation (e.g., Listing 7.2). The generated C++ code is “wrapped”
within the FMI standard functions. Listing 7.4 sketches the resulting code:

• A constant is defined with the value of the FMU’s GUID (i.e., MODEL_GUID). Any operation
using the GUID of the model uses this constant (line 3).
• A C structure, called ModelInstance, acts as a container for the information supporting

the model execution. It contains the pointer to the instance of the model implementation, the
pointer to the input/output data-structure used to communicate, the local time and number
of executed cycles (line 5 to 12).
• The fmi2DoStep function is implemented (line 14) taking care of simulating one execution

cycle of the model and updating the FMU internal time (lines 14–22).
• The fmi2Set and fmi2GetInteger functions manage the input and output phases (lines

24–32). Listing 7.5 shows the implementation of the fmi2SetInteger function of List-
ing 7.4. vr is the array of size nvr containing the value references of the integer variables to
set. The value array contains nvr integers that are the values to be set. The for loop (lines
6–17) sets the correct values to the specified variables. All the input and output functions in
Listing 7.4 shares the same skeleton.

7.5 Generation of Transactional FMUs 111

Listing 7.5: Skeleton of the fmi2SetInteger function implementation in the FMU in Listing 7.4.
1 f m i 2 S t a t u s f m i 2 S e t I n t e g e r (fmi2Component c , f m i 2 V a l u e R e f e r e n c e ∗ vr , s i z e _ t nvr , f m i 2 I n t e g e r ∗ v a l u e) {
2 M o d e l I n s t a n c e ∗ comp = (M o d e l I n s t a n c e ∗) c ;
3 component : : c o m p o n e n t _ i o s t r u c t ∗ i o s t r u c t = comp−> i o s t r u c t ;
4 s i z e _ t i = 0L ;
5 / / Check f o r e r r o r s . . .
6 f o r (i = 0L ; i < nvr ; i = i + 1L) {
7 sw i t ch ((i n t 3 2 _ t) (∗ (i + vr))) {
8 case ((i n t 3 2 _ t)0L) :
9 i o s t r u c t −>pwdata = ∗ (i + v a l u e) ;

10 break ;
11 case ((i n t 3 2 _ t)1L) :
12 i o s t r u c t −>paddr = ∗ (i + v a l u e) ;
13 break ;
14 d e f a u l t :
15 break ;
16 } ;
17 }
18 re turn fmi2OK ;
19 }

The code must is used to produce a shared library whose Application Binary Interface (ABI)
must be compatible with the C API. Thus, its linking must be compatible to the C linking and
it must not perform names mangling. Finally, the shared library and the XML file are archived
in a .fmu file that may be imported by any simulator supporting the FMI standard 2.0 for co-
simulation.

7.5 Generation of Transactional FMUs

A major problem of FMI is the impossibility for the FMUs to propagate their local time back
to the coordinator. Such an issue prevents the master algorithm from providing more efficient
strategies for selecting the simulation steps lengths.

Hereby, we describe how to generate FMUs able to simulate in a decoupled way, with-
out defining the simulation step size. Using such FMUs, whenever the Master Algorithm calls
the fmi2DoStep to a FMU, this simulates while the component does not require synchroniza-
tion or communication with the other components in the system. This simulation behavior is
well-known in HW/SW co-design as it is typical of the transaction-level models. Thus, we call
transactional FMU an FMU allowing to simulate a component functionalities without knowing
“a priori” the step size, and consequently allowing decoupled simulation.

The first step to generate a transactional FMU from a HDL description of a component relies
on a state-of-the-art RTL to transactional-level automatic abstraction technique [20].

The methodology generates Transaction-Level models from HW descriptions. To do so,
we apply the methodology defined in [42]. It starts from HW models described at RTL and
abstract them to TLM. The methodology supports the most common HDLs (i.e., VHDL or
Verilog). The protocol of a component can be specified in different ways. The state-of-the-
art implementations of the RTL-to-TLM abstraction methodology relies on ad-hoc protocol
specification languages [20]. The abstraction result is a C++ class representing a Transaction-
Level model. Each transaction of the system is executed by invoking its simulate function which

112 7 Improving FMI-based simulation by Exploiting System–level Information

Listing 7.6: modelDescription.xml file of the component_1 with time port.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <fmiModelDescription description="component design" fmiVersion="2.0" guid="f123-ab02" modelName="component">
3 <CoSimulation canBeInstantiatedOnlyOncePerProcess="false" canGetAndSetFMUstate="false">
4 <LogCategories>
5 <Category name="logAll"/>
6 </LogCategories>
7 <ModelVariables>
8 <ScalarVariable causality="input" description="int" name="pwdata" valueReference="0" variability="discrete">
9 <Integer max="2^32-1" min="0" start="0"/>

10 </ScalarVariable>
11 <ScalarVariable causality="input" description="int" name="paddr" valueReference="1" variability="discrete">
12 <Integer max="2^32-1" min="0" start="0"/>
13 </ScalarVariable>
14 <ScalarVariable causality="input" description="bool" name="pclk" valueReference="0" variability="discrete">
15 <Boolean start="false"/>
16 </ScalarVariable>
17 <ScalarVariable causality="output" description="int" name="prdata" valueReference="2" variability="discrete">
18 <Integer max="2^32-1" min="0" start="0"/>
19 </ScalarVariable>
20 ...
21 </ModelVariables>
22 <ModelStructure/>
23 </fmiModelDescription>

emulates one transaction. The internal time of the model is annotated by storing the number of
clock-cycles executed in the last transaction.

The model’s interface is isolated in a structure embedded inside the C++ class containing
a set of fields representing the original ports of the HW models. The data-types of the fields
are abstracted into C native data-types, as described in [20]. For instance, a 32-bit logic_vector
datatype is abstracted into uint32_t C datatype. Furthermore, the interface structure also con-
tains the time annotation of the model.

Then, the methodology wraps the C++ class within the FMI functions and it generates the
set of fmi2Set and fmi2Get necessary to write and read, respectively, input and output variables
from and to the components. The methodology generates the fmi2DoStep function wrapping the
generated simulate. While the generated fmi2DoStep function still accepts the step length, in
order to stay compliant with the standard, it is able to ignore it as the actual internal time of the
FMU at the end of the execution is computed by the simulate function. Then, the methodology
continues by generating the XML file of the FMU. The original ports of the HW model are
mapped in the FMI data-types as described in Section 7.4.1.

Finally, the methodology enriches the interface of the FMU with the internal time annotation
of the Transaction-Level Model. The internal time of the model is exposed as a new Integer port
of the FMUs (see Listing 7.6, line 18-22).The value reference -1 is reserved for the timing port,
since ports are uniquely identified by their type and value reference pairs. This assures that it
can be uniquely identified once the FMU is loaded by a simulator.

7.6 Generating the coordinators

In this section, the generation of different coordinators is treated. The proposed methodology
aims to automatically generate coordinators capable to manage discrete and continuous FMUs.
Usually, a coordinator reflects the Model of Computation (MOC) of the blocks that compose
the entire system. A CPS is the combination of discrete and continuous elements where all

7.6 Generating the coordinators 113

Listing 7.7: IP-XACT Topology description of the platform.

1 ...
2 // Master connection to bus
3 <spirit:interconnection>
4 <spirit:activeInterface spirit:componentRef="bus"
5 spirit:busRef="masterAPB_if" />
6 <spirit:activeInterface spirit:componentRef="cpu_mem"
7 spirit:busRef="ambaAPB_if" />
8 </spirit:interconnection>
9

10 //Slave 1 connection to bus
11 <spirit:interconnection>
12 <spirit:activeInterface
13 spirit:componentRef="bus"
14 spirit:busRef="slaveAPB_if_1" />
15 <spirit:activeInterface
16 spirit:componentRef="sensor"
17 spirit:busRef="ambaAPB_if" />
18
19 //Slave 2 connection to bus
20 <spirit:interconnection>
21 <spirit:activeInterface
22 spirit:componentRef="bus"
23 spirit:busRef="slaveAPB_if_2" />
24 <spirit:activeInterface
25 spirit:componentRef="crypto"
26 spirit:busRef="ambaAPB_if" />
27
28 //Slave 3 connection to bus
29 <spirit:interconnection>
30 <spirit:activeInterface
31 spirit:componentRef="bus"
32 spirit:busRef="slaveAPB_if_3" />
33 <spirit:activeInterface
34 spirit:componentRef="uart"
35 spirit:busRef="ambaAPB_if" />
36
37 </spirit:interconnection>

the actors affect the opposite side. In this particular situation, the general simulation strategy
requires the identification of the simulation step of the discrete system and propagate it in the
continuous part. This is due to the fact that data exchange between discrete-continuous elements
can happen only in specific moments in time. This strategy is flexible and scalable, but not the
optimal solution. In fact, in some systems, not all the blocks are always used. In particular,
this is clear when we are dealing with a digital platform representing the discrete part of the
CPS, where the peripherals are controlled by a master component and enabled only on-demand.
From a general coordinator perspective, where all the blocks are simulated, this requires useless
computational effort in terms of simulations and data exchange. In this paper, we discuss the
generation of specific coordinators adding external information coming from designers. The
methodology relies on the topology system information and communication protocols of the
involved components of the digital system. The entire digital platform is based on the definition
of roles, one master and multiple slave peripherals, with AMBA peripheral bus standardized
interface and communication. Figure 7.3 shows the different coordinators that are possible to
obtain mixing topology and protocol timing diagrams.

114 7 Improving FMI-based simulation by Exploiting System–level Information

Fig. 7.5: Crypto APB
Timing Diagram.

Fig. 7.6: Uart APB
Timing Diagram.

Fig. 7.7: Sensor’s
Timing Diagrams

Fig. 7.8: Timing Diagram of platform components.

7.6.1 Cycle-Accurate Coordinator

The generation of a cycle-accurate coordinator can be obtained just by considering cycle-
accurate models and topology information of the discrete models. In [55] we have presented
an automatic methodology to obtain discrete FMUs starting from discrete models described
with HDLs. In this work, we have extended the mentioned methodology adding information
regarding the topology of the cyber part of the system. Listing 7.7 reports the IP-XACT in-
terconnection between the different components that composes the case study platform (see
Fig. 7.4). In particular, lines 2-8 represent the interconnection of the CPU-Memory component
to the master interface of the APB bus. Lines 10-17 show the sensor connected as slave periph-
eral of the Apb bus (lines 10-17). More in detail, the sensor is connected to slave_APB_if_1
which represents the interface 1 of the slave peripherals of the bus. The rest of the Listing re-
ports the connection of the crypto and uart peripheral respectively on the second and third slave
interface of the bus. All the involved digital components adopt the AMBA standard interface.
The use of a standardized interface reduces the effort to build the entire platform in terms of
interconnections and communications.

The IP-XACT description allows to easily define which is the master component and the
peripherals connected to the bus. The resulting coordinator performs the simulation of all the
components, miming the concurrency, and then performing data exchange based on the IP-
XACT description.

7.6 Generating the coordinators 115

Smart CoordinatorTransactional
Wrapper

FMU

Memory

Transactional
Wrapper

FMU

Sensor

Transactional
Wrapper

FMU

Crypto

Transactional
Wrapper

FMU

Uart

CPU

Sensing

Simulate Master until
peripheral selection

Identify the protocol

Prepare Payload

Simulate Peripheral
Send back Payload

3

4

1

2

3 3

4 4

Fig. 7.9: Overview of the smart coordinator obtained mixing System-level information, with all the execution phases.

However, with just the topology information it is not possible to infer how the different
models interact, requiring to perform a cycle-accurate simulation of all the involved models.

7.6.2 Smart Coordinator

The smart coordinator is an extension of the cycle-accurate coordinator. It relies on topology
system information and the communication protocol between the different involved digital com-
ponents. The use of system-level information (topology and communication protocols) does
not violate intellectual properties by maintaining secret the functionality of the model. With
the combination of topology and communication protocols information, the simulation strategy
can be optimized by obtaining a smart coordinator that reduces the data exchange between the
different components.

The topology is described by using IP-XACT standard (see Section 7.2.4) while the proto-
cols are modeled with UML Timing Diagrams (see Section 7.2.4). The entire platform is based
on the definition of roles, one master and multiple slave peripherals, with Amba peripheral bus
standardized interface and communication.

Figure 7.5 shows the protocol timing diagram for the crypto (crypto.01) and uart periph-
eral (uart.01). As mentioned in this section, the communication protocol of all the digital

116 7 Improving FMI-based simulation by Exploiting System–level Information

components relies on the AMBA specifications. The AMBA interface contains a peripheral se-
lector port, called psel, used by the master to select the peripheral. The pclk port represents
the clock of the peripheral and each clock transition is tagged with the time unit reported in the
lower axis. The pwrite port is used to code the write operation from the master to the periph-
eral. pwdata and paddr ports represents the data and the address that are exchanged by master
to the slave peripheral. When the peripheral selector is triggered, the peripheral starts receiving
data through the pwdata port.

The penable port is used from the master to enable the peripheral to compute the elabo-
ration. Pready port is an output port from the peripheral used to notify the master that the pe-
ripheral has concluded the elaboration. When the latency is not known, the time unit referred to
pready event is set to n (see time unit labels). Therefore, the smart coordinator can simulate the
peripheral until pready is triggered. If a peripheral has more than one operation, the method-
ology allows to describe another timing diagram referring to the new operation. Let considers
the crypto peripheral that executes only crypt operation. If the peripheral needed to execute also
a decrypt operation it can be done describing the timing diagram, with the name crypto.02.
With the timing diagram, the coordinator creates a wrapper around each component, containing
an finite state machine that emulates the protocol with static information.

Figure 7.9 shows the overview of the smart coordinator with the use case, with all the exe-
cution phases. The first step simulates the CPU-Memory master component until the peripheral
selector, psel, is triggered. This is implemented inside the transactional Wrapper of the master
component. From the smart coordinator perspective, this is done with a single calling func-
tion. Then, the transaction wrapper identifies the protocol analyzing the AMBA output ports.
The identification phase is performed by analyzing pwdata and paddr ports, according to the
timing diagram of each peripheral. Then, the smart coordinator prepares the payload with the in-
formation of the protocol, data to send to the selected peripheral (psel and pwdata[],paddr[]
arrays), and also the global time. In the fourth phase, the smart coordinator simulates only the
selected peripheral. The peripheral transactional wrapper receives the payload containing the
protocol and the data to execute. The smart coordinator forward the resulting payload to the
CPU-Memory block, which represents the master block. Then, the entire execution flow of the
smart coordinator can start again simulating the CPU-Memory block.

7.7 Experimental Results

The proposed approach has been validated by automatically generating virtual platforms to
emulate the behavior of the case-study described in Section 7.3.1.

7.7.1 Experimental setup

All the simulations have been executed on a i7-7700HQ with 16GB of RAM machine, running
Fedora 33 Linux. The virtual prototypes generated by the presented approach have been com-
pared with a state-of-the-art co-simulation environment based on Mentor Graphics’ QuestaSim

7.7 Experimental Results 117

Table 7.3: Summary of the obtained experimental results. It compares the results considering both the two proposed
techniques exploiting system-level information (i.e., cycle-accurate and smart coordinator), and the two realized
implementations (i.e., based on PyFMI and based on FMI4CPP). The reference co-simulation environment is based
on QuestaSim and Simulink.

Simulated
Time

Co-simulation
(QuestaSim + Simulink)

FMI-based Cosimulation
Cycle Accurate

FMI-based Cosimulation
with Smart Coordinator

Sample time
PyFMI

implementation
FMI4CPP

implementation
PyFMI

implemenation
FMI4CPP

implementation
5 ns 10 ns Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up

1 us 2.33 2.34 0.44 5.30x 0.16 14.56x 0.55 4.24x 0.10 23.30x
10 us 2.69 2.60 0.79 3.41x 0.16 16.81x 0.55 4.89x 0.10 26.90x

100 us 5.99 4.61 4.38 1.37x 0.25 23.96x 5.53 1.08x 0.40 14.98x
1 ms 35.70 21.63 39.57 0.90x 1.80 19.83x 10.47 3.41x 0.70 51.00x
10 ms 375.85 185.86 409.66 0.92x 18.41 20.42x 55.24 6.80x 3.59 104.69x

100 ms 3389.00 1807.00 3897.83 0.87x 183.81 18.44x 524.71 6.46x 35.02 96.77x
1 s 34194.00 17132.00 37287.32 0.92x 1864.56 18.34x 5020.88 6.81x 352.01 97.14x

2019.4 as HDL simulation for the embedded device, connected to Mathworks’ Simulink 2020b
simulating the dynamic system modeling the environment of the device.

This work focuses on the integration of the digital components into the virtual prototypes.
Still, in order to stimulate the hardware platform it is necessary to connect it to a model able to
generate continuous-time values emulating the physical environment of the system. The model
of the physical part of the system generates a set of sinusoidal waves on the input variables.
We decided to keep the continuous time model in order to keep the overhead of the dynamical
system simulation to the minimum, thus allowing to obtain experimental values dominated
by the execution of the digital part of the modeled system. The continuous time signals have
been implemented as Mathwork’s Simulink models for the reference simulation environment,
while they have been implemented within a FMU in the FMI-based simulation environments
generated by applying the proposed methodologies.

7.7.2 Experiments overview

Table 7.3 reports the results obtained in our experimental analysis. The first column reports the
Simulated Time of each simulation, we carried on simulation emulating different amount of time
of the actual system. The values ranges between 1 microsecond and 1 second. Then, the table
reports the time needed to simulate the system. The Co-simulation (QuestaSim + Simulink) sec-
tion of the table reports the time required to simulate the system using a state-of-the-practice
simulation environment based on a HDL simulator connected with the Mathworks’ Simulink
dynamic simulator. The FMI-based Cosimulation Cycle Accurate section of the table reports the
results obtained by emulating the system using the virtual platform built by assembling cycle-
accurate FMUs, and explointing only the information carried by the IP-XACT descriptions.
Finally, the last section of the table, i.e., FMI-based Cosimulation with Smart Coordinator, re-
ports the results obtained by emulating the system using the virtual platform built by assembling
transactional-accurate FMUs, and by generating a smart coordinator exploiting the information
contained in the IP-XACT and the timing diagrams describing the system’s protocols.

118 7 Improving FMI-based simulation by Exploiting System–level Information

For all the reported simulation, both FMI-based co-simulation environments are set to sam-
ple the environment every 10 nanoseconds. Meanwhile, in the case of the state-of-the-practice
co-simulation environment we report the results obtained by setting the sample time at 5 and
10 nanoseconds. Intuitively, the results obtained by applying the proposed approach should be
compared against the results obtained using the same sample time (i.e., 10 nanoseconds). How-
ever, when emulating the system using the state-of-the-practice co-simulation environment we
have a very limited control over the used numerical integration being used, and over the com-
munication between the discrete and continuous models in the system. Meanwhile, in the FMI-
based co-simulation environment, the generated coordinators are fully aware of the interactions
between discrete and continuous parts of the system. Thus, keeping the same sampling time in
the state-of-the-practice environment, continuous-timed values may be lost with respect to the
emulation performed by using the proposed FMI co-simulation environments. As such, in order
to be sure to sample the same values in all the executions, and considering the NyquistâĂŞShan-
non sampling theorem, we choose to use as reference the simulation which sample frequency
is doubled (i.e., 5 nanoseconds). For this reason, while the third column of the table reports the
simulation time required using a sampling time of 10 nanoseconds, the speed-up reported in the
Table refers to the executions in the second column of the Table.

The coordinators generated by the proposed approach have been generated to be compliant
with two different FMI simulation engines. A coordinator written in Python and based on the
PyFMI framework [103], and a C++ coordinator based on the FMI4cpp1 framework. We report
the time required to simulate and system, and the speed-up w.r.t. the reference simulation for
both coordinators, for each simulation.

We compared the behavior of each experiment with respect to the behavior of the refer-
ence simulation, carried on with state-of-the-art tools. In all of our experiments, the simulations
were functionally equivalent, i.e., at each time step, and for each variable, the values of the vari-
ables in the reference and the generated models are equivalent. In general, the C++ coordinator
proved itself more efficient than the coordinator written in Python. Still, in both cases, the sim-
ulation efficiency increases by increasing the amount of information used to generate the virtual
platform emulating the system. In particular, considering the more efficient C++ coordinator,
the speed-up when exploiting only the information carried by the IP-XACT description is in
the 20x ballpark. Meanwhile, it raises to around two order of magnitude when exploiting also
the information about the protocols. While these are the main takeaways of our experimental
results, we hereby present a more in-depth analysis.

7.7.3 In-depth analysis of the experimental results

In general, the FMI-based cosimulation environments provide better performance than clas-
sic co-simulation. However, the cycle-accurate implementation using the coordinator based on
PyFMI suffers a performance drop. This is mostly due to low efficiency of the communica-
tion between Python and the C-based DLLs containing the FMUs behaviors. The fine-grained

1 Online: https://github.com/NTNU-IHB/FMI4cpp

7.7 Experimental Results 119

synthronization required for cycle-accurate simulation, and the poor efficiency of the commu-
nication leads the communication and synchronization to dominate the simulation. Meanwhile,
the C++-based implementation of the coordinator guarantees to preserve the efficiency even
when increasing the number of synchronization and communication points of the simulation.
Indeed, for the shortest simulations, the execution time is dominated by the initialization. How-
ever, when increasing the simulated time, the speed-up tends to stabilize in a range between the
18 to the 20x.

When improving the simulation environment, also the PyFMI-based implementation is able
to preserve the speed-up. This is due to the fact that the smart coordinator allows to drastically
reduce the number of synchronization points. Thus, mitigating the inefficiencies due to the
communication between the DLLs and the python coordinator. Thus, lenghtening the simulated
time the speed-up stabilizes between 6 to 7x.

Finally, the smart coordinator based on FMI4cpp reaches up to two order of magnitude
speed-up. However, in some of the intermediate entries of the table (i.e., simulated time set to
100 us and 1 ms) the simulation speed-up drops. We investigated the reasons of such anomalies,
and they are due to the characteristics of the case study: the UART component protocol is
characterized by a variable latency that, depending on the task being executed, may be either
extremely long or short. This leads to a variation in the frequency of the synchronization. The
two anomalies are due to executions in which the frequency of synchronization of the UART is
higher.

Part IV

Multi-Level Modeling and Simulation

8

From Multi-Level to Abstract-Based Simulation of a Production
Line

8.1 Introduction

The concept of Industry 4.0 [1] represents an innovative vision of what will be the factory of the
future. The principles of this new paradigm are based on interoperability and data exchange be-
tween different industrial equipment. In this context, Cyber-Physical Systems (CPSs) cover one
of the main roles in this revolution. The entire factory can be seen as a set of CPSs and the re-
sulting system is also called Cyber-Physical Production System (CPPS). This CPPS represents
the Digital Twin of the Factory with which it would be possible to make analysis regarding
the Real Factory [3]. The interoperability between the real industrial equipment and the Digital
Twin [4] allows to make predictions concerning the quality of the products. Several tools [2]
allow to model a production line, considering different aspects of the factory (i.e. geometrical
properties, the information flows). However, these simulators do not provide natively any solu-
tion for the design integration of CPSs, making impossible to have precise analysis concerning
the real factory.

This paper proposes two different approaches for the integration of CPS in a production line
simulator (see Fig. 8.1). The approach on the left side of the figure relies on the Multi-Level
simulation where multiple descriptions of the same CPS are managed. These descriptions have
different levels of detail and are switched at runtime in order to optimize the overall simulation
time. The second approach is based on Abstraction techniques where a set of manipulations are
made on the whole system in order to obtain semantically equivalent descriptions but reducing
the complexity of the starting models. Different coordination strategies are presented in order to
integrate and simulate correctly the abstracted models. The two approaches are then integrated
with Siemens Plant Simulation with a real use case scenario. The obtained results show the
benefits of the CPS integration in both of the approaches.

8.2 Background

In these years several providers proposed different tools to model manufacturing processes [2,
5]. Report [5] summarizes periodically all tools by proposing comparisons on their main char-
acteristics (usability, costs, features, etc.). These reports are a useful guideline for selecting

124 8 From Multi-Level to Abstract-Based Simulation of a Production Line

Production Line Simulator

Source DrainProcess Process

Multi-Level
CPS

Detailed
Model

Runtime Model Switcher

Simplified
Model

Abstract-Based
CPS

Abstracted Models

Abstracted Models

Cycle-Accurate
Cyber Model

Coordinator

Discretize
Physical Model

Fig. 8.1: Overview of the contribution of the work. The figure shows the Multi-level and Abstract-Based approaches
for the CPS integration in a production line simulator.

most suited plant simulators with respect to the parameters to evaluate. A production line is
the composition of processes, organized into a chain, which has the main purpose of handling
information. Despite some differences, all the simulations share the following principles:

• Layout Planning: Represents the geometrical structure of the production line. A library of
components allows to model the factory, by considering physical constraints.
• Material Flow/Fluid Simulation: Represents the movements of products from a process to

the others. This is made possible with components like line transporters or pipe, depending
on the material state of matter, i.e., solid or fluid.
• Process Simulation: Represents the physical transformation made by the equipment of the

factory to the products.

From the simulation perspective, most of the available simulators rely on the discrete-event
model of computation. For instance, when a product enters or exists a process, an event is
triggered and the specific equipment can execute its relative action.

This paper makes use of Siemens Plant Simulation, a simulator which over the years has
become a standard de facto in the designing of production lines, with an intuitive and easy to
use environment. It is a Model-Based tool that provides a library of customizable components
that represent the basic building blocks of a factory. Combination of these blocks allow to
model different aspects of a production chain. The products are called Mobile Unit (MU) and
they represent the entities moving among the blocks of the production line.

SingleProcess is the fundamental block provided by the tool used to represents the physical
process of an equipment on a MU. Plant Simulation offers the possibility to customize the be-
haviour of every block with an internal programming language called SimTalk. It also provides
a functionality called C-interface to import dynamic libraries written in C/C++, enabling to
customize the behaviour of the simulation and also connect other tools.

8.3 Multi-Level Modeling and Simulation 125

Simplified
Model

Detailed
Model

Common
Interface

Switch Up

Switch Down

{a,b,c,d}

{a,b,c,d}

{a,b}
Input
Ports:

a

b

c
d

Multi-Level Models

Fig. 8.2: Multi-level Common Interface and switching actions

8.3 Multi-Level Modeling and Simulation

Multi-level approach [104] allows managing multiple descriptions of the same system with
different level of detail at runtime. Mixing the execution of these descriptions at runtime allows
to speedup the simulation instead of using only the high resolution model, but maintaining a
certain level of precision compared to the low accuracy of the low resolution model. Multi-level
approach requires to face some issues that can be summaries as follows:

• interfaces of the multi-level models;
• models switching actions;
• state mapping of the models.

Let consider two different behavioural descriptions of a CPS: a Detailed Model and a Sim-
plified Model. These two models could have different interfaces (see Fig. 8.2). The Simplified
Model has fewer ports than the Detailed Model, but all the ports of this model are a subset of
the Detailed Model interface. The standardization of a Common Interface is needed to easily
switch between the two models (see Fig. 8.2).

The exposed ports of this block are represented by the interface of the Detailed Model, in
order to capture all the properties without losing any information. When the Detailed model is
in use, the Common Interface block receives inputs a,b,c,d and redirects all the four inputs
to the model. When Simplified Model is running, the Common Interface block redirects only
a,b. The second issue to face with Multi-Level approach regards the switching actions, called
switching-up and switching-down, used to switch from a model to another. Switching-up action
allows switching from a high-resolution model to another with a lower resolution. switching-
down action switch from a low-resolution model to a high-resolution model.

Every switching action requires to exchange the internal state of the current model to the new
switch one, in order to be consistent between the models. This is called state mapping [105].
For instance, let consider the Detailed Model simulated for a certain amount from t=0 to t=h.
At time t=h a switching-up action is triggered. Without state mapping, the simulated time of

126 8 From Multi-Level to Abstract-Based Simulation of a Production Line

the Simplified Model is zero but the global time of the simulation is h. The internal status of
the Simplified Model refers to its initial conditions and not to the time h, making an inaccurate
simulation. In this paper all the considered models expose internal storing variables as ports to
the Common Interface blocks, in order to be able to perform a state mapping.

8.3.1 Application of Multi-Level Simulation to a Production Line

The application of Multi-level approach with Plant Simulation requires to define synchroniza-
tion rules in order to handle correctly the data from the models to the production Line simulator
and vice-versa.

The Runtime Model Switcher is the actor in charge to exchange the data and manage the
simulation of the two models (see Fig. 8.3). The Common Interface block is part of the Runtime
Model Switcher. The Runtime Model Switcher receives input data from Plant Simulator
and then redirect it to the Common Interface. After the data exchange, the Runtime Model
Switcher select the model to simulate performing a switching action. The Runtime Model
Switcher also stores the shared properties of the models, needed to perform the state mapping.
In Plant Simulation we assume that the switching actions, can be performed when a MU enters
in a Single Process block that represents an equipment of the factory. With this assumption,
we say that the resolution of the switching points is Mobile Unit Accurate (MU-Accurate).

8.4 Abstract-Based Modeling and Simulation

A CPS can be modelled with a low level of details in a unique language but the resulting system
will be not accurate. Refine both Cyber and Physical systems requires specific languages of dif-
ferent tools tailored to specific domains that use different Models of Computation (MoC). The
simulation of the Cyber and the Physical systems together is time-consuming, because of the
synchronization of the different MoC and because of Co-Simulation mechanisms between dif-
ferent tools. The goal of the Abstract-Based approach is to abstract the descriptions of the two
subsystems in order to reduce the global complexity of the whole Systems. The abstract-Based
approach starts from specific-domain languages like Hardware Description Languages (HDLs)
for the Cyber part and Verilog-AMS to model the Physical System, that uses a Continuous Time
MoC. This paper relies on abstraction technologies provided by a HIFSuite framework [44].
Such a framework allows to manipulate models described using HDLs (Verilog and VHDL)
or Analog Mixed Signal (Verilog-AMS). HIF provides a set of methods to import model de-
scriptions, manipulate them and generate semantic equivalent C++ code. The front-end meth-
ods translate the model descriptions in a proprietary language (HIF format). The manipulation
tools make transformation on the obtained HIF description. Finally, the back-end methods allow
generating the C++ code. There are three different abstractions available: Analog Abstraction,
Datatype Abstraction and Protocol Abstraction.

The Analog Abstraction is a process which aims at simplifying continuous time components
for an easier integration and efficient simulation [106]. The challenge is related to their be-
haviour, which is usually described through a system of differential equations. State of the art

8.5 Experimental Results 127

Table 8.1: Simulation times of bending operations for Mobile Units in the two different approaches.

Simulated
Bending Operations

Multi-Level Abstract-based Simulated Time

Simplified model Detailed model Hybrid Abstracted Simplified Model Abstracted Detailed Model Simplified Model Detailed Model
Cycle-Accurate

Coordinator
Transaction-Level

Coordinator
Cycle-Accurate

Coordinator
Transaction-Level

Coordinator
1 0.22 0.63 0.22 0.208 0.016 0.075 0.008 1.22 0.66
20 5.28 15.12 9.74 4.992 0.384 1.801 0.192 16.70 11.46
50 12.76 36.54 27.69 12.064 0.928 4.351 0.464 39.28 27.67

simulators represent the behaviour as sparse matrices and solve the system at each simulation
step, with a consequent loss of performances. With the abstraction, the complexity of solving
such systems is anticipated during models generation. It enriches the initial set of equations us-
ing Kirchhoff’s laws. Then, it solves the resulting enriched system with a symbolic solver and
produces a signal-flow representation of the model. The final description contains the simplified
equations that describe the relation between inputs and the outputs of the model.

The Datatype Abstraction is a process which transforms HDL datatypes, like logics and bit
vectors with a many-valued logic, into efficient C++ native ones [20].

The Protocol Abstraction is performed on the simulation protocol of the model [107]. This
manipulation reduces the internal processes of the module comparing them sensitivity lists and
merging them together. Furthermore, it encapsulates an optimized Discrete-Event scheduler
inside the C++ final code. The resulting C++ code contains a special structure that represents
the interface of the starting model and a set of methods to simulate it.

8.4.1 Application of Abstract-Based Simulation to Production Line

The Cyber and Physical Abstracted models need to be integrated into Plant Simulation. First,
a simulation coordinator is needed to synchronize the two abstracted systems of the CPS. This
paper presents two different coordination strategies. The first strategy is the Cycle-Accurate
where both of the Systems are simulated with a timestep that is equal to the clock period of
the Cyber System. This coordination requires a lot of synchronization points depending on the
clock period.

The second is the Transaction-Level strategy, and it is event-oriented. For instance, if the
Cyber model is blocked, waiting for a certain event from the Physical system, the coordinator
will not execute it. This solution is still correct, but requiring fewer synchronization points than
the Cycle-Accurate. Moreover, it requires to know in advance the synchronization mechanisms
between the two parts of the CPS in order to identify which synchronization points can be
avoided. The resulting CPS is then integrated in Plant Simulation using SimTalk C-Interface
APIs.

8.5 Experimental Results

The two presented approaches are tested with a real use case scenario of a simple production
line. The production line is composed of three processes and represents a bending operation of
metal sheets. The first process applies to the metal sheet a barcode containing the information of
the desired bend angle. The second represents the bending machine that reads the angle to bend
from the barcode and executes the bending operation. The real bending process of the equipment

128 8 From Multi-Level to Abstract-Based Simulation of a Production Line

Plant Simulation

Simplified
Model

Simtalk C-Interface
Runtime Model Switcher

Common Interface

Co-simulation

Integration

Detailed
Model

Simtalk C-Interface
Coordinator

Abstracted
Physical System

(C++)

Abstracted
Cyber System

(C++)

Integration

Multi-Level Abstract-Based

Fig. 8.3: Overview of the Experiment Setup.

Table 8.2: Times needed to simulate one second in the two different approaches.

Average Time to
Simulate 1 Second (s)

Multi-Level Abstract-based

Simplified model Detailed model Hybrid Abstracted Simplified Model Abstracted Detailed Model
Cycle-Accurate

Coordinator
Transaction-Level

Coordinator
Cycle-Accurate

Coordinator
Transaction-Level

Coordinator
0.180 0.955 0.437 0.170 0.013 0.114 0.012

requires at most 3 seconds to bend a metal sheet. The last process checks the quality of the
bending operation comparing the desired angle and the real bent metal sheet. The two proposed
approaches presented in this paper integrate a CPS in the bending process in order to make a
more accurate estimation of the production in terms of productivity and quality(see Fig. 8.3).
The Physical System represents the behaviour of a bending machine, described using Verilog-
AMS, that is controlled by the Cyber System. The Cyber System of the CPS is a Hardware
platform composed of a CPU, a Memory, a Bus, a Barcode sensor and an Actuator to the bender
physical system. All the components of the HW platform are described by using HDLs.

The bending software reads the angle to bend from the metal sheet using the Barcode Sensor,
and then redirects it to the Physical Systems with a set of commands.

8.5.1 Multi-Level Experiment

The Multi-Level experiment relies on two different versions of the CPS called Simplified Model
and Detailed Model (see Fig. 8.4). In both of the CPS models, the Cyber System is represented
with the digital platform explained in the previous section. In the Simplified Model the Physical
System consists of a behavioural description of the bender equipment, with a low level of detail.
In particular, the Physical System is modelled with an integrator that describes the bending
operation. The integrator receives as input a value that represents the constant bending speed
to apply. This value is calculated by a Speed Selector node, which adopts two different values
according to the bending rotation versus. The value provided by the integrator is then compared

8.5 Experimental Results 129

ANGLE
CHECK

Rotation
Sign

Desired
Angle

න
SPEED

SELECTOR

clk

done

Num
Bendings

Current
Angle

ENCODER
Rotation
Sign

Desired
Angle

Current
AngleMOTOR+-

PID
CONTROLLER

clk

doneNum
Bendings

Simplified Model

Detailed Model

Fig. 8.4: Simplifed and Detailed Physical Models.

with the desired angle by the Angle Controller node in order to drive the done signal. The
numBendings is used to model the machinery wearing.

In the Detailed Model the Physical System allows to make a precise estimation of the execu-
tion time and the quality of operation. A PID Controller is used to control a DC Motor in order
to bring every sheet to the desired angle, which is read by an encoder that translates the mo-
tor rotational position in a digital value. The DC Motor model uses the numBendings value to
modify its internal parameters: this allows to simulate its wearing since those values represent
the mechanical and electrical characteristics of the Motor.

The Runtime Model Switcher is connected to the CPS simulator using Co-simulation
techniques. In the other side, the Runtime Model Switcher is integrated in Plant Simulation
using C-Interface proprietary interface. The Runtime Model Switcher is then linked to the
Bending SingleProcess and executed only when a new MU enters in that node of the pro-
duction line. The simulation starts using the Simplified Model of the CPS. Every 20 bending
operations, the Runtime Model Switcher enables both the models and provides to them the
current metal sheet to bend. After the bending process, the quality deviation between the two
models is evaluated: if it crosses a certain threshold, the Runtime Model Switcher deacti-
vates the Simplified Model and switches to the Detailed Model. The Detailed Model is kept
enabled until the quality deviation remains over the threshold. The simulation resolution is
MU-Accurate, meaning that the switching actions can be performed only at the entrance of a
MU in the SingleProcess. When the execution of the bending operation is completed, the
Runtime Model Switcher retrieves the executed time to bend the metal sheet and returns it
to the SingleProcess of Plant Simulation.

8.5.2 Abstract-based Experiment

To better evaluate the Abstract-based approach performances, the two CPS versions (Simplified
Model and Detailed Model) are considered. As explained in 8.4 the entire abstraction toolchain

130 8 From Multi-Level to Abstract-Based Simulation of a Production Line

is based on the HIFSuite framework [44]. The models of the Cyber and Physical systems, are
first translated in HIF format, using front-end methods. After the first translation, the Physical
System is abstracted using the Analog Abstraction, defining the time step to use for the dis-
cretization. Then, Datatype and Protocol Abstraction are performed on both the obtained HIF
descriptions. Finally, the HIF back-end tools are invoked to generate the C++ code. For the Cy-
ber System the Protocol Abstraction is performed with Cycle-Accurate (CA) resolution. More
in details, when the simulation method of the Cyber System is called, it performs a simulation
of an entire clock cycle. A Coordinator is needed to simulate together the obtained abstracted
Systems that compose the CPS. This paper proposes two different coordinators, Cycle Accurate
Coordinator and Transaction-Level Coordinator. The Cycle Accurate Coordinator simulates
and exchanges the data between the Cyber and the Physical System at every clock cycle period.
The Transaction-Level Coordinator reduces the number of communication points based on the
communication protocol between the two systems. When the Physical System is performing a
bending operation, the Cyber System has to wait until the finishing operation event is triggered.
Thus, the Transaction-Level Coordinator can pause the Cyber System and simulate only the
Physical System until this event. Finally, the resulting C/C++ code of the CPS is wrapped with
the C-interface avoiding completely Co-Simulation mechanisms.

8.5.3 Simulation Results Comparison

In Table 8.1 and 8.2 are reported the results of the experiments between the two approaches.
Table 8.1 reports the required time to simulate the metal sheet bending using the different

models. The last two columns report the simulated times. The simulated time of the Detailed
Model is more accurate than the Simplified Model. In Multi-Level approach, the Hybrid column
reports the simulation results mixing the Simplified and Detailed Models. At the beginning of
the simulation, Simplified Model is activated, in fact, it requires similar simulation times. When
the number of bending operations increases, the required time moves towards the Detailed
Model one, which is enabled to keep the quality deviation estimation under a certain threshold.
This approach requires an effort by the CPS simulator that has to simulate every single clock
cycle of the HW platform, in order to obtain the most precise simulation. It is also slowed down
by Co-Simulation mechanisms. The Abstracted Simplified Model with Cycle-Accurate coordi-
nator, requires almost the same time as the Simplified Model with Multi-Level approach. This
is due to the very small complexity of the Simplified Model that cannot be reduced from the
abstraction techniques. The Abstracted Detailed Model with the same coordinator achieves a
speed-up of 10x compared to the Detailed Model of the Multi-Level approach. However, the
Cycle-Accurate coordinator simulates the busy waiting of the Cyber System during the physi-
cal bending introducing unnecessary communication points. The Transaction-Level Coordina-
tor still maintains the same timestep precision but avoiding all the unnecessary communica-
tion points. The Abstracted Simplified Model with Transaction-Level Coordinator achieves a
speed-up of ∼ 10x than the Cycle-Accurate coordinator simulation. The Abstracted Detailed
Model obtains a ∼ 100x speed-up than the Multi-Level Detailed Model and ∼ 10x as against its
Cycle-Accurate version. In general, using the Transaction-Level coordination algorithm allows

8.6 Concluding Remarks 131

reducing simulation times of one degree of magnitude. From Table 8.1 it could seem that the
Abstracted Simplified Model is slower than the Abstracted Detailed Model.

In Table 8.2 is reported the average time needed to simulate one second for the different
approaches. In The Multi-Level approach, the Detailed Model is 5x slower than the Simplified
Model. The Abstracted Simplified and Abstracted Detailed Model with the Transaction-Level
coordinator requires almost the same average time to simulate one second.

8.6 Concluding Remarks

In this work, we proposed two different approaches to integrate CPSs in a production line sim-
ulator. The Multi-Level approach has shown the benefits of switching between different models
at runtime has been proved with the obtained results, but with an approximate simulation. The
Abstract-based represents a promising alternative solution that abstract models through a set of
abstraction steps, but maintaining a certain level of detail. The Abstract-Based approach with
Transaction-Level coordination has proved to be the best choice in terms of simulation time.

The results clearly show that the Abstracted Simplified and Abstracted Detailed models
require almost the same time to simulate, but with different simulation accuracy. This important
result allows to consider Abstracted Detailed Model with the Transaction-Level coordinator as
the best solution avoiding approximate simulation of the Multi-Level approach or inaccuracy of
the Abstracted Simplified Model.

9

A Design Methodology of Multi-level Digital Twins

9.1 Introduction

The concept of Industry 4.0 [1] represents an innovative vision of what will be the factory of
the future. The principles of this new paradigm are based on interoperability and data exchange
between different industrial equipment. In this context, CPSs cover one of the main roles in
this revolution. The entire factory can be seen as a set of CPSs and the resulting system is also
called CPPS. The CPPS represents the Digital Twin [4] of the factory and it allows to compare
the expected behavior with the actual one of the factory. The interoperability between the real
industrial equipment and the Digital Twin allows to make predictions concerning the quality of
the products. Several tools [2] allow to model a production line, considering different aspects of
the factory (i.e. geometrical properties, the information flows, etc.). However, these simulators
do not provide natively any solution for the design integration of CPSs, making impossible
to have precise analysis concerning the real factory. Multi-level approaches [104] try to define
principles in order to use multiple descriptions of the same system with a different level of detail.
This allows to switch at runtime between an abstracted model and a more refined one to obtain
precise data regarding equipment operations while reducing the computational effort by using
the abstracted model. Several works provide ad-hoc solutions for the integration of different
simulators [105, 108, 109]. In [110], authors try to use multi-level approach to integrate CPSs
with the use of Functional Mock-up Interface (FMI) standard [21]. In [111] authors proposed a
methodology to synthesize models from AutomationML. However, all the mentioned works did
not propose a unified design methodology that starts from a neutral standard leading to a multi-
level approach. In particular, [110] relies on FMI that does not allow to refine the equipment
model after the integration.

This paper proposes a multi-level design methodology that starts from AutomationML [15],
synthesizing the entire infrastructure between plant and process simulator. It is not part of
this work the synthesis of a physical model from AutomationML. The methodology allows
to synthesized the communication infrastructure and the communication protocol of the pro-
cess. Then, the designer can focuses on the kinematic model of the process in order to obtain
the desired behavior. The proposed design methodology allows to evaluate the performance of a
new equipment integrated in the real plant through the use the equipment model in a plant sim-

134 9 A Design Methodology of Multi-level Digital Twins

Plant
(Functional)

Recipe and
products

Plant
Topology

Process
(Kinematics)

AutomationML

Process Plant

Operations Plant
Topology

Recipes
and

products

Robot
Type

Plant
Generation

Communication
Infrastructure

Generation
Robot
Model

Real
Robot

D
etails

Low

High

Fig. 9.1: Overview of the proposed multi-level design methodology, starting from AutomationML neutral descrip-
tion.The methodology automatically generates the model of the plant, the process skeleton and the communication
infrastracture.

ulator. Moreover, the use of real equipment interface for the equipment model allows to easily
switch between the model to the real equipment, reducing time to integrate a real equipment in
the digital twin.

Figure 9.1 shows the overview of the entire flow of the proposed design methodology. The
design methodology starts from AutomationML, enriched with information regarding the multi-
level node to consider. Then, the plant topology is generated in a manufacturing simulator and
the communication infrastructure is synthesized. This allows to obtain automatically an inte-
grated environment to perform accurate simulation of physical processes in a functional man-
ufacturing simulator. From the multi-level perspective, the functional simulation of the plant
represents the model with a high level of abstraction while the physical process with kinemat-
ics, represents the model with a high level of details.

The main contributions of the proposed paper are:

• Unified design methodology;
• Multi-Level approach in manufacturing simulators;
• Standard interface that allows to easily switch from a model to a real equipment;
• Tool independent design methodology.

The paper is organized as follow: Section 9.2 presents the necessary background of the used
technologies and the running example that will be use to explain the entire methodology. Sec-
tion 9.3 explains the entire methodology starting from AutomationML to the generation of the
Plant and the communication infrastructure, while Section 9.4 reports the experiments with
different time granularity. Finally, Section 9.5 reports conclusion and possible future works.

9.2 Background 135

9.2 Background

9.2.1 AutomationML - IEC 62714

AutomationML [15] standardizes data exchange in the engineering process of production sys-
tems. The IEC 62714 does not define a new standard or a new XML schema, but it integrates
all the existing standard XML schema to allow a unified semantic of a production plant. All the
standards that can be integrated into an AutomationML description came from a different do-
main. Computer Aided Engineering Exchange (CAEX) - IEC 62424 standard is the core of the
AutomationML XML structure. Into a CAEX description, it is possible to store object-oriented
engineering information, for example, it is easy to define a machine topology. The topology is
a structure description that defines uniquely the components of a machine. It is similar to the
topology of a production line, in which the entire line is structured to be integrated into the
Manufacturing Enterprise Resource (MES) core. Furthermore, the CAEX description can refer
to geometry information, PLC data, logic, kinematics and external files. It defines mainly four
classes:

• InstanceHierarchy: It represents the class where objects are instantiated. These objects
could represent equipments of the plant or systems of an equipment. AutomationML pro-
vides also Internallink object allowing to link instantiated objects together;
• RoleClassLib: This class is reserved to defined the roles of objects giving them semantic;
• SystemUnitClassLib: This class is used to define object templates that can be instatiated

multiple times;
• InterfaceClassLib: In this class it is possible to define interface to external objects or

files. In particular, the standard provides interface for external files like COLLADA geomet-
ric information, PLC-Open description. The standard allows to define user external interface
allowing to integrate other types of files.

9.2.2 CAEX - IEC 62424-2

CAEX is a language based on XML which allows to structure hierarchical information [112].
A CAEX object is a data representation of an object that could be a plant asset. Into the XML
schema it is possible to model physical assets (e.g., a motor, a robot, a tank) or abstract assets,
like a function block, a model or a folder. CAEX allows to link those objects because every
physical or logical system is characterized by internal elements (objects) which may contain
further internal elements, and all elements may have interfaces, attributes and connections with
each other. This standard allows to model a single machine topology or a production lines
topology. Building these topologies into CAEX is possible because this language is not specific,
but it is vendor neutral. A machine topology must hierarchically define the internal structure of
the machine and also define the communication with all the other devices connected to them.

IEC 62424-2,also known as ISA-95, is the international standard for the integration of enter-
prise and control systems. It structures a manufacturing enterprise, in four different levels from
the lowest that represents the production to the highest where business-related activities needed

136 9 A Design Methodology of Multi-level Digital Twins

Fig. 9.2: AutomationML description of Plant running example using IEC62264-2 [113].

to manage a manufacturing operation are considered. In [113] authors proposed a solution to
map IEC 62424-2 concepts in AutomationML defining a set of namespace and rules over the
existing CAEX xml-schema. In particular, IEC 62424-2 consider not only equipment but also
personnel and the material of the plant that could be part of the manufacturing production.

The major contribution of [113], can be summarize in the reorganization of the Automa-
tionML RoleClassLib. In particular, the RoleClassLib with IEC 62424-2 is structure as fol-
low:

• PersonelModel

• EquipmentModel

• MaterialModel

Each of these objects are used as super classes to model the roles of different type of opera-
tors, equipment or materials that are part of the production.

9.2.3 Plant and Kinematics Simulators

Report [5] summaries the most used manufacturing simulators performing a comparison con-
sidering different functional and non-functional properties (modeling tool, license cost, inter-
faces,etc.). All of these simulators use discrete-event model of computation. These simulators
have some common principles such as:

• Layout Planning: Represents the geometrical structure of the production line. Manufactur-
ing simulators provides a set of components (i.e., Source, Station, Conveyor,etc.) that can be

9.2 Background 137

parametrized with functional and geometric properties (processing time, dimensions, energy
consumption,etc.).

• Material Flow/Fluid Simulation: Represents the transportation of the products from a pro-
cess to the others. In particular, there are two main classes of products that are material,
usually called MU or liquid products.

• Process Simulation: Represents the physical transformation made by the processes to prod-
ucts.

The main limitation of this class of simulators comes from the lacks of physical process
modeling. In particular, it is possible to perform simulations only with static information of the
physical process (time, energy consumption, etc.) with some statistical parameters.

However, this approach allows to perform an immediate evaluation of the production but
driving to non accurate simulation of the plant due to the fact that the simulator is based on
statical analysis and not on a model with kinematics.

In order to validate the entire methodology we adopted Siemens Plant Simulation and
Siemens Process Simulate, part of the PLM Siemens Tecnomatix suite1, to model the plant
and a process.

Plant Simulator provides also SimTalk, an internal programming language that allows to
define routines to customize the model and create or destroy objects at runtime. These routines
can be triggered on events when, for instance, a MU enter or exit from a Station. Moreover, a
set of interface objects allow to retrieve data from external sources through a set of protocols
(OPC Classic, OPC-UA, Socket, COM, etc.).

Process Simulators usually allows to model and performing simulations of dynamic systems
considering also geometric simulations in a 3D CAD environment. The main objective of these
simulator is modeling stations in order to verify and optimize operations that can be performed
by the equipment. For instance, defining strategies to avoid collisions between different robots
or operators. For this part we adopted Siemens Process Simulate that is another tool part of the
Siemens Tecnomatix suite addressed to model manufacturing processes.

As explained in section 9.1, the entire methodology is tool independent at it focuses mainly
on the integration of information in AutomationML, needed to build the entire infrastructure.
The methodology can be re-oriented to other simulators without changing the AutomationML
source description.

9.2.4 Running Example

The following section gives a full explanation of the design methodology. For the sake of clarity,
we pair the presentation with a running example. Figure 9.2 shows an AutomationML descrip-
tion using IEC 62424-2 rules. The description represents a small segment of a plant where a
robot moves different products from a source conveyor to one of three destination conveyors.
The InternalLink objects are used to define the topology of the plant, connecting respectively
the robot and the conveyors. In MaterialInformation class, Box object represents the MUs

1 http://www.plm.automation.siemens.com/

138 9 A Design Methodology of Multi-level Digital Twins

Plant
Simulation

PLC
Simulation

Process
Simulate

Real
Robot

AutomationML

Plant
Topology

Generation

Plant
OPC-UA

Infrastructure
Generation

Process
PLC

Infrastructure
Generation

1 2 3

O
P
C
|

U
A

O
P
C
|

U
A

PLC
Robot

O
P
C
|

U
A

Fig. 9.3: Overview of the steps that compose the generation of multi-level communication infrastructure.

that are moving through the plant. Each Box contains geometrical information (length, height,
width, mass) and its destination (Conveyor 1, 2 or 3). The robot moves the boxes depending on
the destination that is "marked" inside the object. The moving operation is affected by the mass
of the box that is coded into 10 different masses. In particular, the robot represents the node
where the multi-level is performed. As such, it provides a minimal while complete example for
the proposed design methodology.

9.3 Methodology in Action

In this section, the entire design methodology is discussed with the use of the running example
explained in the last section. Figure 9.3 shows the steps that compose the design methodol-
ogy. The proposed approach starts with the AutomationML description reported in Figure 9.2
explained in 9.2. The entire flow is composed of the following steps:

• 1© Plant Topology Generation
• 2© Plant OPC-UA Infrastructure Generation
• 3© Process PLC Infrastructure Generation

The first step considers the generation of the plant model retrieving the information of the
plant topology from the AutomationML description, then the following steps synthesized the
communication infrastructure between the plant and process simulator.

9.3 Methodology in Action 139

Listing 9.1: Piece of AutomationML description related to the instantiation of a Conveyor.

1 <InternalElement Name="Conveyor_1" ID="3b324033">
2
3 <Attribute Name="Lenght" DataType="xs:string">
4 <Value>5</Value>
5 </Attribute >
6 <Attribute Name="Speed" DataType="xs:string">
7 <Value>5</Value>
8 </Attribute >
9

10 <ExternalInterface Name="Input" ID="1e829f07"
11 RefBaseClassPath="AutomationMLInterfaceClassLib/
12 AutomationMLBaseInterface/Order">
13 <Attribute Name="Direction" DataType="xs:string">
14 <Value>In</Value>
15 </Attribute >
16 </ExternalInterface >
17 <ExternalInterface Name="Output" ID="41e42c8f"
18 RefBaseClassPath="AutomationMLInterfaceClassLib/
19 AutomationMLBaseInterface/Order">
20 <Attribute Name="Direction" DataType="xs:string">
21 <Value>Out</Value>
22 </Attribute >
23 </ExternalInterface >
24
25 <RoleRequirements
26 RefBaseRoleClass="AutomationMLIEC62264RoleClassLib/
27 EquipmentModel/EquipmentClass/Conveyor">
28 </RoleRequirements >
29
30 </InternalElement >

9.3.1 Plant Topology Generation

The AutomationML description has been enriched with additional information to better de-
scribe the topology of the plant. In particular, for each instantiated object two ports (Input,
Output) have been added in order to code the direction of the link. For instance, it is easier
to understand that the Robot has three output connections to the three conveyors(Figure 9.2).
All the objects of the Siemens Plant Simulation MaterialFlow library have been mapped in the
RoleClassLib EquipmentModel of AutomationML IEC 62424-2. In particular, some rele-
vant attributes have been added to each object. For instance, the length and the speed for the
conveyor object or the processing time for the Station object.

Listings 9.1 and Listing 9.2 report the AutomationML instantiation of the Conveyor_1 and
the Robot. All the instantiated objects have a hexadecimal ID that unequivocally identifies them
(Listings 9.1, 9.2 line 1). In listing 9.1, lines 3-8 show the two attributes related to the length
and the speed of the conveyor. Listing 9.2, lines 3-25 represent the attributes needed to enable
the multi-level simulation, that will be discussed in the next section.

Listing 9.3 reports the InternalLinks that encode the topology information of the plant.
Lines 6-9 represent the link between the robot and the conveyor. RefPartnerSideA and

140 9 A Design Methodology of Multi-level Digital Twins

Listing 9.2: Piece of AutomationML description related to the instantiation of the Robot.

1 <InternalElement Name="Robot" ID="2dd0d757">
2
3 <Attribute Name="MultiLevel" DataType="xs:boolean">
4 <Value>true</Value>
5 <Constraint Name="MobileUnitDestinations">
6 <NominalScaledType >
7 <RequiredValue >Conveyor_1 </RequiredValue >
8 <RequiredValue >Conveyor_2 </RequiredValue >
9 <RequiredValue >Conveyor_3 </RequiredValue >

10 </NominalScaledType >
11 </Constraint >
12 </Attribute >
13 <Attribute
14 Name="Synchronization" DataType="xs:unsignedLong">
15 <Value >10000</Value>
16 </Attribute >
17 <Attribute Name="PLCProtocol" DataType="xs:string">
18 <Value>Kuka</Value>
19 </Attribute >
20 <Attribute Name="ProcTime" DataType="xs:string">
21 <Value>5</Value>
22 </Attribute >
23 <Attribute Name="Operations" DataType="xs:string">
24 <Value>3</Value>
25 </Attribute >
26
27 <RoleRequirements
28 RefBaseRoleClass="AutomationMLIEC62264RoleClassLib/
29 EquipmentModel/EquipmentClass/Manipulator">
30 </RoleRequirements >
31 <ExternalInterface Name="Output"
32 RefBaseClass="AutomationMLInterfaceClassLib/
33 AutomationMLBaseInterface/Order">
34 <Attribute Name="Direction" DataType="xs:string">
35 <Value>Out</Value>
36 </Attribute >
37 </ExternalInterface >
38 ...
39 </InternalElement >

Listing 9.3: Piece of the Plant AutomationML description that represents the topology of the plant. InternalLink
are used to encode the physical connection between different equipment

1 <InternalLink
2 Name="Link1"
3 RefPartnerSideA="e3f29bb8:Output"
4 RefPartnerSideB="2dd0d757:Input" />
5
6 <InternalLink
7 Name="Link2"
8 RefPartnerSideA="2dd0d757:Output"
9 RefPartnerSideB="3b324033:Input" />

9.3 Methodology in Action 141

RefPartnerSideB represent respectively the source and the destination of the link and the
attributes are the ID of the Robot and Conveyor.

Listing 9.4 shows the generated Simtalk method that contains the instantiation of all the ob-
jects of the plant for Siemens Plant Simulation. This method can be executed at the beginning of
the simulation. Lines 2-4 represent the definition of the Box as a derived object of the MU Plant
Simulation object. In particular, in line 3 is possible to see that the Box has been enriched by
the attribute Mass. Other attributes (width, height, length) are provided by the MU superclass.
Lines 10-11 show the instantiation of the robot of listing 9.2. Lines 13-15 show the instantiation
of the conveyor presented in listing 9.1. In particular, lines 14-15 shows how the attribute length
and speed are set in the conveyor object. Furthermore, lines 29-38 represent the entire topology
of the plant, presented in AutomationML listing 9.3.

9.3.2 Plant OPC-UA Infrastructure Generation

In this section, the generation of the Plant OPC-UA communication infrastructure is discussed.
The AutomationML description has been enriched with some attributes in order to identify and
enable the multi-level simulation as mentioned in the previous section. Listing 9.2 lines 3-25
show the AutomationML attributes of the robot that are the following:

• MultiLevel: this boolean attribute is used to identify which is the multi-level node.
• Synchronization: This attribute is used to set how often Plant Simulation and Process

Simulate have to synchronize. This parameter can be easily changed also during the sim-
ulation, in order to obtain an adaptable simulation. This number represents the number of
MUs.
• PLCProtocol: This variable is used to uniquely identify the type of PLC protocol that uses

the robot. Each vendor defines a specific PLC protocol. In this case, we are using a Kuka
robot. The use of specific PLC protocol allows the integration of the real robot with Plant
Simulation.
• Operations: It represents the number of operations that the robot can perform. In this case,

the three operations represent the three different move actions to the conveyors.

Figure 9.3 shows two different actors used to perform communication and simulation between
Siemens Plant Simulation and Process Simulate. This solution is necessary in order to better
control the model and coordinate the two simulation tools. In particular, the separation of the
two virtual PLCs allows also to connect the real robot, using in Plant Simulation real data
coming from the field.

The communication between Plant Simulation and the two virtual PLCs is performed via
OPC-UA protocol. Then, the two virtual PLCs are directly connected to Process Simulate. Fig-
ure 9.4 shows the sequence diagram of the communication protocol between Plant Simulation
and Process Simulate via the two virtual PLC. This protocol is synthesized in Simtalk and it is
associated with the Robot (Listing 9.4, line 11). The method is executed each time a new Box
reaches the Robot.

The KUKA protocol is composed mainly of the following signals:

142 9 A Design Methodology of Multi-level Digital Twins

Listing 9.4: Simtalk Generated Method for the instantiation of the plant model.

1 var Pl := Models.Model
2 var Box := MUs.Part.derive(.Mus, "Box")
3 Box.createAttr("Mass", "Integer")
4 Box.Mass := 1
5
6 var Source_1:=Source.createObj(Pl,"Source")
7
8 var Conveyor_0:=Conveyor.createObj(Pl,"Conveyor_0")
9

10 var Robot:=Station.createObj(Pl,"Robot")
11 Robot.EntranceCtrl.load("Robot_KUKA_Protocol.txt")
12
13 var Conveyor_1:=Conveyor.createObj(Pl,"Conveyor_1")
14 Conveyor_1.length := 5
15 Conveyor_1.speed := 5
16
17 var Conveyor_2:=Conveyor.createObj(Pl,"Conveyor_2")
18 Conveyor_2.length := 5
19 Conveyor_2.speed := 5
20
21 var Conveyor_3:=Conveyor.createObj(Pl,"Conveyor_3")
22 Conveyor_3.length := 5
23 Conveyor_3.speed := 5
24
25 var Drain_1:=Drain.createObj(Pl,"Drain_1")
26 var Drain_2:=Drain.createObj(Pl,"Drain_2")
27 var Drain_3:=Drain.createObj(Pl,"Drain_3")
28
29 Connector.connect(Source_1,Conveyor_0)
30 Connector.connect(Conveyor_0 ,Robot)
31
32 Connector.connect(Robot,Conveyor_1)
33 Connector.connect(Robot,Conveyor_2)
34 Connector.connect(Robot,Conveyor_3)
35
36 Connector.connect(Conveyor_1 ,Drain_1)
37 Connector.connect(Conveyor_2 ,Drain_2)
38 Connector.connect(Conveyor_3 ,Drain_3)
39
40 --Instantiation of OPC-UA Communication
41 ...

• App_start

• App_enable

• Robot_application

The first part of the protocol represents the robot setup phase. First, the Box properties (width,
lenght, mass) are sent to the Robot PLC. Then, the number of the total operations performed by
the Robot node in Plant Simulation. This allows the Process model to synchronize its internal
state with the Plant model, setting the correct wearing that could affect the processing time of the
required operation. Then, the app_enable and app_start are rise up. Robot_application

9.3 Methodology in Action 143

Plant
Simulation

PLC
Simulation

PLC
Robot

Process
Simulate

App_Enable = true

App_Start = true

Robot_Application
[1,3]

Simulate Model

MU Properties
(Width, Height,
Length, Mass)

Manipulator Setup
(MU properties,

Wearing,
application)

Simulate Model

Simulated time Simulated time

Robot_Application = 0

Simulate Model
Simulate ModelReset

Robot

Robot
Setup
Phase

Simulation
&

Time Annotation

Total number of
operations

Fig. 9.4: Sequence Diagram of the communication protocol between Plant Simulation and Process Simulate.

signal represents the different move operation and it is set depending on the destination that
is "attached" to the box (1, 2, or 3). The second part of the protocol is represented by the
simulate Model signal that is sent to the PLC Simulation allowing to start the simulation of
the process. At the end of the simulation, the simulated time is retrieved by the PLC Simulation
and passed back to Plant Simulation. Plant simulation retrieves the timing annotation and sets it
to the Robot Station. The Reset phase is necessary in order to bring back the robot to the initial
position to perform another operation.

9.3.3 Process PLC Infrastructure Generation

This step represents the generation of the PLCs logics depending on the Robot protocol speci-
fied in the AutomationML description and reported in figure 9.4. The simulation of the virtual
PLCs is performed by Siemens TIA Portal tool, part of Tecnomatix suite. Siemens TIA portal
allows to program virtual PLC that exposes data also through an OPC-UA interface. The proto-
col is synthesized in a proprietary Siemens XML format, called PLC Openess, that is imported
in Siemens TIA Portal.

In future, the PLC protocol will be described using PLC Open [114], then attached to the
AutomationML description and finally synthesized directly in the target simulation environ-
ment.

144 9 A Design Methodology of Multi-level Digital Twins

Plant Simulation Process Simulate

Conveyor_1
Conveyor_2

Conveyor_3

Robot

Conveyor_0

Conveyor_1

Conveyor_2

Conveyor_3

Conveyor_0 Robot

PLC
Simulation

PLC
Robot

Plant
Generation

Kuka
Protocol

Fig. 9.5: Overview of the experimental setup generated with the design methodology.

9.4 Experiments

The methodology has been implemented as an automatic tool written in C++ using Xerces
library 2. The automatic tool parses the AutomationML description and generates all the neces-
sary files to build the multi-level simulation infrastructure. The automatic tool has been tested
using the discussed running example (Section 9.2). Figure 9.5 shows the obtained simulation
environments, obtained with the design methodology.

Inside Plant Simulation environment it is possible to notice the equipment that composes
the plant, the two OPC-UA modules (PLC Simulation, PLC Robot), and the method needed to
enable the communication (KUKA Protocol).

Inside Process Simulate environment, the robot has been modeled according to the three
different moving actions defined in the AutomationML description. Furthermore, the robot has
been modeled considering mechanical wear due to the number of operations performed, which
affects the time required to perform the different operations.

When the simulation reaches a synchronization point, Plant Simulation requires to Process
Simulate the timing annotations for all the available recipes.

In the experiment, the number of recipes is obtained from the combination of the mass of
the box and the conveyor destination. Moreover, Process Simulate also provides an option to
increase the simulation performance trying to optimize the model. Table 9.1 shows the time
required by the robot to perform the moving operation depending on the mass of the box and
the conveyor destination, in a normal situation.

The proposed experiments perform a set of simulations using a different number of synchro-
nization points to underline the benefit of the proposed design methodology.

2 https://xerces.apache.org/xerces-c/

9.4 Experiments 145

Box Mass
(kg)

Simulated Time (s)

Destination

Conveyor
1

Conveyor
2

Conveyor
3

1 9,91 8,76 8,64
2 10,12 8,54 8,64
3 10,21 8,65 8,88
4 10,39 8,83 8,70
5 11,01 8,96 8,96
6 11,54 9,26 9,30
7 12,64 9,73 9,49
8 14,43 10,93 10,39
9 18,57 12,78 12,04
10 29,19 19,70 17,72

Table 9.1: Simulated time of different robot operations considering the mass of the boxes.

Synchronization Simulated Time CPU Time1000000
MUs

Number of MUs DD:HH:MM:SS s s

Plant
Simulation - 134:18:14:36 11643243 126

Multi-Level

500000 145:11:59:30 12571170 333

200000 148:14:19:02 12838742 569

100000 152:21:49:44 13211384 986

50000 155:17:16:28 13454188 2293

Table 9.2: The table reports simulation of Plant and Multi-Level approach with a batch of 1 million MUs.

In Table 9.2 the simulation of 1 million MUs has been considered. The first row of the ta-
ble represents the simulation of Plant Simulation, without considering the physical process. In
particular, the processing time of the robot has been set statically in Plant Simulation using the
average of all the moving actions presented in Table 9.1. The following rows of the table show
the results obtained using the proposed methodology, with a different number of synchroniza-
tion points. The first column reports how often the synchronization between Plant Simulation
and Process Simulate carry out, based on the number of processed MUs. The simulated time
describes the simulated time at the end of the entire simulation. In the last column, the time
required to simulate the entire batch of 1 million MUs is reported. The results show that Plant
Simulation has proved to be the fastest solution, but providing inaccurate prediction regarding

146 9 A Design Methodology of Multi-level Digital Twins

333
569

986

2293

0

500

1000

1500

2000

2500

0 5 10 15 20 25

C
P

U
 T

im
e

(s
)

Number of Synchronization Points

Fig. 9.6: Correlation of CPU Time and number of synchronization points.

the simulated time. Considering the Multi-Level approach, it is possible to notice that increasing
the synchronization points, the simulation time is more accurate. This is due to the fact that the
model of robot starts to introduce mechanical wearing and the operations require more time to
be performed. The first row and the last row of the table clearly show that there is an important
difference between the two simulated times (2 days circa). However, the Multi-level approach
requires more computational effort than the only use of Plant Simulation, depending on how
often the synchronization is set.

In figure 9.6 the number of synchronization points and CPU Time has been correlated. The
relation between these two parameters demonstrates that the Multi-level approach in relation to
the number of synchronization points is almost linear.

9.5 Conclusion

This paper proposed a novel design methodology to enable multi-level digital twins. In par-
ticular, the design methodology relies on the multi-level approach between a functional plant
and kinematic process simulation. The proposed methodology enables accurate simulation of
physical processes that can be used in a manufacturing plant model. The use of AutomationML
neutral standard allows the adaptation of the entire design flow with different plant and pro-
cess simulators. The methodology has been applied to specific industrial tools only to prove
and validate the proposed approach. The obtained automatic solution can be adapted to differ-
ent target environments starting from the same AutomationML description. Furthermore, the
methodology has been explained with a real use case scenario that clearly shows the benefit of
this approach.

Part V

From Real Data to Information

10

Industrial-IoT Data Analysis Exploiting Electronic Design
Automation Techniques

10.1 Introduction

In the last decades, the number of Smart Systems dramatically increased. Thus, becoming a
fundamental part of our life. Sensors can retrieve data from physical world and through digital
processing, perform analysis. This process moves information from the physical domain to the
digital domain creating the Digital Twin. The concept of a Digital Twin is not new, but in these
years it becomes strictly correlated to manufacturing processes [1]. This concept can be seen as
the modeling process of a physical phenomenon that refined or affected from real data. Thus,
the Digital Twin represents the model, more or less abstracted, of real factory. The Digital
Twin has the global view of the entire production line allowing data analysis verification and
planning strategies targeted to maximize the production with real constraints coming from the
real factory [4]. However, actually does not exist a reference development model that leads to
the Digital Twin.

In the Electronic Design Automation (EDA) domain, the terms "model", "abstraction", "ver-
ification" are really familiar. For instance, the development processes of a IP-core must move
through a set of refinement steps that mandatorily requires the use of these techniques. On the
base of any EDA approach there is the process that starts modeling the problem, developing a
solution technique based on formal models and languages and finally, when the solution strategy
has been widely accepted, it generates standards. May we imagine to apply the same approach
to Industry 4.0 problems by, hopefully, reusing the main results of the EDA evolution? This
paper proposes a data analysis methodology based on EDA techniques to perform monitoring
of a factory equipment. Figure 10.1 shows the strict relation between manufacturing automa-
tion and EDA techniques. In the right side, it is possible to see the Automation Pyramid that
represents the reference hierarchical model of a manufacturing plant [115]. The Automation
Pyramid moves from the production processes, at the lowest level, to the business and logistics
that are on top of it. More in details, it is possible to see that all these levels have a different
notion of time that depends on the operations they have to deal with. In the automation context,
the Automation Pyramid is the mainly used paradigm for the identification of all the actors and
them roles in the production plant. For this reasons, the EDA workflow must be coupled with
this paradigm. The complexity of the corresponding system increases depending on how many

150 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

Level 0:
Production Process

Level 1:
Sensing &

Manipulating

Level 2:
Monitoring &
Supervising

Level 3:
Manufacturing

Operations
Management

Level 4:
Business
planning

and logistics

Sensors

PLC

SCADA
HMI

MES

ERP

Automation
Pyramid

Cyber-Physical
Production

Systems
(Production

Plant)

Smart
Systems

Cyber-Physical
Systems

EDA way of working
Months

Days

Hours

Minutes

Secs

ms
us

System Complexity

Standard Technique Problem

ISO10816
TBD PMSM Equipment

Monitoring

LTL-GR(1) Contract
A/G

CPS
Verificatio

n

Ptolemy,
FMI

Model-
Based
Design

CPS
Modeling

SystemC,
Verilog,
VHDL

Hardware
Description
Language

Platform
Modeling

Fig. 10.1: Overview of EDA Techniques with respect to ISA-95 Pyramid.

Table 10.1: Comparison of the principal measurements suitable for monitoring an industrial machine concerning
the major condition monitoring standards. For each measurement are described the property that allows using of
EDA techniques even for condition monitoring.

Property Vibration Oil
Property

Acoustic
Signal

Thermal
Dissipation

Problem
statement

ISO 7919,
10816, 13373

ISO 3734,
4406 ISO 22096 ISO 10880, 18251,

18434

Severity levels ISO 10816 - - NFPA-70B

Measurement
points ISO 13373 - ISO 3747 ASTM E1934,

UNI 16714

P-F interval weeks to
month month weeks weeks to month

variables need to be encapsulated in the model. For instance, Smart systems cover the lowest
level of the complexity pyramid. CPSs describe the interaction within physical processes and
digital components [116]. CPPS is the most complex system and it represents the Factory [117].
This is the most complex system in the manufacturing modeling domain.

The table on the left side of Figure 10.1 shows the usual "EDA way of working". The rightest
column represents the starting problem, then on the left the emerged technique used to solve
it and finally the generated standard. The lowest rows of the table represent problems, tech-
niques and standards related to the electronic domain (e.g., platform modeling, CPS modeling
& verification).

10.2 IIoT Data Analysis 151

However, in CPPSs context the reuse of EDA development process has been not yet ex-
plored.

The first row of the table analyzes the equipment monitoring problem that is specific of the
automation domain. This paper proposes a novel approach, based on a EDA workflow, to solve
this problem. The Predictive Maintenance State Machine (PMSM) emerged technique, based on
EDA languages and FSM, is presented in Section 10.3. Section 10.2 discusses existing standard
and what is missing for the standardization of PMSM technique. Section 10.4 reports some
experiments for the validation of the approach. Finally, in Section 10.5 some conclusions are
drawn.

10.2 IIoT Data Analysis

The observation of mechanical equipment is the mainly used technique to identify its health sta-
tus. The healty status of a machine can be achieved through the observation of measurements
coming from sensors. Research [118] at the State-of-the-Art was focused on the development
process of IoT sensors (accelerometers, gyroscopes, pressure sensors, etc.) and summarized
the most used sensors. Table 10.2 shows the principal sensors used in Industry 4.0. The inter-
pretation of data sensors represents the primary issue related to the identification of the health
status of equipment. In particular, it is difficult to understand when measurement can represent
a significant deviation from the normal behavior of equipment. Some works tried to defined
thresholds that can be used as guidelines to identify the severity of the measurement deviation.

The proposed methodology is derived from the application of EDA techniques, and it is
supported by many international standards that formalize condition monitoring techniques in
an industrial context. These standards represent the knowledge and experience on the industrial
machineries of the committee that elaborated these indications. We tried to follow the same
strategy, by identifying the main aspects that should be standardized to allow the application of
EDA-inspired techniques to the monitoring problem. Such a problem is one of the most studied
in Industry 4.0 and it is a the base of any predictive maintenance approach. The three main
aspects necessary to implement the methodology are reported in Table 10.1 and concern the
definition of:

• severity levels;
• measurement points;
• Potential-Failure (P-F) intervals.

This section starts with the definition of these three aspects then, the main variables used in
condition monitoring are analysed and finally the proposed methodology is detailed.

10.2.1 Severity levels

It is fundamental to discretize the variables measured from the field, to reduce both the compu-
tational complexity to manage them and to set the critical thresholds. These critical thresholds
are defined as severity levels for some variables used in condition monitoring. For example, for

152 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

Table 10.2: Example of sensors used in industry 4.0.

Measure Vendor Sensor Name Description

Vibration SignalLink - MEMS sensor

Vibration LORD MicroStrain G-Link-200 Wireless sensors

Vibration Valmet WVS-100 WLAN sensor

Temperature RFMicron RFM3250 Wireless sensor

Temperature Yokogawa YTA510 ISA100.11a sensor

Temperature BB Smart Wzzard BLe sensor

Ultrasonic Banner Q45 Wireless sensor

the vibration variables, the ISO 10816 (Mechanical vibration - Evaluation of machine vibration
by measurements on non-rotating parts [119]) standard defines various tables where the critical
area is categorized for different kinds of machinery (see Figure 10.2). This standard defines four
operating areas, with measures specified in mm/s for machines that operate in the range of 10 to
200 Hz (600 to 12000 rpm). In particular, the working conditions are subdivided from the first
zone where vibration values are normal to the last one where a failure could occur at any time.
This frequency range comprises various types of machinery e.g., electric motors, pumps, com-
pressor. Another standard deriving from a different domain, NFPA-70B (Recommended practice
for electrical equipment maintenance [120]) defines various critical thresholds for thermal dis-
sipation in electronic circuits. These severity levels once defined enable to set all the parameters
necessary to run correctly the framework described in 10.3. In the case a recognized standard
does not exist, it is necessary to define ad-hoc severity levels by following the way of working
of the previously cited standards.

10.2.2 Measurement points

Once the severity levels have been defined, it is essential to define where the network of sensors
must be positioned to perform the corresponding measurements. This point is crucial because
an incorrectly located sensor could lead to a discrepancy in the prediction of the state of health
of the machine. Various standards define a correct procedure to ensure the most possible correct
measurements.

Concerning vibration measurements, the ISO 13372 standard specific for non-rotating parts
of a machine specifies where sensors must be located on the machine side [121]. Rules are
defined for the correct measurement of other variables, for example for acoustic emission and
thermal dissipation [122, 123].

10.2 IIoT Data Analysis 153

1 2

Shaft Vibration
ISO 7919

Bearing Vibration
ISO 10816

Fig. 10.2: Vibration standards.

10.2.3 P-F intervals

It is essential to prevent the breakage of an industrial machine by monitoring specific parame-
ters. Often these breakages are not linked to the aging of the machinery but associated with a set
of conditions that are no longer verified. The mapping between a fault and the cause that caused
it is often 1: N, so different techniques of condition monitoring are used to prevent possible fail-
ures. Through the monitoring of different machine variables, it is possible to detect anomalies.
When an anomaly is detected, the machine is in the condition in which a fault has already started
to modify its functionality, even if this variation is not observable in this initial stage. It is there-
fore crucial the period between the detection of the fault and the point where the functional
fault is in the act. This temporal interval is known in the literature as P-F interval [124] (see
Figure 10.3). It is essential, therefore, to estimate in advance this interval with high accuracy.
Each variable that can be monitored has its intrinsically associated P-F interval. For example,
the P-F interval associated with vibration measurement and engine oil measurement is not the
same. The P-F interval associated with vibration measurement is smaller than the P-F interval
for engine oil measurement because, through advanced analysis of a machinery’s engine oil, it
is possible to detect in advance an anomaly.

154 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

10.2.4 Common variables in condition monitoring

Table 10.1 shows a comparison of the most common variables used for condition monitoring,
with a focus on the principal standards cited for the aspects to be considered.

Vibration

Major studies in the field of condition monitoring are based on vibration analysis [125]. Vi-
bration analysis is used to detect the energy emitted by a mechanical component as vibrations.
Significant variations in vibration may indicate problems with machine wear or misalignment.
Vibration-related parameters that can be measured are displacement, speed, and acceleration.
Several analyses can be carried out on these parameters, e.g., time waveform, broadband vi-
bration, and spectrum analysis. For the vibration analysis, is the most used technique, many
standards can be used for the definition of the main points of our methodology. For example,
the family of standards ISO 10816 [119], ISO 7919 [126] and ISO 13373 [121] define the
problem statement. They also outline the guidelines for the definition of severity levels and the
points at which to perform the measurements.

Oil property

The analysis of the engine oil can be carried out on different types of machine’s oil. Through
the oil component analysis it is possible to detect a degradation of the machine, a contamination
or a oil consistency different from the requirements. Different analysis can be performed on the
oil, the main ones are ferrography, infrared and ultraviolet spectroscopy analysis and particle
counter [127]. However, these analyses can mainly be carried out in the laboratory and not
on board the machine and involve significant additional costs compared to monitoring other
variables. For the analysis of engine oil standards as ISO 3734 [128] and ISO 4406 [129] define
only the problem statement. It is a very complex technique and requires laboratory analysis, no
standardized levels of severity or measurement points have been established.

Acoustic emission

The analysis of acoustic signals allows to carry out analyses related to degradation and stress
of industrial machinery [130]. For the analysis of acoustic emissions standards such as ISO
22096 [131] define the problem statement. No standard defines severity levels to determine
critical thresholds in measurements while the ISO 3747 [122] standard defines guidelines to
perform the measurements.

Thermal dissipation

The analysis of the thermal dissipation allows to identify possible failures related to the temper-
ature of a component [132]. Significant changes in temperature can indicate both mechanical
problems such as excessive mechanical stress that could be caused either by a faulty bearing
or by inadequate lubrication or electrical problems in the system itself. Temperature measure-
ments can refer to measurements made outside or inside the machine. Various sensors allow

10.3 Predictive Maintenance 155

Time

C
on

di
ti

on
 o

f t
he

 a
ss

et

P-F INTERVAL

(P) POTENTIAL
FAILURE RECOGNIZE

OIL
ANALYSIS

VIBRATION
ANALYSIS

THERMAL
ANALYSIS

ACOUSTIC
ANALYSIS

Fig. 10.3: P-F interval - Intervals between the point at which a potential fault is detected and the point at which the
fault occurs.

to measures temperature, e.g., thermocouples, Resistance Temperature Detectors (RTDs), and
infrared thermography camera.

The advantage of using a thermography camera is that it is portable and allows to observe the
temperature of a very large area. For the analysis of thermal dissipation, several standards can
be useful to define the main points of our methodology. For example, the family of standards
ISO 10880 [133], ISO 18251 [134] and ISO 18434 [135] define the problem statement. A
formalization of severity levels it is defined in the standard NFPA-70B [120] that defines critical
thresholds for thermal dissipation within electronic circuits while standards as ASTM E1934
[136] and UNI EN 16714-3 [137] define guidelines to perform measurements.

10.3 Predictive Maintenance

The proposed methodology describes a novel technique to translate raw data coming from dif-
ferent sensors in severity levels. The role of these severity levels is to measure the quantity of
deviations of the equipment for a determined measurement. In the context of a production line,
any equipment usually performs a finite amount of operations depending on the products that
are produced. For instance, let us consider a factory that produces three different products. The
input domain of equipment depends on the production recipes of the products. More in details,
an equipment could have a set of real parameters that allows identifying a large number of se-
tups. The same equipment in a production line uses a limited number of setup depending on the
production recipes. This assumption allows to reduce the number of inputs of the machine and
allows to identify the normal behavior of the equipment for each production recipe.

The normal behavior is compared to the actual behavior of the equipment depending on the
current product. Ideally, a deviation represents a measurement that is diverging respect to a ref-

156 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

#Small_severity_level

>
Small_threshold

#Medium_severity_level

>
Medium_threshold

#Large_severity_level

>
medium_threshold

Fig. 10.4: Overview of a generic PMSM. States represents the deviation observed from the Normal Behavior.

erence signal or crossing a threshold. The identification of a normal behavior allows obtaining
a fixed threshold with simply comparing the actual behavior with the normal behavior. This is a
normal filtering technique used for instance in Audio signal processing (i.e. mobile phone noise
reduction), where the reference signal is used in opposition to the current signal. The obtained
result represents the global deviation of the actual behavior respect to the normal behavior. This
deviation allows setting a fixed threshold that is used to capture deviations from the normal
behavior. Moreover, the threshold is used also to avoid deviations caused by sensing errors and
capture only real deviations.

Figure 10.5 depictes the main components of the framework that have been implemented as
an OPC Unified Architecture (OPC UA) client.

Let us introduce an actor called Severity Level Classifier. This actor performs three opera-
tions:

• Storing normal behavior traces for each product;
• Filtering actual behavior with normal behavior trace comparison;
• Translating deviation into severity level.

The first action is the learning phase where the Severity Level Classifier stores the reference
traces for each product needed from the filtering phase. The filtering phase is the same men-

10.3 Predictive Maintenance 157

A
L
E
R
T

OPC UA CLIENT

Vibration PMSM
SUPERVISOR

COORDINATOR

Tracking Simulator

Temperature PMSM

Se
ve

ri
ty

 L
ev

el

C
la

ss
if

ie
r

Other PMSMs

Raw Data
From

Sensors

Fig. 10.5: Overview of the framework implemented as an OPC UA Client.

tioned before. The third action is performed by considering the number of deviations that have
crossed the fixed threshold. When a deviation is detected, the Severity Level Classifier incre-
ments an internal counter. When the comparison is completed, this actor maps the counter value
into a severity level.

This approach defines the following severity levels:

• Minimal severity;
• Small severity;
• Medium severity;
• Large severity.

More in details, when the internal counter of the Severity Level Classifier is minimal it rep-
resents a minimal deviation from the normal behavior of the equipment. It means that the equip-
ment health status is good. The Severity Level Classifier maps this counter into the Minimal
Severity level. In another case, the counter could be higher. This means that the equipment is
deviating for an important amount of time than its normal behavior. In this case, the Classifier
will map the counter into Large Severity level.

The goal of predictive maintenance is to anticipate equipment failures in order to optimize
production and plan maintenance strategies. In this scenario, an equipment maintainer can es-
tablish the status of an equipment by observing it through measurements of vibrations, tempera-
ture, energy consumption, etc. When these measurements are deviating from a normal behavior
the equipment could perform inaccurate operations or stopped for a failure. With the analysis
of these measurements, it is possible to define the state of health of the equipment.

This paper introduces a new method to achieve Predictive Maintenance, called PMSM. A
PMSM is a finite state machine representing the health status of equipment for a certain observ-
able measurement. Formally, a PMSM is a transition system that depends only on inputs. The
output of a PMSM is its actual state. A PMSM is composed of four states:

• Minimal Anomalies;

158 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

• Small Anomalies;
• Medium Anomalies;
• Large Anomalies.

Each state represents the health status of the observed measurement.
For instance, let us assume the PMSM in Figure 10.4 represents the status of Vibration

measurement of a bearing that could be a critical component of an equipment. In this case,
the Minimal Anomalies state is used to represent minimal deviations of vibrations from the
normal behavior of the bearing. The Large Anomalies state represents an important deviation
of vibrations that could lead to failure. Inputs for a PMSM are the severity levels. Each time the
equipment makes an operation the vibration deviations are translated into severity levels.

In a real factory, a maintainer tries to classify the health status of an equipment by ob-
serving its measurements. For instance, the maintainer could identify states like "equipment
working", "equipment deteriorating", "maintenance requires" and "broken". This is usually per-
formed manually with personal knowledge of the maintainer acquired with the experience. In
the last Section, PMSM has been presented with the role to monitor the deviations of observable
measurements. This section introduces a new actor called Supervisor. The role of this actor is
to monitor all the PMSMs in order to raise alert when the equipment needs maintenance.

Moreover, it also notifies when an imminent failure of the equipment is incoming. The Su-
pervisor is defined as a finite state machine that analyses the current state of all PMSMs and
expose its current state as output. The internal states of the Supervisor are:

• Good;
• Maintenance;
• Imminent Failure.

The initial state of the Supervisor is the Good state and it is used to represents the normal be-
havior of the equipment. The Maintenance state represents the state in which the Supervisor
detects Medium Anomalies state from PMSMs for a certain time. The Imminent Failure
state is used to raise an alert when the deviations of the observed measurements are compromis-
ing the equipment. Transitions between a state to another are defined depending on the physical
properties of the equipment and on the number of PMSMs available. It is important to clarify
that the main contribution of this paper concerns by the structure definition of a customizable
framework.

10.4 Experimental Validation

This Section explains the methodology implementation and its application to a model of a real
use case scenario. More in details, the methodology has been implemented with the use of two
support technologies (OPC UA, FMI).

10.4.1 Experiment Setup

Now the experiment setup necessary to validate the methodology is described:

10.4 Experimental Validation 159

OPC UA Client

The two main components of the methodology: PMSMs and Supervisor are described with
VHDL, an HDL. This allows defining into a single description the finite state machine and the
control for each state of the FSM. Once defined these components into a VHDL description it
is necessary a further step to proceed with the integration into the OPC UA Client.

HIFSuite is a tool that provides a set of tools for the manipulation of Hardware models [44].
In this work, HIFSuite has been used to obtain C++ code starting from Hardware models [44]. It
defines a proprietary format called HIF (Heterogeneous Intermediate Format). The framework
provides a front-end tool that translates Hardware models into HIF format. Then, manipulation
tools can be applied to these translated models. In particular, the framework provides two ma-
nipulation tools to perform abstraction [20]. Finally, a back-end tool can be used to generate the
C++ code that represents the abstracted Hardware Model.

The obtained C++ abstracted models of PMSMs and Supervisor are easily integrated into
the OPC UA Client. Furthermore, into the OPC UA Client, a Coordinator is responsible for the
product-accurate execution of all the components. This means that the frequency of execution
of PMSM and Supervisor is correlated with the frequency of production of each piece. The
OPC UA Client received the severity levels and processed it into the core.

OPC UA Server

The Severity Level Classifier it is modeled using VHDL, an HDL. It is translated into C++

code with the HIF Suite with the same toolchain used for PMSM and Supervisor. This module
is integrated into an OPC UA Server, this makes it possible to abstract from the machine. If
the real machine is available, the Severity Level Classifier will be integrated into the machine
proprietary OPC UA Server. Otherwise, an abstract OPC UA will be modeled, as it happens
in this experiment necessary to validate the framework. This OPC UA Server incorporates the
Severity Level Classifier and the library that allow simulating the model of the abstract machine
(see Section 10.4.2) with the FMI interface.

10.4.2 Abstract model of a real machine

A Driveline Two-Speed Transmission System is used as a reference model of a real machine.
This model represents a critical subsystem of manufacturing equipment. In particular, the drive
shaft is a critical subsystem of manufacturing equipment. This manufacturing equipment pro-
duces three different products: A, B, C. The critical subsystem received different inputs that
allow modeling the product production. Mathworks Simulink c© is used to model the critical
subsystem. The transmission system consists of a torque drive, drive shaft, clutch and high and
low gears connected to an output shaft.The model incorporates two sensors: vibration and tem-
perature sensors. Vibration sensors monitor the casing vibrations. The casing model translates
the shaft angular displacement to a linear displacement on the casing. Temperature is used to
monitor the oil temperature of the casing. The counters are implemented in the module Severity
Level Classifier into the OPC UA Server.

160 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

Product Type: A

Large
Severity

Medium
Severity

Small
Severity

Minimal
Severity

Maintenance

Fig. 10.6: Vibration deviation counter, product type A, series: 300 pieces.

10.4.3 Methodology validation with a mutation analysis technique

In this Section, the correctness of the methodology is shown. In particular, the Structure vali-
dation mode of PMSM is considered. The technique used is derived from the mutation analysis
used in software testing [138]. The abstract model of a real machine used as a reference has
been faulty. The fault injected is a gear tooth fault that is part of the transmission shaft. This
fault is modeled by injecting a disturbance torque at a fixed position in the rotation of the drive
shaft. The magnitude of the disturbance is controlled externally during the simulation. This
faulty model is simulated into the OPC UA Server. The simulation step is set with the same
frequency of a real sensor. In this context, the point of breakage is set by analyzing the simula-
tion results at 17500s of simulation. In a real context, this point of breakage is set by analyzing
the machine’s documentation, in particular, Mean Time To Failure (MTTF) and Mean Time To
Repair (MTTR), or Failure Mode and Effect Analysis (FMEA) report.

Figure 10.7 and Figure 10.6 shows the simulation results of 18000s, equivalent to the pro-
duction of 300 pieces for the temperature and vibration sensors. In particular, the measurements
are related to the counters of the Severity Level Classifier. Figure 10.7 shows the numbers of
deviation of the oil temperature with respect to a normal behavior. The Supervisor detects cor-
rectly the anomalies caused by the faulty model, and the internal state of the Supervisor switch
from a healthy state to a maintenance state before the broken point of the machinery.

10.4.4 Experiment results

Experiments have been run on a 64-bit server with 3.40 GHz cores and 32GB of RAM and run-
ning on Ubuntu 18.04 Linux OS. All the results are related to a simulation of 18000s, equivalent

10.4 Experimental Validation 161

Product Type: A

Large
Severity

Medium
Severity

Small
Severity

Minimal
Severity

Maintenance

Fig. 10.7: Temperature deviation counter, product type A, series: 300 pieces.

to the production of 300 pieces with the point of breakage set to 17500s. In this Section, two
observable measurements are related to inferred early the anomalies in the abstract model of a
real machine 10.4.2. The approach has been validated with three different experiments based on
the observation of measurements.

In the first experiment, the framework observes only the Temperature of the Casing, while in
the second experiment considers only vibration measurements related to casing Vibration. The
third experiment relies on the observation of the vibration and the temperature. The Severity
Level Classifier recorded the normal behaviour related to the three different products A, B, C.
The transition thresholds of the temperature PMSM and the Supervisor has been manually set
according to the deviations of the model. In this case, the Supervisor transition between Good
State to Maintenance Statewas approximated. More in details it means that the Supervisor
needs to be sure to raise an alert, only a significant deviation is detected. The same process has
been done for the second experiment but considering Vibration measurements.

In the third experiment both the measurements have been considered, Vibration and Tem-
perature. By combining these two measurements of a specific critical component of a most
complex machine it is possible to switch early the internal state of the Supervisor to the main-
tenance state. For example, considering the production of 300 pieces of type A, the temperature
deviations from a nominal behavior is shown in Figure 10.7. This measure combined with the
Vibration measure related to the deviations from a nominal behavior (see Figure 10.6) it is
possible to predict early the anomalies associated with the monitored critical component. To
predict early anomalies, the Supervisor used to achieve the experimental results in Sectionwith
one PMSM was adapted. Considering two PMSMs, one for monitoring temperature and one
for vibration the Supervisor must allow considering both. To combine the information of the
two PMSMs, the behavior of internal state machines of the Supervisor is changed. Considering

162 10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques

the situation with medium variations respect to the nominal behavior for the temperature are
detected, and the state of the Supervisor is in the state of Good health. When variations are also
detected for the vibrations, the Supervisor will change its internal state to a maintenance state
before respect to the case of one variable monitored.

Table 10.3 shows the results of the faulty model related to the simulation of 18000 sec and
considering the production of 300 pieces of type A, B and C. It shows the simulation time in
which the framework recognizes potential failure. This point of potential failure is related to
the internal states of the Supervisor. In particular, the Supervisor switches to the Maintenance
State in correspondence with this timing point. In the first experiment, considering product
A, the observation of the oil Temperature has shown that the Supervisor moves from Good
State to Maintenance state after 8300s. The same experiment with Product C has produced a
Maintenance alert after 8000s. This is due to the fact that Product C induced more mechanical
stress than Product A.

Table 10.3: Experimental results with different productions in relation to different observed measurements in a
simulation of 18000s. The results represent the time necessary to arrive in the Maintenance State.

Monitoring
Product Type

A B C
Temperature 8300s 8200s 8000s
Vibration 8000s 7900s 7800s
Temperature

&
Vibration

6500s 6100s 6000s

The observation of the vibrations in the second experiment has shown that in all of the
three productions, the Supervisor detect anomalies before the first experiment. It is possible
to observe that a mechanical degradation of the casing starts to generate vibrations, and the
temperature of the casing starts to increase due to vibrations that will affect the oil temperature.
The combination of both the measurements allows detecting anomalies before the observation
of only one measure. In fact, considering the production of A, the Supervisor switched to the
Maintenance State after 6500 seconds.

10.5 Conclusions

This paper applied the typical "EDA way of working" to the industrial automation context, in
particular to the predictive maintenance problem. Standards have been identified as basis of
the proposed technique that uses modeling formats of the EDA domain. Automation and EDA
domains have been thus merged to perform data analysis of IIoT sensors.

11

The Design of a Digital-Twin for Predictive Maintenance

11.1 Introduction

Nowadays terms like Smart Factory, Digital Twin, Industry 4.0 [1] announce the dawn of a
new era for intelligent automation. Computers should be able to monitor a real plant and make
decisions to optimize productions and reducing costs [4]. This requires to analyze data from
the real plant and to integrate them into a model representing the factory usually called Digital
Twin. The concept of a Digital Twin is not new, but in these years it becomes strictly correlated
to manufacturing processes [1]. The Digital Twin has the global view of the entire production
line allowing data analysis and strategies planning targeted to maximize the production with
real constraints coming from the real factory [4]. However, actually there is not a reference
development model that leads to the Digital Twin. One of the most critical point of this prob-
lem regards the health status analysis of equipments and reflect this information to the related
model. The encapsulation of this information inside the model of a Digital Twin is usually a
hard challenge that requires a lot of time spent to refine the entire model. For instance, these
information could be retrieved from technical knowledge of vendors, equipment maintainers
or data analysis coming from sensors. All the mentioned strategies are not easily and quickly
adaptable to the equipment model.

In literature, many works tried to solve this issue by proposing ad-hoc solutions for specific
cases. However, these solutions do not define a standard way-of-working to face the problem.
Authors of [139] have been discussed some concepts to engage the problem with a higher level
of abstraction. The authors proposed the reuse of techniques coming from the EDA domain
adapted to the Automation domain. The EDA way-of-working tried to define a unique path that
starts by formalizing the problem, moves to the solution by analysing design automation tech-
niques and finally defines new standards [140–142]. In this paper, we will apply this approach
with a particular focus on the health status analysis of an equipment that can be reused in dif-
ferent scenarios. In particular, a novel approach that leads to the definition of equipment health
status based on observable measurements, and finite state machines.

Figure 11.1 summarizes the contribution of this work. The entire flow starts from the data-
generation that can come from sensors of a critical component in a real equipment or a model
(vibrations, temperature and acoustic emissions). First, the vibration data are collected and in-

164 11 The Design of a Digital-Twin for Predictive Maintenance

Equipment

Real
Critical

Component

Monitoring State
Machines

(MSM)

Vibration
(ISO 10816)

Good

Sat

Unsat

Unacc

Acoustic Emissions
(Derived Standard)

Temperature
(Derived Standard)

Predictive Maintenance Supervisor
(PMS)

Initial
Wearing

Pre-
Warning

Avoid
Recipe A

Good

Maintenance

Production
Quality not
guaranteed

Pre-
Warning

Avoid
Recipe B

MSM State

MSM State

MSM State

Derived MSM

Good

Sat

Unsat

Unacc

Good

Sat

Unsat

Unacc

Model
Critical

Component

Acoustic
Emissions

Sensor

Vibration
Sensor

Temperature
Sensor

Fault
Injection

Fig. 11.1: Overview of the proposed approach.

tegrated into a finite state machine called Monitoring State Machine (MSM) that defines the
severity level, based on ISO-10816, of the actual measurement. Then, the comparison between
the vibration MSM and data coming from other sensors (temperature, acoustic emissions) al-
lows defining MSM for other observable measurements. Finally, Predictive Maintenance Super-
visor (PMS) is the actor that monitors all the MSMs and defines the health status of the critical
component of the equipment under monitoring. The use of a model is fundamental to refine
the PMS, but more important, it can be used to perform predictive maintenance via simulation
through faults injection on the model. Moreover, the identification of the health status of the
equipment allows to reflect this information in the model and obtaining the Digital-Twin.

The main contributions of the proposed solution are:

• Definition of a design flow for predictive maintenance oriented Digital-Twin;
• Flexibility to be adapted to other equipment;
• Reuse of existing standard (ISO-10816) to define new standards for other observable mea-

surements;
• Evolution from condition-based to predictive maintenance via simulation with a unique

framework.

The paper is organized as follow: Section 11.2 presents the necessary background and the tech-
nologies uses to build the framework. Section 11.3 discusses about the definition of severity
levels, starting from sensor raw data and MSMs. In Section 11.6 the PMS is explained, while
Section 11.8 reports the use of the entire framework in condition-base mode and predictive
maintenance reporting experimental results, finally, Section 11.9 reports conclusions and pos-
sible future works.

11.2 Background & State of the art 165

Machine Class I
Small

Machines

Class II
Medium

Machines

Class III
Large
Rigid

Foundation

Class IV
Large Soft
Foundation

V
ib

ra
ti

on
 V

el
oc

it
y

V
rm

s
in/s mm/s

0.01 0.28

0.02 0.45

0.03 0.71 GOOD

0.04 1.12

0.07 1.80

0.11 2.80 SATISFACTORY

0.18 4.50

0.28 7.10 UNSATISFACTORY

0.44 11.20

0.70 18.00

1.10 28.00 UNACCEPTABLE

1.77 45.90

Table 11.1: ISO 10816: Definition of vibration severity levels with respect to the machine class.

11.2 Background& State of the art

11.2.1 Technologies

This section gives an overview of OPC UA [143] and FMI [21] that are the mainly technologies
used in this work.

OPC UA represents a de-facto standard in industrial automation; it has been developed by
the OPC Foundation. The goal of the standard is to unify the communications between different
actors of a manufacturing plant. In this context, the OPC UA standard enables communications
between the different levels of the automation pyramid, both horizontally (Machine to machine),
and vertically (Machine to ERP and viceversa). Moreover, the standard defines a set of profiles.
An OPC UA server that implements a certain profile allows to use a set of specific functions
defined by the specific profile. For instance, the Historical Data Access profile allows
retrieving Historical Data that are stored in the OPC UA server. Exposed data of each server
are visible in a special structure called Information Model. OPC UA allows structuring the
exposed data with the use of Object-Oriented paradigm through an XML Schema defined by
the standard.

FMI is a standard born from MODELISAR cooperative in 2008 [58]. The goal of the stan-
dard is to define a clear and usable interface for dynamic models. This promising standard
allows exchanging models described in different languages enabling the cooperation of het-
erogeneous models, avoiding co-simulation techniques. A Functional Mock-up Unit (FMU)
represents the basic block of the standard. The standard is based on the separation of interface
and functionality. The FMI defines a set of C-APIs that wraps the model allowing to interact

166 11 The Design of a Digital-Twin for Predictive Maintenance

Machine
Vibration

Severity Level
Temperature
Severity Level

M
ea

su
re

m
en

ts
Vibration Temperature Acoustic

Emission
0.28 … …

0.45 … …

0.71 … … GOOD
1.12 … …

1.80 … …

2.80 … … SATISFACTORY
4.50 … …

7.10 … … UNSATISFACTORY
11.20 … …

18.00 … …

28.00 … … UNACCEPTABLE
45.90 … …

Table 11.2: Definition of severity levels for other observable measurements. In this case temperature and acoustic
emissions are considered.

with it. More in details, these functions define how to set or get a value from the interface of
the model and how to simulate it. Then, the wrapped model is compiled as a shared library. The
interface of the model is described through an XML file, called modelDescription.xml, with
a well-defined XML schema. A FMU is a zip file that contains the obtained shared library and
the modelDescription.xml. When a target environment imports a FMU, it can easily identify its
interface from the XML file and interact with it through the C-APIs.

11.2.2 Related Work

The identification and prediction of faults of an equipment has been studied in a multitude of
researches [144–146]. Two principals classes of maintenance have been identified: time-based
and condition monitoring. The main difference between these two classes depends on the main-
tenance strategy. The first relies on periodical maintenance cycles, while condition monitoring
relies on the status of the equipment. Concerning time-based maintenance, failure models have
been defined to estimate the failure percentage of equipment. However, these failure models
are not accurate enough. In fact, the precision of these models detect only 11% of all the fail-
ures [147].

In [148] the authors analyze the correlation between vibration and wear debris that can
occur from mechanical wear. Yaqub et al. [149] proposed an interesting approach based on the
classification of vibrations into severity levels. This is a promising approach, but it is strictly
related to vibration analysis.

11.4 From Sensor Data to Severity Levels 167

The combination of different observable measurements has been studied in [150]. The paper
explains how the combination of vibration and temperature of a mechanical system allows to
better detect the health state of the system.

In [151] a tracking simulator is presented, which relies on the estimation of the dynamic
process through data coming from the OPC UA Server of the physical process. This work shows
an approach to refine a virtual model of the equipment, but does not consider the correlation of
different observable measurements (vibrations, temperature, etc).

11.3 Modeling The Problem

11.4 From Sensor Data to Severity Levels

The observation of a mechanical equipment is the mainly used technique to identify its health
status. This can be achieved through the observation of measurements coming from sensors. A
lot of researches [118] have focused on the development process of IoT sensors (accelerometers,
gyroscopes, pressure sensors, etc.). Some works tried to defined thresholds that can be used as
guidelines to identify the severity of the measurement deviation. For example, the International
Organization of Standardization (ISO) has proposed a standardization for the vibration mea-
surements of mechanical parts. This standard tries to define a set of severity levels combining
vibrations with the class of machines [119].

The standard establishes general procedures for the measurement and evaluation of mechan-
ical vibration of machines, as measured on non-rotating parts(i.e. casing of a motor).

The Vr.m.s. (vibration velocity root mean square) is obtained with the following equation:

Vr.m.s. =

√
1
T

∫ T

0
v2(t)dt (11.1)

T is the sampling time and it is correlated with the vibration sensor frequency. v is the time-
dependent vibration velocity and Vr.m.s. is the corresponding r.m.s. velocity.

Table 11.1 reports the classification of the ISO-10816. It considers four class machines de-
pending mainly on the generated power.

• Class I: Small machines that generates up to 15kW output;
• Class II: Medium-sized machines, without special foundations, with an output up to 75kW;
• Class III: Large prime-movers with rotating masses mounted on rigid and heavy founda-

tions;
• Class IV: Large prime-movers and other machines with rotating masses with output greater

than 10MW (i.e. turbogenerator, gas turbine).

The standard defines four different states: good, satisfactory, unsatisfactory and unacceptable.

• Good: The vibration of newly commissioned machines normally falls within this zone;
• Satisfactory: Machines with vibration within this zone are normally considered acceptable

for unrestricted longterm operation;

168 11 The Design of a Digital-Twin for Predictive Maintenance

Good

Satisfactory

Unsatisfactory

Unacceptable

Vrms
>

Satisfactory threshold

Vrms
>

Unacceptable threshold

Vrms
>

Unacceptable threshold
Vrms

>
Unsatisfactory threshold

Fig. 11.2: Overview of a generic MSM. The states reflect the severity levels defined by ISO-10816.

• Unsatisfactory: Machines with vibration within this zone are normally considered unsatis-
factory for long-term continuous operation. Generally, the machine may be operated for a
limited period in this condition until a suitable opportunity arises for remedial action;
• Unacceptable: Vibration values within this zone are normally considered to be of sufficient

severity to cause damage to the machine.

In particular, it is important to notice that with the same Vr.m.s. the different machine classes
could have different states. For instance, let consider the Vr.m.s. range between 7.10 and 11.20
mm/s. A large machine of class IV with this range is in a state of satisfactory and a small
machine of class I is in an unacceptable state.

The mentioned standard is applied only for vibration measurements. Actually, there is no
other standard that defines severity levels for other observable measurements (i.e. temperature,
acoustic emissions, power consumption).

This paper shows a novel approach to define severity levels for other observable measure-
ments relying on ISO-10816 existing standard. More in details, the approach combines vibra-
tions with other observable measurements and retrieves the related states mapped from ISO-
10816. This can be applied if and only if other observable measurements are strictly related to
a particular component of the considered machine. Table 11.2 shows the theoretical application
of this novel approach with a machine of class I.

11.6 Developed Technique 169

11.5 Monitoring State Machine (MSM)

The goal of predictive maintenance is to anticipate equipment failures to optimize production
and plan maintenance strategies. In this scenario, an equipment maintainer can establish the
status of equipment by observing it through measurements of vibrations, temperature, power
consumption, etc. When these measurements are deviating from a normal behavior the equip-
ment could perform inaccurate operations or stopped for a failure. With the analysis of these
measurements, it is possible to define the state of health of the equipment.

An MSM is a state machine that monitors one observable measurement of an equipmentra
critical component and translates raw data coming from sensors into severity levels representing
its health status (see figure 11.2). This work relies on the concept of severity levels defined by
ISO-10816 for vibration measurements and adapting it to other observable measurements. An
MSM is composed of four states explained in section 11.3 (good, satisfactory, unsatisfactory,
unacceptable) defined by the ISO-10816 standard. The use of ISO-10816 coupled to a finite state
machine guarantees persistent deviation detection is avoiding transient events. Transient events
could occur from sensing errors leading to wrong equipment diagnosis. A persistent deviation
can be detected from an MSM with a transition, between a state to another, triggered when a
severity level occurs for a certain amount of times. The transition is defined with a threshold
that can be set during the tuning phase of the MSM. The tuning phase requires a model of
the critical component of the equipment that will be faulted. This phase will be explained in
section 11.7. Figure 11.2 represents a vibration MSM. Let assume that the vibration MSM is in
good state. The vibration MSM will move to satisfactory state only after a persistent detection
of satisfactory severity level, defined by the satisfactory threshold.

Unfortunately, there are no similar standards of ISO 10816 for other observable measure-
ments. The definition of MSMs for other observable measurements of the same critical compo-
nent is performed via the correlation of vibration severity levels with other observable measure-
ments (see table 11.2). For instance, in figure 11.2 the correlation of vibration severity levels,
temperature and acoustic emissions of the same critical component allows having more infor-
mation about its health status and defines the state range for each measurement.

11.6 Developed Technique

11.6.1 Predictive Maintenance Supervisor

In the previous section, MSM has been presented with the role to monitor the deviations of
observable measurements of the same critical component. This section introduces a new actor
called Predictive Maintenance Supervisor (PMS). The role of this actor is monitoring all the
MSMs to detect anomalies and to raise alerts regarding health status. The PMS is defined as a
finite state machine that analyses the current state of the available MSMs. It is modeled as a
transition system where the output of the automaton is its current state.

The inputs of the PMS are represented with the tuple < R,M >. R represents the class of
recipes that are produced by the equipment. For instance, the equipment produces two different

170 11 The Design of a Digital-Twin for Predictive Maintenance

Initial
Wearing

Pre
Warning

Avoid Recipe A

<A,UnSat>

<-,UnSat>

<-,UnAcc>

Good

<B,Unsat>

<-,Sat, >

Pre
Warning

Avoid Recipe B

Production
Quality

not
Guaranteed

<A,Unsat>

<B,Unsat>

Legend:
Transition: <R,𝑉𝑀𝑆𝑀>

R: Recipe (A/B)
𝑉𝑀𝑆𝑀 : Vibration MSM State

<- ,UnSat>

Maintenance

<-, Good >

MSM States: Good, Satisfactory, Unsatisfactory, Unacceptable

Predictive Maintenance Supervisor
(One MSM)

Fig. 11.3: Overview of a Predictive Maintenance Supervisor monitoring one MSM (vibration MSM).

products with two different recipes A, B that are different in terms of energy consumptions and
mechanical stress of the critical component. This input is necessary to better model the PMS
allowing to catch more information about the real health status of the equipment. M represents
the class of the available MSMs monitored by the PMS. In particular, the PMS takes as inputs
the internal state of the MSMs (good, satisfactory, unsatisfactory, unacceptable). Figures 11.3
and 11.4 show two different structures of PMS. Figure 11.3 shows the structure of a basic
PMS that monitors only one MSM, which detects vibrations severity levels. In this basic PMS
it possible to notice the following states: good, initial wearing, avoid recipe A, avoid recipe
B, production quality not guaranteed, maintenance that reflect the health status of the critical
component. The execution of the PMS starts from good state. The PMS will stay in good state
as long vibration MSM is in good state regardless of the recipes (transition < −,Good >).
When the vibration MSM detects a persistent deviation coming from the vibration sensor it will
move to satisfactory state. This implies a transition for the PMS from good to initial wear-
ing state (transition < −, S at >). When the critical component has a significant deviation the
MSM moves to unsatisfactory state. From the PMS point of view this means that the critical
component is generating significant vibrations with the actual recipe. In this case, the PMS
moves into avoid recipe A or B state, depending on the actual recipe. This is due to the fact
that the two recipes are different in terms of mechanical fatigue and this is reflected in the crit-
ical component in terms of vibration severity. For instance, let assume that recipe A generates
more mechanical stress than recipe B. If the equipment generates more vibration with recipe A
the PMS notifies that recipe A should be avoided (transition < A,Unsat >). This can improve
the use of the equipment, instead of going directly to maintenance reducing undesired equip-
ment downtime. When the PMS detects unsatisfactory severity level from the vibration MSM,

11.6 Developed Technique 171

Initial
Wearing

Pre
Warning

Avoid
Recipe A

<A,UnSat, - >
or

<A , - ,UnSat >

<-,UnSat,UnSat>

<-,UnAcc,UnAcc>

Good

Sensor
Damaged

<B,-,Unsat>
or

<B,Unsat, - >

<-,Sat,->
or

<-,-,Sat>

Pre
Warning

Avoid
Recipe B

Production
Quality

Not
<A,-,Unsat>

or
<A,Unsat, - >

<B,-,Unsat>
or

<B,Unsat, - >

<-,UnAcc,->
or

<-,-,UnAcc>

Legend:
Transition: <R,𝑉𝑀𝑆𝑀, 𝑇𝑀𝑆𝑀>

R: Recipe (A,B)
𝑉𝑀𝑆𝑀 : Vibration MSM State
𝑇𝑀𝑆𝑀 : Temperature MSM State

<-,UnSat,UnSat>

Maintenance

<-,Good, Good >

MSM States: Good, Satisfactory, Unsatisfactory, Unacceptable

Predictive Maintenance Supervisor
(Two MSMs)

Guaranteed

Fig. 11.4: Overview of a Predictive Maintenance Supervisor monitoring two MSMs (vibration and temperature).

for both the recipes A and B, it moves to production quality not guaranteed state (transitions
< A,Unsat >, < B,Unsat >). This means that the critical component has shown a continuous
and important deviation in all the possible recipes. The PMS can not detect the quality of the
production because it does not have enough information related to the output products from the
equipment. In this case, the PMS does not move directly to maintenance state in order to avoid
equipment downtime. From a production planning perspective, this is an important information
that could help to define different quality levels of the products. For instance, products that are
produced when the equipment is production quality not guaranteed state could be still good,
but requiring additional visual or technical analysis. The maintenance state is reached from the
previous state when the PMS detects unacceptable severity levels from MSM.

Figure 11.4 shows the structure of a PMS that is monitoring two MSMs, vibration and tem-
perature. In section 11.5 the definition of severity levels starting from ISO-10816, for other
MSMs have been discussed. The structure of this PMS with a second MSM allows the PMS
to retrieve additional information than the previous PMS (figure 11.3. The two MSMs are con-
sidered part of class M in the tuple < R,M > used to represent the PMS state transitions. In
particular, a new state called sensor damaged has been added that represents sensors anomalies
that can be detected from the PMS. Let consider the PMS in good or initial wearing state and
an anomaly in the vibration sensor. The vibration sensor is reporting an important and persistent
untrue deviation that is translated into unacceptable severity level from the vibration MSM. The
PMS detects this deviation from vibration MSM and a good severity level from temperature
MSM. In this case, the PMS moves to sensor damaged state.

172 11 The Design of a Digital-Twin for Predictive Maintenance

MSM states

OPC UA CLIENT

Predictive Maintenance
Supervisor

ERP/MES
OPC UA SERVER

Production
Recipe

Pre-
Warning

Avoid
Recipe B

Initial
Wearing

Pre-
Warning

Avoid
Recipe A

Good

Maintenance

Production
Quality not
guaranteed

Sensor
Damaged

OPC UA SERVER

Information Model

Vibration MSM

Good

Sat

Unsat

Unacc

Temperature MSM

Good

Sat

Unsat

Unacc

M
SM

 S
ta

te
s

SIMULINK MODEL

Model of
Critical Component

Raw Data to
MSMs

Fig. 11.5: Overview of the entire framework in validation mode.

11.7 Alternative Use of MSM and PSM

This section discusses the alternative use of the framework composed of MSM and PMS in
different scenarios. The entire framework has been wrapped in an OPC UA client and server
in order to be easily integrated into a production plant environment and retrieves the necessary
data in the different following scenarios (see Figure 11.5). In particular, all the MSMs were
integrated into the OPC UA client and the PMS on the server-side.

11.7.1 Structure Validation Mode

In this scenario, we assume that a model of the equipment critical component is available.
Clearly, the model is an abstraction of the real equipment and it can not be precise as the real
measurements coming from the equipment sensors. However, the model is used to preliminary
define new standards for the observable measurements and then set the internal thresholds of
all the MSMs (see section 11.5). The information model of the OPC UA server exposes only
the MSMs states that are needed for the PMS. For instance, if vibration and temperature are the
observed measurements, the information model will contain only the vibration and temperature
MSM actual states. The OPC UA client, that contains the PMS, retrieves the severity levels
from the OPC UA server information model. Moreover, the validation phase requires to fault
the model in order to check if the framework detects the deviation of the faulted model.

11.7.2 Condition-based-Maintenance Continuous Mode

The framework is integrated into the real equipment after the validation phase. The OPC UA
server that contains the MSMs is connected to sensors that retrieve data from the real equipment.

11.8 Methodology Application 173

The framework in the OPC UA client monitors the real equipment and raises alerts when an
anomaly is detected during the production. In this scenario, the framework is used to perform
Condition-based Maintenance. This is due to the fact that the framework receives data regarding
the actual product. The framework can predict the health status of the equipment when the
"symptoms" are just detected.

11.7.3 Predictive Maintenance Structure Training Mode

This mode represents a preparatory phase for the Predictive Maintenance Mode. This phase is
performed concurrently with the Condition-based-Maintenance Continuous Mode. The frame-
work monitors the equipment and stores raw data related to the severity levels and the type of
product that is produced. This tuple is stored in a local or remote database.

11.7.4 Predictive Maintenance Mode

A Factory can produce different types of products that can affect the health status of the equip-
ment depending on the physical process required from the product recipe. Let us assume that a
Factory produces three different products A, B, C. For instance, product A requires less mechan-
ical stress than product B or product C. The goal of the Framework in Predictive Maintenance
Mode is to predict if a production batch can be produced without anomalies. The information
of the production plans can be retrieved from ERP or MES that cover the highest levels of the
Automation Pyramid.

The framework in the OPC UA client retrieves this information from the ERP/MES OPC
UA server. The production plans contain the type of products (A, B, C) and the numbers of
products to produce. The combination of production plans and the historical data stored in the
Predictive Maintenance Structure Training Mode allows using the framework offline to perform
prediction related to the specific production plan. The framework simulates the MSMs, using
the local raw data stored in the database.

11.8 Methodology Application

This section explains the methodology application and the experimental results.

11.8.1 Experimental Setup

The methodology has been validated with the use of two support technologies: OPC UA
and FMI, both explained in Section 11.2. The two principal components that compose the
framework of the experiments are the OPC UA client and server (see figure 11.5). In partic-
ular, the two actors have been developed in two different FPGA.

174 11 The Design of a Digital-Twin for Predictive Maintenance

Gear Box

Gear Tooth
Fault

GearsElectric Motor

Sensors Output

Accelerometer
Faults

Output Shaft

Recipe A = 1
Recipe B = 2

Vibration
Sensor

Temperature
Sensor

Input ShaftInput Drive

Fig. 11.6: Overview of the transmission system. The gears represent the critical component of the system. The model
can be faulted in two different zone: gear tooth and the vibration sensor.

OPC UA Client

The client has been developed in python with the use of FreeOpcUa python library1 on a PYNQ-
Z1 FPGA. This choice comes from the necessity to have a specific description that can be syn-
thesized to an FPGA to obtain a compact reactive device minimizing power consumption. The
PMS has been described using a Hardware description language (Verilog) and then synthesized
into the FPGA that provides python API to perform data exchange with synthesized bitstream2.

OPC UA Server

The server has been developed in a second FPGA using the same structure presented for the
client. All the MSMs have been developed in Verilog and then synthesized on the FPGA. Then,
the FREEopcUa python library has been used to develop the OPC UA server information model
where all the MSM actual states are exposed.

The OPC UA server retrieves data directly from real sensors attached to the critical com-
ponent of the equipment or from a model of the critical component that is not integrated into
the OPC UA server. The model is often complex, requiring computational effort that can not be
computable by a small device. The server is connected remotely to the model via a socket con-
nection. The model is exported using the FMI standard as an FMU to be as flexible as possible.
This allows having more control over the model that can be easily reallocated to other remote
resources or integrated with other environments.

1 http://freeopcua.github.io/
2 http://http://www.pynq.io/

11.8 Methodology Application 175

Unacceptable
Unsatisfactory

Legend

Good

Satisfactory

Tooth Fault
Gain
(%)

Temperature Severity Level
Range

(°C)

0 19.85 ≤ 20,50
20,50

5 20,65

20,51-40,85

21.45

10 22.15
23.55

20 26.35
29.45

30 32.25
36.65

40 40.85
46.95

40,86 - 133.05

50 51.05
58.65

60 62.95
71.75

70 76.55
86.16

80 91.45
101.65

90 108.15
118.55

95 133.05
159.55

>133.05
98 200.25

237.85

100 268.05
289.75

a) Severity Levels Correlation b) Temperature Severity Levels

Tooth Fault
Level
(%)

Recipe A Recipe B

Vibration Vrms
(mm/s)

Temperature
(°C)

Vibration Vrms
(mm/s)

Temperature
(°C)

0 0.714 19.85 1 20,50

5 0.946 20.65 1.66 21.45

10 1.157 22.15 1.877 23.55

20 1.58 26.35 2.3 29.45

30 2.018 32.25 2.743 36.65

40 2.416 40.85 3.151 46.95

50 2.845 51.05 3.586 58.65

60 3.301 62.95 4.048 71.75

70 3.791 76.55 4.543 86.16

80 4.326 91.45 5.081 101.65

90 4.952 108.15 5.721 118.55

95 6.736 133.05 8.483 159.55

98 10.57 200.25 11.59 237.85

100 12.67 268.05 13.24 289.75

Table 11.3: Definition of new standard for temperature MSM: a) reports the experiments for recipe A and B with
different tooth fault levels, with respect to ISO 10816 severity levels. b) shows the obtained severity level ranges for
temperature MSM.

11.8.2 Abstract Model of a Real Machine

A driveline two-speed transmission system is used as a model of a critical component of an
equipment (see figure 11.6). Mathworks Simulink c© is used to model the critical component.

The model consists of an electric motor, a gear system contained in a gearbox, and two
shafts. The electric motors is connected to the gearbox via the input shaft. The gearbox contains
two gears with different dimensions that are connected respectively to the input and output shaft.
In particular, the gears in the gearbox represent the critical subsystem of the manufacturing
equipment. The model incorporates two sensors to monitor vibration and temperature. The two
sensors are attached to the surface of the gearbox monitoring the vibration displacements and
the external temperature.

The model can be faulted in two parts of the critical component. The tooth of the gear and
the vibration sensor can be faulted to simulate the wearing of the gears or sensors anomalies.
The gear tooth fault is driven by an integer input with a range from 0 to 100 that represents the
percentage of fault. The parameter affects the gear tooth that will increase the gear vibrations.
The vibration sensors can be faulted with two parameters: gain and offset. Gain parameter can
be used to simulate an amplification or attenuation of the output sensors data and offset allows
to add an offset to these data. With this two parameters it is possible to model the principal
effects caused by sensor anomalies. The model is driven by a single real input that defines the
output speed of the electric motor. The manufacturing equipment produces two different prod-
ucts classified with the recipes A, B that are represented by two different speed of the electric
motor, part of the critical component. Both the recipes requires 40 seconds to be executed by
the critical component, but generates different mechanical stress for the gears.

176 11 The Design of a Digital-Twin for Predictive Maintenance

11.8.3 Structure Validation Mode in Action

This section describes the experiments used to set and validate the correctness of the methodol-
ogy. In particular, the Structure validation mode of MSM is considered (see figure 11.5). Two
different experiments have been considered:

• One MSM (vibration);
• Two MSMs (vibration and temperature).

For the first experiment, only the vibration sensor is considered. In this case, the setup phase
is required only to set the MSM internal thresholds to detect the persistent deviation of vibra-
tions. The severity levels used are those defined by ISO 10186 standard (see Table 11.1). The
tooth fault has been manually injected following the wearing curve of a real gear system. Fig-
ure 11.3 shows the PMS used in this experiment that was able to detect the deviation related to
the gear tooth fault. After the setup phase, we tried to inject faults in the vibration sensor and
the PMS was not able to detect the sensor anomalies, as we expected. The PMS does not have
enough information to clearly understand if the anomalies are coming from the sensor or the
critical component.

In the second experiment, a second MSM related to the temperature has been introduced. In
this case, the setup phase requires first to define a new standard for temperature MSM. Tables
11.3 a) and b) show the obtained severity level ranges for the temperature MSM. The PMS
used in this experiment is the one presented in Section 11.6.1 (see Figure 11.4). Once the new
standard has been derived and the thresholds for both the MSMs have been set the PMS has
been validated. The same wearing curve of a real gear system has been used to validate the
methodology. The Supervisor has been capable to detect gear tooth anomalies moving in the
different states. Then, the vibration sensor has been faulted as in the previous experiment. In
this case, the PMS was able to detect the sensor anomalies moving to sensor damaged state.

11.8.4 Experimental results

In this Section, two observable measurements, vibration and temperature, have been considered
in different scenarios. Moreover, the framework has been tested with the PMS monitoring one
or two MSMs (see Figures 11.3, 11.4).

The approach has been validated with two different production recipes (A, B), faulting the
critical component and vibration sensor. The PMS, monitoring only one MSM, has been able to
detect the persistent deviation of the critical component with the different recipes, rising alerts
regarding the health status.

Table 11.4 reports the properties that the PMS can analyze in relation to the number of
monitored MSMs. The complexity of the PMS strictly depends on two factors: the number of
monitored MSMs and the number of recipes that the equipment has to deal with. It is clear that,
following the proposed PMS structure, the number of PMS states increases linearly with the
number of recipes. Moreover, with only one MSM the complexity is low and requires less time
to set up the thresholds and the PMS. With only one MSM it is necessary to have a vibration
sensor in order to use the ISO 10816 standard.

11.9 Conclusions 177

Properties

PMS

Number of monitored MSM

1 2 > 2

Persistent deviation   

Sensor damaged C  

Specific sensor damaged C C 

Complexity Low Medium Medium-High

Table 11.4: Experimental results related to the properties of the PMS.

Considering two MSMs (vibration and temperature) the PMS is more precise and able to
detect more information regarding the sensor status. In this case, it is possible to detect deviation
due to sensor anomalies. The complexity of the PMS increases due to the fact that with more
MSMs there are more transitions to take into account. Furthermore, the definition of a new
standard is required to set up the derivated MSM.

The third column of Table 11.4 reports the best scenario for the PMS in terms of anomalies
detection. In particular, with more than two sensors it is possible to precisely detect which sensor
is damaged. The complexity of the PMS increases due to the number of transitions and requires
a lot of time spent to retrieve the new severity levels for other observable measurements. Each
scenario requires to be analyzed to define which is the best trade-off solution with the proposed
framework.

11.8.5 Standards

The main goal of the EDA way of working is the generation of new standards based on the
developed techniques. The entire framework works with the standardization of measurements,
in particular on the definition of thresholds and the correlated health status. As discussed in
section 11.4, some works tried to define a classification of vibrations [119]. Another work an-
alyzed temperature of electrical equipment defining temperature classes related to the health
status of the circuit [152]. At the moment, no other standards has been defined for the acoustic
emissions, power consumption, liquid pressure of mechanical equipment.

178 11 The Design of a Digital-Twin for Predictive Maintenance

11.9 Conclusions

This paper proposes a modular and scalable framework to monitor and predict maintenance
cycles. In particular, the entire framework is oriented in the detection of the current health
status of an equipment. This important information can be used to reflect the detected health
status in the model allowing to obtain the Digital-Twin of the equipment. The use of the OPC
UA standard enables a flexible solution for the integration in a manufacturing plant with respect
to the automation pyramid. Moreover, the use of the framework in different scenarios has been
proposed and the use of FMI standard permits to initialize the framework with synthetic data
coming from a model.

To follow the "EDA way of working", we formalized at first the problem, we then identified
an automation technique to design it and we used some standards (e.g., ISO-10816) while we
will contribute to define new standards as future work.

Experiments showed the benefits of this approach, in particular the flexibility of the frame-
work with different physical measurements. Moreover, the observation of multiple measure-
ments with the advanced PMS turned out to be the best solution to have a global view of the
health status of the equipment. The combination of multiple observable measurements enables
to detect anomalies before the observation of single measurement.

Part VI

Unified Example & Conclusions

12

Industrial Computer Engineering Laboratory & Conclusions

All the presented methodologies has been tested in a real use case scenario in the context of the
Industrial Computer Engeneering Laboratory (ICE Lab). This laboratory is under development
with a national project "Dipartimenti di Eccellenza 2018-2022" financed by the Ministry of
Education, Universities and Research (MIUR). The ICE Lab is an innovative industrial labora-
tory representing a production where multiple research groups of the Department of Computer
Science of Verona are involved. Figure 12.1 shows the structure of the laboratory with all the
equipment that composes the entire production line. The laboratory is composed by a set of
heterogeneous equipment used in real industries, trying to cover all the steps needed to perform
a real production. The line is composed of the following equipment:

• Pallet transportation system, used to move the products;
• Vertical Smart warehouse;
• Assembly station with two collaborative manipulators;

Digital Twin

Smart Parts
Warehouse

Geometric Quality
Control

Assembly with
collaborative robots

Multimaterial 3d
Printing

Stereolithographic
3d Printing

Subtractive CNC
operations

Electronic
Functional

Testing

Field Data
Collection

Edge
Computing

Tracking
System

Cloud Data
Storage IoT Sensors

AGV

ICE Laboratory

Transportation
System

Fig. 12.1: Overview of the ICE Lab used as case study for all the presented methodologies.

182 12 Industrial Computer Engineering Laboratory & Conclusions

• Two 3D Printer with different printing techniques;
• Industrial Drilling machine;
• Video quality control cell;

The vision behind this lab aims to obtain a production line that is capable to adapt itself
based on external events in order to maximize the production. This is possible with the Digital
Twin, that allows to perform analysis and predictions regarding the future state of the line.

The methodologies presented in this thesis aim to define a set of rules in order to obtain the
digital twin tested in some equipment of the production line.

In part II have been discussed a methodology to the definition of synthetic OPC UA node
that can virtually represents a new equipment connected to the line in order to see the effects
with data coming from the field.

Part III discussed how to deal with heterogeneous models. The methodologies has been
tested focusing on a particular part of the transportation system and trying to mime a new
equipment connected to the line.

The Multi-Level approaches, discussed in part- IV, have been tested in the Assembly station
where a manipulator has been considered as case study.

Part V reports a technique to transform real data coming from field into information. In
my vision, this represents the joining link between a model and the real world, needed to ob-
tain a real Digital Twin. Furthermore, it represents the worthy open-problem in the context of
Industry-4.0. This methodology has been proved with data coming from an electrical engine of
the transportation system.

There are several future works for each part that have been discussed.
Considering the Homogeneous and Heterogeneous modeling methodologies, I will investi-

gate on AutomationML language in order to extend this language to support different domains
and obtain an unique description of the heterogeneous model. Moreover, the smart coordina-
tor,discussed in the Heterogeneous modeling methodologies, can be extended also for the phys-
ical part in order to obtain an optimzed simulation strategy based on the context of the involved
models. Furthermore, currently investigation on the interaction between smart coordination and
Multi-level approaches are considered. Integration between multi-level approach with "real data
to information" methodologies will be considered.

The global view of the entire work aims to integrate all the presented methodologies in order
to obtain a Digital Twin with an optimized coordinator that considers multiple description of
the same model, with different level of details, in order to optimize the simulation and obtain a
multi-level smart coordinator that considers also real data coming from sensors.

13

Published Contributions

The work carried on to develop this thesis led to a total of X publications.
The methodologies for Heterogeneous Modeling and Simulation discussed in Part III, have been
presented in:

• Centomo, S., Lora, M., Portaluri, A., Stefanni, F., Fummi, F.,
"Automatic generation of cycle-accurate Simulink blocks from HDL IPs"
in Proceedings of 2017 Forum on Specification and Design Languages (FDL), pp. 1-8
• Centomo, S., Lora, M., Portaluri, A., Stefanni, F., Fummi, F.,

"Automatic Integration of HDL IPs in Simulink using FMI and S-Function Inter-
faces"
in Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in
Electrical Engineering, vol 530.(Springer)
• Centomo, S., Lora, M., Fummi, F.,

"Transaction-level functional mockup units for cyber-physical virtual platforms"
in Proceedings of 2018 Forum on Specification and Design Languages (FDL), pp. 1-8
• Centomo, S., Lora, M., Fummi, F.,

"Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual
Platforms"
in Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in
Electrical Engineering, vol 611.(Springer)
• Centomo, S., Panato, M., Fummi, F.,

"Cyber-Physical Systems Integration in a Production Line Simulator"
in Proceedings of 2018 IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 237-242
• , Lora, M.,Centomo, S., Quaglia, D., Fummi, F.,

"Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Plat-
form"
in Proceedings of 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 676-681

184 13 Published Contributions

The methodologies for Muti-Level Modeling and Simulation discussed in Part IV, have been
presented in:

• Centomo, S., Fraccaroli, E., Panato, M.,
"From Multi-Level to Abstract-Based Simulation of a Production Line"
in Proceedings of 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 1253-1256
• Centomo, S., Avogaro, A., Panato, M., Tadiello, M., Fummi, F.,

"A Design Methodology for Multi-Level Digital Twin"
in Proceedings of 2021 IEEE International Conference on Industrial Technology (ICIT). pp.
(to appear)

The methodologies of "From Real Data to Information" discussed in Part V, have been pre-
sented in:

• Dall’Ora, N., Centomo, S., Fummi, F.,
"Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques"
in Proceedings of 2019 IEEE 8th International Workshop on Advances in Sensors and In-
terfaces (IWASI). pp. 103-109
• Centomo, S., Dall’Ora, N., Fummi, F.,

"The Design of a Digital-Twin for Predictive Maintenance"
in Proceedings of 2020 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). pp. 1781-1788

References

1. R. Drath and A. Horch, “Industrie 4.0: Hit or hype? [industry forum],” IEEE Industrial Electronics Magazine,
vol. 8, no. 2, pp. 56–58, jun 2014.

2. D. Mourtzis, M. Doukas, and D. Bernidaki, “Simulation in manufacturing: Review and challenges,” Procedia
CIRP, vol. 25, pp. 213–229, 2014.

3. S. Centomo, M. Panato, and F. Fummi, “Cyber-physical systems integration in a production line simulator,” in
2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). IEEE, oct 2018.

4. J. Vachalek et al., “The digital twin of an industrial production line within the industry 4.0 concept,” in 2017
21st International Conference on Process Control (PC). IEEE, jun 2017.

5. “Simulation software survey,” 2017. [Online]. Available: https://www.informs.org/ORMS-Today/

OR-MS-Today-Software-Surveys/Simulation-Software-Survey
6. S. Makris and K. Alexopoulos, “AutomationML server-A prototype data management system for multi disci-

plinary production engineering,” in Procedia CIRP, 2012.
7. G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola, “Digital twin data modeling with

automationml and a communication methodology for data exchange,” IFAC-PapersOnLine, vol. 49, no. 30,
pp. 12 – 17, 2016, 4th IFAC Symposium on Telematics Applications TA 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896316325538

8. M. Sabou, F. Ekaputra, O. Kovalenko, and S. Biffl, “Supporting the engineering of cyber-physical production
systems with the AutomationML analyzer,” in 2016 1st International Workshop on Cyber-Physical Production
Systems, CPPS 2016, 2016.

9. P. Novák, F. J. Ekaputra, and S. Biffl, “Generation of Simulation Models in MATLAB-Simulink Based
on AutomationML Plant Description,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7613–7620, 2017. [Online].
Available: https://doi.org/10.1016/j.ifacol.2017.08.1027

10. W. Mahnke, S. H. Leitner, and M. Damm, OPC unified architecture, 2009.
11. VID/VDE, “Reference Architecture Model Industrie 4.0 (RAMI4.0),” Igarss 2014, 2015.
12. (2020) Opc-ua specification. [Online]. Available: https://opcfoundation.org/developer-tools/

specifications-unified-architecture
13. (2020) Opc-ua specification: Part 2 security model. [Online]. Available: https://opcfoundation.org/

developer-tools/specifications-unified-architecture/part-2-security-model/
14. (2020) Opc-ua specification: Part 1 overview and concepts. [Online]. Available: https://opcfoundation.org/

developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
15. R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the glue for seamless automation engineering,”

in 2008 IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, 2008, pp.
616–623.

16. (2020) open62541. [Online]. Available: https://open62541.org/

17. J. C. Jensen, D. H. Chang, and E. A. Lee, “A model-based design methodology for cyber-physical systems,”
in Proc. of IWCMC 2011, pp. 1666–1671.

18. Mathworks, “Matlab Simulink,” http://www.mathworks.com/products/simulink.html.

https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Simulation-Software-Survey
https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Simulation-Software-Survey
http://www.sciencedirect.com/science/article/pii/S2405896316325538
https://doi.org/10.1016/j.ifacol.2017.08.1027
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://open62541.org/

186 References

19. W. Chang, D. Roy, L. Zhang, and S. Chakraborty, “Model-based design of resource-efficient automotive con-
trol software,” in Proc. of IEEE/ACM ICCAD, 2016, pp. 1–8.

20. S. Vinco, V. Guarnieri, and F. Fummi, “Code Manipulation for Virtual Platform Integration,” IEEE Transac-
tions on Computers, vol. 65, no. 9, pp. 2694–2708, 2016.

21. T. Blochwitz et al., “Functional mockup interface 2.0: The standard for tool independent exchange of simula-
tion models,” in Proc. of MODELICA Conference 2012, 2012, pp. 173–184.

22. R. Malone, B. Friedland, J. Herrold, and D. Fogarty, “Insights from Large Scale Model Based Systems Engi-
neering at Boeing,” in Proc. of INCOSE International Symposium 2016, vol. 26, no. 1, pp. 542–555.

23. M. Bajaj, D. Zwemer, R. Yntema, A. Phung, A. Kumar, A. Dwivedi, and M. Waikar, “MBSE++–Foundations
for Extended Model-Based Systems Engineering Across System Lifecycle,” in INCOSE International Sympo-
sium 2016, vol. 26, no. 1, pp. 2429–2445.

24. F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco, “Moving from Co-Simulation to
Simulation for Effective Smart Systems Design,” in Proc. of ACM/IEEE DATE, 2014, pp. 1–4.

25. W. Li, X. Zhang, and H. Li, “Co-simulation platforms for co-design of networked control systems: An
overview,” Control Engineering Practice, vol. 23, pp. 44–56, 2014.

26. D. Quaglia, R. Muradore, R. Bragantini, and P. Fiorini, “A SystemC/Matlab co-simulation tool for networked
control systems,” Simulation Modelling Practice and Theory, vol. 23, pp. 71–86, 2012.

27. M. S. Hasan, H. Yu, A. Carrington, and T. Yang, “Co-simulation of wireless networked control systems over
mobile ad hoc network using SIMULINK and OPNET,” IET communications, vol. 3, no. 8, pp. 1297–1310,
2009.

28. F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E. Aboulhamid, “A SystemC/Simulink co-simulation
framework for continuous/discrete-events simulation,” in Proc. of IEEE BMAS 2006, pp. 1–6.

29. Y. Nakamoto, I. Abe, T. Osaki, H. Terada, and Y. Moriyama, “Toward integrated virtual execution platform
for large-scale distributed embedded systems,” in IFIP International Workshop on Software Technolgies for
Embedded and Ubiquitous Systems. Springer, 2008, pp. 317–322.

30. H. Yan, T. Wang, C. L. i, and H. Zhang, “Functional reliability simulation analysis for electronic throttle
control system based on saber-simulink co-simulation,” in 2015 Prognostics and System Health Management
Conference (PHM). IEEE, oct 2015. [Online]. Available: https://doi.org/10.1109/phm.2015.7380023

31. Y. Wang, K. Li, H. Zhou, S. Deng, J. Xu, and J. Liu, “Dynamic analysis and co-simulation
ADAMS-SIMULINK for a space manipulator joint,” in 2015 International Conference on Fluid Power and
Mechatronics (FPM). IEEE, aug 2015. [Online]. Available: https://doi.org/10.1109/fpm.2015.7337258

32. W. Hanini and M. Ayadi, “PSpice and simulink co-simulation for diode and AC-DC converter
using SLPS interface software,” in 2017 18th International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (STA). IEEE, dec 2017. [Online]. Available: https:
//doi.org/10.1109/sta.2017.8314910

33. T. Peter and S. Wenzel, “Coupled simulation of energy and material flow using plant simulation and MATLAB
simulink,” SNE Simulation Notes Europe, vol. 27, no. 2, pp. 105–113, jun 2017.

34. R. Kawahara, D. Dotan, T. Sakairi, K. Ono, H. Nakamura, A. Kirshin, S. Hirose, and H. Ishikawa,
“Verification of embedded system’s specification using collaborative simulation of SysML and simulink
models,” in 2009 International Conference on Model-Based Systems Engineering. IEEE, mar 2009. [Online].
Available: https://doi.org/10.1109/mbse.2009.5031716

35. S. Tudoret, S. Nadjm-Tehrani, A. Benveniste, and J.-E. StrÃűmberg, “Co-simulation of hybrid systems: Signal-
simulink,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 1926, pp. 134–151, 2000, cited By 9.

36. Y.-S. Kung, N. V. Quynh, N. T. Hieu, C.-C. Huang, and L.-C. Huang, “Simulink/modelsim co-simulation and
FPGA realization of speed control IC for PMSM drive,” Procedia Engineering, vol. 23, pp. 718–727, 2011.
[Online]. Available: https://doi.org/10.1016/j.proeng.2011.11.2571

37. M. Lora, R. Muradore, D. Quaglia, and F. Fummi, “Simulation alternatives for the verification of networked
cyber-physical systems,” Microprocessors and Microsystems, vol. 39, no. 8, pp. 843–853, 2015.

38. R. Görgen, J. Oetjens, and W. Nebel, “Transformation of event-driven HDL blocks for native integration into
time-driven system models,” in Proc. of the IEEE/ECSI FDL 2012, pp. 152–159.

https://doi.org/10.1109/phm.2015.7380023
https://doi.org/10.1109/fpm.2015.7337258
https://doi.org/10.1109/sta.2017.8314910
https://doi.org/10.1109/sta.2017.8314910
https://doi.org/10.1109/mbse.2009.5031716
https://doi.org/10.1016/j.proeng.2011.11.2571

References 187

39. M. Lora, E. Fraccaroli, and F. Fummi, “Virtual prototyping of smart systems through automatic abstraction
and mixed-signal scheduling,” in Proc. of IEEE/ACM ASP-DAC 2017, pp. 232–237.

40. E. Fraccaroli, M. Lora, S. Vinco, D. Quaglia, and F. Fummi, “Integration of mixed-signal components into
virtual platforms for holistic simulation of smart systems,” in Proc. of IEEE/ACM DATE, 2016, pp. 1–6).

41. F. Cremona, M. Lohstroh, D. Broman, E. A. Lee, M. Masin, and S. Tripakis, “Hybrid co-
simulation: it’s about time,” Software & Systems Modeling, nov 2017. [Online]. Available: https:
//doi.org/10.1007/s10270-017-0633-6

42. N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of RTL IPs into equivalent TLM descrip-
tions,” IEEE Transactions on Computers, vol. 60, no. 12, pp. 1730–1743, 2011.

43. ARM. Carbon Model Studio. http://carbondesignsystems.com/.
44. N. Bombieri et al., “Hifsuite: tools for hdl code conversion and manipulation,” EURASIP Journal on Embedded

Systems, vol. 2010, no. 1, pp. 1–20, 2010.
45. M. Lora, S. Centomo, D. Quaglia, and F. Fummi, “Automatic integration of cycle-accurate descriptions with

continuous-time models for cyber-physical virtual platforms,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, mar 2018. [Online]. Available: https://doi.org/10.23919/date.2018.
8342095

46. S. Centomo, M. Lora, and F. Fummi, “Transaction-level Functional Mockup Units for Cyber-Physical Virtual
Platforms,” in Proc. of ECSI/IEEE FDL, 2018, pp. 1–8.

47. S. Centomo, M. Panato, and F. Fummi, “Cyber-Physical Systems Integration in a Production Line Simulator,”
in Proc. of IEEE VLSI-SoC 2018, 2018, pp. 1–6.

48. R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-Physical Systems: The Next Computing Revolution,”
in Proc. of the 47th Design Automation Conference. ACM, 2010, pp. 731–736.

49. S. W. Golomb, “Mathematical models: Uses and limitations,” IEEE Transactions on Reliability, vol. 20, no. 3,
pp. 130–131, 1971.

50. E. A. Lee, “Fundamental Limits of Cyber-Physical Systems Modeling,” ACM Transactions on Cyber-Physical
Systems, vol. 1, no. 1, p. 3, 2017.

51. M. Lora, S. Vinco, and F. Fummi, “Translation, abstraction and integration for effective smart system design,”
IEEE Transactions on Computers, 2019.

52. F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco, “Moving from Co-Simulation to
Simulation for Effective Smart Systems Design,” in Proc. of the conference on Design, Automation & Test in
Europe. European Design and Automation Association, 2014, p. 286.

53. M. Lora, S. Centomo, D. Quaglia, and F. Fummi, “Automatic Integration of Cycle-accurate Descriptions with
Continuous-time Models for Cyber-Physical Virtual Platforms,” in Proc. of ACM/IEEE DATE 2018, 2018, pp.
1–6.

54. S. Tripakis, “Bridging the semantic gap between heterogeneous modeling formalisms and fmi,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International Conference on.
IEEE, 2015, pp. 60–69.

55. S. Centomo, M. Lora, A. Portaluri, F. Stefanni, and F. Fummi, “Automatic Generation of Cycle-Accurate
Simulink Blocks from HDL IPs,” in Proc. of ECSI/IEEE Forum on Specification & Design Languages 2017
(FDL 17), 2017, pp. 1–8.

56. L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proc. of the 1st IEEE/ACM/IFIP CODES-
ISSS. ACM, 2003, pp. 19–24.

57. S. Centomo, M. Lora, and F. Fummi, “Transaction-level functional mockup units for cyber-physical virtual
platforms,” in 2018 Forum on Specification & Design Languages (FDL). IEEE, 2018, pp. 1–8.

58. MODELISAR Consortisuum, Modelica Association et al., “Functional Mock-up Interface for Model Ex-
change and Co-Simulation – Version 2.0,” Available from https://www.fmi-standard.org.

59. D. Broman, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wetter, “Requirements for Hybrid Cosimu-
lation Standards,” in Proc. of the 18th International Conference on Hybrid Systems: Computation and Control.
ACM, 2015, pp. 179–188.

60. S. Centomo, M. Lora, A. Portaluri, F. Stefanni, and F. Fummi, “Automatic Integration of HDL IPs in Simulink
Using FMI and S-Function Interfaces,” in Languages, Design Methods, and Tools for Electronic System De-
sign: Selected Contributions from FDL 2017, D. Große, S. Vinco, and H. Patel, Eds. Springer International
Publishing, 2019, pp. 1–23.

https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.23919/date.2018.8342095
https://doi.org/10.23919/date.2018.8342095

188 References

61. G. Liboni, J. Deantoni, A. Portaluri, D. Quaglia, and R. De Simone, “Beyond Time-Triggered Co-simulation
of Cyber-Physical Systems for Performance and Accuracy Improvements,” in Proc. of Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools, 2018.

62. D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wetter, “Determinate Com-
position of FMUs for Co-Simulation,” in Proc. of the Eleventh ACM International Conference on Embedded
Software, 2013, p. 2.

63. S. Centomo, J. Deantoni, and R. De Simone, “Using SystemC Cyber Models in an FMI Co-Simulation En-
vironment: Results and Proposed FMI Enhancements,” in Proc. of Euromicro Conference on Digital System
Design (DSD). IEEE, 2016, pp. 318–325.

64. N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic Abstraction of RTL IPs into Equivalent TLM Descrip-
tions,” IEEE Transactions on Computers, vol. 60, no. 12, pp. 1730–1743, 2011.

65. P. J. Mosterman and J. Zander, “Industry 4.0 as a cyber-physical system study,” Software & Systems Modeling,
vol. 15, no. 1, pp. 17–29, oct 2015. [Online]. Available: https://doi.org/10.1007/s10270-015-0493-x

66. D. Pfeifer, J. Valvano, and A. Gerstlauer, “SimConnect and SimTalk for distributed cyber-physical system
simulation,” SIMULATION, vol. 89, no. 10, pp. 1254–1271, mar 2013.

67. T. Peter and S. Wenzel, “Coupled simulation of energy and material flow using plant simulation and MATLAB
simulink,” SNE Simulation Notes Europe, vol. 27, no. 2, pp. 105–113, jun 2017.

68. P. Fritzson et al., “OpenModelica - a free open-source environment for system modeling, simulation, and
teaching,” in 2006 IEEE Conference on Computer-Aided Control Systems Design. IEEE, oct 2006.

69. Siemens, “Tecnomatrix, Plant Simulation.”
70. IEEE, “IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows.”
71. OSTATIC, “VHDLC.”
72. Veripool, “Verilator.”
73. B. Bailey and G. Martin, “Codesign Experiences Based on a Virtual Platform,” in ESL Models and their

Application. Springer, 2010, pp. 273–308.
74. F. Rosa, L. Ost, R. Reis, and G. Sassatelli, “Instruction-driven timing CPU model for efficient embedded

software development using OVP,” in Proc. of IEEE ICECS 2013, pp. 855–858.
75. D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-Objective Co-Optimization of FlexRay-

Based Distributed Control Systems,” in Proc. of IEEE RTAS 2016, pp. 1–12.
76. S. Tripakis, “Bridging the semantic gap between heterogeneous modeling formalisms and FMI,” in Proc. of

IEEE SAMOS 2015, pp. 60–69.
77. W. Mueller, M. Becker, A. Elfeky, and A. DiPasquale, “Virtual Prototyping of Cyber-Physical Systems,” in

Proc. of ASPDAC 2012, pp. 219–226.
78. M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, and F. Fummi, “Analog Models Manipulation for Effective

Integration in Smart System Virtual Platforms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2017.

79. E. Fraccaroli, M. Lora, and F. Fummi, “Automatic abstraction of multi-discipline analog models for efficient
functional simulation,” in Proc. of IEEE/ACM DATE 2017, pp. 662–665.

80. A. Naderlinger, “Simulating Preemptive Scheduling with Timing-aware Blocks in Simulink,” in Proc. of
ACM/IEEE DATE 2017.

81. F. Pecheux, C. Lallement, and A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative hardware descrip-
tion languages for efficient modeling of multidiscipline systems,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 24, no. 2, pp. 204–225, feb 2005.

82. S. Centomo, J. Deantoni, and R. de Simone, “Using SystemC Cyber Models in an FMI Co-Simulation Envi-
ronment: Results and Proposed FMI Enhancements,” in Proc. of Euromicro DSD 2016, pp. 1–8.

83. S. Centomo, M. Lora, A. Portaluri, F. Stefanni, and F. Fummi, “Automatic generation of cycle-accurate
simulink blocks from hdl ips,” in Proc. of ECSI/IEEE FDL 2017, pp. 1–8.

84. D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wetter, “Determinate compo-
sition of FMUs for co-simulation,” in Proc. of ACM EMSOFT 2013.

85. E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. of the 11th IEEE International Symposium
on Object Oriented Real-Time Distributed Computing, 2008, pp. 363–369.

https://doi.org/10.1007/s10270-015-0493-x

References 189

86. J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid, and H. Meyr, “A high-level virtual plat-
form for early MPSoC software development,” in Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis. ACM, 2009, pp. 11–20.

87. M. Lora, S. Vinco, and F. Fummi, “Translation, Abstraction and Integration for Effective Smart System De-
sign,” IEEE Transactions on Computers, 2019.

88. C. Ptolemaeus, Ed., System Design, Modeling, and Simulation: Using Ptolemy II. Ptolemy. org Berkeley,
CA, USA, 2014.

89. P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical systems,” Proceedings of the
IEEE (special issue on CPS), vol. 100, no. 1, pp. 13 – 28, January 2012.

90. R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. P. Pande, C. Grecu, and A. Ivanov,
“System-on-chip: Reuse and integration,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1050–1069, 2006.

91. C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-simulation: State of the art,” arXiv
preprint arXiv:1702.00686, 2017.

92. D. Broman, E. A. Lee, S. Tripakis, and M. Törngren, “Viewpoints, formalisms, languages, and tools for cyber-
physical systems,” in Proceedings of the 6th International Workshop on Multi-Paradigm Modeling, 2012, pp.
49–54.

93. V. Berman, “Standards: The P1685 IP-XACT IP Metadata Standard,” IEEE
Design & Test of Computers, vol. 23, no. 4, pp. 316–317, apr 2006,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1683721.

94. M. Hause et al., “The sysml modelling language,” in Fifteenth European Systems Engineering Conference,
vol. 9, 2006, pp. 1–12.

95. R. Nane, S. van Haastregt, T. Stefanov, B. Kienhuis, V. M. Sima, and K. Bertels, “Ip-xact extensions for recon-
figurable computing,” in ASAP 2011-22nd IEEE International Conference on Application-specific Systems,
Architectures and Processors. IEEE, 2011, pp. 215–218.

96. S. Vinco, M. Lora, E. Macii, and M. Poncino, “IP-XACT for smart systems design: extensions for the integra-
tion of functional and extra-functional models,” in Proc. of ECSI/IEEE FDL 16, 2016, pp. 1–8.

97. A. Kamppi, L. Matilainen, J.-M. Määttä, E. Salminen, and T. D. Hämäläinen, “Extending ip-xact to embedded
system hw/sw integration,” in 2013 International Symposium on System on Chip (SoC). IEEE, 2013, pp. 1–8.

98. T. P. Perry, R. L. Walke, R. Payne, S. Petko, and K. Benkrid, “Ip-xact extensions for ip interoperability guar-
antees and software model generation,” in 22nd International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2012, pp. 429–436.

99. W. Kruijtzer, P. Van Der Wolf, E. De Kock, J. Stuyt, W. Ecker, A. Mayer, S. Hustin, C. Amerijckx, S. De Paoli,
and E. Vaumorin, “Industrial ip integration flows based on ip-xact standards,” in 2008 Design, Automation and
Test in Europe. IEEE, 2008, pp. 32–37.

100. E. Salminen, T. D. Hämäläinen, and M. Hännikäinen, “Applying ip-xact in product data management,” in 2011
International Symposium on System on Chip (SoC). IEEE, 2011, pp. 86–91.

101. G. Borriello, “Formalized timing diagrams,” in Proceedings The European Conference on Design Automation.
IEEE, 1992, pp. 372–377.

102. EDALab. HIFSuite. http://www.hifsuite.com/.
103. C. Andersson, J. Åkesson, and C. Führer, Pyfmi: A python package for simulation of coupled dynamic models

with the functional mock-up interface. Centre for Mathematical Sciences, Lund University Lund, 2016.
104. P. Reynolds, A. Natrajan, and S. Srinivasan, “Consistency maintenance in multiresolution simulation,” ACM

Transactions on Modeling and Computer Simulation, vol. 7, no. 3, pp. 368–392, jul 1997.
105. D. Huber and W. Dangelmaier, “A method for simulation state mapping between discrete event material flow

models of different level of detail,” in 2013 IEEE International Systems Conference (SysCon). IEEE, 2011,
pp. 2877–2886.

106. M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, and F. Fummi, “Analog models manipulation for effective integra-
tion in smart system virtual platforms,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 2, pp. 378–391, feb 2018.

107. N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of RTL IPs into equivalent TLM descrip-
tions,” IEEE Transactions on Computers, vol. 60, no. 12, pp. 1730–1743, dec 2011.

190 References

108. P. Cicconi, A. C. Russo, M. Germani, M. Prist, E. Pallotta, and A. Monteriu, “Cyber-physical system inte-
gration for industry 4.0: Modelling and simulation of an induction heating process for aluminium-steel molds
in footwear soles manufacturing,” in 2017 IEEE 3rd International Forum on Research and Technologies for
Society and Industry (RTSI). IEEE, sep 2017.

109. T. Peter and S. Wenzel, “Coupled simulation of energy and material flow using plant simulation and matlab
simulink,” Simulation Notes Europe Special Issue" Simulation in Production and Logistics: Impact of Ener-
getic Factors, 2017.

110. S. Centomo, E. Fraccaroli, and M. Panato, “From multi-level to abstract-based simulation of a production
line,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1253–1256.

111. G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola, “Digital twin data modeling with automa-
tionml and a communication methodology for data exchange,” IFAC-PapersOnLine, vol. 49, no. 30, pp. 12–17,
2016.

112. M. Schleipen, R. Drath, and O. Sauer, “The system-independent data exchange format CAEX for support-
ing an automatic configuration of a production monitoring and control system,” in 2008 IEEE International
Symposium on Industrial Electronics. IEEE, Jun. 2008.

113. B. Wally, C. Huemer, A. Mazak, and M. Wimmer, “Iec 62264-2 for automationml,” in Proc. 5th Autom. ML
User Conf., 2018, pp. 1–7.

114. E. van der Wal, “Plcopen,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, p. 25, 2009.
115. A. ANSI, “Isa-95.00. 01: Enterprise-control system integration–part 1: Models and terminology,” Washington,

DC: American National Standards Institute, 2010.
116. E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th IEEE International Symposium on

Object and Component-Oriented Real-Time Distributed Computing (ISORC). IEEE, may 2008, pp. 363–369.
[Online]. Available: https://doi.org/10.1109/isorc.2008.25

117. L. Monostori, “Cyber-physical production systems: Roots, expectations and r&d challenges,” Procedia Cirp,
vol. 17, pp. 9–13, 2014.

118. D. Catenazzo, B. OrFlynn, and M. Walsh, “On the use of wireless sensor networks in preventative maintenance
for industry 4.0,” in 2018 12th International Conference on Sensing Technology (ICST). IEEE, Dec. 2018.

119. ISO, ISO 10816:2014 Mechanical vibration – Evaluation of machine vibration by measurements on non-
rotating parts. pub-ISO, 2014.

120. NFPA, NFPA70B:2019 Recommended Practice for Electrical Equipment Maintenance. NFPA,
2019, available in electronic form for online purchase at https://www.nfpa.org/NEC/electrical-codes-and-
standards/NFPA-70B?code=70B.

121. ISO, ISO 13373:2002 Condition monitoring and diagnostics of machines – Vibration condition monitoring.
pub-ISO, 2002, available in electronic form for online purchase at https://www.iso.org/standard/21831.html.

122. ——, ISO 3747:2011 Acoustics - Determination of sound power levels and sound energy levels of noise
sources using sound pressure. pub-ISO, 2011, available in electronic form for online purchase at
http://store.uni.com/catalogo/index.php/uni-en-iso-3747-2011.html.

123. UNI, UNI EN 16714 Non-destructive testing - Thermographic testing. pub-ISO, 2016, available in electronic
form for online purchase at http://store.uni.com/catalogo/index.php/uni-en-16714-2-2016.html.

124. A. B. of Shipping Incorporated by Act of Legislature of the State of New York 1862, Equipment Condition
Monitoring Techniques, 2016.

125. E. P. Carden and P. Fanning, “Vibration based condition monitoring: A review,” Structural Health Monitoring:
An International Journal, vol. 3, no. 4, pp. 355–377, Dec. 2004.

126. ISO, ISO 7919:2009 Mechanical vibration – Mechanical vibration – Evaluation of machine vibration by
measurements on rotating shafts. pub-ISO, 2009, available in electronic form for online purchase at
http://www.iso.org/standard/50527.

127. J. Zhu, D. He, and E. Bechhoefer, “Survey of lubrication oil condition monitoring, diagnostics, and prognostics
techniques and systems,” Journal of chemical science and technology, vol. 2, no. 3, pp. 100–115, 2013.

128. ISO, ISO 3734:1997 Petroleum products – Determination of water and sediment in residual fuel oils. pub-
ISO, 1997, available in electronic form for online purchase at https://www.iso.org/standard/9221.html.

https://doi.org/10.1109/isorc.2008.25

References 191

129. ——, ISO 4406:2017 Hydraulic fluid power – Fluids – Method for coding the level of contam-
ination by solid particles. pub-ISO, 2017, available in electronic form for online purchase at
https://www.iso.org/standard/72618.html.

130. S. M. A. Al-Obaidi, M. S. Leong, R. R. Hamzah, and A. M. Abdelrhman, “A review of acoustic emission tech-
nique for machinery condition monitoring: Defects detection & diagnostic,” Applied Mechanics and Materials,
vol. 229-231, pp. 1476–1480, Nov. 2012.

131. ISO, ISO 22096:2007 Condition monitoring and diagnostics of machines – Acoustic emission. pub-ISO,
2007, available in electronic form for online purchase at http://store.uni.com/catalogo/index.php/iso-22096-
2007.html.

132. S. Bagavathiappan, B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, “Infrared thermography for condition
monitoring – a review,” Infrared Physics & Technology, vol. 60, pp. 35–55, Sep. 2013.

133. ISO, ISO 10880:2017 Non-destructive testing – Infrared thermographic testing. pub-ISO, 2017, available in
electronic form for online purchase at https://www.iso.org/standard/61881.html.

134. ——, ISO 18251-1:2017 Non-destructive testing – Infrared thermography. pub-ISO, 2017, available in
electronic form for online purchase at https://www.iso.org/standard/61882.html.

135. ——, ISO 18434-1:2008 Condition monitoring and diagnostics of machines – Thermography. pub-ISO,
2008, available in electronic form for online purchase at https://www.iso.org/standard/41648.html.

136. ASTM, ASTM E1934 - 99a Standard Guide for Examining Electrical and Mechanical Equipment
with Infrared Thermography. ASTM, 2018, available in electronic form for online purchase at
https://www.astm.org/Standards/E1934.htm.

137. UNI, UNI EN 16714-3 Non-destructive testing - Thermographic testing. UNI, 2016, available in electronic
form for online purchase at http://store.uni.com/catalogo/index.php/uni-en-16714-3-2016.html.

138. N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the systemc tlm 2.0 communication in-
terfaces,” in Proceedings of the conference on Design, automation and test in Europe. ACM, 2008, pp.
396–401.

139. N. DallâĂŹOra, S. Centomo, and F. Fummi, “Industrial-iot data analysis exploiting electronic design automa-
tion techniques,” in 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI).
IEEE, 2019, pp. 103–109.

140. D. J. Pagliari, M. Poncino, and E. Macii, “Energy-efficient digital processing via approximate computing,” in
Smart Systems Integration and Simulation. Springer, 2016, pp. 55–89.

141. E. Fraccaroli, M. Lora, S. Vinco, D. Quaglia, and F. Fummi, “Integration of mixed-signal components into
virtual platforms for holistic simulation of smart systems,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 1586–1591.

142. Y. Chen, D. Jahier Pagliari, E. Macii, and M. Poncino, “Battery-aware design exploration of scheduling poli-
cies for multi-sensor devices,” in Proceedings of the 2018 on Great Lakes Symposium on VLSI, 2018, pp.
201–206.

143. W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture. Springer Berlin Heidelberg, 2009.
144. D. Goyal and B. Pabla, “Condition based maintenance of machine tools—a review,” CIRP Journal of Manu-

facturing Science and Technology, vol. 10, pp. 24–35, Aug. 2015.
145. R. K. M. President and C. of Integrated Systems Inc., An Introduction to Predictive Maintenance (Plant Engi-

neering). Butterworth-Heinemann, 2002.
146. H. M. Hashemian, “State-of-the-art predictive maintenance techniques,” IEEE Transactions on Instrumenta-

tion and Measurement, vol. 60, no. 1, pp. 226–236, jan 2011.
147. F. Nowlan and H. Heap, Reliability-centered Maintenance. Dolby Access Press, 1978.
148. Z. Peng and N. Kessissoglou, “An integrated approach to fault diagnosis of machinery using wear debris and

vibration analysis,” Wear, vol. 255, no. 7-12, pp. 1221–1232, Aug. 2003.
149. M. F. Yaqub, I. Gondal, and J. Kamruzzaman, “Machine fault severity estimation based on adaptive wavelet

nodes selection and SVM,” in 2011 IEEE International Conference on Mechatronics and Automation. IEEE,
aug 2011.

150. A. D. Nembhard, J. K. Sinha, A. J. Pinkerton, and K. Elbhbah, “Combined vibration and thermal analysis for
the condition monitoring of rotating machinery,” Structural Health Monitoring, vol. 13, no. 3, pp. 281–295,
2014.

192 References

151. G. S. Martinez, T. Karhela, R. Ruusu, T. Lackman, and V. Vyatkin, “Towards a systematic path for dynamic
simulation to plant operation: OPC UA-enabled model adaptation method for tracking simulation,” in IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, Oct. 2017.

152. N. NFPA, “70b: Recommended practice for electrical equipment maintenance, quincy, massachusetts,” 2006.

List of Figures

1.1 Role of Digital Twin in Industry 4.0. 4
1.2 Overview of the proposed methodologies. Circles represents the aspects

discussed in this thesis. 5

2.1 Overview of the proposed methodology. 10
2.2 OPC UA stack example . 12
2.3 Example of a plant topology in AML. 14
2.4 The final result of SimulinkRoleClassLib . 17
2.5 Attributes of the Simulink Constant component . 18
2.6 The Constant RoleClass . 18
2.7 The Constant RoleClass only mapped attribute . 18
2.8 Attributes of the Simulink Gain component . 19
2.9 The Gain RoleClass only mapped attribute . 19
2.10 The Gain RoleClass . 19
2.11 The Gain input port attributes . 19
2.12 How the ports gets named for a Simulink component . 20
2.13 Attributes of the Simscape Disk Friction Clutch component 20
2.14 The Disk Friction Clutch RoleClass . 20
2.15 The Disk Friction Clutch mapped attributes . 21
2.16 Port names for Simscape components . 21
2.17 The result of the script reported in listing 2.1 . 22
2.18 Structure of the wrapper routine. 23
2.19 The simple model scheme. 24
2.20 OPC UA client main dialog. 25
2.21 Model variable - Server variable connections. 25
2.22 The Brake and the Gear signals for the Station. 26
2.23 The ICE lab Digital Twin. 27
2.24 Recipe 1. 28
2.25 Recipe 2. 28
2.26 Recipe 3. 28

194 List of Figures

2.27 Recipe 4. 28
2.28 The four recipes input signals . 28
2.29 Recipe 1 Output . 29
2.30 Recipe 2 Output . 29
2.31 Recipe 3 Output. 29
2.32 Recipe 4 Output. 29
2.33 Output of the four recipes. 29

3.1 Main steps of the proposed methodology. The boxes represent the different files
involved and generated during the different steps of the methodology. Green
boxes identifies models at the Register Transfer Level of Abstraction; orange
boxes represents abstracted models; blue boxes represents interface-specific
files. The different transformation steps of the methodology are represented
by the arrows and their corresponding labels. Checked arrows represent steps
reused from the methodology in [20], solid arrows represents novel steps. For
automation reasons, the flow is built on top of HIFSuite [44], and the different
manipulations are performed on the Heterogeneous Intermediate Format (HIF)
provided by the suite. 40

4.1 Overview of the contribution. 54
4.2 Statechart representation of the coordinator algorithm for a Functional

Mock-up Unit (FMU). 56
4.3 Overview of the proposed approach, and comparison with the state-of-the-art

methodology presented in [55]. 60
4.4 Scheme of the Smart Master Algorithm with the FMU Coordinator of

Transaction-Level FMUs. 63
4.5 Trend of the simulation overhead using the Smart Master Algorithm with

respect to the protocol latency. 66
4.6 Scalability of the Smart Master Algorithm with respect to the number of FMUs. . 66

5.1 Overview of the CPS integration in a production line simulator 72
5.2 Example of an OpenModelica Model . 78
5.3 Overview of proposed production line in Plant Simulation 79
5.4 Overview of bending machine CPS . 80
5.5 Number of correct metal sheets . 82

6.1 Structure of the target simulation environment. 84
6.2 Flow diagram implemented by HDL simulators. 85
6.3 Statechart representation of HDL simulation. 85
6.4 HDL simulation statechart after abstraction. 85
6.5 Execution schemes involved in the RTL to cycle-accurate abstraction and

translation methodology. 85

List of Figures 195

6.6 Statechart representation of the calling sequence of Co-simulation C functions
to simulate an initialized FMU. 86

6.7 Naïve structure of Simulink model with multiple computational components. . . . 89
6.8 . 89
6.9 . 89
6.10 State charts representing the FSMs used to manage synchronization locally to

(a) FMUs and (b) S-functions. 89
6.11 Structure of the simulation environment combining the continuous-time model

of the physical plant and a computational infrastructure composed by multiple
FMUs. 90

6.12 Architecture of the CPS used as case study. Colors represents the original
modeling languages of the components: blue for Verilog, yellow for VHDL,
green for Simulink, while red closed source Hardware Description Language
(HDL) Intellectual Propertys (IPs). 92

6.13 Scalability of the proposed approaches. 94
6.14 Time evolution of the ideal Simulink model. 95
6.15 HW-aware model evolution. 95
6.16 Time evolution of the model after the architectural optimization. 95
6.17 Time evolution of the model using the Network Interface. 95
6.18 Time evolution of the model after the SW optimization. 95
6.19 Time evolution of the CPS model in the different phases of SW design

exploration and optimization. 95

7.1 Target simulation environment produced by this work. A cyber-physical
virtual platforms allowing the simulation of complex Cyber-Physical System
(CPS), while allowing integration of previously designed IP components.
The cyber-physical virtual platforms must allow running control software
for validation purposes. Architectural and protocol informations are used
to automatically generate standardized interfaces, and the system-level
coordinator enabling heterogenous co-simulation. 98

7.2 Statechart of the Functional Mock-up Interface (FMI) standard’s master
algorithm. 101

7.3 Overview of the Contribution. The paper proposes to exploit system-level
information to build FMI-based alternatives to build cyber-physical virtual
platforms overcoming the limitation of typical cycle-accurate co-simulation
elying on the co-execution of HDL and dynamical systems simulators.
From the bottom, up to the top, co-simulation environment exploits an
increasing amount of system-level information and, consiquently, improving
the simulation performance. 105

7.4 Case study used throughout the paper. 106
7.5 Crypto APB Timing Diagram. 114
7.6 Uart APB Timing Diagram. 114

196 List of Figures

7.7 Sensor’s Timing Diagrams . 114
7.8 Timing Diagram of platform components. 114
7.9 Overview of the smart coordinator obtained mixing System-level information,

with all the execution phases. 115

8.1 Overview of the contribution of the work. The figure shows the Multi-level and
Abstract-Based approaches for the CPS integration in a production line simulator.124

8.2 Multi-level Common Interface and switching actions . 125
8.3 Overview of the Experiment Setup. 128
8.4 Simplifed and Detailed Physical Models. 129

9.1 Overview of the proposed multi-level design methodology, starting from
AutomationML neutral description.The methodology automatically generates
the model of the plant, the process skeleton and the communication infrastracture.134

9.2 AutomationML description of Plant running example using IEC62264-2 [113]. . 136
9.3 Overview of the steps that compose the generation of multi-level

communication infrastructure. 138
9.4 Sequence Diagram of the communication protocol between Plant Simulation

and Process Simulate. 143
9.5 Overview of the experimental setup generated with the design methodology. 144
9.6 Correlation of CPU Time and number of synchronization points. 146

10.1 Overview of Electronic Design Automation (EDA) Techniques with respect to
ISA-95 Pyramid. 150

10.2 Vibration standards. 153
10.3 P-F interval - Intervals between the point at which a potential fault is detected

and the point at which the fault occurs. 155
10.4 Overview of a generic Predictive Maintenance State Machine (PMSM). States

represents the deviation observed from the Normal Behavior. 156
10.5 Overview of the framework implemented as an OPC Unified Architecture

(OPC UA) Client. 157
10.6 Vibration deviation counter, product type A, series: 300 pieces. 160
10.7 Temperature deviation counter, product type A, series: 300 pieces. 161

11.1 Overview of the proposed approach. 164
11.2 Overview of a generic Monitoring State Machine (MSM). The states reflect the

severity levels defined by ISO-10816. 168
11.3 Overview of a Predictive Maintenance Supervisor monitoring one MSM

(vibration MSM). 170
11.4 Overview of a Predictive Maintenance Supervisor monitoring two MSMs

(vibration and temperature). 171
11.5 Overview of the entire framework in validation mode. 172

List of Figures 197

11.6 Overview of the transmission system. The gears represent the critical
component of the system. The model can be faulted in two different zone: gear
tooth and the vibration sensor. 174

12.1 Overview of the Industrial Computer Engeneering Laboratory (ICE Lab) used
as case study for all the presented methodologies. 181

List of Tables

3.1 Mapping of HDL events onto FMI and S-Functions primitives. 40
3.2 Mapping of HDL data-types to FMI and Simulink. 41
3.3 Characteristics of the benchmarks and time required for the automatic code

generation. 48
3.4 Results obtained on the set of benchmarks. 49

4.1 Execution time of FMUs simulation using trivial Master Algorithm, with
different number of iterations. 65

4.2 Execution Time Comparison of Normal Master Algorithm and Smart Master
Algorithm with different protocol latencies. In all the scenarios, 10 million
clock cycles of the system have been simulated. 65

5.1 Properties evaluated by the different simulation line versions 80
5.2 Execution Time comparison of different approaches. 80
5.3 Simulation times and percentage of errors of the proposed approaches, respect

to the real bending machine. 81

6.1 Mapping of HDLs simulation events onto the primitives offered by the FMI
standard and S-Functions. 88

6.2 Comparison between feature of the state-of-the-art [76] methodology and the
proposed approaches. 92

6.3 Simulation overhead necessary to simulate one minute of the system by using
different modeling alternatives. 93

7.1 Mapping of HDL events onto FMI primitives. 107
7.2 Mapping of HDL data-types to the FMI Standard. 108
7.3 Summary of the obtained experimental results. It compares the results

considering both the two proposed techniques exploiting system-level
information (i.e., cycle-accurate and smart coordinator), and the two realized
implementations (i.e., based on PyFMI and based on FMI4CPP). The reference
co-simulation environment is based on QuestaSim and Simulink. 117

200 List of Tables

8.1 Simulation times of bending operations for Mobile Units in the two different
approaches. 127

8.2 Times needed to simulate one second in the two different approaches. 128

9.1 Simulated time of different robot operations considering the mass of the boxes. . . 145
9.2 The table reports simulation of Plant and Multi-Level approach with a batch of

1 million MUs. 145

10.1 Comparison of the principal measurements suitable for monitoring an
industrial machine concerning the major condition monitoring standards.
For each measurement are described the property that allows using of EDA
techniques even for condition monitoring. 150

10.2 Example of sensors used in industry 4.0. 152
10.3 Experimental results with different productions in relation to different observed

measurements in a simulation of 18000s. The results represent the time
necessary to arrive in the Maintenance State. 162

11.1 ISO 10816: Definition of vibration severity levels with respect to the machine
class. 165

11.2 Definition of severity levels for other observable measurements. In this case
temperature and acoustic emissions are considered. 166

11.3 Definition of new standard for temperature MSM: a) reports the experiments
for recipe A and B with different tooth fault levels, with respect to ISO 10816
severity levels. b) shows the obtained severity level ranges for temperature MSM.175

11.4 Experimental results related to the properties of the PMS. 177

List of Tables 201

	Part I Preliminary
	1 Introduction
	1.1 Introduction
	1.2 Objectives & Methodology Flow

	Part II Homogeneous Models
	2 Integrating synthetic and real components of a cyber-physical production system
	2.1 Introduction
	2.2 Background
	2.2.1 OPC UA Communication Protocol
	2.2.2 AutomationML
	2.2.3 Functional Mockup Interface
	2.2.4 MATLAB/Simulink
	2.2.5 Tecnomatix Plant Simulation

	2.3 Methodology
	2.3.1 Mapping Simulink components in AutomationML
	2.3.2 AML to MATLAB
	2.3.3 OPC UA server from FMU

	2.4 Experimental Results
	2.5 Simple producer-consumer
	2.6 The ICE lab model
	2.7 Conclusions

	Part III Heterogeneous Models
	3 Automatic Integration of HDL IPs in Simulink using FMI and S-Function Interfaces
	3.1 Introduction
	3.2 Related Works
	3.2.1 Running example
	3.2.2 FMI-Standard
	3.2.3 Simulink C MEX S-Functions
	3.2.4 Automatic abstraction of HDL IPs

	3.3 Methodology
	3.3.1 Data-type abstraction
	3.3.2 Automatic generation of Functional Mockup Units
	3.3.3 Automatic generation of C MEX S-Functions.

	3.4 Experimental Results
	3.5 Conclusions and Future Outlook

	4 Generation of Functional Mockup Units for Transactional Cyber-Physical Virtual Platforms
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 fmi Standard 2.0 for co-simulation
	4.2.2 Simulation coordination in the fmi standard
	4.2.3 Related Work

	4.3 FMI Standard Advantages and Limitations
	4.4 Methodology
	4.4.1 fmu generation and timing backward propagation
	4.4.2 A better coordinator for discrete systems

	4.5 Methodology Application
	4.6 Recent Development and Discussion
	4.7 Concluding remarks

	5 Cyber-Physical Systems Integration in a Production Line Simulator
	5.1 Introduction
	5.2 Plant Simulation and Integration Alternatives
	5.2.1 Production Line Simulators
	5.2.2 Siemens Plant Simulation: SimTalk C-Interface
	5.2.3 Functional Mockup Interface (FMI)

	5.3 Integration Methodology
	5.3.1 Cyber System: Modelling and FMU Generation
	5.3.2 Physical System: Modelling and FMU Generation
	5.3.3 Cyber-Physical System: Coordination and Integration

	5.4 Methodology Application
	5.4.1 Bending machine CPS
	5.4.2 Alternatives Taxonomy
	5.4.3 Simulation speed
	5.4.4 Simulation errors

	5.5 Conclusions

	6 Automatic Integration of Cycle-Accurate Models into Cyber-Physical Virtual Platforms
	6.1 Introduction
	6.2 Background
	6.2.1 Related work
	6.2.2 Code Generation for Virtual Platform Integration
	6.2.3 Interface technologies for system simulation

	6.3 Integration methodology
	6.3.1 Mapping HDL primitives to FMI and S-Functions
	6.3.2 Monolithic model approach
	6.3.3 Hub-based approach
	6.3.4 Alternatives Taxonomy

	6.4 Methodology Application
	6.4.1 Simulation performance
	6.4.2 Design Space Exploration

	6.5 Conclusions

	7 Improving FMI-based simulation by Exploiting System–level Information
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Standardized interfaces and the FMI standard
	7.2.2 FMI Standard for co-simulation
	7.2.3 Simulation coordination in the fmi standard
	7.2.4 Specification Languages for Hardware Platforms
	7.2.5 Automatic abstraction of digital components

	7.3 Methodology Overview
	7.3.1 Running Example

	7.4 Generation of Cycle-Accurate fmu
	7.4.1 Data-type mapping
	7.4.2 Automatic generation of Functional Mockup Units

	7.5 Generation of Transactional fmu
	7.6 Generating the coordinators
	7.6.1 Cycle-Accurate Coordinator
	7.6.2 Smart Coordinator

	7.7 Experimental Results
	7.7.1 Experimental setup
	7.7.2 Experiments overview
	7.7.3 In-depth analysis of the experimental results

	Part IV Multi-Level Modeling and Simulation
	8 From Multi-Level to Abstract-Based Simulation of a Production Line
	8.1 Introduction
	8.2 Background
	8.3 Multi-Level Modeling and Simulation
	8.3.1 Application of Multi-Level Simulation to a Production Line

	8.4 Abstract-Based Modeling and Simulation
	8.4.1 Application of Abstract-Based Simulation to Production Line

	8.5 Experimental Results
	8.5.1 Multi-Level Experiment
	8.5.2 Abstract-based Experiment
	8.5.3 Simulation Results Comparison

	8.6 Concluding Remarks

	9 A Design Methodology of Multi-level Digital Twins
	9.1 Introduction
	9.2 Background
	9.2.1 AutomationML - IEC 62714
	9.2.2 CAEX - IEC 62424-2
	9.2.3 Plant and Kinematics Simulators
	9.2.4 Running Example

	9.3 Methodology in Action
	9.3.1 Plant Topology Generation
	9.3.2 Plant OPC-UA Infrastructure Generation
	9.3.3 Process PLC Infrastructure Generation

	9.4 Experiments
	9.5 Conclusion

	Part V From Real Data to Information
	10 Industrial-IoT Data Analysis Exploiting Electronic Design Automation Techniques
	10.1 Introduction
	10.2 IIoT Data Analysis
	10.2.1 Severity levels
	10.2.2 Measurement points
	10.2.3 P-F intervals
	10.2.4 Common variables in condition monitoring

	10.3 Predictive Maintenance
	10.4 Experimental Validation
	10.4.1 Experiment Setup
	10.4.2 Abstract model of a real machine
	10.4.3 Methodology validation with a mutation analysis technique
	10.4.4 Experiment results

	10.5 Conclusions

	11 The Design of a Digital-Twin for Predictive Maintenance
	11.1 Introduction
	11.2 Background & State of the art
	11.2.1 Technologies
	11.2.2 Related Work

	11.3 Modeling The Problem
	11.4 From Sensor Data to Severity Levels
	11.5 Monitoring State Machine (MSM)
	11.6 Developed Technique
	11.6.1 Predictive Maintenance Supervisor

	11.7 Alternative Use of MSM and PSM
	11.7.1 Structure Validation Mode
	11.7.2 Condition-based-Maintenance Continuous Mode
	11.7.3 Predictive Maintenance Structure Training Mode
	11.7.4 Predictive Maintenance Mode

	11.8 Methodology Application
	11.8.1 Experimental Setup
	11.8.2 Abstract Model of a Real Machine
	11.8.3 Structure Validation Mode in Action
	11.8.4 Experimental results
	11.8.5 Standards

	11.9 Conclusions

	Part VI Unified Example & Conclusions
	12 Industrial Computer Engineering Laboratory & Conclusions
	13 Published Contributions
	References
	List of Figures
	List of Tables

