245 research outputs found

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Space science and applications: Strategic plan 1991

    Get PDF
    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy

    Combining Machine Learning and Formal Methods for Complex Systems Design

    Get PDF
    During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study.During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study

    Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    Get PDF
    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Considerations in Assuring Safety of Increasingly Autonomous Systems

    Get PDF
    Recent technological advances have accelerated the development and application of increasingly autonomous (IA) systems in civil and military aviation. IA systems can provide automation of complex mission tasks-ranging across reduced crew operations, air-traffic management, and unmanned, autonomous aircraft-with most applications calling for collaboration and teaming among humans and IA agents. IA systems are expected to provide benefits in terms of safety, reliability, efficiency, affordability, and previously unattainable mission capability. There is also a potential for improving safety by removal of human errors. There are, however, several challenges in the safety assurance of these systems due to the highly adaptive and non-deterministic behavior of these systems, and vulnerabilities due to potential divergence of airplane state awareness between the IA system and humans. These systems must deal with external sensors and actuators, and they must respond in time commensurate with the activities of the system in its environment. One of the main challenges is that safety assurance, currently relying upon authority transfer from an autonomous function to a human to mitigate safety concerns, will need to address their mitigation by automation in a collaborative dynamic context. These challenges have a fundamental, multidimensional impact on the safety assurance methods, system architecture, and V&V capabilities to be employed. The goal of this report is to identify relevant issues to be addressed in these areas, the potential gaps in the current safety assurance techniques, and critical questions that would need to be answered to assure safety of IA systems. We focus on a scenario of reduced crew operation when an IA system is employed which reduces, changes or eliminates a human's role in transition from two-pilot operations

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems
    • …
    corecore