
Università degli Studi di Udine

Dipartimento di Scienze Matematiche, Infor-
matiche e Fisiche

Dottorato di Ricerca in Informatica e Scienze
Matematiche e Fisiche

Ph.D. Thesis

Combining Machine Learning and

Formal Methods for Complex

Systems Design

Candidate

Simone Silvetti

Supervisor

Prof. Alberto Policriti

Co-Supervisor

Prof. Luca Bortolussi

Tutor

Dr. Enrico Rigoni

Cycle XXX — A.Y. 2018



Institute Contacts
Dipartimento di Scienze Matematiche, Informatiche e Fisiche
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Abstract

During the last 20 years, model-based design has become a standard practice in many
fields such as automotive, aerospace engineering, systems and synthetic biology. This
approach allows a considerable improvement of the final product quality and reduces the
overall prototyping costs. In these contexts, formal methods, such as temporal logics,
and model checking approaches have been successfully applied. They allow a precise
description and automatic verification of the prototype’s requirements.

In the recent past, the increasing market requests for performing and safer devices
shows an unstoppable growth which inevitably brings to the creation of more and more
complicated devices. The rise of cyber-physical systems, which are on their way to
become massively pervasive, brings the complexity level to the next step and open
many new challenges. First, the descriptive power of standard temporal logics is no
more sufficient to handle all kind of requirements the designers need (consider, for
example, non-functional requirements). Second, the standard model checking techniques
are unable to manage such a level of complexity (consider the well-known curse of state
space explosion). In this thesis, we leverage machine learning techniques, active learning,
and optimization approaches to face the challenges mentioned above.

In particular, we define signal convolution logic, a novel temporal logic suited to
describe non-functional requirements. We also use evolutionary algorithms and signal
temporal logic to tackle a supervised classification problem and a system design prob-
lem which involves multiple conflicting requirements (i.e., multi-objective optimization
problems). Finally, we use an active learning approach, based on Gaussian processes, to
deal with falsification problems in the automotive field and to solve a so-called threshold
synthesis problem, discussing an epidemics case study.
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Introduction

Context

From past to present. During the last 20 years the market request of increasingly
performing and safe devices shows an unstoppable growth. This trend is evident in
many fields, beginning with software and embedded device development, passing through
automotive and aerospace fields and arriving at system and synthetic biology. The effect
of this pressing demand had a big impact on all levels of industry organization starting
from the internal organization and ending with the adoption of new system development
methodologies. In software engineering, for example, continuous delivery [HF10], test-
driven development [Bec03] and agile approaches [Coc02] became de facto standard
practices. These approaches allow reducing the time-to-market of the released product,
improving productivity, efficiency, and final product quality. Moreover, they ensure the
possibility to release software continuously over time, by fulfilling the demands of new
functionality and following market’s direction.

The system development cycle rapidly changes to face the market requests, as well.
It moves from a monolithic waterfall chain (Figure 1a) to a more flexible “V” model (Fig-
ure 1b) which essentially replaces the previous chain with a new detailed and standard
process.

(a) Waterfall Model
(b) V model

Figure 1: Development Cycle Models

The requirement phase which is represented by the left side of the “V” starts with the
definition and decomposition of the requirements and ends with the creation of system
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specifications. These specifications are then used to drive the implementation phase
which is followed by the verification phase represented by the right side of the “V”.
The novelty of this approach results in the possibility of concurrent execution of the
three steps described before, for example, the implementation and verification processes
can start simultaneously, implying that the testing procedure is setting up before the
implementation. This strategy forces the implemented prototype to satisfy the original
requirements from the beginning, which results in the minimization of the project’s risk
and the improvement and assurance of quality of the final product.

Alongside the high-level vision which considers the product development cycle as a
process to be optimized, there is a low-level vision which focuses on the three phases
forming this process: the requirements definition, the implementation, and the verifica-
tion. All these three levels have been improved during the last 20 years.

In many fields, the implementation phase passed from the use of imperative languages
to object-oriented languages which more properly assist the development of complex
and maintainable software. During 2000 many industries started to use the simulation-
driven design processes, so that the Model-Based Development (MBD) quickly assumed
a central role in system design. It aims to build computational models in place of real
prototypes which can be simulated in order to verify their compliance with respect to
original requirements. Graphical Programming environments for modeling and simu-
lation, such as Simulink [Mat] and LabVIEW [Nat], quickly become standard tools in
such fields as automatic control and signal processing [Cha17, TTS+08]. Their principal
contribution was the management, creation, and testing of complex in silico models by
avoiding the standard implementation of code. The ability to create accurate models
and executing them, rapidly increased and the MBD approach was adopted in many en-
gineering industries (mainly automotive and aerospace). These new software programs
and approaches bring new descriptive power at the designer’s disposal. As a conse-
quence, the complexity of generated models increased and two outcomes arose. First,
new challenges to the requirement definition and the verification phase were posed and
secondly the adoption of Multi-disciplinary Optimization (MDO) (i.e., the numerical
optimization approaches used to optimize specific model parameters) was granted.

A set of requirement specifications must adhere to the designer intention and must
be coherent with the developing prototype. Too strict or not compatible requirements
generate errors during the testing and validation phase, and force the engineers to
fix them, manage the implementations, and test/validate again the final prototype.
All together, it results in increased time of the product development cycle. In some
restricted cases, formal methods have been adopted to overcome these situations. They
act at the level of requirement definitions and consist in using formal languages, such as
temporal logics and at the level of verification in using model checking techniques. The
use of logical languages standardizes the definition of the requirements and reduces the
possibility of creating incompatible requirements. Model checking techniques give the
opportunity of automatically verifying the satisfiability of these requirements, by freeing
the designer from the development of custom (and error-prone) verification algorithms.

Despite the undoubted usefulness of formal methods, which has been achieved and
demonstrated in specific high-level industrial fields, these methods are not yet used in
many other areas where they might be successfully applied. The reasons are rather
complex. First of all there is a lack of knowledge in the field of formal methods (for
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example many engineers do not even encounter them during their academic studies)
and secondly there are many cases where standard model checking approaches are not
directly applicable (e.g., they are not suitable to manage the complexity and size of the
model used in industries).

From present to future. Nowadays there is a growing interest in developing con-
nected devices which assist our life. Starting from smart homes and continuing to
self-driving vehicles, the presence of intelligent systems which autonomously interact
with humans and other devices is increasing. These systems are generally called Cyber-
physical systems (CPS) [LS16], and their main feature is the integration of computation
abilities within the physical world. These devices are able to collect and analyze data
generated from physical sensors and to use this information to act and modify the phys-
ical world around them, or at least spreading the information to other devices. Consider
a modern fly-by-wire aircraft. In this kind of airplane, the pilot’s commands are medi-
ated by a computer control which, based on the actual aircraft conditions, could avoid
errors. It can prevent the aircraft to go outside the safe operating region and causing,
for example, a stall. Cyber-physical systems are generally composed of multiple devices
which interact with each other and/or with the physical world even in a non-linear way.
The main characteristics which make the CPS complex dynamical systems are their
nonlinearity and their hierarchical structure. The first implies that the understanding
of the whole CPS cannot be derived by separately analyzing agents and combining the
collected information. The second characteristic means that, for example, the outputs of
some devices are inputs of other devices. In some cases, circular dependencies can even
be present, i.e., (closed) feedback loops. These two characteristics and the noisy nature
of sensor data are the root causes of CPS complexity. The mathematical counterpart of
this is the so-called state space explosion which makes the analysis of CPS a challenging
task of the present.

The forecast is clear: the use of CPS, which currently has an explosive growth, is
going to be soon pervasive. Consider Industry 4.0, self-driving cars, medical devices,
and smart grids. Every innovative technology field seems to engage CPS as the leading
actor of its storyboard. The improvement process necessary to master the complexity of
CPS touches all the level of MBD: requirements definition, implementation, verification
and also MDO. Moreover, considering the diffuse presence of CPS devices in our daily
life, their verification will assume a more and more central role.

This thesis can be collocated into the established path of research which tries to
combine formal methods and machine learning techniques for the verifiability and system
designs of complex systems.

Approach

Various mathematical models can be considered to describe CPS, and we can divide
them into two categories: Deterministic and Stochastic models. The former include Or-
dinary Differential Equations or Finite State Machines which are widely used in popular
modeling software such as MATLAB/Simulink or LabVIEW. The latter include Contin-
uous Time Markov Chain (CTMC) and Stochastic Hybrid Systems (SHS) mainly used
in population dynamics evolution such as biological reaction networks, epidemic mod-
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eling or performance evaluation. All these models can be simulated to produce possible
realizations of the system, i.e., trajectories. These trajectories define the dynamics of
the system induced by specific configurations (inputs and internal states). These models
can be considered in the MBD framework which we introduced before. In this thesis,
we focused on the above mentioned three aspects: requirements definition, verification,
and optimization.

The first ingredient to properly define the requirements are formal languages such as
temporal logic. These are modal logics suitable to describe in a rigorous and concise way
temporal behaviors. Among the existing temporal logics, we will focus our attention
on Signal Temporal Logic (STL), which is a linear, continuous-time, temporal logic
with future modalities, built on top of atomic predicates which are simple inequalities
among variables. The reason for this choice is twofold. First it is sufficiently powerful to
describe lots of phenomena, and secondly, it is easily interpretable. Moreover there exist
efficient monitoring algorithms which are capable of checking if a trajectory satisfies a
given STL formula or not.

The second ingredient is machine learning techniques aimed to assist the verification
of CPS. Given a requirement and a model, we could in principle use the standard
model checking techniques to verify if the model is compliant with that requirement.
If we consider stochastic models, for example, a requirement could be related to the
probability that a given temporal logic formula is satisfied. This is a standard task in
stochastic modeling, and several probabilistic model checkers have been implemented.
Unfortunately, these model checkers are not able to work with complex systems such
as the majority of CPS. The mathematical counterpart is the well-known state space
explosion, which basically means that the state space of the systems increases so much
that the exact model verification requires too much computational effort and memory.
Statistical Model Checking (SMC) has been introduced to tackle this problem and try to
solve it in practice. The underlying idea is to approximate statistically the probability of
satisfaction of a given formula by means of simulation. SMC effectively attacks the state
space explosion but can be applied only if the model is fully specified, meaning that,
for example, all the chemical rates of a modeled chemical reactions have to be known.
Obviously, this hypothesis is not reasonable in many situations. For example when
system design and system identification problems are consisting precisely in determining
those chemical rates! To overcome this situation smoothed model checking (smMC) has
been proposed. This technique relays on Gaussian processes, a regression technique
belonging to Bayesian statistics, is the perfect example of combination of formal methods
and machine learning.

The third ingredient is the use of optimization techniques aiming at finding the best
performing design with respect to a set of objectives. Mathematically this is tackled by
several multi-objective optimization approaches primarily used in many industrial fields.
These approaches regroup all the numerical algorithms which are able to simultaneously
optimize different objectives and to identify the so-called Pareto front (i.e., a set which
informally represents the best compromise among different criteria/objectives).
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Contribution

The leitmotif of this thesis is “master complexity of CPS”. The idea is to use novel
machine learning and optimization approaches to perform MBD of CPS in cases where
the state of the art does not produce a good result.

As mentioned before, the requirement definition is a preliminary problem in MBD.
We work on this subject acting in two opposite directions. In Chapter 6, we move
from model/data to requirements by studying the problem of mining signal temporal
logic formulae from a dataset composed of two kinds of trajectories (regular and anoma-
lous). In machine learning, this task, known as classification problem, is a well-studied
problem usually solved by means of dedicated algorithms. Efficient approaches, such as
feedforward neural networks, have been implemented even for big dataset. Such sys-
tems produced black box computational models which are able to classify data with
high accuracy, but paying a high price: low interpretability. It means that we cannot
understand the reasons why a path is regular or anomalous. In a broader sense, we
cannot extract knowledge from our dataset. Using Signal Temporal Logic (STL) is a
way to tackle such a problem, because it is a formalism sufficiently powerful to classify
observed trajectories, and highly interpretable (thanks to its logical nature: an STL
formula is a logical combination of simple linear inequalities). We use a genetic opti-
mization algorithm which automatically combines STL formulae by leveraging on their
tree structure. In Chapter 5, we move from requirements to model/data by introducing
a temporal logic called Signal Convolution Logic (SCL), a novel specification language
which can express non-functional requirements in cyber-physical systems showing noisy
and irregular behavior. The STL language is not able to quantify about the percentage
of time certain events happen. These kinds of requirements can be usefully considered in
modeling many CPS scenarios, e.g., medical devices. Consider, for instance, a medical
CPS device measuring glucose level in the blood to release insulin in diabetic patients.
In this scenario, we need to check if glucose level is above (or below) a given threshold
for a certain amount of time, to detect critical settings. Short periods of hyperglycemia
(high level of glucose) are not dangerous for the patients. An unhealthy scenario is
when the patient remains in hyperglycemia for more than 3 hours during the day, i.e.,
for 12.5% of 24 hours. This property cannot be specified by STL.

The verification is another crucial step of MBD which is naturally linked to the
requirement definition. We work on this subject by addressing synthesis and falsification
problems which can be considered as two sides of the same coin. The first consists
in identifying the parameters which induce the model to behave as specified by the
requirements. The second problem consists in identifying the parameters which cause
malfunctions of the model. The faults are expressed through logical requirements. In
[BPS16] we tackle the parameter synthesis problem in a multi-objective paradigm. The
idea consists in maximizing simultaneously the satisfaction probability of two (or more)
logical formulae by obtaining a so-called Pareto front. The multi-objective approach to
model checking verification has been already described in [EKVY07, CMH06, FKP12].
The most common technique consists in transforming the original problem into a linear
programming problem. Our approach is different. Similarly to the industrial approach,
where the multi-objective paradigm is widely used, we consider the model as a black
box and solve the multi-objective problem by customizing the dominance relation of a
standard genetic algorithm (NSGAII, [DAPM02]). More specifically, we implemented a
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mixed approach consisting in maximizing the average robustness and the probability of
satisfaction of two STL formulae. We show that this approach produces good results
in two test cases. In Chapter 7, we deal with the parametrized verification of temporal
proprieties which is an active research field of fundamental importance for the design
of stochastic cyber-physical systems. In some domains (such as system and synthetic
biology) has become relevant to identify the region of the parameter space where the
model satisfies a linear time specification with probability greater (or less) than a given
threshold. Solving this problem by employing numerical methods with guaranteed error
bounds has been considered in [CDKP14, CDP+17]. This method, however, is severely
affected by the state space explosion problem. We proposed an alternative solution to
this problem employing machine learning and statistical approaches based on smoothed
model checking. Moreover, we introduced the Bayesian threshold synthesis problem as
the statistical version of the threshold synthesis problem proposed in [CDP+17]. The
idea is to identify the region of the parameters space which induces a probability greater
(or less) than a given threshold with statistical guarantees.

In [SPB17b] we implemented an active learning approach aimed at falsifying block-
diagram models (i.e., Simulink/Stateflow, Scade, LabVIEW, etc.) where several switch
blocks, 2/3-D look-up tables, and state transitions coexist. We cast the falsification
problem into a domain estimation problem and used an active learning optimization
approach, similar to the cross-entropy algorithm, which produces more and more coun-
terexamples as the number of iterations increases. The inputs of these systems are
mainly continuous, or càdlàg functions, and for this reason a parametrization is manda-
tory. We used an adaptive parametrization which is more expressive than the standard
fixed point parametrization. Our approach is based on the active learning paradigm
which consists in the simultaneous approximation and minimization of an unknown
function (which in this case is the quantitative semantics of the STL requirements). We
bring the approximation of the quantitative semantics at the logical level by defining
a probabilistic approximation semantics. Briefly, we use the Gaussian processes to es-
timate the probability that specific sub-formulae of the original STL requirement have
been falsified. Then, this information is combined by means of a logical bottom-up ap-
proach and the probability of falsifying the STL requirement is estimated. Afterward,
this probability is used to sample points which eventually falsify the requirements. The
combination of the active learning approach and the adaptive parametrization produces
good performance regarding the minimum number of simulations to falsify the model.
This performance index is rather important in the industrial world where system simu-
lations could be costly.

Thesis structure

This thesis has been divided into two parts. The first part presents the background which
is composed of 4 chapters. The second part outlines the contributions in 5 chapters.

Part I (Background). In Chapter 1, we introduce the basic definitions, the stochastic
and deterministic models.

Chapter 2 describes the Signal Temporal Logic (STL) which is the main logic formal-
ism used in the rest of the thesis. First, we introduce the Boolean and the quantitative
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semantics, and then we summarize the model checking techniques focusing mainly on
the statistic model checking.

In Chapter 3, we describe Gaussian processes and how this nonparametric Bayesian
technique can be efficiently employed to evaluate the probability of satisfaction of STL
specification of stochastic systems. This approach is known as smoothed model check-
ing [BMS16].

In Chapter 4, we briefly introduce the mathematical techniques to solve optimization
problems. We focus on Bayesian optimization and describe the evolutionary algorithms
able to solve the multi-objective optimization problems.

Part II (Contributions). In Chapter 5, we propose Signal Convolution Logic (SCL),
a novel temporal logic suited to express non-functional requirements. This logic uses
the mathematical convolution to define a temporal operator which is able to quantify
the percentage of time an event occurs. This contribution has been accepted for pub-
lication in the 16th International Symposium on Automated Technology for Verification
and Analysis (ATVA 2018). A preprint version of this contribution is available, see
[SNBB18].

In Chapter 6, we use a genetic algorithm and the average robustness of STL formulas
to create a classifier which can discriminate among anomalous and regular trajectories.
This contribution has been accepted for publication in the 15th International Conference
on Quantitative Evaluation of SysTems (QEST 2018). See [SNBB17] for a preprint
version of this work.

In Chapter 7, we combine the smoothed model checking technique with an active
learning approach to identify the parameter space of a parametrized model where the
satisfaction probability is above a given threshold. We rephrase this problem, known as
threshold synthesis problem, in a Bayesian framework and provide an algorithm which
efficiently solves it. This contribution has been published, see [BS18].

In Chapter 8, we study the design of stochastic systems in a multi-objective paradigm.
The idea is to simultaneously maximize multiple conflicting requirements which are spec-
ified employing STL formulae. This contribution has been published, see [BPS16].

Finally in Chapter 9, we present a new approach to tackle the falsification of formal
properties of a black box cyber-physical system. The proposed method leverages the
Gaussian processes and a new parameterization technique of the input functions to
reduce the minimum number of simulation leading to the model falsification. This
contribution has been published, see [SPB17b].
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Background





1
Models

1.1 Basic Concepts

In this section we introduce the basic concepts which are the ground of the most of the
results in this thesis.

System. In a broader sense we intend a system as a collection of components. We
attach the adjective physical if these parts are physical objects or the adjective
logical is these constituents are concepts such as algorithms or software.

State. The state of a system is the set of variables representing quantitative proprieties
of the system. Mathematically it is represented as a vector x = (x1, . . . , xn) ∈
S, n ∈ N, expressing the quantitative values of the target properties.

Model. A model (of a system) is the description of specific aspects of the system. It has
a mathematical form which can be used to simulate the time evolution of specific
quantities.

Trajectory (or signal). Informally it is the description of the time evolution of the
system. Mathematically it is represented as the time evolution of its state vector,
i.e., a function x : T → S, where the interval T ⊂ R

+
0 represents the time and S

the state space. We denote the trajectory space with ST.

Cyber-Physical Systems. CPS are systems composed by physical parts (mechanical
parts, chemical or biological processes), computational platforms (such as sensors,
actuators, embedded devices), and network components which allow communica-
tion among the computational platforms and different CPSs. The physical parts
are essentially black box systems which react to the environment through physical
process. The computational parts are in charge of collecting information from the
physical parts by means of sensors and of elaborating this information in order to
take actions.
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Figure 1.1: A generic CPS plant model

1.2 Continuous-time Stochastic Processes

In this section, we introduce one of the main players of this thesis: Continuous-time
Stochastic Process. Doing it in a fully rigorous way requires too much machinery, which
in the end will be distracting. We focus on the main elements we use and try to maintain
a reasonable trade-off between rigorousness and descriptiveness. We refer the reader to
standard textbook such as [KSK12] for a completely formal description of the elements
of this section.

Let us consider a probability space (S,Σ, P ) i.e., a tuple where S is a set, Σ is a σ-
algebra constructed on S, P : Σ → [0, 1] is a countably additive, non-negative measure
on (S,Σ) such that P (S) = 1. We also introduce a random variable X : S → R as
a measurable function i.e., X−1(A) = {s ∈ S : X(s) ∈ A} ∈ Σ for every Borel set
A ∈ B(R).
Definition 1 (Stochastic Process). Let us consider a probability space (S,Σ, P ), a set
T ⊆ R

+ and suppose that for each t ∈ T exists a random variable Xt : S → R defined
on (S,Σ, P ). The function x : T×S → R, such that x(t, s) = Xt(s), is called stochastic
process indexed in T and usually it is denoted with {Xt, t ∈ T}.

A stochastic process is generally characterized by the structure of S, so we have
continuous, discrete, numerable, denumerable stochastic processes. It is convenient but
not necessary to consider T as the time.

We can consider the stochastic process from two different points of view. The first
reflects the Definition 1 and considers a stochastic process as a collection of labeled
random variables Xt, such that fixed the label t ∈ T everything is well defined. The
second considers a stochastic process as a random function t 7→ x(t, s), called path
or trajectory. This point of view poses several challenges. We can easily define the
probability space generated by a finite product of probability spaces, for example the
probability space containing all the couple (Xt, Xt′), t, t

′ ∈ T is defined as the (S2,Σ⊗
Σ, P2) where ⊗ is the direct product and P2((Xt, Xt′) ∈ A1×A2) = P (Xt ∈ A1)·P (Xt′ ∈
A2|Xt ∈ A2) . Problem arise when we want to extend this approach to countable or
continuous set such as ST.
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This challenge was seriously tackled in the last century. Let us report the funda-
mental theorem due to Andrey Kolmogorov.

Theorem 1 (Kolmogorov Extension Theorem). Let t1, . . . , tk ∈ T, k ∈ N. If the
finite dimensional probability measure µt1...tk defined on Sk satisfies the following two
properties:

• for all permutations π of {1, . . . , k} and for each Borel set Fi ∈ B(R)

µπ(t1)...π(tk)(Fπ(1) × · · · × Fπ(k)) = µt1...tk(F1 × · · · × Fk)

• for all Borel set Fi ∈ B(R) and m ∈ N

µt1...tk(F1 × · · · × Fk) = µt1...tk,tk+1,...,tk+m
(F1 × · · · × Fk × R

n × · · · × R
n)

therefore exists a probability space Ω = (RT, Σ̃, P̃ ) such that Σ is the product σ-algebra
of RT and P̃ is the unique probability function such that P̃ (Xt1 ∈ F1∧ · · ·∧Xtk ∈ Fk) =
µt1...tk(F1 × · · · × Fk).

The above theorem defines two conditions that a finite dimensional probability fam-
ilies µt1...tk must satisfy over the finite dimensional space R

k, ∀k ≤ +∞ in order to be
lifted up to the infinite dimensional space R

T.
In this thesis, we mostly use a particular kind of continuous-time stochastic process

called Continuous-time Markov Chains (CTMC). These models are used to describes a
broader class of physical phenomena. The reason for this extensive applicability is the
so-called Markov property or memoryless property which we introduce below and that
seems to be able to capture the probabilistic nature of many physical processes.

1.2.1 Continuous-time Markov Chains

We first introduce a minimal definition (Definition 2) and express briefly the assumption
and the theoretical steps leading to a detailed definition (Definition 3) of Continuous-
time Markov Chains, which we use in the rest of this thesis.

Definition 2. A time-homogeneous Continuous-time Markov Chain (CTMC) is a
stochastic process {X(t), t ∈ R

+
0 } with discrete or countable state space S, such that

∀t0, t1 ∈ R
+, ∀s0, s1 ∈ S :

P (X(t1) = s1 |X(t0) = s0, {X(τ) : 0 < τ < t0})
= P (X(t1) = s1 |X(t0) = s0) = Ps1,s2(t1 − t0) (1.1)

where Ps1,s2(t) is called transition matrix. It represents the probability that the chain
moves from s0 to s1 within t1 − t0 time units.

As a consequence of its definition, the transition matrix P satisfies the following two
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properties:

∀t ∈ R
+, ∀s, s̄ ∈ S, 0 ≤ Ps,s̄(t) ≤ 1 (1.2)

∀t ∈ R
+, ∀s ∈ S,

∑

s̄∈S

Ps,s̄(t) = 1 (1.3)

Property 1.2 is a consequence of the definition of probability, and Property 1.3 says
merely that the chain keeps its state or jumps to another state.

Equation 1.1 (up to the first equality sign) is called Markov property (also known
as memoryless property). It states that the conditional probability distribution of the
future chain evolution depends only on the present state. Moreover, we are also stating
that the chain’s dynamics does not depend on the arrival times (t0) but only on the
sojourn time (t1 − t0). This is the time homogeneity assumption. The Markovian
property entails the semi-group property P(s + t) = P(s) ·P(t), also called Chapman-
Kolmogorov Equations, which brings directly to the well known backward and forward
Kolmogorov equations.

Assuming that P(t) is right-continuous and considering1 that P(0) = I, we define
the infinitesimal generator of a CTMC as

Q = lim
h→0+

P(h)− I

h
(1.4)

Considering Properties 1.2 and 1.3, we have that

∑

s′∈S

Qs,s′ = 0 ; Qs,s ≤ 0 ; ∀s 6= s′, Qs,s′ ≥ 0 .

When s 6= s′ the value Qs,s′ is interpreted as the rate of moving for s to s′ and Qs,s =∑

s′ 6=s Qs,s′ as the rate of leaving s.

Finally, considering Equation 1.4 and dP(t)
dt = limh→0+

P(t+h)−P(t)
h we obtain the

famous backword and forward Kolmogorov equations

dP(t)

dt
= QP(t),

dP(t)

dt
= P(t)Q

The solution is P(t) = etQ where the exponential of a matrix A is defined as eA =
∑

k∈N

Ak

k! .

Definition 3. A Continuous-time Markov Chain is a pair (S,R) where S is a finite
(or countable) set of states and R is the rate matrix such that the dynamics is defined
by

Ps,s′(t) =
Rs,s′

E(s)

(

1− e−E(s)t
)

, such that E(s) =
∑

s′∈S

R(s, s′) (1.5)

The characterization of the transition matrix obtained in Equation 1.5 hints that
the CTMCs are separable with respect to time and state transition. The first factor

1The semi-group property states that P(0)2 = P(0) which entails that P(0) is the identity matrix
I.
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R(s, s′)/E(s) describes the jumping probability from s to s′ which is unaffected by the
sojourn time t. Whereas the factor 1−e−E(s)t, which rules the time t within a future out-
going transition happens, is fully agnostic to the ongoing destination s′. This separation
is at the basis of many algorithms which simulate CTMC, and it is the reason why these
models are usually covered under the umbrella of jumping and holding stochastic process.

Throughout this thesis we mainly consider parametric reaction networks. We stress
that our approaches can be applied to every population models based on CTMCs, such as
Population Continuous-time Markov Chains [BHLM13a] or Markov Population Models
[HJW11].

Definition 4. A Parametric Reaction Network2 (PRN) is a tuple Mϑ =
(A,S,x0,R, ϑ), where:

• A = {a1, . . . , an} is the set of species (or agents).

• x = (x1, . . . , xn) is the vector of variables counting the amount of each species,
with values x ∈ S, where S ⊆ N

n is the state space.

• x0 ∈ S is the initial state.

• R = {r1, . . . , rm} is the set of reactions, each of the form rj = (vj, αj), with vj the
stoichiometry or update vector and αj = αj(x, ϑ) the propensity or rate function.
Each reaction can be represented as

rj : uj,1a1 + . . .+ uj,nan
αj−→ wj,1a1 + . . .+ wj,nan,

where uj,i (wj,i) is the amount of elements of species ai consumed (produced) by
reaction rj. We let uj = (uj,1, . . . , uj,n) (and similarly wj) and define vj = wj−uj.

• ϑ = (ϑ1, . . . , ϑk) is the vector of parameters, taking values in a compact hyperrect-
angle Θ ⊂ R

k.

A PRNMϑ defines a Continuous-time Markov Chain [Nor98, BHLM13a] on S, with
infinitesimal generator Q, where Qx,y =

∑

rj∈R{αj(x, ϑ) | y = x+ vj}, x 6= y.

1.2.2 Topology of trajectories

A useful definition, in the context of stochastic processes, is the following.

Definition 5 (Càdlàg function). A Càdlàg3 function X : T → S is a right continuous
function with left-hand limit

(i) X(t̂) = limt→t̂+ X(t)

(ii) ∀t̂ ∈ T, ∃ limt→t̂− X(t)

Thanks to their ability to describe jumps (which is a standard feature of stochas-
tic trajectories), càdlàg functions are largely used in the field of stochastic modeling.

2Also known as Parametric Chemical Reaction Network (PCRN).
3French: “continue à droite, limite à gauche”.
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Figure 1.2: A Càdlàg function

In this domain the uniform topology L∞(T,R), induced by the distance d∞(X,Y ) =
supt∈[0,T ] ‖X(t)− Y (t)‖∞, is not satisfactory4. Let us consider a stochastic trace mod-
eled by the Heaviside function H:

H : R→ {0, 1}

H(t) =

{

0 t < 0

1 otherwhise

It describes a single jump from state x = 0 to x = 1 at time 0. If we consider
another trace H̃(t) := H(t−ε) which represents the same jump in almost the same time
t = ε, ε≪ 1, we would like to have guarantees that these two trajectories are close. This
requirement is natural if we consider that those two trajectories visit the same sequence
of locations at almost the same time. Unfortunately the uniform topology is unable to
capture that behavior, as implied indeed by ∀ε > 0 ‖H(x)−H(x+ ε)‖∞ = 1 > 0.

A practical example which evidences the lackingness of the uniform distance d∞
comes out from the runtime verification area. During monitoring of trajectories could
happen that small delays affect the measurement procedure. For this reason, it is
necessary to consider a measure which is not too much sensitive to such artifacts. The
Skorohod topology was introduced to solve this task.

Definition 6. (Skorohod Distance) Let Λ = T
T be the set of the strictly increasing

functions from T to T, and consider two càdlàg functions X,Y : T→ R. The Skorohod
distance is

dsk(X,Y ) = inf
λ∈Λ

max(‖λ− 11‖∞, d∞(X,Y ◦ λ))

where 11 is the identity function, i.e., 11(x) := x.

This distance considers simultaneously the d∞ distance (between X and a deforma-
tion of Y , i.e., Y ◦ λ) and a penalizing term which is proportional to the deformation
induced by λ ∈ Λ, i.e., ‖λ− 11‖∞. As a consequence of its strictly increasing trend, the
λ functions preserve the original sequence of events, allowing, however, dilatations or

4If x = (x1, . . . , xn) then ‖x‖∞ = maxi≤n |xi|.
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contractions of time. Informally, the Skorohod distance permits to manage perturba-
tion of both space and time. We always work with trace defined on a closed subinterval
T ⊂ R

+
0 where the Skorohod distance is well defined. In other cases could be necessary

to extend its definition to the whole R
+
0 . For a detailed explanation see [Bil99].

1.2.3 Simulating Continuous-time Markov Chains

There are many algorithms suitable for CTMC simulation. We briefly describe two
fundamental approaches which were originally introduced by Daniel T. Gillespie.

The Stochastic Simulation Algorithm (SSA) [Gil77], is an exact5 algorithm which
allows to numerically simulate the time evolution of well-stirred (chemically) react-
ing systems. Under this “well-stirred” assumption the state of the system, which is
denoted by a vector X(t) = x and which represents the number of each reagent,
is a stochastic process. Its dynamics is ruled by the next-reaction density function,
p(τ, j|x, t) = aj(x) exp(−

∑

j aj(x)τ) which represents the probability that the next
reaction Rj will occur in the infinitesimal interval of time [t + τ, t + τ + dt). The
core of the SSA algorithm is a Monte Carlo approach, called Direct Method, aimed
to sample the random pairs (τ, j). The idea consists in decomposing p(τ, j|x, t) as the
product of two independent terms i.e. p(τ, j|x, t) = p1(τ |x, t)p2(j|τ,x, t) such that,

p1(τ |x, t) =
∑

j aj(x) exp(−
∑

j aj(x)) and p2(j|τ,x, t) =
aj(x)∑
j aj(x)

. In practice the time

to next reaction (τ) is sampled by the exponential distribution with decay constant
∑

j aj(x), whereas the next reaction is sampled by the discrete probability distribu-
tion aj(x)/

∑

j aj(x), j = 1, . . . , n. Since this approach requires the generation of two
random numbers for each reaction, it can be particularly expensive.

The τ -leaping method (τ -leap) [Gil01] decreases the computational cost of SSA by
reducing the number of simulations. The idea consists in splitting the time interval in
a set of contiguous subintervals and estimating how many reactions of each kind occurs
in each of them. Mathematically we can define the function Q(k1, . . . , kM |τ ;x, t) which
describes the probability that exactly kj firing of the reaction Rj occur in [t, t + τ).
We consider the random variables Kj(τ,x, t) which counts how many Rj reactions oc-
cur. The assumption is that exists a τ ≥ 0 sufficiently small, such that the time
evolution of the vector state X in [t, t + τ) slightly affect the propensity function,
i.e., ∀t′ ∈ [t, t + τ), aj(X(t′)) ≅ aj(X(t)). This property, known as τ -leaping condi-
tion, permits to approximate Kj(τ,x, t) with a Poisson process variable P(aj(x)τ). Fi-
nally the i.i.d condition of the random variables Kj implies that Q(k1, . . . , kM |τ ;x, t) =
∏M

j=1 PP(kj , aj(x)τ)(t) which can be efficiently calculated by means of standard algo-
rithms.

1.3 Deterministic Models

In this section, we discuss the approximation of PRNs’ dynamics through the use of
Ordinary Differential Equations (ODEs). We also introduce the Block Diagram Models
(BDM) which allow designing interacting physical systems through suitable graphical

5In the sense that it is based on the same physical assumption which justifies the Chemical Master
Equation
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workflows. These models are essentially hybrid systems with several internal states
which are associated with specific continuous dynamics described through ODEs sys-
tems. The activation of these internal states, which is ruled by a specific guard mecha-
nism, allows the modeling of complex dynamics, which are frequent in the field of CPS.
Finally, we introduce the nonautonomous dynamical systems which are practically used
to model BDMs in the context of black box modeling.

1.3.1 Ordinary Differential Equations System

Let us consider the following reaction network with a1, . . . , an species and r1, . . . , rj
reactions

r1 : u1,1a1 + . . .+ u1,nan
α1−→ w1,1a1 + . . .+ w1,nan

r2 : u2,1a1 + . . .+ u2,nan
α2−→ w2,1a1 + . . .+ w2,nan

. . . −→ . . .

rj : uj,1a1 + . . .+ uj,nan
αj−→ wj,1a1 + . . .+ wj,nan

This reaction network can be modeled with an ODEs system as follows

dx1
dt

=f1(x1, . . . , xj)

dx2
dt

=f2(x1, . . . , xj)

. . . . . .

dxj
dt

=fj(x1, . . . , xj)

where x1(t), . . . , xn(t) represent the percentage
6 of the specie a1, . . . , an which populate

the reaction networks at time t and the functions f1, . . . , fj depend on the structure
and the rates of the reaction. This approach was criticized by Daniel T. Gillespie in the
introduction of SSA original paper [Gil77]. Its primary concern is referred to the over-
simplification of the non-deterministic and discrete nature of PRN to a continuous and
deterministic process. This approximation, which is reliable if the number of molecules
is sufficiently high, results from the following statement

∀i ≤ j, lim
n→+∞

∑

n
Xn

i (0)

n
= x(0) =⇒ ∀i ≤ j, lim

n→+∞
P

{

sup
s≤t

∣

∣

∣

∣

∑

n
Xn

i (s)

n
− x(s)

∣

∣

∣

∣

≥ ε

}

= 0

which asserts that the averages of stochastic variables Xi evolve by following a de-
terministic process ruled by the above ODEs. A formal proof of this statement can be
found in [Kur70] and a detailed presentation of this topic, known as fluid approximation,
is discussed in [BHLM13a].

Let us introduce an example to whom we refer a lot in the contribution part of this
thesis.

6It is a continuous approximation of the real percentage which assumes value in a discrete set.
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Example 1. We consider a SIRS epidemic model, introduced back in 1927 by W.O.
Kermack and A.G. McKendrick [GCC00], which is still widely used to simulate the
spreading of a disease among a population. The population of N individuals is typically
divided into three classes:

susceptible (S) : representing healthy individuals that are vulnerable to the infection.

infected (I) : describing individuals that have been infected by the disease and are
actively spreading it.

recovered (R) : modeling individuals that are immune to the disease, by having recov-
ered from the disease (R).

The chemical reactions are the following

r1 : S + I
α1−→ 2I α1 = ksi ·

Xs ·Xi

N

r2 : I
α2−→ R α2 = kir ·Xi

The corresponding ODE System is the following:

ds(t)

dt
=− ksis(t)i(t)

di(t)

dt
=ksis(t)i(t)− kiri(t)

dr(t)

dt
=kiri(t)

(1.6)

1.3.2 Block Diagram Models

Many physical systems can be described employing multiple interacting ODEs systems.
From a modeling point of view, it is convenient to have a tool which permits to graph-
ically design and simulate such systems. Simulink [Mat], Modelica [Mod] and Lab-
VIEW [Nat] are the most used software of this kind. These models, known as Block
Diagram Models (BDM), are based on the fundamental concept of Actor Model [HBS73]
originated in 1973. An actor is a computational entity which receives messages from
other actors, use this information to change its internal state, and eventually produces
outputs which are spread to other connected actors. These models can be used to de-
scribe a continuous-time system S which operates on continuous signals. The idea is to
draw it as a graphical box with inputs and outputs as following

Mathematically S is a functional that depends on two parameters p and q

S(q, p) : RR → R
R (1.7)

Multiple actor models can be collected and considered together as a unique entity, which
is considered again as a single actor model. This is the purpose of the subsystems block
which is shown in Figure 1.4, where also other common blocks are reported. This
grouping property allows hierarchically treating BDMs, enhancing the possibility to
manage different levels of complexity. In Figure 1.5a a block diagram model of an









2
Temporal Logic

In the first part of this chapter, we introduce the temporal logics, mainly focusing on
Signal Temporal Logic (STL), largely used to reason about the future evolution of a
path in continuous time. In the second part, we describe the monitoring and the model
checking techniques available.

2.1 Temporal Logic

Temporal logic [Pnu77] is a formalism tailored to reason about events in time. It extends
the propositional or predictive logic by modalities (temporal operators) that permit to
manage time. These modalities are built on the couple (T, <), where T is the usual time
interval and < is the accessibility relation on T. These formalisms permit a rigorous
description of events in time, therefore are used to define temporal proprieties of dynam-
ical systems. There are different kinds of temporal logics which are based on different
assumptions about the nature of time. It can be linear, if there is only a single timeline,
or branched, if there exist multiple timelines (i.e., branches which can be represented
as a tree). Moreover, we can consider time as a discrete, numerable or continuous set.
We are mainly interested in a linear continuous-time temporal logic. Linear, because
we deal with simulation trajectories and continuous-time because the systems, that we
describe, have continuous dynamics.

2.1.1 Signal Temporal Logic

STL [MN04] has been introduced in 2004 with the purpose of defining properties of
continuous-time real-valued signals which can also be useful for the runtime verification
of dynamical systems’ trajectories. In that period many discussions were related to the
verification of continuous hybrid systems and how the exhaustive and precise verification
of these systems was not decidable (except for trivial cases). STL extends MITL[a,b], a
fragment of the Metric Interval Temporal Logic (MITL) [AFH96] which uses bounded
temporal operators. Basically, STL redefines the atomic predicates of MITL into atomic
propositions interpreted over real-values signals.
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We call primary signal a trajectory as defined in Section 1.1, it merely describes
the quantitative evolution of the state vector. We now recall the definition of Boolean
signals, which are abstraction of primary signals, introduced to represent the qualitative
time evolution of specific properties. Finally, we present the syntax and semantics of
STL.

Definition 7. Let us consider a primary signal x : T → S and the set of atomic pred-
icates Π = {f(s) ≥ 0 | f ∈ C(Rm,R), s ∈ S} where C(Rm,R) is the set of continuous
function from R

m to R. We call Boolean signal the function γ : T→ B = {⊥,⊤} defined
as γ(t) = π(x(t)) = (f ◦ x)(t) > 0. Moreover, we call secondary signal the function
f ◦ x : T→ R.

The secondary signal represents a quantity that we would like to monitor. It is
a natural concept by a modeling and monitoring point of view and can be computed
with physical filters (i.e., specific devices which monitor trajectories), or computational
algorithms usually called monitors.

Definition 8 (Syntax). The formulae of STL (denoted with LSTL) are defined by the
following syntax:

ϕ := ⊥ |⊤ |µ | ¬ϕ |ϕ ∨ ϕ |ϕU[T1,T2]ϕ, (2.1)

where ⊥ and ⊤ denote logical false and true, ¬ and ∨ are the usual logical connectives,
the atomic predicates µ ∈ Π have been defined before, [T1, T2] ⊂ R

+
0 and U[T1,T2] is

a temporal operator called Until. For simplicity, two other temporal operators Finally
and Globally can be defined as customary as F[T1,T2]ϕ ≡ ⊤U[T1,T2]ϕ and G[T1,T2]ϕ ≡
¬F[T1,T2]¬ϕ, respectively.

The formulae of LSTL are interpreted over trajectories respect to the following
Boolean semantics [MN04].

Definition 9 (Boolean Semantics). Given a trajectory x ∈ ST, the Boolean semantics
|=⊂ (ST × R

+
0 )× LSTL is defined recursively by:

(x, t) |= µ ⇐⇒ µ(x(t)) = ⊤
(x, t) |= ¬ϕ ⇐⇒ (x, t) 6|= ϕ

(x, t) |= ϕ1 ∨ ϕ2 ⇐⇒ (x, t) |= ϕ1 or (x, t) |= ϕ2

(x, t) |= ϕ1U[T1,T2]ϕ2 ⇐⇒ exists t′ ∈ [t+ T1, t+ T2] such that (x, t′) |= ϕ2

and for each t′′ ∈ [t, t′) (x, t′′) |= ϕ1

where for simplicity we write (x, t) |= µ instead of ((x, t), µ) ∈|=.

We usually consider t = 0 and write x |= ϕ to mean (x, 0) |= ϕ.

Remark 1 (Temporal horizon). In Section 1.1 we introduced the time domain of a
signal, denoted with T, as a closed subset of R

+. The motivation is purely practical
and reflects the real case where the simulation or monitoring of trajectories is always
limited to a given closed temporal interval. The time interval T has to be considered
when working with STL formulae. Indeed, if it is not sufficiently large, the satisfiability
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of those formulae cannot be determined. The concept of time horizon Tϕ has been
introduced to overcome this issue [MN04]. The idea is to estimate, for each formula
ϕ, the smallest interval [t, t + Tϕ] which is sufficiently large to permit the evaluation
of (x, t) |= ϕ. Tϕ is defined by the following simple rules: T⊥ = 0, Tµ = 0, Tϕ1∨ϕ2

=
max(Tϕ1

, Tϕ2
), Tϕ1U[T1,T2]ϕ2

= max(Tϕ1
, Tϕ2

) + T2. For simplicity, we denote [t, t+ Tϕ]
with Tϕ (consider that t is always fixed in advanced and we remark that in the rest of
the thesis it is assumed to be 0).

Remark 2 (Why the Boolean semantics is not enough). The Boolean semantics as
defined above, is simply the semantics of MITL adapted to STL. Considering that STL
works on trajectories, which have continuous dynamics, the simple Boolean dynamics
seems to be not adequate. As a simple example, let us consider the atomic predicate X ≤
c and two trajectories x1 and x2, such that x1(0) = c+ ε and x2(0)≫ c. The Boolean
semantics assigns a violation of the atomic predicate to both the trajectories, without
considering that in the second case this violation is more evident. Quantitative semantics
have been introduced to overcome this limitation. Their benefit consists in enriching the
expressiveness of Boolean semantics, passing from a Boolean concept of satisfaction
(yes/no) to a (continuous) degree of satisfaction. This permits us to quantify “how
much”, concerning a specific criterion, a trajectory satisfies (or not) a given requirement.

Let us introduce the robustness semantics of STL, a quantitative semantics which ap-
pears in [DM10] and consists on a reformulation of the quantitative semantics originally
defined by Pappas and Fainekos in [FP09].

Definition 10 (Robustness Semantics). Given a trajectory x ∈ ST, the robustness
semantics is a function ̺ : ST × R

+
0 × LSTL → R ∪ {−∞,+∞} defined recursively as

follows:

̺(x, t,⊤) = +∞
̺(x, t, µ) =(f ◦ x)(t)
̺(x, t,¬ϕ) =− ̺(x, t, ϕ)
̺(x, t, ϕ1 ∨ ϕ2) =max(̺(x, t, ϕ1), ̺(x, t, ϕ2))

̺(x, t, ϕ1U[T1,T2]ϕ2) = sup
t′∈[t+T1,t+T2]

(min(̺(x, t, ϕ2), inf
t′′∈[t,t′)

̺(x, t, ϕ1)))

where f ◦ x is a secondary signal as defined in Definition 7.

This quantitative semantics satisfies the following important property

Definition 11 (Soundness Property). A quantitative semantics (̺) is sound with the
Boolean semantics (|=), if and only if

̺(x, t, ϕ) > 0 =⇒ (x, t) |= ϕ

̺(x, t, ϕ) < 0 =⇒ (x, t) |= ¬ϕ

The case ̺(s, t, ϕ) = 0 is not specified because is not possible to establish if (s, t) |= ϕ
or (s, t) |= ¬ϕ (consider that ̺(s, t, ϕ) = 0 and ̺(s, t,¬ϕ) = 0). The name robustness
is related to the meaning of its absolute value. It is the maximum point perturbation
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allowed for the secondary signals, composing a formula, so that the truth-value of the
whole formula does not change. This remarkable property is known as Correctness
Property which is reported below.

Definition 12. Consider an STL formula ϕ which is composed by a logical combination
of atomic predicates (µ1, . . . , µn), n < +∞ such that µi := [fi(X) ≥ 0], and two signals
x1,x2 ∈ ST. We write

‖x1 − x2‖ϕ := max
i≤n

sup
t∈Tϕ

|fi(x1(t))− fi(x2(t))|

where Tϕ is the horizon interval as defined in Remark 1.

Definition 13 (Correctness Property). The quantitative semantics ̺ satisfies the cor-
rectness property with respect to the formula ϕ, if:

∀x1,x2 ∈ ST, ‖x1 − x2‖ϕ < ̺(s1, t, ϕ) and (x1, t) |= ϕ

implies (x2, t) |= ϕ

If the previous property is true for all the formulae of the language we say that the
quantitative semantics satisfies the correctness property for the entire language.

2.2 Usefulness of Quantitative Semantics

Quantitative semantics was initially introduced to overcome the limitation of Boolean
semantics, which sometimes is not able to fully capture properties of specific systems.
This is the case of systems equipped with a specific topology, such as dynamical systems
where the ‖ · ‖∞ distance, for example, is used to define similarity among trajectories.
A simple example is discussed in Remark 2, where the inability of Boolean semantics
to discriminate between a strong and weak violation of a specific predicate has been
highlighted.

Quantitative semantics have been introduced to overcome this limitation by enriching
the expressiveness of Boolean semantics, passing from a Boolean concept of satisfaction
(yes/no) to a (continuous) degree of satisfaction. This permits to quantify “how much”,
concerning a specific criterion, a trajectory satisfies (or not) a given requirement. The
continuous value provided by quantitative semantics can be efficiently used in formal
modeling of complex systems because of two properties this semantics satisfies: sound-
ness (Definition 11) and correctness (Definition 13).

Consider for example a family of deterministic models Mϑ which depends on pa-
rameters ϑ ∈ Θ. A typical design problem consists in identifying the best parameters
so that a given requirement ϕ ∈ LSTL is satisfied. Considering, for example, the ro-
bustness semantics of Definition 10 which satisfies soundness and the correctness, this
task can be achieved through its maximization. In fact, if the value of the robust-
ness is strictly positive then the property is satisfied. Moreover, maximizing the ro-
bustness value is preferable because of the correctness property which equates high
robustness with low sensitivity to perturbation. During the recent years different quan-
titative semantics were introduced, mainly to describe various properties of trajectories,
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[DM10, RBNG17, AH15]. In the related work of Chapter 5, we discuss some of these
quantitative semantics.

2.3 Monitoring

A monitor is an algorithm aimed to establish if a trajectory x satisfies or not a temporal
formula ϕ, i.e., x |= ϕ. Offline monitors relate on a posteriori analysis performed
on complete simulation traces (i.e., traces where time horizon have been reached). In
this case, computational efficiency is the most addressed feature as results from the
contribution of many researchers [Don10, DFM13]. Online monitors, on the contrary,
have been developed to work with real-time systems. In this scenario, the responsiveness
and the quantity of stored data at each t required to perform the monitoring, are the
main feature to take into account. Consider a real-time system in charge of performing
actions (such as notification deliveries) if a specific event occurs (such as malicious
detections). In this context, the responsiveness is a crucial aspect as well as the buffer
memory used by each of these monitors (consider that many of them run on embedded
deceives). Another important feature of online monitors is the ability to work with
partial trajectories, meaning that in each instant of time t, if the satisfiability of a
formula cannot be addressed at least an estimate should be produced.

Donze et al. [DFM13] present an offline algorithm for monitoring STL formulae over
piecewise continuous signals, i.e., linear interpolation of traces, which are sequences
of couple time values, usually obtained by numerical integration or stochastic simula-
tion. The results of the monitoring is also a piecewise continuous function entailing the
possibility of a recursive approach (which is indeed used).

Approach Idea. This algorithm follows a bottom-up approach, evaluating the quan-
titative or Boolean semantics of atomic proposition and lifting up the results up to the
root of the tree structure which represents the formula. A sketch of the algorithm is
shown in Algorithm 1. It is a recursive procedure based on four different inputs: true
symbol, atomic (line 1 - 4), unary (line 5 - 7) and binary (line 8 - 11) operators or connec-
tives (represented as a generic operator ◦). The compute routine implements a specific
strategy for each logical symbol passed as input (similarly the computeAtomic routine
at line 4). It is evident that Algorithm 1 is a simple implementation of the definition of
the Boolean and quantitative semantics.

For the details of the offline Boolean algorithm we refer the reader to [MN04] and
for the offline quantitative version to [DFM13].

2.4 Statistical Model Checking

Stochastic processes are largely used to model phenomena showing intrinsically random
effects such as biological processes. Model checking algorithms have been developed
for verifying probabilistic properties of stochastic system, which are usually described
employing specific temporal logics such as PCTL [HJ94] or CSL [BHHK03]. These
logics express simple inequalities on probability of target properties (e.g., the model
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Algorithm 1 monitor(ϕ,x)

1: case ϕ = ⊤
2: return y = ⊤̄ (a constant signal true)
3: case ϕ = y(x(t)) ≥ 0
4: return computeAtomic(y(x(t)))
5: case ϕ = ◦ϕ1

6: y = monitor(ϕ1,x)
7: return compute (◦, y)
8: case ϕ = ϕ1 ◦ ϕ2

9: y1 = monitor(ϕ1,x)
10: y2 = monitor(ϕ2,x)
11: return compute (◦, y1, y2)

Mϑ satisfies the property ϕ with a probability greater than (or lower than) a given
threshold k, i.e., Mϑ |= (P (ϕ) ∼ k), ∼∈ {≥,≤}. For simplicity1 we write Pϕ(ϑ) to
mean the probability that a trajectory generated by Mϑ satisfies ϕ. The necessary
theoretical steps to define Pϕ(ϑ) are not trivial.

Provided that the trajectories of the interested model Mϑ is a probability space,
e.g. Ωϑ = (ST,Σ,Pϑ) it is important to verify that for each logical formula ϕ, the set
Sat(ϕ) = {x ∈ ST|x |= ϕ} belongs to the sigma algebra Σ of that probability space.
Otherwise the following probability is meaningless (or at least not formally definable)

Pϕ(ϑ) = Pϑ(Sat(ϕ)) (2.2)

The Kolmogorov Extension theorem (Theorem 1) implies that the trajectories of a
CTMC is a probability space, moreover in this case the above quantity (Equation 2.2)
is well defined as discussed in [BHHK03, Var85]. Their argumentation follows from the
basic cylindric decomposition of CTMC trajectories.

Many of the algorithm for estimating Pϕ(ϑ) rely on analytical techniques which
compute this probability using numerical integration of Kolmogorov equations and then
compare the result with the reference threshold. Unfortunately, these approaches suffer
from the well-known curse of state space explosion, which makes these approaches not
always feasible. Examples are CTMCs with many states and transitions.

Remark 3. Let us briefly describe the numerical approach of [CDKM11] in order to
understand why sometimes this approach is not feasible. First, we know that STL con-
siders only time bounded formulae, meaning that for each ϕ exists a finite interval
Tϕ (see Remark 1) such that it is sufficient to consider {x(t) | t ∈ Tϕ} to determine
if x |= ϕ. The key idea is to notice that Sat(ϕ) = Sat≤N (ϕ) ∪ Sat>N (ϕ), where
Sat≤N (ϕ) collects all the trajectories which make less than N jumps in Tϕ. Vice-versa,
Sat>N (ϕ) collects all the trajectories which make more than N jumps. Considering the
structure of CTMC it is easy to shows that for each T > 0 and ε > 0 exists an N
such that Pϑ(Sat>N (ϕ)) < ε. Therefore, we can approximate Pϑ(Sat(ϕ)) by estimat-
ing Pϑ(Sat≤N (ϕ)). The idea is to decompose Sat≤N so to create a partition which we
denote with Sat≤N (ϕ). Each class [x1 . . . xm] of this partition represents trajectories

1We write Pϕ(M) if we are referring to a specific model M.
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{(xi, ti)}i∈N such that ∀i ∈ N, ti < ti+1, tm ≤ max(Tϕ) and tm+1 > max(Tϕ) which
are different for the order of visited states. The next step is to filter out all the classes
which do not contain trajectories which satisfy ϕ. For example, if ϕ = F[0,T ]f(s) > 0
the algorithm will discard all the classes [x1 . . . xm] such that ∀i ≤ N, f(xi) ≤ 0, because
independently on t1t2 . . . tN we have that ((x1, t1), (x2, t2), . . . , (xN , tN )) 6|= ϕ. The re-
maining classes, Sat≤N (ϕ), contain only trajectories which have at least a combination
of times ({ti}i≤m) such that {(xi, ti)}i≤m |= ϕ, and m < N . Finally for each class of
Sat≤N (ϕ) we can estimate S̄([x1 . . . xm]) ⊆ T

m which contains all the combination of
times ({ti}i≤m) such that {(xi, ti)}i≤m |= ϕ. Finally we can approximate Pϑ(Sat(ϕ))
as follows:

Pϑ(Sat(ϕ)) ≈
∑

[x1...xm]∈Sat≤N (ϕ)

m−1∏

i=1

Rxi,xi+1

∫

· · ·
∫

τ∈S̄([x1...xm])

e−E·τ (2.3)

where E = (E(x1), . . . , E(xm)) and τ = (t1, . . . , tm).
The evaluation of the above formula 2.3 can be computational expensive. In order

to evaluate the multidimensional integral, first a decomposition of S̄([x1 . . . xm]) should
be provided. In [CDKM11] for example, a polyhedral decomposition is considered and
the integral is evaluated in each of these polyhedra. This decomposition and numerical
integration might be performed many times, considering that usually |Sat≤N (ϕ)| is a
high value.

Statistical Model Checking (SMC) [YS06, ZPC13] have been introduced to solve these
issues. It relies on simulations which are faster than the numerical, symbolic algorithm
used to achieve a precise evaluation of probability. Furthermore, it is a general approach
which does not depend on the stochastic model class. For this reason, it is more suitable
for an industrial application.

We now describe the Bayesian Statistical approach appears in [ZPC13]. For a fre-
quentist approach, we refer the reader to [YS06].

Bayesian SMC. There are two approaches: the Bayesian Interval Estimation (BIE),
which estimates a confidence interval for the target probability p (i.e., the interval that
contains p with at least a given confidence probability) and the Bayesian Hypothesis
Testing, which determines if p satisfies a given inequality within a given confidence
probability. We describe the first approach. Let us consider a stochastic model, such as
CTMC, and the Bernoulli random variable Xϕ (equal to 1 if a simulation trace satisfies
ϕ, 0 otherwise).The goal of BIE is to estimate the probability p that Xϕ is equal to 1
(i.e., p = P (Xϕ = 1)). This probability is well defined as already discussed in Section 1.2.
The Bayesian approach assumes that p satisfies a prior probability distribution, which
reflects our previous experiences and beliefs about the model. In this case a reasonable
choice is the distribution Beta(α, β) which is defined in [0, 1] and depends on two shape
parameters α, β > 0. By varying the shape parameters, it is possible to approximate
different unimodal density distributions such as the uniform distribution in [0, 1] (α =
β = 1) which is a reasonable choice with lack of prior information.

The cumulative distribution function F(α,β) of the beta distribution is defined for
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each u ∈ [0, 1] as:

F(α,β)(u) =
1

B(α, β)

∫ u

0

tα−1(1− t)β−1dt

where the beta function, B(α, β), is defined as:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

The beta distribution is the conjugate prior probability distribution for the Bernoulli,
binomial, negative binomial and geometric distributions. That property, generally called
conjugate property, is appreciated in Bayesian statistics because it permits to avoid
numerical integration as described below.

Let us consider n simulations and h ≤ n successes (i.e., h = #(Xi
ϕ = 1)), if we

consider a beta prior distribution Beta(p | α, β) for the probability of p = P (Xϕ = 1),
we easily obtain that the posterior probability of the Bernoulli i.i.d samples {Xi

ϕ}i∈N is:

P (p | (h, n)) = P ((h, n) | p)Beta(p | α, β)
Z(h, n)

= Beta(α+ h, β + n− h) (2.4)

where P ((h, n) | p) is a Bernoulli distribution and Z(h, n) =
∫ 1

0
P ((h, n) | p)Beta(p |

α, β)dp is the normalizing factor. Equation (2.4) is a consequence of the aforementioned
conjugate property. The Bayesian approach works as follows. First a given confidence
probability c (typically c = 0.99 or 0.95 ) and an admissible error δ ∈ (0, 12 ) are defined.
At each simulation the number of successes is stored and the expectation (i.e., µ =
h+α

n+α+β ) of the posterior probability is calculated. At this point the following probability

P
(
p ∈ (µ− δ, µ+ δ)

)
= F(α+h,β+n−h)

(

µ+
δ

2

)

− F(α+h,β+n−h)

(

µ− δ

2

)

is evaluated and compared against the threshold c. Afterward, if this probability
is higher than c then the confidence probability has been reached, and the algorithm
stops; otherwise, another simulation is performed, and the algorithm continues.

2.5 Statistics of Robustness

The probability of satisfaction for temporal logic (Equation 2.2) is an essential concept
in the field of stochastic system modeling. However, similarly to the robustness, which
has been induced to overcome the limitations of Boolean semantics, we can consider the
probability distribution of robustness values [BBNS15].

Let us consider a set of models Mϑ, ϑ ∈ Θ, and the probability space Ωϑ =
(ST,Σ,Pϑ) generated by their trajectories. We introduce the following set

Sat(ϕ | a, b) = {x ∈ ST|̺(ϕ,x, 0) ∈ [a, b]}
and the real-valued random variable Rϕ(ϑ) with probability distribution
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P (Rϕ(ϑ) ∈ [a, b]) = Pϑ(Sat(ϕ | a, b)) (2.5)

The well-foundedness of 2.5 obtained through the measurability of Sat(ϕ | a, b), i.e.,
Sat(ϕ; a, b) ∈ Σ, is demonstrated in [BBNS15].

Useful statistics can be extracted from this probability distribution. A standard
statistics is the average robustness which was successfully applied in system design of
and biological processes such as Incoherent type 1 feed-forward loops and Schlögl system
[BBNS15]. In Chapter 8, [BPS16], we also use the average robustness to solve a multi-
objective design problem.
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Statistical Modeling

3.1 Gaussian Processes

Gaussian Processes (GP) [RW06] are non parametric Bayesian techniques used for clas-
sification or regression. Thanks to their Bayesian nature GPs are particularly suitable
to manage noise and encompass statistical beliefs about the considered dataset. We
now introduce the GP approach to regression problem. For the classification problem
we refer the reader to [RW06].

Regression Task. We call training set a set of input-outputs pairs {(xi, yi)}i≤d, xi ∈
R

n, yi ∈ R. We denote with X = (x1, . . . ,xd) and y = (y1, . . . ,yd), respectively, the
input and the output variables of the training set.

A regression problem consists in identifying a mathematical function f : Rn → R

such that the predicted values f(xi) are close as much as possible to the real values
yi. The quality of this prediction is evaluated through a cost (or loss) function which
quantifies the distance between the predicted and the real values. Many regression
techniques, such as linear and nonlinear least-squares approaches, try to minimize the
outcome of a proper loss function.

GPs use a different approach which relies on the probability framework. They com-
bine a prior distribution over a set of possible regression functions with the information
provided by the training set to choose a proper posterior distribution which is suitable
for estimation purposes.

Definition 14. Formally, a GP is a collection of random variables f(x) ∈ R indexed by
an input variable x ∈ R

n such that every finite number of them have a joint Gaussian
distribution.

A GP f is uniquely determined by its mean and covariance function (called also
kernel) denoted respectively with m : Rn → R and k : Rn × R

n → R and defined as:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
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such that for every finite set of points (x1,x2, . . . ,xd):

f ∼ GP(m, k) ⇐⇒ (f(x1), f(x2), . . . , f(xn)) ∼ N (m,K) (3.1)

where m = (m(x1),m(x2), . . . ,m(xd)) is the vector mean and K ∈ R
n×n is the covari-

ance matrix, such that Kij = k(xi,xj). A standard assumption is to consider (prior)
Gaussian processes with a zero mean function. This is not a limitation because the
mean of the posterior distribution can be different from zero (see Equation 3.7).

A popular choice for the covariance function is the squared exponential covariance
function

k(x, x′) = σ2 exp

(

− (x− x′)2
λ2

)

(3.2)

where length-scale, λ, is related to the minimum distance of the input space nec-
essary to significantly change the value of the Gaussian process. The signal variance
σ2 represents the overall variance of the process. The reason for its importance is the
following property

Definition 15 (Universal Property). Let f be a continuous function defined in a com-
pact domain of Rn. For every ε > 0 exists a sample function g from a GP with expo-
nential kernel such that

‖f − g‖2 ≤ ε
where ‖ · ‖2 is the L2 norm.

The previous property is very important because makes the GPs a suitable prior
distribution over continuous functions.

Learning Phase. The GP regression consists in modeling the relation between input
xi and output yi as noisy observations by setting yi = f(xi)+εi where the latent function
f is a Gaussian Process and the noises εi are sampled from a normal distribution, i.e.,
εi ∼ N (0, σ2

n). The inference problem consists in identifying the best hyper-parameters
(i.e., kf ) composing the covariance function of f , and the parameter of noise distribution
σn, such that the model f(x) + ε approximates the training set at the best. This prob-
lem is solved in the probabilistic framework through the maximization of the marginal
likelihood defined as

p(y|X) =

∫

p(y|f , X)
︸ ︷︷ ︸

likelihood

p(f |X)
︸ ︷︷ ︸

prior

df (3.3)

where f = (f(x1), . . . , f(xn)).
Considering that the prior p(f |X) and the likelihood p(y|f , X) are Gaussian dis-

tributed, we obtain that the marginal likelihood p(y|X) is also Gaussian distributed. It
is convenient to introduce the log marginal likelihood (which is maximized in place of
the marginal likelihood)

log p(y|X) = −1

2
yT (K + σnI)

−1y − 1

2
|K + σnI| −

n

2
log 2π (3.4)

where K is the m×m matrix, such that Kij = kf (xi,xj), and |K + σnI| is the deter-
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minant of K + σnI.

Posterior Prediction. Let us consider a GP f trained on a set (X,y). We are
naturally interested in computing the distribution of f on new pointsX∗ = (x∗

1, . . . ,x
∗
m).

The steps are the following:

1. From the GPs definition (Equation 3.1) we infer the conjugate prior

p(f∗, f | X∗, X) = N (0,K(X∗, X))

where f∗ = (f(x∗
1), . . . , f(x

∗
m))) and K(X,X) is a (m+ d)× (m+ d) matrix of the

covariance evaluated at all the pairs of the test and the training set points.

2. The conjugate prior is combined with the likelihood and the following joint pos-
terior distribution is obtained.

p(f∗, f | y, X∗, X) =
1

Z
p(f∗, f | X∗, X)p(y|f , X) (3.5)

where Z =
∫
p(f∗, f | X∗, X)p(y|f , X)df is the normalization factor.

3. Finally integrating over f from Equation 3.5, we obtain

p(f∗|y, X∗, X) =
1

Z

∫

p(f∗, f | X∗, X) p(y|f , X)df (3.6)

Equation 3.6 can be analytically computed and the result is the following Gaussian
distribution

p(f∗|y) = N (f̄∗, cov(f∗))

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]

−1y (3.7)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X∗, X)

3.2 Smoothed Model Checking

Statistical Model Checking (SMC), as described in Section 2.4, can be applied only if
the model is fully specified (i.e., the vector of parameters is fixed). In many domains,
this limitation is too strict. Consider for example System Biology where in general many
model parameters are not directly measurable, and a continuous set of possible values
(i.e., an interval) is considered. Applying SMC, in this case, is not possible because an
infinite (or very large) number of SMC routine has to be performed (i.e., one for each
parameter value of the interval or in a discretized grid).

Smoothed Model Checking (smMC) [BMS16] is a novel technique which leverages the
continuity of the satisfaction function (w.r.t the model parameters) and the regression
ability of the Gaussian processes to estimate the probability of satisfaction Pϕ(ϑ) of a
specific property ϕ. It cast this task into a learning problem taking as input the truth
value of ϕ for few simulations, (m << +∞), at different parameter vectors ϑ1, . . . , ϑn.
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As already discuss in Section 2.4, the satisfaction of the formula ϕ over a trajectory
generated by the models Mϑ is a Bernoulli random variable with success probability
Pϕ(ϑ). Unfortunately, this function has a bounded codomain, and therefore it can not
be modeled through Gaussian processes. Smoothed Model Checking solves this issue by
considering the inverse probit transformation Ψ: [0, 1]Θ → R

Θ defined as follows

Ψ(Pϕ) ≡ f ⇐⇒ ∀ϑ ∈ Θ, Pϕ(ϑ) =

∫ f(ϑ)

−∞

N (0, 1)dϑ

where N is the standard Gaussian distribution. The function gϕ(ϑ) = Ψ(fϕ(ϑ)) is
a smooth real valued function of the model parameters and for this reason it can be
modeled with Gaussian processes.

Let us denote with O = [o1,o2, . . . ,on] the matrix whose rows oi are the Boolean
m-vectors of the evaluations in ϑj . Hence, we have that each observation oi is an
independent draw from a Binomial(m,Pϕ(ϑj))). Smoothed Model Checking plugs these
observations into a Bayesian inference scheme, assuming a prior p(f) for the latent
variable f . As f is a random function, one can take as a prior a GP, specifying its mean
and kernel function, and then invoke Bayes theorem to compute the joint posterior
distribution of f at a prediction point ϑ∗ and at the observation points ϑ1, . . . , ϑn as

p(f(ϑ∗), f(ϑ1), . . . , f(ϑn) | o) =
1

Z
p(f(ϑ∗), f(ϑ1), . . . , f(ϑn))

n∏

j=1

p(oj | f(ϑj)).

In the previous expression, on the right hand side, Z is a normalisation constant, while
p(f(ϑ∗), f(ϑ1), . . . , f(ϑn)) is the prior, which is Gaussian distribution with mean and
covariance matrix computed according to the GP. p(oj | f(ϑj)), instead, is the noise
model, which in our case is given by a Binomial density. By integrating out the value
of the latent function at observations points in the previous expression, one gets the
predictive distribution

p(f(ϑ∗) | O) =
∫ n∏

j=1

d(f(ϑj))p(f(ϑ
∗), f(ϑ1), . . . , f(ϑn) | O).

The presence of a Binomial observation model makes this integral analytically in-
tractable, and forces us to resort to an efficient variational approximation known as
Expectation Propagation [BMS16, RW06]. The result is a Gaussian form for the predic-
tive distribution for p(f(ϑ∗) | O), whose mean and δ-confidence region are then Probit
transformed into [0, 1].

It is important to stress that the prediction of Smoothed Model Checking, being a
Bayesian method, depends on the choice of the prior. In case of Gaussian processes,
choosing the prior means fixing a covariance function, which makes assumptions on the
smoothness and density of the functions that can be sampled by the GP. The squared
exponential covariance function (Equation 3.2) is dense in the space of continuous func-
tions over a compact set [Ste01], hence it can approximate arbitrarily well the satisfaction
probability function. By setting its lengthscale via marginal likelihood optimization, we
are picking the best prior for the observed data.



4
Optimization

In this chapter we introduce the mathematical optimization, giving particular empha-
sis to black box optimization. In many cases solving optimization problems with few
evaluations is a strict requirement. Therefore, we focus on active learning approaches
which aim to reduce the number of evaluations needed to solve optimization tasks. In
particular, we introduce the Gaussian process upper confidence bound algorithm which
is often used in black box optimization. Finally, we introduce the multi-objective opti-
mization paradigm consisting in the simultaneous minimization of two or more objective
functions. This approach is used in many engineering fields, and it can be successfully
applied in the model-based design of cyber-physical systems.

4.1 Bayesian Optimization

Definition 16. The general single-objective constrained optimization problem is defined
as follows

fgl = min
x∈D

f(x)

D =





m′

⋂

i=1

{x ∈ R
n | ci(x) = 0}




⋂





m⋂

j=m′+1

{x ∈ R
n | cj(x) ≥ 0}





where the objective function f : Rn → R, n < ∞ has to be minimized and the deci-
sion space D, where f takes values, has been defined by m′ equality constraints (i.e.,
ci(x) = 0, i ∈ {1, . . . ,m′}) and m − m′ inequality constraints (i.e., ci(x) ≥ 0, i ∈
{m′ + 1, . . . ,m}) and 0 ≤ m′ < m < +∞.

fgl = f(x∗
gl) and x∗

gl are called, respectively, global minimum and global minimum
point.

A point, xloc, is called local minimum point if

f(xloc) = min
x∈Bδ(xloc)

f(x)
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Properties of f(x) Properties of ci(x)
Function of a single variable No constraints
Linear function Simple Bounds
Sum of squares of linear functions Linear functions
Quadratic function Sparse linear functions
Sum of squares of nonlinear functions Smooth non linear functions
Smooth non linear functions Sparse non linear functions
Sparse nonlinear functions Non-smooth non linear functions
Non-smooth non linear functions

Table 4.1: A standard classification schema of the optimization problems. This table
originally appears in Section 1.2 of [GMW81].

where Bδ(xloc) is the neighborhood of xloc of radius δ > 0. f(xloc) is called local
minimum.

Remark 4. In Definition 16 we equate optimization problems to minimization problems.
Maximization problems can also be defined but considering that

max
x∈D

f(x) = −min
x∈D
−f(x)

we can always cast them into minimization problems.

The optimization problems have been classified into several groups with the idea of
collecting problems which might be solved with a similar approach. These approaches
are tailored to the specific characteristic of the group and for this reason are particu-
larly efficient. The classification schema was so created balancing the improvement in
efficiency provided by grouping similar problems against the increase in number of ap-
proaches necessary to solve each kind of problem. The characteristics considered in this
classification span from the nature of variables involved (i.e., discrete, continuous), the
mathematical property of the objective function f (such as continuity, derivability, etc.)
and of the constraint function used to characterize the decision space D. A standard
classification is reported in Table 4.1.

Clearly other characteristics can be considered and specific algorithms can be imple-
mented. For a detailed and comprehensive description of the optimization problems we
refer the reader to [GMW81, Fle13].

In the Introduction, we explain how the increase in models’ complexity contributes
to change the system developing cycle, and how the demand for new approaches re-
lated to machine learning increases as well. The optimization theory and methods have
followed a similar path. With the increase in complexity of models, become very dif-
ficult to establish which is the right optimization algorithm to use. As a consequence,
general approaches that do not require that the optimization problem satisfies specific
properties, have been created. These approaches are suited to solve the so-called black
box optimization problems, where no hypothesis about the target function f is required.
This function can be evaluated in any points of the optimization domain D, but other
information, such as the mathematical form, gradient, or trends are not provided. This
minimal assumption makes this kind of optimization problem applicable across many
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domains, where prior information on target functions is not known. In many practical
cases, the evaluation of the objective functions is also expensive. Consider, for example,
the case of real experiments, physical simulations, or intensive computational models
where a single execution could require several hours. For this reason, a significant chal-
lenge is to solve the optimization problem with few evaluations. Bayesian Optimization
(BO) approaches are particularly suited for that task. These methods incorporate a
natural trade-off between exploration and exploitation. The former is the ability of
sampling points from the optimization domain in a uniform setting, and the latter is
the ability to identify the promising area of the domain space where to concentrate the
sampling.

A typical Bayesian optimization approach can be divided into the following three
phases

Initial phase: an initial set of points is considered for evaluation. The purpose is to
collect a starting knowledge of the target function f to drive the further optimiza-
tion algorithm. If prior knowledge of f is available, it can be considered, and a
coherent sampling strategy adopted. On the other hand, if no prior knowledge is
available, a uniform sampling strategy1, such as Latin Hypercube Sampling (LHS)
[MBC79], Uniform Random Sampling or Full Factorial, is considered. All the
nominated techniques are usually grouped under the umbrella of the Design of
Experiments (DOE) [Mon17].

Regression phase: a Bayesian regression technique (such as GPs) is used to derive a
mathematical representation of the underlined function f . This surrogate model
is trained on a training set generated during the initial phase.

Active learning phase: the surrogate model defined in the previous step is used to
sample a point x̄ which is the best candidate (up to the actual knowledge) to
be the global minimum. Afterwards, the function f̄ = f(x̄) is evaluated and the
couple (x̄, f̄) is added to the training set of the surrogate model. The regression
and active learning phase are then iterated until a convergence criterion is reached.

4.1.1 Gaussian Processes Upper Confidence Bounds

Gaussian Processes Upper Confidence Bound (GP-UCB) is an interesting Bayesian op-
timization approach particularly useful to minimize noisy function. Originally it was
proposed to solve the multi-armed bandit problem, a well-known problem of probability
theory, where a gambler has to decide which slot machines, in which order, and how
many times to play. The task of the gambler is the maximization of the reward pro-
duced randomly by each machine. Mathematically this problem consists in maximizing
an unknown reward function, f : Rn → R, by choosing, at each i-th round, a proper in-
put point xi . The objective is to maximize

∑m
i=1 f(xi) which is essentially the same of

discovering x∗ = argmaxx∈D f(x) as soon as possible. Let us consider the minimization
version of the GP-UCB Algorithm.

The GP-UCB algorithm (Algorithm 2) takes as input an initial set of already evalu-
ated points (i.e., trainingSet) and the Gaussian process (trained on the trainingSet)

1which is the most rationale option with this premise.
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Algorithm 2 GP-UCB algorithm

Require: D (input space), µ0 = 0 (mean function), k (covariance function), trainingSet

1: for i = 1, 2, . . . do
2: Solve xi = argminx∈D µi−1(x)−

√
βi σi−1(x)

3: yi = f(xi) + εi
4: trainingSet← trainingSet ∪ (xi, yi)
5: (µi, σi)← gp(trainingSet)
6: end for

represented by µ0, k. The active learning phase is then performed (line 2) through the
minimization of the objective function obj(x) = µi−1(x)−

√
βi σi−1(x). This function is

a natural trade-off between exploitation and exploration. The former is related to µ(x)
which describes the mean of the posterior Gaussian distribution in x (a lower value
entails and higher probability that x is the global minimum). The latter is ruled by
the σ(x) which describes the uncertainty of the Gaussian posterior distribution. The
balance between exploration and exploitation is ruled by the βi parameter, which is
increased accordingly to the performance of the optimization algorithm at the i-th iter-
ation. So if it gets stuck near a point x̄ the values of βi can be increased to improve the
exploration performance. After a prefix number of βi adjustments, if no optimal point
(different from x̄) is discovered, then x̄ is considered the global minimum.

4.2 Multi-objective Optimization

Until now, we have considered only single optimization problems. However many deci-
sion, planning, and design problems consider multiple conflicting objectives or criteria.
In engineering design, for example, the cost is usually minimized whereas other quality
measures (such as strength, safety, comfort) which typically conflict with the cost, are
maximized. Such problems are known as Multi-objective Optimization Problems and
consist in finding the so-called Pareto Front.

A Multi-objective Optimization Problem (MOP) can be formulated as follows:

minimize f(x) = (f1(x), f2(x), . . . , fm(x))

s.t x ∈ D
(4.1)

where x ∈ D ⊂ R
n and f : Rn → R

m, n,m < +∞ is a vectorial function, and D is the
decision space (Definition 16).

The solution of the MOP 4.1 is simply the minimal set of the following partial order
relation,

Definition 17 (Pareto Dominance Relation). Let us consider two vectors u, v ∈ R
m.

We say that u dominates v (or equivalently that v is dominated by u), v � u, if and only
if

∀i ≤ m, vi ≤ ui and exists j ≤ m, uj 6= vj

We can now define the Pareto optimal set as follows
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Definition 18. The Pareto optimal Set (PS) is the subset of the decision space D defined
as

PS = {x ∈ D | 6 ∃y ∈ D, f(y) � f(x)}
and the Pareto Front (PF) is the subset of the codomain of f , defined as

PF = {f(x) |x ∈ PS}

Informally, the Pareto optimal set is the best compromise that can be obtained by
maximizing or minimizing a set of functions on the same domain set. A point belongs
to it if an improvement of an objective function causes another objective function to
deteriorate (i.e., decreases its value).

4.2.1 Algorithms and Approaches

Many approaches have been developed to solve MOP, we refer the reader to the following
surveys [ZQL+11, MA04] and books [Mie99, Deb01]. In this section, we describe two
approaches: the wighted sum and non-dominated sorting genetic algorithm which is one
of the most used Evolutionary Algorithm (EA).

Weighted Sum Approach (WSA). We present this approach for three reasons.
First, it is still used to solve simple MOP, second, it is the simplest approach that
might come to mind, and third its main weakness justify the existence of more ad-
vanced multi-objective approaches. The idea of WSA is straightforward and consists in
considering a unique function by a linear combination of the objective functions (i.e.,
F (x) =

∑n
j=1 αjfj(x), where ∀i ≤ n, αi ≥ 0, and

∑n
i=1 αi = 1). Fixed α, the mini-

mization of the referred function means to discover a single point of the Pareto front.
As a consequence, multiple single objective problems have to be solved to estimate
the whole Pareto front. The main weakness of WSA is its inability to approximate
non-convex Pareto front.

Evolutionary Algorithms (EA). Evolutionary Algorithms are population-based
meta-heuristic algorithms inspired by the natural evolution of species, where the ge-
netic heritage of populations improves during time evolution. Genetic Algorithms
(GA) are particular kind of EA, largely used in engineering fields, where each design
x = (x1, . . . , xn) represents a chromosome, formed by genes (xi, i ≤ n). Chromosomes
are modified by two genetic operators: crossover and mutation. The first is a binary op-
erator which gets two chromosomes and generates a new one by mixing their genes. The
second is a unary operator which acts on a single chromosome by randomly muting its
genes (see Figure 4.2). Mathematically crossover and mutation are related, respectively,
to exploitation and exploration.

Genetic algorithms execute a predefined number of cycles (or iterations), usually
called generations, where a fixed number of designs (for example N) are evaluated and
sorted accordingly to a specific ranking function. Afterward, the genetic operators have
performed on these designs accordingly to their ranking score (i.e., designs with a higher
rank are considered with a higher frequency) and a new generation of design is generated.
The algorithm then iterates until a threshold number of generations is reached.
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Figure 4.1: This is an approximation of the Pareto front of a standard bi-objective op-
timization test case called TNK, which has been obtained employing NSGA-II (original
Figure in [DAPM02]). In this case, the WSA approach will be unable to identify points
in the middle of the Pareto front and will identify only points around (0, 1) and (1, 0).

Non-dominated Sorted Genetic Algorithm (NSGA-II) is a well known GA introduced
in 2000 by K. Deb [DAPM02]. It is an improvement of NSGA ([SD94]) algorithm ob-
tained by the implements of three techniques: non-dominated sorting, crowding distance
and elitism .

Non-dominated sorting is a ranking function based on the Pareto dominance relation
(Definition 17). This ranking function splits a finite set of designs in chunks: the first
chunk includes the non-dominated points, the second considers the points dominated
only by the first chunks, and so on. The points contained in each chunk, which by
definition cannot be ordered by the Pareto dominance relation, are sorted by using the
crowding distance.

The crowding distance is a metric used to maximize the uniform displacement of de-
signs towards the Pareto front. Consider a set of designs of an n-dimensional MOP (i.e.,
a MOP with n objective functions). The 2n extreme points x̂−

i = minx∈D fi(x), x̂
+
i =

maxx∈D fi(x), i ≤ n have a fixed crowding distance of +∞ (i.e., c(x̂−
i ) = c(x̂+

i ) =
+∞, ∀i ≤ n). For any other point x, and for each objective fi, the adjacent points x+

i

and x−
i to x are defined as follows

x+
i = argmin

x′∈D∩{x′ | fi(x′)>fi(x)}

fi(x
′)

x−
i = argmax

x′∈D∩{x′ | fi(x′)<fi(x)}

fi(x
′)
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5
Signal Convolution Logic

In this chapter, we introduce Signal Convolution Logic (SCL), a logical framework which
is able to express non-functional requirements. The fundamental idea of this logic is to
consider a modal operator, 〈kT , p〉ϕ, that we call the convolution operator, which de-
pends on a non-linear kernel function kT , and asserts that the convolution between
the kernel and the signal (i.e., the satisfaction of ϕ) is above a given threshold p.
This operator allows us to specify queries about the fraction of time a specific prop-
erty is satisfied, possibly weighting unevenly the satisfaction in a given time interval
T = [T0, T1], T0, T1 ∈ R

+
0 , e.g., allowing to distinguish traces that satisfy a property

more at the beginning or the end of T . We equip the logic with a Boolean semantics,
and then define a quantitative semantics, proving its soundness and correctness concern-
ing the former. Similarly to Signal Temporal Logic (STL), our definition of quantitative
semantics permits to quantify the maximum allowed uniform translation of the signals,
preserving the true value of the formula. We also show that SCL is an extension of the
fragment of STL restricted to finally and globally modalities. We then discuss mon-
itoring algorithms for both semantics, in particular presenting an efficient monitoring
algorithm for the Boolean semantics and an arbitrary kernel function. We finally show
the logic at work to monitor an artificial pancreas device releasing insulin in patients
affected by type-I diabetes.

Motivation. Despite STL is a powerful specification language, it does not come with-
out limitations. An essential type of properties that STL cannot express is the non-
functional requirements related to the percentage of time-specific events happen. The
globally and finally operators of STL can only check if a condition is true for all time
instants or in at least one time instant, respectively. There are many real situations
where these conditions are too strict, where we could be interesting to describe a prop-
erty that is in the middle between eventually and globally. We now give three examples
where SCL can be useful.

• Time duration. Consider for instance a medical cyber-physical system, e.g., a
device measuring glucose level in the blood to release insulin in diabetic patients.
In this scenario, we need to check if glucose level is above (or below) a given





5.1. Signal Convolution Logic 49

Related Work. In this paragraph, we discuss different extensions of STL, in partic-
ular analyzing different notions of robustness. In Section 2.2 we already described the
quantitative semantics and its benefits from a general point of view. We also introduced
a quantitative semantics called robustness semantics [FP09, DM10]. Other quantitative
semantics are discussed below. In [DM10] the authors consider both the spatial robust-
ness and also the displacement of a signal in the time domain (temporal robustness).
These semantics, since are related to the L∞ topology, are very sensitive to glitches (i.e.,
sporadic peaks in the signals due to measurement errors). This limitation affects the use
of this semantics in the model predictive control of noisy systems such as robot plan-
ning and autonomous driving. In these contexts Probabilistic Signal Temporal Logic
(PrSTL) [SK16] and Chance-Constrained Signal Temporal Logic (C2CTL) [JRSS18]
have been proposed.

Rodionova et al. [RBNG17] proposed a quantitative semantics based on filtering.
More specifically they provide a quantitative semantics for the positive normal form
fragment of STL which measures the number of times a formula it is satisfied within an
interval associating to it different types of kernels. One limitation of this approach is
that, by restricting the quantitative semantics to the positive normal form they needed
to give up the duality property between the eventually and the globally operators, which
instead we can keep in our approach.

In [AH15], Akazaki et al. have extended the syntax of STL by introducing averaged
temporal operators which enable the possibility to consider time not homogeneously.
Their quantitative semantics expresses the preference that a specific requirement occurs
as earlier as possible in a given range of time. However, this time inhomogeneity can be
evaluated only for the quantitative semantics. The new operators, at the Boolean level,
are equal to the classic until (since) operators. Furthermore, they can consider only this
specific type of time inhomogeneities (early as possible, for as long as possible) and a
combination of them with classic temporal STL operators.

Note that defining a new quantitative semantics has an intrinsic limitation. Even
if the robustness can help the system design or the falsification process by guiding
the underline optimization, it cannot be used at a syntax level. It means that we
cannot write logical formulae which predicate about the property. For example, even
if we introduce a quantitative semantics which measures how many times a property
is satisfied, as in [RBNG17], we cannot write a formula which quantifies it, e.g., the
propriety has to be satisfied in at least the 50% of interval T, but we can only measure
the percentage of time the property has been verified.

5.1 Signal Convolution Logic

In this section we present the syntax and semantics of Signal Convolution Logic (SCL),
also discussing its soundness, correctness, and finally commenting on expressiveness of
the logic.

Let us briefly introduce the notions needed later in this chapter: kernel and convo-
lution.

Definition 19 (Bounded Kernel). Let T ⊂ R be a closed interval. We call bounded
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kernel expression

constant (flat(x)) 1(x)
(T1−T0)

linear (lin(x)) x−T0

T1−T0

exponential (exp[α](x)) exp(αx)∫
T
exp(ατ)dτ

Gaussian (gauss[µ, σ](x)) exp((x−µ)2)/σ2)∫
T
exp((τ−µ)2)/σ2)dτ

Table 5.1: Different kind of kernels.

kernel a function kT : R→ R such that:

∀t ∈ T, kT (t) > 0 (5.1a)
∫

T

kT (τ)dτ = 1 (5.1b)

Several examples of kernels are shown in Table 5.1. We call T the time window of
the bounded kernel kT , which will be used as a convolution1 operator, defined as:

(kT ∗ f)(t) =
∫ t+T1

t+T0

kT (τ − t)f(τ)dτ

We also write kT (t) ∗ f(t) in place of (kT ∗ f)(t).
In the rest of the chapter, we assume that the function f is always a Boolean function:

f : R→ {0, 1}. This implies that ∀t ∈ R, (kT ∗f)(t) ∈ [0, 1]. Independently of the kernel
used, the extreme values 0 or 1 will be assumed by the convolution only when f is always
true in t + T (i.e., ∀t′ ∈ t + T, f(t′) = 1), or always false (i.e., ∀t′ ∈ t + T, f(t′) = 0),
respectively. On the contrary, if the Boolean function f assumes different values in
t+T , the convolution kernel will assume a value in (0, 1). This value can be interpreted
as a sort of measure of how long the function f is true in t + T . In fact, the kernel
induces a measure on the time line, giving different importance of the time instants
contained in its time window T . As an example, suppose we are interested in designing
a system so to make an output signal f as true as possible in a time window T . Using
a non-constant kernel kT for this purpose will put more effort in making f true in the
temporal regions of T where the value of the kernel kT is higher. More formally, the
analytical interpretation of the convolution is simply the expectation value of f in a
specific interval t + T w.r.t. the measure kT (dx) induced by the kernel. In Figure 5.2
(a) we show some examples of different convolution operators on the same signal.

1This operation is in fact a cross-correlation, but here we use the same convention of the deep learning
community (see [GBCB16]) and call it convolution. By a practical point of view the cross-correlation
corresponds to the convolution without flipping the kernel.
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5.1.1 Syntax and Semantics

The atomic predicates of SCL are inequalities on a set of real-valued variables, i.e. of the
form µ(s):=[g(s) ≥ 0], where g : S → R is a continuous function, s ∈ S and consequently
µ : S → {⊤,⊥}. The formulae LSCL of SCL are defined by the following grammar

ϕ := ⊥ |⊤ |µ | ¬ϕ |ϕ ∨ ϕ | 〈kT , p〉ϕ, (5.2)

where µ are atomic predicates as defined above, kT is a bounded kernel and p ∈ [0, 1].
SCL introduces a novel modal operator 〈kT , p〉ϕ (in fact, a family of them) defined para-
metrically w.r.t. a kernel kT and a threshold p. This operator specifies the probability
of ϕ being true in T , computed w.r.t. the probability measure kT (ds) of T . The choice
of different types of kernel will give rise to different kind of operators: a constant kernel
will measure the fraction of time ϕ is true in T , while an exponentially decreasing kernel
will concentrate the focus on the initial part of T . We interpret the SCL formulae over
signals.

Before describing the semantics, we give a couple of examples of SCL properties and
their natural language expression. Considering again the glucose scenario presented in
Section 5. The properties in Figure 5.1 are specified in SCL as

ϕ1 : 〈flat[0,24h], 0.125〉 (G(t) ≥ 180)

ϕ2 : 〈flat[0,24h], 0.95〉 (G(t) ≥ 50)

ϕ3 : 〈exp[0,8h], 0.95〉 (G(t) ≥ 180)

where ϕ1 means the level of glucose (G) is higher than 180 for more than 3 hours
and ϕ2 mean that the the same level is higher than 50 for more than 95% of the day
(i.e., 24h), (see Figure 5.1). ϕ3 leverages an exponential increasing kernel to describe
the more dangerous situation of high glucose close (in time) to a meal .

Let us introduce the Boolean and quantitative semantics. Consider that tempo-
ral operators 〈kT , p〉 are time-bounded, and for this reason, time-bounded signals are
sufficient to assess the truth of every formula.

Definition 20 (Boolean Semantics). Given a signal s ∈ ST, the Boolean semantics
χ : ST × T× LSCL → {0, 1} is defined recursively by:

χ(s, t, µ) = 1 ⇐⇒ µ(s(t)) = ⊤ where µ(X) ≡ [g(X) ≥ 0] (5.3a)

χ(s, t,¬ϕ) = 1 ⇐⇒ χ(s, t, ϕ) = 0 (5.3b)

χ(s, t, ϕ1 ∨ ϕ2) = max(χ(s, t, ϕ1), χ(s, t, ϕ2)) (5.3c)

χ(s, t, 〈kT , p〉ϕ) = 1 ⇐⇒ kT (t) ∗ χ(s, t, ϕ) ≥ p (5.3d)

The atomic propositions µ are inequalities over the signal’s variables. The semantics
of negation and conjunction are the same as classical temporal logics. The semantics of
〈kT , p〉ϕ requires to compute the convolution of kT with the truth value χ(s, t, ϕ) of the
formula ϕ as a function of time, seen as a Boolean signal, and compare it with the thresh-
old p. An example of the Boolean semantics can be found in Figure 5.2(a - bottom)
where four horizontal bars visually represent the validity of ψ = 〈k[0,0.5], 0.5〉(s > 0), for
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4 different kernels k (one for each bar). We can see that the the only kernel for which
χ(s, ψ) = 1 is the exponential increasing one, i.e., k = exp[3].

Definition 21 (Quantitative semantics). The quantitative semantics ̺ : ST × T ×
LSCL → R ∪ {−∞,+∞} is defined as follows:

̺(s, t,⊤) = +∞ (5.4a)

̺(s, t, µ) = g(s(t)) where g is such that µ(s) ≡ [g(s) ≥ 0] (5.4b)

̺(s, t,¬ϕ) = −̺(ϕ, s, t) (5.4c)

̺(s, t, ϕ1 ∨ ϕ2) = max(̺(ϕ1, s, t), ̺(ϕ2, s, t)) (5.4d)

̺(s, t, 〈kT , p〉ϕ) = sup{r ∈ R | kT (t) ∗ [̺(s, t, ϕ) > r] > p} (5.4e)

where in equation (5.4e) we use the Iverson brackets [Knu92], i.e., [̺(s, t, ϕ) > r] is a
function of t which assumes 1 if ̺(s, t, ϕ) > r, 0 otherwise.

Intuitively the quantitative semantics of a formula ϕ w.r.t. a primary signal s
describes the maximum allowed uniform translation of the secondary signals g(s) =
(g1(s), . . . , gn(ϕ)(s)) in ϕ preserving the truth value of ϕ. Stated otherwise, a robust-
ness of r for ϕ means that all signals s′ such that ‖g(s′) − g(s)‖∞ ≤ r will result in
the same truth value for ϕ: χ(s, t, ϕ) = χ(s′, t, ϕ). Figure 5.2(b) shows this geometric
concept visually. Let us consider the formula ϕ = 〈k[0,3], 0.3〉(s > 0), k a flat kernel. A
signal s(t) satisfies the formula if it is greater than zero for at most the 30% of the time
interval T = [0, 3]. The robustness value corresponds to how much we can translate s(t)
s.t. the formula is still true, i.e., r s.t. s(t) − r still satisfies ϕ. In the figure, we can
see that r = 0.535. The formal justification of it is rooted in the correctness theorem
(Theorem 3).

5.1.2 Soundness and Correctness

We turn now to discuss soundness and correctness of the quantitative semantics with
respect to the Boolean one.

Theorem 2 (Soundness Property). The quantitative semantics is sound with respect to
the Boolean semantics:

̺(s, t, ϕ) > 0 =⇒ (s, t) |= ϕ

̺(s, t, ϕ) < 0 =⇒ (s, t) 6|= ϕ

Proof. The demonstration is by induction on the structure of the formula. The sound-
ness holds for the atomic predicates and Boolean operators: this is the proof of sound-
ness for classic robustness, see [DM10, FP09]. Consider then the formula 〈kT , p〉ϕ. If
̺(s, t, 〈kT , p〉ϕ) ≥ 0, by Definition 21 (Equation 5.4e) we have that kT (t) ∗ [̺(s, t, ϕ) >
0] > p. By the inductive hypothesis, ϕ satisfies the soundness property, hence it follows
that kT (t) ∗ χ(s, t, ϕ) ≥ p, i.e., (s, t) |= 〈kT , p〉ϕ.

Theorem 3 (Correctness Property). The quantitative semantics ̺ satisfies the correct-
ness property with respect to the Boolean semantics if and only if, for each formula ϕ,
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5.1.3 Expressiveness

We show that SCL is more expressive than the fragment of STL composed of the logical
connectivities and the eventually F and globallyG temporal operators, i.e., STL(F,G).

First of all, globally is easily definable in SCL. Take any kernel kT , and observe that
GTϕ ≡ 〈kT , 1〉ϕ which results considering that

(s, t) |= 〈kT , 1〉ϕ ⇐⇒ kT (t) ∗ χ(s, t, ϕ) = 1

which holds only if ϕ is true in the whole interval T . This statement is valid only
if we restrict ourselves to Boolean signals of finite variation, as for [MN04], which are
changing truth value a finite amount of times and are never true or false in isolated
points: in this way we do not have to care what happens in sets of zero measure. With
a similar restriction in mind, we can define the eventually, provided we can check that

kT (t) ∗ χ(s, t, ϕ) > 0

To see how this is possible, start from the fundamental equation kT (t)∗χ(s, t,¬ϕ) =
1− kT (t) ∗ χ(s, t, ϕ). By applying 5.3d and 5.3b we easily get χ(s, t,¬〈kT , 1− p〉¬ϕ) =
1 ⇐⇒ kT (t) ∗χ(s, t,¬ϕ) < 1− p ⇐⇒ kT (t) ∗χ(s, t, ϕ) > p. For compactness we write
〈kT , p〉∗ = ¬〈kT , 1− p〉¬, and thus define the eventually modality as FTϕ ≡ 〈kT , 0〉∗ϕ.
Furthermore, consider the uniform kernel flatT : a property of the form 〈flatT , 0.5〉ϕ,
requesting ϕ to hold at least half of the time interval T , cannot be expressed in STL,
showing that SCL is more expressive than STL(F,G).

5.2 Monitoring Algorithm

We now provide two offline monitor algorithms for the Boolean semantics of SCL formu-
lae (approach I and approach II) and a monitor algorithm for the quantitative semantics.

Boolean monitoring: approach I. The first method we present works for a sub-
class of kernels (mostly used in practice), satisfying a semigroup property. The second
method, which is an extension of the first one, instead, works for generic kernels.

Consider the following SCL formula 〈k[T0,T1], p〉ϕ and a Boolean signal s, we are
interested in computing χ(s, t, 〈k[T0,T1], p〉ϕ) = (H(t)− p ≥ 0), as a function of t, where
H is the following convolution function

H(t) = kT (t) ∗ χ(s, t, ϕ) =
∫ t+T1

t+T0

k[T0,T1](τ − t)χ(s, τ, ϕ)dτ (5.5)

It follows that the efficient monitoring of the Boolean semantics of SCL is linked to
the efficient evaluation of H(t)−p, which is possible if exists h sufficiently big such that
H(t+h) can be computed by reusing the value of H(t) previously stored. If the kernel is
a constant function (i.e., ∀t ∈ T, k(t) = k0), linear (i.e., ∀t0, t1 ∈ T, k(t0 + t1) = k(t0) +
k(t1)), or exponential (i.e., it satisfies the semigroup property: ∀t0, t1 ∈ T, k(t0 + t1) =
k(t0) · k(t1)), this can be efficiently done:

Constant: Hconst(t+ h)− p = H(t)− p+ IkT
(t+ T1, t+ T1 + h)− IkT

(t+ T0, t+ T0 + h).
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Linear: Hlin(t + h) − p = H(t) − p + IkT
(t+ T1, t+ T1 + h) − IkT

(t+ T0, t+ T0 + h) +
kT (−h)Hconst(t+ h).

Exponential: Hexp(t+h)−p = H(t)−p+IkT
(t+ T1, t+ T1 + h)−IkT

(t+ T0, t+ T0 + h)+
p(1− e−αh).

where IkT
(a, a+ h) =

∫ a+h

a
kT (τ − a)χ(s, τ, ϕ)dτ .

These relationships can be easily exploited to obtain an algorithm that computes
the values of H(t) − p. The computation can be optimized by suitably tracking the
times in which the signal χ(s, τ, ϕ) switches values. The algorithm is fully reported in
the following subparagraph.

The Algorithm. We now describe the monitoring algorithm for the convolution
formula χ(s, t, 〈k[T0,T1], p〉ϕ). The monitors for the others formulae are described in
[DFM13]. The Boolean signal can be decomposed (see [MN04]) in a sequence of disjoint
unitary signals U = U1+ · · ·+Un s.t. each U i(t) is true only in a single interval of time
[U i

0, U
i
1], false outside. We denote with subscript 0 the lower bounds and with subscript

1 the upper bound, whereas the superscript i indicates a specific unitary signal.
The key idea consists in monitoringH by choosing h such that between t and t+h the

Boolean signal χ(s, t, ϕ) assumes a constant value (i.e., 1 or 0) in [t+T0, t+T0+h] and
[t+T1, t+T1+h], respectively. Therefore, IkT

can be easily computed as the difference
of the primitive of kT evaluated in 0, h and T1−T0−h, T1−T0 multiplied by the constant
value assumes by the signal. For example if χ(s, τ, ϕ) = 1 if τ ∈ [t+ T0, t+ T0 + h] than
IkT

(t + T0, t + T0 + h) = KT (h) − KT (0) where KT is the primitive of the kernel kT .
Let us describes this procedure (Algorithm 3) in details. The algorithm takes as inputs
the interval [t, te] where we want to monitor χ(s, t, 〈k[T0,T1], p〉ϕ), the kernel k[T0,T1],
the Boolean signal χ(s, t, ϕ), and the threshold p ∈ [0, 1]. At line 1 the Boolean signal
χ(s, t, ϕ) is decomposed into a sequence of unitary signals as explain above, afterward
(line 2) the algorithm initializesH(t) to (k[T0,T1]∗U)(t), which is evaluated by a standard
integration technique, and the value of init and end, which are two integers pointing to
the first unitary signal (i.e, U init) such that U init

1 > t+ T0, and the last unitary signal
(i.e., Uend ) such that Uend

0 ≤ t+T1. A while cycle (line 4−32) performs the integration
step until the convolution is evaluated on the entire interval [t, te]. Depending on the
cases, if the bounds of the convolution window (i.e., t + T0 and t + T1) intersect an
unitary signal composing U , four different integration strategies are performed (blocks
at lines: 5 − 8, 9 − 12, 13 − 16, 17 − 20), and the proper value of the integration step
(i.e., h) which avoids discontinuity is also evaluated (lines: 6, 10, 14, 18). The value of
h, indeed, implies that between t and t + h no new intersection of unitary signals U i

with the convolution windows occurs. Afterward, the finite difference H(t+h)−H(t) is
stored in ∆H and the integration step (H(t+ h) = H(t) +∆H) is performed (line 21).
The value of this finite difference depends on the particular kernel used. It involves the
evaluation of the primitive of kT which we denote by capital letter KT plus other terms
(i.e, zero for the flat kernel, p(1− e−αh) for the exponential kernel, etc.).

If during this integration step H(t)−p changes sign (line 22), then the exact moment
is evaluated by means of a root finding routine (line 23). These time values define the
Boolean semantics of χ(s, t, 〈k[T0,T1], δ, p〉ϕ). Finally, in lines 25 − 30, the values of t,
init and end are updated and the cycle continues.
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Algorithm 3 (Approach I) Monitoring Algorithm: χ(s, t, 〈k[T0,T1], p〉ϕ)
Require: t, te, k[T0,T1], χ(s, t, ϕ), p
1: U ← Decompose(χ(s, t, ϕ))
2: H(t) = (k[T0,T1] ∗ U)(t)
3: initialize(init, end)

4: while (t < te) do
5: if (t+ T0 ∈ U init and t+ T1 ∈ Uend) then
6: h← min(t+ T0 − U init

1 , Uend
1 − t− T1)

7: ∆H ← KT (h)−KT (0) +KT (T1 − T0)−KT (T1 − T0 − h) + other terms.
8: end if
9: if (t+ T0 ∈ U init and t+ T1 6∈ Uend) then

10: h← min(t+ T0 − U init
1 , Uend+1

0 − t− T1)
11: ∆H ← KT (h)−KT (0) + other terms.
12: end if
13: if (t+ T0 6∈ U init and t+ T1 ∈ Uend) then
14: h← min(Uend

1 − t− T1, U init
0 − t− T0)

15: ∆H ← KT (T1 − T0)−KT (T1 − T0 − h) + other terms.
16: end if
17: if (t+ T0 6∈ U init and t+ T1 6∈ Uend) then
18: h← min(U init

0 − t− T0, Uend+1
0 − t− T1)

19: ∆H ← other terms.
20: end if

21: H(t+ h)← H(t) + ∆H
22: if (H(t+ h)− p) · (H(t)− p) ≤ 0) then
23: find({x ∈ [t, t+ h] | H(t+ x)− p = 0})
24: end if
25: t← t+ h
26: if (t+ T0 ≥ U init

1 ) then
27: init← init+ 1
28: end if
29: if (t+ T1 ≤ Uend

1 ) then
30: end← end+ 1
31: end if
32: end while

Boolean monitoring: approach II. The previous algorithm can be easily modified
to work with generic kernels. To see how to proceed, assume the signal χ(s, τ, ϕ) to be
unitary, namely that it is true in a single interval of time, say from time u0 to time u1,
and false elsewhere. In this case, it readily follows that the convolution with the kernel
will be non-zero only if the interval [u0, u1] intersects the convolution window t + T .
Inspecting Figure 5.3, we can see that sliding the convolution window forward of a small
time h corresponds to sliding the positive interval of the signal [u0, u1] of h time units
backward.
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In case [u0, u1] is fully contained into t+ T , by making h infinitesimal and invoking
the fundamental theorem of calculus, we can compute the derivative ofH(t) with respect
to time as d

dtH(t) = kT (u0−t)−kT (u1−t). By taking care of cases in which the overlap
is only partial, we can derive a general formula for the derivative:

d

dt
H(t) = kT (u0 − (t+ T0))I{u0 ∈ t+ T} − kT (u1 − (t+ T1))I{u1 ∈ t+ T}, (5.6)

where I is the indicator function, i.e., I{ui ∈ t+T} = 1 if ui ∈ t+T and zero otherwise,
and T = [T0, T1]. This equation can be seen as a differential equation that can be
integrated with respect to time by standard ODE solvers (taking care of discontinuities,
e.g., by stopping and restarting the integration at boundary times when the signal
changes truth value), returning the value of the convolution for each time t. The initial
value is H(t), that has to be computed integrating explicitly the kernel (or setting it to
zero if u0 ≥ T1). If the signal χ(s, t, ϕ) is not unitary, we have to add a term like the
right-hand side of 5.6 in the ODE of H(t) for each unitary component (positive interval)
in the signal. We also use a root finding algorithm integrated with the ODE solver to
detect when the property will be true or false, i.e., when H(t) will be above or below
the threshold p.

The Algorithm. We now describe this algorithm (Algorithm 4), which efficiently
evaluates the convolution between a generic kernel, kT , and a Boolean signal χ(s, t, ϕ).
It is simple customization of the Algorithm 3. In this case, indeed, in order to integrate
a general ODE defined in Equation (5.6) we have to bound the translation from H(t)
to H(t+ h) with a suitable integration step (i.e., h ≤ δ, see lines 6, 10, 14, 18). Also the
finite differences ∆H (lines: 7, 11, 15, 19) have a different update rule considering that
a generic kernel has no special properties w.r.t translation such as the constant, linear
or exponential kernels. It means that the effect of each unitary signal contained in the
convolution window during the translation has to be estimated separately (summation
at lines 7, 11, 15, 19). The other steps are the same as Algorithm 3.

Time Complexity. The time complexity of both the algorithms depends on the ini-
tialization phase (line 1−3) which is linear w.r.t the unitary signals composing χ(s, t, ϕ)
from t to t+ T1 plus the number of h translations needed to reach te multiplied by the
computational costs to evaluate the finite difference ∆H and eventually to solve the
equation at line 23. In the first approach, Algorithm 3, the computational cost depends
on the evaluation of the primitive function of the kernel kT which we denote by capital
letter KT and which is performed for a maximum of the quadruple of the unitary signals
composing χ(s, t, ϕ). For this reason the Algorithm 3 has a time complexity bounded
by O(|U |[t,te]) where |U |[t,te] is the number of unitary signals composing U between t
and te.

In the second approach Algorithm 4 that computational cost is proportional to the
cost of numerically integrating the differential equation 5.6 which is performed in lines
7, 11, 15, 19. Each integrations consists in the evaluation of the kernel kt on number
of points corresponding to the unitary signals composing χ(s, t, ϕ) in the convolution
windows t+ T . Using a solver with constant step size δ, the complexity is proportional
to the number of integration steps, times the number |U |[t,te] of unitary components
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Algorithm 4 (Approach II) Monitoring Algorithm: M〈k[T0,T1],p〉ϕ

Require: te, k[T0,T1], χ(s, t, ϕ), p, δ
1: U ← Decompose(χ(s, t, ϕ))
2: H(t) = (K[T0,T1] ∗ U)(t)
3: initialize(init, end)

4: while (t < te) do
5: if (t+ T0 ∈ U init and t+ T1 ∈ Uend) then
6: h← min(δ, t+ T0 − U init

1 , Uend
1 − t− T1)

7: ∆H ← KT (T0)−KT (T1) +
∑end−1

i=init+1(kT (U
i
0 − t)− kT (U i

1 − t))
8: end if
9: if (t+ T0 ∈ U init and t+ T1 6∈ Uend) then

10: h← min(δ, t+ T0 − U init
1 , Uend+1

0 − t− T1)
11: ∆H ← KT (T0) +

∑end
i=init+1(kT (U

i
0 − t)− kT (U i

1 − t))
12: end if
13: if (t+ T0 6∈ U init and t+ T1 ∈ Uend) then
14: h← min(δ, Uend

1 − t− T1, U init
0 − t− T0)

15: ∆H ← −KT (T1) +
∑end−1

i=init(kT (U
i
0 − t)− kT (U i

1 − t))
16: end if
17: if (t+ T0 6∈ U init and t+ T1 6∈ Uend) then
18: h← min(δ, U init

0 − t− T0, Uend+1
0 − t− T1)

19: ∆H ←∑end
i=init(kT (U

i
0 − t)− kT (U i

1 − t))
20: end if

21: H(t+ h)← H(t) + h ·∆H
22: if (H(t+ h)− p) · (H(t)− p) ≤ 0) then
23: find({x ∈ [t, t+ h] | H(t+ x)− p = 0})
24: end if
25: t← t+ h
26: if (t+ T0 ≥ U init

1 ) then
27: init← init+ 1
28: end if
29: if (t+ T1 ≤ Uend

1 ) then
30: end← end+ 1
31: end if
32: end while

5.3 Case Study: Artificial Pancreas

In this example, we show how SCL can be useful in the specification and monitoring of
the Artificial Pancreas (AP) systems. The AP is a closed-loop system of insulin-glucose
for the treatment of Type 1 diabetes (T1D). The T1D is a chronic disease caused by
the inability of the pancreas to secrete insulin, a hormone essential to regulate the
blood glucose level. In the AP system, a Continuous Glucose Monitor (CGM) detects
the blood glucose levels, and a pump delivers insulin through injection managed by a
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software-based controller.
The efficient design of control systems to automate the delivery of insulin is still an

open challenge for many reasons. Many activities are still under control of the patient,
e.g., increasing insulin delivery at meal times (meal bolus), and decreasing it during
physical activity. A complete automatic control includes many risks for the patient.
High level of glucose (hyperglycemia) implies ketoacidosis and low level (hypoglycemia)
can be fatal leading to death. The AP controller must tolerate many unpredictable
events such as pump failures, sensor noise, meals and physical activity.

Formal methods can be exploited to specify and control the key properties that the
system has to satisfy. However, standard verification procedures are not feasible, first
because we need efficient and fast monitoring processes able to detect events in vivo and
second because, even considering in silico models, the system has very large state-spaces
and is mostly affected by noise and disturbances. In this setting, simulation-based verifi-
cation techniques are a valid alternative. Furthermore, the quantitative semantics can be
used to detect potential failures. AP Controller Falsification via SMT solver [SPB+17a]
and robustness of STL [CFMS15] has been recently proposed. In particular, [CFMS15]
formulates a series of STL properties testing insulin-glucose regulatory system. Here we
show the advantages of using SCL for this task.

PID Controller. Consider a system/process which takes as input a function u(t)
and produces as output a function y(t). A PID controller is a simple closed-loop system
aimed at maintaining the output value y(t) as close as possible to a set point sp. It
continuously monitors the error function, i.e., e(t) = sp− y(t) and defines the input of

the systems according to u(t) = Kp · e(t)+Ki ·
∫ t

0
e(s)ds+Kd · d

dte(t). The proportional
(Kp), integral (Ki) and derivative (Kd) parameters uniquely define the PID controller
and have to be calibrated in order to achieve a proper behavior.

System. PID controllers have been successfully used to control the automatic infusion
of insulin in AP. In [SPB+17a], for example, different PID have been synthesized to
control the glucose level for the well studied Hovorka model [HCC+04]:

d

dt
G(t) = F(G(t), u(t),Θ), (5.7)

where the output G(t) represents the glucose concentration in blood and the input
u(t) is the infusion rate of bolus insulin which has to be controlled. The vector Θ =
(dg1, dg2, dg3, T1, T2) are the control parameters which define the quantity of carbo-
hydrates (dg1, dg2, dg3) assumed during the three daily meals and the inter-times be-
tween each of them T1 and T2. Clearly a PID controller for Equation (5.7) has to
guarantee that under different values of the control parameters Θ the glucose level
remains in the safe region G(t) ∈ [70, 180]. In [SPB+17a] four different PID that sat-
isfy the safe requirement, have been discovered by leveraging SMT solver under the
assumption that the inter-times T1 and T2 are both fixed to 300 minutes (5 hrs) and
that (dg1, dg2, dg3) ∈ (N (40, 10),N (90, 10),N (60, 10)), which correspond to the aver-
age quantity of carbohydrates contained in breakfast, lunch and dinner. (N (µ, σ2) is
the Gaussian distribution with mean µ and variance σ2). Here, we consider the PID
controller C1 which has been synthesized in [SPB+17a] by fixing the glucose setting
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point sp to 110mg/dl and maximizing the probability to remain in the safe region, pro-
vided a distribution of the control parameter Θ as explained before. We consider now
some properties which can be useful to check expected or anomalous behaviors of an
AP controller.

Hypoglycemia and Hyperglycemia. Consider the following informal specifications:
never during the day the level of glucose goes under 70mg/dl, and never during the
day the level of glucose goes above 180mg/dl, which technically mean that the patient
is never under Hypoglycemia or hyperglycemia, respectively. These behaviours can
be formalized with the two STL formulas ϕHO

STL = G[0,24h]G(t) ≥ 70 and ψHR
STL =

G[0,24h]G(t) ≤ 180. The problem of STL is that it does not distinguish if these two
conditions is violated for a second, few minutes or even hours. It only says those
events happen. Here we propose stricter requirements described by the two following
SCL formulas ϕHO

SCL = 〈flat[0,24h], 0.95〉G(t) ≥ 70 for the Hypoglycemia regime, and
ϕHR
SCL = 〈flat[0,24h], 0.95〉G(t) ≤ 180 for the hyperglycemia regime. We are imposing

not that the globally in a day the hypoglycemia and the hyperglycemia event never
occur, but that these conditions persist for at least 95% of the day (i.e., 110 minutes).
We will show above in a small test case how this requirement can be useful.

Prolongated Conditions. As already mentioned in the motivating example, the
most dangerous conditions arise when hypoglycemia or hyperglycemia last for a pro-
longated period of the day. In this context a typical condition is the Prolongated Hy-
perglycemia which happens if the total time under hyperglycemia (i.e., G(t) ≥ 180)
exceed the 70% of the day, or the Prolongated Severe Hyperglycemia when the
level of glucose is above 300mg/dl for at least 3 hrs in a day. The importance of these
two conditions has been explained in [SKC+17], however the authors cannot formal-
ized them in STL. On the contrary, SCL is perfectly suited to describe these conditions
as shown by the following two formulas: ϕPHR

SCL = 〈flat[0,24h], 0.7〉G(t) ≥ 180 and
ϕPSHR
SCL = 〈flat[0,24h], 0.125〉G(t) ≥ 300. Here we use flat kernels to mean that the pe-

riod of a day where the patient is under Hyperglycemia or Severe Hyperglycemia does
not count to the evaluation of the Boolean semantics. Clearly, a hyperglycemia regime
in different times of the day can count differently. In order to capture this “preference”
we can use non-constant kernels.

Correctness of the insulin delivery. During the hypoglycemia regime the insulin
should not be provided. The SCL formula: G[0,24h](〈flat[0,10min], 0.95〉G(t) ≤ 70 →
〈flat[0,10min], 0.90〉 I ≤ 0) states that if during the next 10 minutes the patient is in
hypoglycemia for at least the 95% of the time then the delivering insulin pump is shut
off (i.e., I ≤ 0) for at least the 90% of the time. This is the “cumulative” version of
the STL property G[0,24h](G(t) ≤ 70→ I ≤ 0) which says that in hypoglycemia regime
no insulin should be delivered. During the hyperglycemia regime the insulin should
be provided as soon as possible. The property SCL formula: G[0,24h](G(t) ≥ 300 →
〈exp[−1][0,10min], 0.9〉 I ≥ k) says that if we are in severe hyperglycemia regime (i.e.,
G(t) ≥ 300) the delivered insulin should be higher than k for at least the 90% of the
following 10 minutes. We use a negative exponential kernel to express (at the robustness
level) the preference of having a higher value of delivered insulin as soon as possible.
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Figure 5.4: (left),(middle) The solution of the SCL formula falsification (red line)
maximize the time under hypoglycemia (left) and hyperglycemia (right), whereas the
solution of the STL formula falsification (blue line) maximizes the displacement w.r.t
the predicate thresholds. (right) Solution of the falsification for the SCL properties
ϕPHR
SCL (blue line) and ϕPHR

SCL(Gauss) (red line) which implement flat and gauss kernel,
respectively.

Test Case: falsification. As a first example we show how SCL logic can be effec-
tively used for falsification. The AP control system has to guarantee that the level of
glucose remains in a safe region, as explained before. The falsification approach con-
sists in identifying the control parameters (Θ∗) which force the system to violate the
requirements, i.e., to escape from the safe region. The standard approach consists in
minimizing the robustness of suited temporal logic formulas which express the afore-
mentioned requirements, e.g. ϕHR

SCL, ϕ
HO
SCL. In this case the minimization of the STL

robustness forces the identification of the control parameters which causes the genera-
tion of trajectories with a maximum displacement under the threshold 70 or above 180.
To show differences among the STL and SCL logics, we consider the PID C1 + Hov-
orka model and perform a random sampling exploration among its input parameters.
At each sampling we calculate the robustness of the STL formulas ϕHO

STL and the SCL
formula ϕHO

SCL and separately store the minimum robustness value. For this minimum
value, we estimate the maximum displacement with respect to the hypoglycemia and
hyperglycemia thresholds and the maximum time spent violating the hypoglycemia and
hyperglycemia thresholds. Fig. 5.4(left, middle) shows the trajectory with minimum
robustness. We can see that the trajectory which minimizes the robustness of the STL
formula has a higher value of the displacement from the hypoglycemia (13) and hyper-
glycemia (98) thresholds than SCL trajectory (which are 11 and 49 respectively). On
the contrary, the trajectory which minimizes the robustness of the SCL formula remains
under hypoglycemia (for 309 min) and hyperglycemia (for 171 min) longer than the STL
trajectory (189 min and 118 min, respectively). These results show how the convolu-
tional operator and its quantitative semantics can be useful in a falsification procedure.
This is particularly evident in the Hyperglycemia case (Fig. 5.4 (middle) ) where the
falsification of the SCL hyperglycemia formula ϕHR

SCL shows two subintervals where the
level of glucose is above the threshold. In order to show the effect of non-homogeneous
kernel, we perform the previous experiment, with the same setting, for properties ϕPHR

SCL

and ϕPHR
SCL(Gauss). From the results (Fig. 5.4 (right)) is evident how the Gaussian kernel

of property ϕPHR
SCL(Gauss) forces the glucose to be higher of the hyperglycemia threshold
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noise free with noise
h55 h60 h65 h70 h55 h60 h65 h70

F[0, 24h] 0.00 0.19 0.81 1.00 0.98 1.00 1.00 1.00
〈flat[0,24], 0.03〉 0.00 0.00 0.20 0.91 0.00 0.02 0.77 1.00

Table 5.2: Results of the falsification test case. The performance of STL and SCL
formulas verified on the PID C1 +Hovorka model with noise and noise free are compared.
The STL formula on the noisy model is uninformative.

just before the first meal (t ∈ [0, 200]) and ignores for example the last meal (t ≥ 600).

Test Case: noise robustness. Now we compare the sensitivity to noise of SCL
and STL formulae. We consider three degrees of hypoglycemia hk(t) = {G ≤ k},
where k ∈ {55, 60, 65, 70} and estimate the probability that the Hovorka model con-
trolled by the usual PID C1 (i.e., PID C1 + Hovorka Model) satisfies the STL formulas
ϕk
STL = F[0, 24h]hk and the SCL formulas ϕk

SCL = 〈flat[0,24h], 0.03〉hk under the usual
distribution assumption for the control parameters Θ. The results are reported in col-
umn “noise free” of Table 5.2. Afterwards, we consider a noisy outcome of the same
model by adding a Gaussian noise, i.e., ε ∈ N (0, 5), to the generated glucose trajectory.
We estimate the probability that this noisy system satisfies the STL and SCL formulas
above, see column “with noise” of Table 5.2. The noise corresponds to the disturbance
of the original signals which can occur, for example, during the measurement process.

As shown in Table 5.2, the probability estimation of the STL formulas changes
drastically with the addition of noise (the addition of noise forces all the trajectory to
satisfy the STL formula). On the contrary, the SCL formulas ϕk

SCL are more stable
under noise and can be even used to approximate the probability of the STL formulas
on the noise-free model. To better asses this, we checked how much the STL formula
ϕk
STL and the SCL formula ϕk

SCL, evaluated in the noisy model, agree with the STL
formula ϕk

STL evaluated in the noise-free model, by computing their truth value on 2000
samples, each time choosing a random threshold k ∈ [50, 80]. The score for STL is 56%,
while SCL agrees on 78% of the cases.

5.4 Conclusion and Future Works

We have introduced SCL, a novel specification language that employs signal processing
operations to reason about temporal behavioural patterns. The key idea is the definition
of a family of modal operators which compute the convolution of a kernel with the signal
and check the obtained value against a threshold. Our case study on monitoring glu-
cose level in artificial pancreas demonstrates how SCL empowers the classical temporal
logic operators (i.e., such as finally and globally) with noise filtering capabilities, and
enable us to express temporal properties with soft time bounds and with nonsymmetric
treatment of time instants in a unified way. The convolution operator of SCL can be
seen as a syntactic bridge between temporal logic and digital signal processing, trying
to combine the advantages of both these two worlds. This point of view can be explored
further, bringing into the monitoring algorithms of SCL tools from frequency analysis
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of signals. Future work includes the release of a Python library and the design of effi-
cient monitoring algorithms also for the quantitative semantics. Finally, we also plan
to develop online monitoring algorithms for real-time systems using hardware dedicated
architecture such as field-programmable gate array (FPGA) and digital signal processor
(DSP).
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6
Classification of Trajectories

Learning temporal logic requirements from temporal data is an emergent research field
gaining momentum in the rigorous engineering of cyber-physical systems. Classical ma-
chine learning methods typically generate very powerful black box (statistical) models.
However, these models often do not help in the comprehension of the phenomenon they
capture. Temporal logic provides a precise formal specification language that can be
easily interpreted by humans. The possibility to describe data sets in a concise way
using temporal logic formulae can thus help to better clarify and comprehend which
are the emergent patterns for the system at hand. A clearcut example is the prob-
lem of anomaly detection, where the input is a set of trajectories describing regular or
anomalous behaviors, and the goal is to learn a classifier that not only can be used to
detect anomalous behaviors at runtime, but also gives insights on what characterizes
an anomalous behavior. Learning temporal properties is also relevant in combination
with state of the art techniques for search-based falsification of complex closed-loop
systems [ZSD+15, SKC+17, BBNS15, SPB17b], as it can provide an automatic way to
describe unwanted (or desired) behaviors that the system needs to satisfy.

In this contribution, we consider the problem of learning a temporal logic specifica-
tion from a set of trajectories which are labeled either as good for the normally expected
behaviors or as bad for the anomalous ones. The goal is to automatically synthesize both
the structure of the formula and its parameters providing a temporal logic classifier that
can discriminate as much as possible the bad and the good behaviors. This specification
can be turned into a monitor that outputs a positive verdict for good behaviors and a
negative verdict for bad ones.

Related Work. Mining temporal logic requirements is an emerging field of research in
the analysis of cyber-physical systems [ADMN11, YHF12, BBS14a, JDDS15, NKJ+17,
ZRWT17, KJB17, BVP+16, BBS+14b].

This approach is orthogonal to Active Automata Learning (AAL) such as L∗ An-
gluin’s algorithm [Ang87] and its recent variants [IHS14, SHI12]. AAL is suitable to
capture the behaviours of black box reactive systems and it has been successfully em-
ployed in the field of Cyber-physical Systems (CPS) to learn how to interact with the
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surrounding environments [CDKM13, FTHC14]. Mining temporal logic requirements
has the following advantages with respect to AAL. The first is that it does not require
to interact with a reactive system. AAL needs to query the system in order to learn
a Mealy machine representing the relation between the input provided and the output
observed. Mining temporal logic requirements can be applied directly to a set of ob-
served signals without the necessity to provide any input. The second is the possibility
to use temporal logic requirements within popular tools (such as Breach [Don10] and
S-TaLiRo [ALFS11a]) for monitoring and falsification analysis of CPS models.

Most of the literature relates to Parametric Signal Temporal Logic (PSTL), which
extends Signal Temporal Logic (STL) by allowing parametrization of formulae. In
[ADMN11], where PSTL was introduced, the authors provided a geometric approach
to identify a subset of formula’s parameters which makes a signal to satisfy that for-
mula. Xu et al. have recently proposed in [XJ18] a temporal logic framework called
CensusSTL for multi-agent systems that consists of an outer logic STL formula with a
variable in the predicate representing the number of agents whose satisfying an inner
logic STL formula. In the same paper the authors also propose a new inference algorithm
similar to [ADMN11] that given the templates for both the inner and outer formulas,
searches for the optimal parameter values that make the two formulas capturing the tra-
jectory data of a group of agents. In [HDF18] the authors use the same parametric STL
extension in combination with the quantitative semantics of STL to perform a counter-
example guided inductive parameter synthesis. This approach consists in iteratively
generating a counterexample by executing a falsification tool for a template formula.
The counterexample found at each step is then used to further refine the parameter set
and the procedure terminates when no other counterexamples are found. In general, all
these methods, when working directly with raw data are potentially vulnerable to the
noise of the measurements and are limited by the amount of data available.

Learning both the structure and the parameters of a formula from a data set poses
even more challenges [KJB17, BVP+16, BBS14a, BBS+14b].This problem is usually
addressed in two steps, learning the structure of the formula and synthesizing its pa-
rameters. In particular, in [KJB17] the structure of the formula is learned by exploring
a directed acyclic graph and the method exploits Support Vector Machine (SVM) for
the parameter optimization. In [BVP+16] the authors use instead a decision tree based
approach for learning the formula, while the optimality is evaluated using heuristic im-
purity measures. In [BBS14a] the structure of the formula is learned using a heuristics
algorithm, while in [BBS+14b] using a genetic algorithm. The synthesis of the param-
eters is instead performed in both cases using the Gaussian Process Upper Confidence
Bound (GP-UCB) algorithm. GP-UCB provides a statistical emulation of the satisfac-
tion probability (and not of the average robustness as in this chapter) of a formula for
a given set of parameters. Both these methods require learning first a statistical model
from the training set of trajectories.

Contribution. The approach presented in this chapter instead is based on the ideas of
[BBS+14b, BBS14a], but does not require to learn a statistical model of the training set
of trajectories. Furthermore, we introduce some techniques to improve the performance
and to deal with the noise of the data, an even more important issue in the absence of
an underlying model.
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First, instead of using the probability satisfaction as an evaluator for the best for-
mula, we consider the average robustness (Section 2.5) which enables us to differentiate
among STL classifiers that have similar classification performance with respect to the
data by choosing the most robust one. This gives us more information than just having
the probability of satisfaction: for each trajectory, we can evaluate how much is it close
to the “boundary” of the classifier, instead of only checking whether it satisfies or not a
formula. We then modify the discrimination function and the GP-UCB algorithm (Sub-
section 4.1.1) used in [BBS14a] and [BBS+14b] to better deal with the noise of the data
and to use the quantitative semantics to emulate the average robustness distribution
with respect to the parameter space of the formula.

Second, we reduce the computational cost of the Evolutionary Algorithm (EA) (im-
plemented in [BBS+14b]), by using a lightweight configuration (i.e., a low threshold of
the max number of iterations) of the GP-UCB optimization algorithm to estimate the
parameters of the formulae at each generation. The EA algorithm generates, as a final
result, an STL formula tailored for classification purpose.

Finally, we compare our framework with the methodology of [BBS+14b] and with
the decision-tree based approach presented in [BVP+16] on an anomalous trajectory
detection problem of naval surveillance.

6.1 Problem Formulation

Let us start with the definition of the parametric signal temporal logic which we use in
the rest of this chapter.

PSTL Parametric Signal Temporal Logic [ADMN11] is an extension of STL that
parametrizes the formulae. There are two types of formula parameters: temporal param-
eters, corresponding to the time bounds in the time intervals associated with temporal
operators (e.g., a, b ∈ R

+
0 , with a < b, s.t. F[a,b]µ) and the threshold parameters corre-

sponding to the constants in the inequality predicates (e.g., k ∈ R, µ = xi > k, where
xi is a variable of the trajectory). In this work, we allow only atomic propositions of
the form µ = xi ⊲⊳ k with ⊲⊳∈ {>,≤}. Given an STL formula ϕ, let K = (T × C)
be the parameter space, where T ⊆ (R+

0 )
nt is the temporal parameter space (nt being

the number of temporal parameters), and C ⊆ R
nk is the threshold parameter space

(nk being the number of threshold parameters). A ϑ ∈ K is a parameter configuration
that induces a corresponding STL formula; e.g., ϕ = F[a,b](xi > k),ϑ = (0, 2, 3.5) then
ϕϑ = F[0,2](xi > 3.5).

We focus our attention on learning the best property (or set of properties) that
discriminates trajectories belonging to two different classes, say good and bad, start-
ing from a labeled data set of observed trajectories. Essentially, we want to tackle a
supervised two-class classification problem over paths, by learning a temporal logic dis-
criminant, describing the temporal patterns that better separate two sets of observed
paths.

The idea behind this approach is that there exists an unknown procedure that, given
a temporal trajectory, is able to decide if the signal is good or bad. This procedure can
correspond to many different things, e.g., to the reason of failure of a sensor that breaks
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when it receives specific inputs. Our task is to approximate this unknown procedure
with an STL monitoring algorithm. In general, as there may not be an STL formula that
perfectly explains/mimics the unknown process, our task is to find the most effective
one.

The approach we present here works directly with observed data and avoids the
reconstruction of an intermediate generative model p(x|c) of trajectories x conditioned
on their class c, as in [BBS+14b, BBS14a]. The reason is that such models can be
hard to construct, even if they provide a powerful regularization, as they enable the
generation of an arbitrary number of samples to train the logic classifier.

In a purely data-driven setting, to build an effective classifier, we need to deal with
the fact that training data is available in limited amounts and it is typically noisy. This
reflects the necessity of finding methods that guarantee good generalization performance
and avoid overfitting. In our context, overfitting can result in overly complex formulae,
de facto encoding the training set itself rather than guessing the underlying patterns
that separate the trajectories. This can be faced by using a score function based on the
robustness of temporal properties, combined with suitably designed regularizing terms.

We want to stress that the approach we present here, due to the use of the av-
erage robustness of STL properties, can be easily tailored to different problems, like
apprenticeship learning, i.e., finding the property that best characterizes a single set of
observations.

6.2 Methodology

Learning an STL formula can be separated into two optimization problems: the learning
of the formula structure and the synthesis of the formula parameters. The structural
learning is treated as a discrete optimization problem using Genetic Algorithm (GA);
the parameter synthesis, instead, considers a continuous parameter space and exploits
an active learning algorithm called Gaussian Process Upper Confidence Bound (GP-
UCB) algorithm. The two techniques are not used separately but combined together in
a bi-level optimization. The GA act externally by defining a set of template formulae.
Then, the GP-UCB algorithm, which acts at the inner level, finds the best parameter
configuration such that each template formula better discriminates between the two data
sets. To apply this second optimization we need to define a score function to optimize,
encoding the criterion to discriminate between the two data sets.

Our implementation, called RObustness GEnetic (ROGE) algorithm is described
in Algorithm 5. First, we give an overview of it and then we described each specific
function in the next subsections. The algorithm requires as input the data set Dp(good)
and Dn(bad), the parameter space K, with the bounds of each formula parameters,
the size of the initial set of formulae Ne, the number of iterations Ng, the mutation
probability α and the initial formula size s.

line 1) It starts generating an initial set of PSTL formulae, called gen.

line 2) For each of these formulae, the algorithm learns the best parameters accordingly
to a discrimination function G. We call genΘ the generation for which we know
the best parameters of each formula.
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line 3) The algorithm starts the iterations.

line 4) The algorithm, guided by a fitness function F, extracts a subset subgΘ composed
by the best Ne/2 formulae, from the initial set genΘ. The formulae are extracted
proportionally to their fitness values (e.g., a formula with a double F-value w.r.t
to another one, has a doubled probability to be sampled).

line 5) From this subset, a new set newg composed of Ne formulae is created by em-
ploying the Evolve routine, which implements two genetic operators.

line 6) As in line 2, the algorithm identifies the best parameters of each formula be-
longing to newg.

line 7) The new generation newgΘ and the old generation genΘ are then merged to-
gether. From this set of 2Ne formulae the algorithm extracts, with respect to the
fitness function F , the new generation genΘ of Ne formulae.

line 9) At the end of the iterations, the algorithm returns the last generated formulae.
The best formula is the one with the highest value of the discrimination function,
i.e., ϕbest = argmaxϕϑ∈genΘ

(G(ϕϑ)).

We describe below in order: the discrimination function, the learning of the formula
parameters and the learning of the formula structure.

6.2.1 Discrimination Function

We have two data sets Dp and Dn and we search for the formula ϕ that better separates
these two classes. We define a function able to discriminate between this two data
sets, such that maximizing this discrimination function corresponds to finding the best
formula classifier. We decide to use, as evaluation of satisfaction of each formula, the
quantitative semantics of STL. As described in Subsection 2.1.1, this semantics returns
a real-value of satisfaction instead of only a yes/no answer.

Given a data set Di, we assume that the data comes from an unknown stochastic
process M. The process, in this case, is like a black box for which we observe only a
subset of trajectories, the data set Di. We can then evaluate the averages robustness
E(Rϕ|M) and its variance σ2(Rϕ|M), averaging over Di, (see Section 2.5).

To discriminate between the two data sets Dp and Dn, we search the formula ϕ that
maximizes the difference between the average robustness of Mp, E(Rϕ|Mp), and the
average robustness of Mn, E(Rϕ|Mn) divided by the sum of the respective standard
deviation.

G(ϕ) =
E(Rϕ|Mp)− E(Rϕ|Mn)

σ(Rϕ|Mp) + σ(Rϕ|Mn)
(6.1)

This formula is proportional to the probability that a new point sampled from the same
distribution of points generatingMp orMn, will belong to one set and not to the other.
In fact, an higher value of G(ϕ) implies that the two average robustness scores will be
sufficiently far away, compared to their length-scale, given by the standard deviation σ.

As said above, we can evaluate just a statistical approximation of G(ϕ) because we
are working with just evaluations of the unknown functions E(Rϕ|M). We will see in
the next paragraph how we tackle this problem.
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6.2.2 GP-UCB: learning the parameters of the formula

Given a formula ϕ and a parameter space K, we want to find the parameter configuration
ϑ ∈ K that maximises the score function g(ϑ) := G(ϕϑ), considering that we have only
noise and costly evaluation of it. The question is therefore how to best estimate (and
optimize) an unknown function from observations of its value at a finite set of input
points. This is a classic non-linear non-convex optimization problem that we tackle by
means of the GP-UCB algorithm (Subsection 4.1.1). This algorithm interpolates the
noisy observations using a stochastic process (a procedure called emulation in statistics)
and optimize the emulation function using the uncertainty of the fit to determine regions
where the true maximum can lie. More specifically, the GP-UCB bases its emulation
phase on Gaussian Processes (GP), a Bayesian non-parametric regression approach,
adding candidate maximum points to the training set of the GP in an iterative fashion,
and terminating when no improvement is possible (see Section 4.1 and [SKKS12] for
more details). After this optimization, we have found a formula that separates the two
data sets, not from the point of view of the satisfaction (yes/no) of the formula but
from the point of view of the robustness value. In other words, there is a threshold
value α such that E(Rϕ|Mp) > α and E(Rϕ|Mn) ≤ α. Now, we consider the new
STL formula ϕ′ obtained translating the atomic predicates of ϕ by α (e.g., y(x) > 0
becomes y(x)−α > 0). Taking into account that the quantitative robustness is achieved
by combination of min, max, inf and sup, which are linear algebraic operators w.r.t
translations (e.g, min(x, y)±c = min(x±c, y±c)), we easily obtain that E(Rϕ′ |Mp) > 0
and E(Rϕ′ |Mn) < 0. Therefore, considering the soundness of the robustness semantics
of STL, we have that ϕ′ divides the two data set also from the point of view of the
satisfaction.

We remark that the use of the robustness degree of STL hampers to use the minimal
representation of the formula. Indeed, even if the minimal representation has the same
Boolean satisfaction it can have different robustness values.

6.2.3 Genetic Algorithm: learning the structure of the formula

To learn the formula structure, we exploit a modified version of the Genetic Algorithm
(GA) presented in [BBS+14b]. In Section 4.2 we provide an overview of this approach.
Genetic Algorithms belong to the larger class of evolutionary algorithms (EA). They
are used for search and optimization problems. The strategy takes inspiration from the
genetic area, in particular in the selection strategy of species. Let us see now in detail
the genetic routines of the ROGE algorithm.

gen = ❣❡♥❡r❛t❡■♥✐t✐❛❧❋♦r♠✉❧❛❡(Ne, s). This routine generates the initial set of
Ne formulae. A fraction nl < Ne of this initial set is constructed by a subset of
the temporal properties: FIµ, GIµ, µ1UIµ2, where the atomic predicates are of the
form µ = (xi > k) or µ = (xi ≤ k) or simple Boolean combinations of them (e.g.,
µ = (xi > ki)∧ (xj > kj)). The size of this initial set is exponential w.r.t the number of
considered variables xi. If we have few variables we can keep all the generated formulae,
whereas if the number of variables is large we consider only a random subset. The
remain nr = Ne − nl formulae are chosen randomly from the set of formulae with a
maximum size defined by the input parameter s. This size can be adapted to have a
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Algorithm 5 ROGE – RObustness GEnetic Algorithm

Require: Dp,Dn,K, Ne,Ng, α, s
1: gen← generateInitialFormulae(Ne, s)
2: genΘ ← learningParameters(gen,G,K)
3: for i = 1 . . . Ng do
4: subgΘ ← sample(genΘ, F )
5: newg ← evolve(subgΘ, α)
6: newgΘ ← learningParameters(newg,G,K)
7: genΘ ← sample(newgΘ ∪ genΘ, F )
8: end for
9: return genΘ

wider range of initial formulae.

subgΘ = s❛♠♣❧❡(genΘ, F ). This procedure extracts from genΘ a subset subgΘ ofNe/2
formulae, accordingly to a fitness function F (ϕ) = G(ϕ)−S(ϕ). The first factor G(ϕ) is
the dicrimination function previously defined and S(ϕ) is a size penalty, i.e., a function
penalizing formulae with large size. In this contribution, we consider S(ϕ) = g ·psize(ϕ),
where p is heuristically set such that p5 = 0.5, i.e., formulae of size 5 get a 50% penalty,
and g is adaptively computed as the average discrimination in the current generation.
An alternative choice of p can be done by cross-validation.

newg = ❡✈♦❧✈❡(subgΘ, α). This routine defines a new set of formulae (newg) starting
from subgΘ by exploiting two genetic operators: the recombination and the mutation
operator. The recombination operator takes as input the tree structure of two for-
mulae ϕ1, ϕ2 (the parents), it randomly chooses a subtree from each formula and it
swaps them, i.e., it assigns the subtree of ϕ1 to ϕ2 and viceversa. As a result, the two
generated formulae (the children) share different subtrees of the parents’ formulae. The
mutation operator takes as input a formula and induces small randomized changes (such
as inequality flips, temporal operator substitution, etc.) on a randomly selected node
of its tree-structure. The purpose of the genetic operators is to introduce innovation
in the offspring population which leads to the optimization of a target function (G in
this case). In particular, the recombination is related to the exploitation, whereas the
mutation to the exploration.

The evolve routine implements an iterative loop that at each iteration selects which
genetic operators to perform. A number p ∈ [0, 1] is randomly sampled. If its value is
lower than the mutation probability, i.e., p ≤ α, then the mutation is selected, otherwise
the recombination. At this point the input formulae of the selected genetic operator are
chosen randomly between the formulas composing subgΘ and the genetic operations is
performed. The iteration loops will stop when the number of generated formula is the
double of the cardinality of subgΘ.

In our implementation, we give more importance to the exploitation; therefore the
mutation acts less frequently than the recombination (i.e., α ≤ 0.1).
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6.2.4 Regularization

In the evolutionary algorithm, we use two strategies to penalize complex formulae and
bias the algorithm towards simple ones. The first strategy is to use a size penalty
S(ϕ) in the fitness function: F (ϕ) = G(ϕ) − S(ϕ). In this work, we consider S(ϕ) =
g · psize(ϕ), where p is heuristically set such that p5 = 0.5, i.e., formulae of size 5 get a
50% penalty, and g is adaptively computed as the average discrimination in the current
generation. An alternative choice of p can be done by cross-validation. The second
strategy, instead, consists in selecting the initial population biasing it towards simple
formulae. In particular, this set is constructed by (a) a subset of random formulae and
(b) a subset of logically non-equivalent temporal properties of size 1, of the form FIµ,
GIµ, µ1UIµ2, where the atomic predicates µ are sampled from the subset of all atomic
predicates (with threshold zero) or simple Boolean combinations of them.

6.3 Case Study: Maritime Surveillance

We consider the maritime surveillance case study presented in [BVP+16] to compare our
framework with their Decision Tree (DTL4STL) approach. The experiments with the
DTL4STL approach were implemented in Matlab with the code available at [DTL16].
We also test the implementation presented in [BBS+14b] with the same benchmark.
Both the new an the previous learning procedure were implemented in JAVA (JDK
1.8 0) and run on a Dell XPS, Windows 10 Pro, Intel Core i7-7700HQ 2.8 GHz, 8GB
1600 MHz memory.

The synthetic data set of naval surveillance reported in [BVP+16] consists of 2-
dimensional coordinates traces of vessels behaviors. It considers two kinds of anomalous
trajectories and regular trajectories, as illustrated in Figure 6.1. The data set contains
2000 total trajectories (1000 normal and 1000 anomalous) with 61 sample points per
trace. We fixed the training set as the 80% of the entire data set and the validation set
as the rest 20% of the traces.
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Figure 6.1: The regular trajectories are represented in green. The anomalous trajectories
which are of two kinds, are represented respectively in blue and red.



6.3. Case Study: Maritime Surveillance 75

ROGE DTL4STL DTL4STLp

Mis. Rate 0 0.01± 0.01 0.007± 0.008
Comp. Time 73± 18 144± 24 -

Table 6.1: The comparison of the computational time (in seconds), the mean miss-
classification rate and its standard deviation between the learning procedure using the
RObust GEnetic algorithm, the Decision-Tree (DTL4STL) Matlab code provided by the
authors and the results reported in [BVP+16] (DTL4STLp).

We run the experiments using a 10-fold cross-validation to collect the mean and vari-
ance of the misclassified trajectories of the validation set. The implementation presented
in [BBS+14b] performs so poorly on the chosen benchmark that is not meaningful to
report it: the misclassification rate on the validation set is around 50%.

The other obtained performances are presented in Table 6.1 as well as the average and
variance of the execution time. We also report the DTL4STL performance (DTL4STLp

in Table 6.1) declared in [BVP+16], but we were not be able to reproduce them in our
setting.

An example of the formula that we learn with ROGE is

ϕ = (x2 > 22.46)U[49,287] (x1 ≤ 31.65) (6.2)

DTL4STL instead does not consider the until operator in the set of primitives (see
[BVP+16] for more details) and the formula found by the tool using the same data set
is the following:

ψ = (((G[187,196)x1 < 19.8) ∧ (F[55.3,298)x1 > 40.8)) ∨
((F[187,196)x1 > 19.8) ∧ ((G[94.9,296)x2 < 32.2) ∨

((F[94.9,296)x2 > 32.2) ∧ (((G[50.2,274)x2 > 29.6) ∧
(G[125,222)x1 < 47)) ∨ ((F[50.2,274)x2 < 29.6) ∧

(G[206,233)x1 < 16.7))))))

The specific formula generated using ROGE is simpler than the formula generated
using DTL4STL and indeed it is easier to understand it. More specifically, the formula
6.2 identifies all the regular trajectories, remarkably resulting in a misclassification error
equal to zero, as reported in Table 6.1. The red anomalous trajectories falsify the
predicate x2 > 22.46 before verifying x1 ≤ 31.65, on the contrary the blue anomalous
trajectories globally satisfy x2 > 22.46 but never verify x1 ≤ 31.65 (consider that all the
vessels start from the top right part of the graphic in Figure 6.1). Both these conditions
result in the falsification of the formula 6.2, which on the contrary is satisfied by all
the regular trajectories. In Figure 6.1, we have reported the threshold x2 = 22.46 and
x1 = 31.65. In terms of accuracy, our approach is comparable w.r.t. the performance
of the DTL4STL approach shown in [BVP+16]. Similarly to other EA based approach,
ROGE needs to be configured in some of its parameters (such as the mutation, the
recombination probability, the fitness function and the initial population) meaning that
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a specific setting can influence its performance.

6.4 Conclusion and Future Works

We present a framework to learn a Signal Temporal Logic (STL) specification from a
labeled data set of regular and anomalous trajectories that better discriminates them
in two subsets. In particular, we design a RObust GEnetic algorithm (ROGE) that
combines an evolutionary algorithm for learning of the structure of the formula and the
Gaussian process upper confidence bound algorithm for the synthesis of the formula pa-
rameters. We compare ROGE with [BBS+14b] and the decision tree approach presented
in [BVP+16] on an anomalous trajectory detection problem of a maritime surveillance
system.

With respect to the previous work [BBS14a, BBS+14b], we avoid the reconstruction
of a generative statistical model for the data set and present a procedure that works
well also directly with the data set. Furthermore, to improve the quality of the learn-
ing procedure, we modify both the structure and the parameters of the optimization
algorithms. Concerning the learning of the structure, we modify the evolutionary al-
gorithm drastically improving its performance, in particular, we change the policy to
choose the initial formula generation and we simplify the genetic operators of muta-
tion and recombination. Concerning the learning of the parameters, we leverage the
average robustness (using the STL quantitative semantics) to discriminate also between
two trajectories satisfying the same STL specification, but with two distinct robustness
values that can be separated by a threshold. This provides more information that can
be exploited in the optimization process.

We observe that the application of the approach [BBS+14b] directly on the data set
of the naval surveillance system considered here, performs very poorly. We compare
our method also with the Decision Tree (DTL4STL) approach of [BVP+16] showing
that we have a comparable accuracy producing smaller and easier to understand STL
specifications. Furthermore, we do not restrict the class of the temporal formula to only
eventually and globally and we do not impose only one possible temporal nesting. On the
other hand, the genetic algorithm can get completely wrong results if the initial formula
generation is chosen completely randomly. Note that our choice of initial formulae is a
way to bias the search towards simple properties, i.e., it is a form of regularization and
resembles the choice of the set of primitive in the DTL4STL approach.

As future work, we aim to improve the genetic algorithm avoiding the optimization of
similar formulae. We plan to exploit a Bootstrap aggregating (i.e., Bagging) technique
to face the overfitting problem and guarantee good generalization performance. The
idea is to generate new subsets from the initial one, through a uniform sampling with
replacement, and apply the genetic algorithm to each subset. This will decrease the
effect of possible biases in the initial distribution of the data. Finally, we plan also to
test our procedure in more interesting case studies, particularly in the presence of strong
noise in the data sets, where we believe our method can exhibit good results.
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Parameter Synthesis

Stochastic models are used to describe and simulate a wide range of dynamical systems,
such as biological processes, chemical reactions, and networks dynamics. The most suc-
cessful representations is this scenarios are Chemical Reaction Networks (CRN) (Defi-
nition 4, Section 1.2), stochastic Petri nets [Haa04] and population models [BHLM13b].
All these representations underline a CTMC which under reasonable hypothesis well
approximate the modeled dynamical systems. For example, a chemical reaction can
always be represented as a CRN, but the underlying CTMC is a reliable approximation
only if the well-stirred hypothesis is verified.

A typical model checking problem consists in estimating the following probability

Pϕ(M) = PM(Sat(ϕ))

where ϕ is a formula in a suitable temporal logic and Sat(ϕ) = {x ∈ ST | (x, 0) |= ϕ},
as already defined in Section 2.4 . This is a typical a posteriori problem, where a model
is given, and some qualitative and/or quantitative information (described by means of
logics) are extracted. As already discuss in Section 2.4, there are two main approaches
to solve this issue: analytical methods which compute multidimensional integrals and
statistical methods which simulate a model of a system many times. The former method
relies on the assumption that the parameter values of the model are known, whereas the
latter on the availability of a computation model able to draw independent and identi-
cally distributed trajectories. These are strong assumptions which are not satisfied in
specific contexts such as model-based design and system biology. In the early design-
ing process, for example, not all the parameters are fixed, but only intervals (defined
by means of expertise) are considered. Moreover, in system biology, many parameter
values are not even known because estimating them is highly costly or cannot be mea-
sured. These two problems have different goals. The first problem, called Parameters
Synthesis, tries to identify a set of model parameters such that a given property is ver-
ified or a given probability maximized. On the contrary, the second problem, called
System Identification follows a reverse direction. It considers the satisfiability of a set of
different formulae against a target systems with the aim of identifying a neighborhood
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of the parameter model (which well approximate that target system). In this chapter,
we describe a statistical approach which relies on Smoothed Model Checking (smMC)
(Section 3.2) to solve the parameter synthesis problem that we define in a particular
setting.

Related work. Parameter synthesis of CTMC is an active field of research. In
[CDKP14] and [CDP+17] the authors use Continuous Stochastic Logic (CSL) and uni-
formization methods for computing exact probability bounds for parametric models
of CTMCs obtained from chemical reaction networks. In [CPP+16] the same authors
extend their algorithm to GPU architecture to improve the scalability. Authors in
these two papers solve two problems: one is the threshold synthesis, the other is the
identification of a parameter configuration maximizing the satisfaction probability. In
this chapter, we focus on the former, as we already presented a statistical approach to
deal the latter problem in [BBNS15] for the single objective case and in [BPS16] for
the multi-objective case (see also Chapter 8). An alternative statistical approach for
multi-objective optimization is that of [DDL+13], where authors use ANOVA test to
estimate the dominance relation. Another approach to parameter synthesis for CTMC
is [HKM08], where the authors rely on a combination of discretization of parameters
with a refinement technique.

In this work we use a statistical approach to approximate the satisfaction probabil-
ity function, building on smoothed model checking [BMS16]. This approach applies to
CTMC with rate functions that are smooth with respect to parameters and leverages
statistical tools based on Gaussian process regression [RW06] to learn an approximation
of the satisfaction function from few observations. Moreover, this approach allows us to
deal with a richer class of linear time properties than reachability, like those described
by metric temporal logic [AFH96, MN04], for which numerical verification routines are
heavily suffering from state space explosion [BCH+11]. Another statistical approach is
that of [JL11], which combines sensitivity analysis, statistical model checking and uni-
form continuity to approximate the satisfaction probability function, but it is restricted
to cases when the satisfaction probability is monotonic in the parameters. In contrast,
Gaussian process-based methods have no restriction (as Gaussian processes are univer-
sal approximators), and also have the advantage of requiring much fewer simulations
than pointwise statistical model checking, as information is shared between neighboring
points (see [BMS16] for a discussion in this sense). Parametric verification and synthe-
sis approaches are more consolidated for discrete time Markov chains [Kat16], where
mature tools like PROPhESY exist [DJJ+15], which rely on a symbolic representation
of the reachability probability, which does not generalize to the continuous time setting.

Contribution. We propose a Bayesian statistical approach for parameter synthe-
sis, which leverages a statistical parameterised verification method known as smoothed
model checking [BMS16] (Section 3.2) and the nice theoretical approximation properties
of Gaussian process [RW06] (Section 3.1). Being based on a Bayesian inference engine,
this naturally gives statistical error bounds for the estimated probabilities. Our algo-
rithm uses active learning strategies to steer the exploration of the parameter space only
where the satisfaction probability is close to the threshold. We also provide a prototype
implementation of the approach in Python.
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Despite being implemented in Python, our approach turns to be remarkably efficient,
being slightly faster than [CDP+17] for small models, and outperforming it for more
complex and large models or when the number of parameters is increased, at the price
of a weaker form of correctness. Compared to [CDP+17], we also have an additional
advantage: the method treats the simulation engine and the routine to verify the lin-
ear time specification on individual trajectories as black boxes. This means that, not
only, we can handle arbitrary MTL properties (while in [CDP+17] there is an essential
restriction to non-nested CSL properties, i.e., reachability), but also other more compli-
cated linear time specifications (e.g., using hybrid automata, providing the satisfaction
probability is a smooth function of model parameters). Moreover, we can also apply
the same approach to more complex stochastic models for which efficient simulation
routines exist, like stochastic differential equations.

7.1 Problem Formulation

Statistical Threshold Synthesis Problem. We consider a family Mϑ of CTMC
indexed by continuous parameters ϑ which assume values in a compact hyperrectangle
Θ ⊂ R

k. We also assume that Mϑ depend smoothly on ϑ through their rate func-
tions and consider a linear time specifications ϕ described by Metric Interval Temporal
Logic [MN04], with bounded time operators. Our goal is to find the subset of parameters
Γα ⊂ Θ such that Pϕ(ϑ) ≥ α for a threshold α, where Pϕ(ϑ) represents the probabil-
ity that Mϑ satisfies ϕ, see Section 2.4. We introduce the positive class Pα, which is
composed of parameter values for which the probability of satisfying ϕ is higher than
a threshold value α, the negative class Nα, composed of parameters values for which
this probability is lower than α, and the undefined class Uα, which collects all the other
parameter values. This class represents the region where it is not possible to decide if
Pϕ(ϑ) ≥ α or Pϕ(ϑ) ≤ α. Following [CDP+17], we will look for a partition where the
volume of the undefined class is lower a fraction of the volume of Θ. This problem is
called threshold synthesis problem and it was originally introduced and solved by analyt-
ical technique in [CDP+17]. This contribution is based on the min max approximation
where the idea is to consider a subset H ⊆ Θ and estimating, with a variable degree of
accuracy, the minimum and the maximum of Pϕ(ϑ). For example if we estimate that

[min
ϑ∈H

Pϕ(ϑ),max
ϑ∈H

Pϕ(ϑ)] ⊆ [λHmin, λ
H
max]

we can easily decide if H belongs to Pα or Nα just by considering if λHmin > α or
λHmax < α respectively. Otherwise H is divided into two subsets H0 and H1 and the
algorithm is iterated over them. This procedure stops when the volume of Uα is below
a given threshold. The converge is assured by the sub-linearity of the min and the max.

In Section 2.4 we already discussed the drawbacks of the analytical methods. In this
case, the same considerations apply, yet the possibility of parallelizing the algorithm
mitigates them.

Our approach, on the other hand, will be statistic: we assume that models are too
complex to numerically compute bounds on the reachability probability, and we only
rely on the possibility of simulating the model. As a consequence, our solution to the
parameter synthesis problem will have only statistical guarantees of being correct. For
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example, if a parameter belongs to Pα, the confidence of this point satisfying Pϕ(ϑ) ≥ α
will be larger than a prescribed probability (typically 95% or 99%), though for most
points this probability will be essentially one, and similarly for Nα. The challenge of
such an approach is that estimating the satisfaction probability at many different points
in the parameter space by simulation is very expensive and inefficient, unless we are
able to share the information carried by simulation runs at neighboring points in the
parameter space.

Bayesian Approach. We start by rephrasing the parameter synthesis problem de-
fined in [CDP+17] in the context of Bayesian statistics, where truths are quantified
probabilistically. The basic idea is that we will exhibit a set of parameters that satisfy
the specification with high confidence, which in the Bayesian world means with high
posterior probability. To recall and fix the notation, letMϑ be a PCRN (Definition 4)
defined over a parameter space Θ, ϕ a MITL formula and P̃ϕ(ϑ) a statistical approxi-
mate model of the satisfaction probability of ϕ at each point ϑ. In the Bayesian setting,
P̃ϕ(ϑ) is in fact a posterior probability distribution over [0, 1], hence we can compute

for each measurable set B ⊆ [0, 1] the probability p(P̃ϕ(ϑ) ∈ B).

Definition 22 (Bayesian Threshold Synthesis Problem). LetMϑ, Θ, ϕ, and P̃ϕ(ϑ) be
defined as before. Fix a threshold α and consider the threshold inequality Pϕ(ϑ) > α, for
the true satisfaction probability Pϕ(ϑ). Fix ε > 0 a volume tolerance, and δ ∈ (0.5, 1] a
confidence threshold. The Bayesian threshold synthesis problem consists in partitioning
the parameter space Θ in three classes Pα (positive), Nα (negative) and Uα (undefined)
as follows:

• for each ϑ ∈ Pα, p(P̃ϕ(ϑ) > α) > δ

• for each ϑ ∈ Nα, p(P̃ϕ(ϑ) < α) > δ

• Uα = Θ \ (Pα ∪Nα), and
vol(U)
vol(Θ) < ε, where vol is the volume of the set.

Note that the set Pα solves the threshold synthesis problem defined above, while Nα

solves the threshold synthesis problem Pϕ(ϑ) < α.

7.2 Methodology

7.2.1 Bayesian Parameter Synthesis: the Algorithm

Our Bayesian synthesis algorithm essentially combines smoothed Model Checking
(smMC) with an active learning step to adaptively refine the sets Pα,Nα,Uα, trying to
keep the number of simulations of the Parametric Chemical Reaction Network (PCRN,
Definition 4) Mϑ to a minimum. The smMC produces a Bayesian estimate of the
satisfaction probability for each ϑ ∈ Θ. More specifically it produces a the posterior
distribution p(P̃ϕ(ϑ)) which can be efficiently used to estimate the probability that
Pϕ(ϑ) ∈ [a, b]. This valuable information is then used to compute the following two
functions of ϑ:

• λ+(ϑ, δ) is such that p
(

P̃ϕ(ϑ) < λ+(ϑ, δ)
)

> δ
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Algorithm 6 Bayesian Parameter Synthesis.

Require: Θ (parameter space), M (PCRN), ϕ (MTL formula), α (threshold), ε (vol-
ume precision), δ (confidence).

1: S ← initialSamples(Θ,M, ϕ)
2: Pα ← ∅, Nα ← ∅, Uα ← Θ
3: while true do
4: λ+, λ− ← smoothedMC(Θ,S)
5: Pα,Nα,Uα ← updateRegions(λ+, λ−,Pα,Nα,Uα)
6: if vol(Uα)/vol(Θ) < ε then
7: return Pα,Nα,Uα
8: else
9: S ← refineSamples(S,Uα)

10: end if
11: end while

• λ−(ϑ, δ) is such that p
(

P̃ϕ(ϑ) > λ−(ϑ, δ)
)

> δ

Essentially, at each point ϑ, λ+(ϑ, δ) is the upper bound for the estimate P̃ϕ(ϑ) at
confidence δ (i.e., with probability at least δ, the true value Pϕ(ϑ) is less than λ

+), while
λ−(ϑ, δ) is the lower bound. These two functions will be used to split the parameter
space into the three regions Pα,Nα,Uα as follows:

• ϑ ∈ Pα iff λ−(ϑ, δ) > α

• ϑ ∈ Nα iff λ+(ϑ, δ) < α

• Uα = Θ \ (Pα ∪Nα),
vol(U)
vol(Θ) < ε

To dig into how λ+ and λ− are computed, recall that smMC computes a real-valued
Gaussian process fϕ(ϑ), with mean function µ and covariance function k, from which

the pointwise standard deviation can be obtained as σ(ϑ) =
√

k(ϑ, ϑ). At each ϑ,
the function fϕ(ϑ) is Gaussian distributed, hence we can compute the upper and lower
confidence bounds for the Gaussian distribution, and then squeeze them into [0, 1] by the
probit transform Ψ. Letting βδ = Ψ−1( δ+1

2 ), as customary while working with normal
distribution, we get:

• λ+(ϑ, δ) = Ψ
(

µ(f̃ϕ(ϑ)) + βδσ(f̃ϕ(ϑ))
)

• λ−(ϑ, δ) = Ψ
(

µ(f̃ϕ(ϑ))− βδσ(f̃ϕ(ϑ))
)

Before describing the Algorithm 6, we introduce some notation for regular grids,
as they are used in the current implementation of the method. Let us consider the
hyper-rectangular parameter space Θ =×n

i=1
[w−

i , w
+
i ] ⊂ R

n, where w−
i and w+

i are
respectively the lower and the upper bound of the domain of the parameter ϑi. An
h-grid of Θ is the set h-grid = ∪m∈M{w− + m ∗ h} where h = {h1, . . . , hn}, M =

×n

i=1
{0, . . . , w

+
i −w−

i

hi
}, w− = (w−

1 , . . . , w
−
n ) and ∗ is the elementwise multiplication.
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Given a grid, we define as basic cell a small hyperrectangle of size h whose vertices
are consecutive points of the grid. Our idea is simply to discretize the continuous pa-
rameter space Θ by means of this grid and further use a subset of it to train a specific
surrogate model, such as Gaussian processes. This surrogate model is then used to
decide whether each basic cell of the grid to which class of the partition it belongs to.

Initialization. The initialization phase (line 1 and 2) consists in running simulations
of the PCRN on all parameters of a coarse grid h0-grid, with h0 chosen such that the
total number of parameters ϑ explored is reasonably small for smMC to be fast. More
specifically we simulate N runs of the model per each point of this grid and pass them
to a monitoring algorithm for MITL, obtaining N observations of the truth value of the
property ϕ at each point of h0-grid, collected in the set S. We also initialize the sets
Pα, Nα, and Uα.

Computation of Pα, Nα, and Uα. The algorithm then enters the main loop, first
running smMC with the current set of sample points S to compute the two functions
λ+ and λ− (line 4). These are then used to update the regions Pα, Nα, and Uα. The
main issue is to guarantee that each basic cell is assigned to a class and that the exit
condition is satisfied (line 6). We present two possible approaches. The first approach
considers directly the basic cell an tries to assign each of them to a class of the partition.
The second approach is more flexible. It adapts the dimension of each cell in order to
reduce the computational cost of the λ+/− functions.

Approach 1: fixed grid. The simplest approach is to partition the parameter space
in small cells, i.e., using a h-grid with h small, and then assign each cell to one
of the sets. The assignment will be discussed later, but it involves evaluating the
functions λ+ and λ− in each point of the grid. If the grid size is small, so that
each basic cell contains only a fraction of the volume much smaller than ε, and if
the dimension of the parameter space is not large (say up to 3 or 4), so that the
grid does not contain too many points, then this method is fast. One advantage
of this approach is that it is generally easier to decide if a small region belongs to
set with respect to bigger one, the motivation is related to the continuity of λ+/−

which was discussed in [BHLM13a].

Approach 2: adaptive grid. To scale with the dimension of the parameter space,
we can start evaluating the λ+/− functions on a coarse grid, and refine the grid
iteratively only for cells that are assigned to the uncertain set, until a minimum
grid size is reached.

Central in both approaches is how to guarantee that all points of a basic cell are
all belonging to one set, inspecting only a finite number of them. In particular, we will
limit the evaluation of the λ+/− functions to the vertices of each cell, i.e., to the points
in the grid h-grid. Intuitively, this will work if the cell has a small edge size compared
to the rate of growth of the satisfaction function, and the values of the satisfaction
function in its vertices are all (sufficiently) above or below the threshold. However, we
need to precisely quantify the word “sufficient”. We sketch here one exact methods and
a heuristic one, which performs well in practice. We discuss here how to check that a
cell belongs to the positive set, the negative one being symmetric.
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Lipschitz bound. This approach relies on computing the Lipschitz constant L of
λ+/− = Ψ(µ(f̃ϕ(ϑ)) ± βδσ(f̃ϕ(ϑ))). Considering its definition we noticed that λ+/− is
derivable and therefore we can calculate the Lipschitz constant through the maximiza-
tion of its derivative. Let d(h) the length of the largest diagonal of a basic cell c in a
h-grid. Consider the smallest value of the satisfaction function in one of the vertices of
c, and call it p̂. Then the value of the satisfaction function in the cell is surely greater
than p̂ − Ld(h)/2 (after decreasing for half the diagonal, we need to increase again to
reach the value of another vertex). The test then is p̂− Ld(h)/2 ≥ α.

Heuristic Method. In order to speed up computation and avoid computing Lipschitz
constants, we can make the function λ− more strict. Specifically, we can use a larger
βδ than the one required by our confidence level δ. For instance for a 95% confidence,
βδ = 1.96, while we can use instead βδ = 3, corresponding roughly to a confidence of
99%. Coupling this with a choice of the grid step h at least one order of magnitude
smaller than the lengthscale of the kernel learned from the data (which is proportional to
the Lipschitz constant of the kernel and of the satisfaction function), which guarantees
that the satisfaction function will vary very little in each cell, we can be confident that
if the strict λ− is above the threshold in all vertices of the cell, then the same will hold
for all points inside c for the less strict λ−.

Refinement step. After having built the sets Pα, Nα, and Uα, we check if the volume
of Uα is below the tolerance threshold. If so, we stop and return these sets. Otherwise, we
need to increase the precision of the satisfaction function near the uncertain region. This
means essentially reducing the variance inside Uα, which can be obtained by increasing
the number of observations in this region. Hence, the refinement step samples points
from the undefined regions U , simulates the model few times in each of these points,
computes the truth of ϕ for each trace, and adds these points to the training set S
of the smoothed model checking process. This refinement will reduce the uncertainty
bound in the undefined regions which leads some part of this region to be classified as

Positive P or Negative N . We iterate this process until the exit condition vol(U)
vol(Θ) < ε

is satisfied. The convergence of the algorithm is rooted in the properties of smoothed
model checking, which is guaranteed to converge to the true function with vanishing
variance as the number of observation points goes to infinity. In practice, the method
converges quite fastly, unless the problem is very hard (the true satisfaction function is
close to the threshold for a large fraction of the parameter space).

7.3 Case Studies

We consider the popular SIR model previously introduced in Example 1, that we report
here for simplicity.

r1 : S + I
α1−→ 2I α1 = ksi ·

Xs ·Xi

N

r2 : I
α2−→ R α2 = kir ·Xi

The reaction r1 represents the possibility that a healthy individual becomes infected,
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Case ki × kr h-grid Time (sec)
1 [0.005, 0.3]× 0.05 0.0007 17.92± 2.61
2 0.12× [0.005, 0.2] 0.0005 4.87± 0.01
3 [0.005, 0.3]× [0.005, 0.2] (0.003,0.002) 116.4± 4.06

Table 7.1: Results of the Statistical Parameter Synthesis for the SIR model withN = 100
individuals and formula ϕ = (I > 0)U[100,120] (I = 0). We report the mean and standard
deviation of the execution time of the algorithm. The volume tolerance is set to 10%
and the threshold α is set to 0.1. The h-grid column shows the size h of the grid used
to compute the positive, negative, and uncertain sets.

whereas the reactions r2 models the recovery of an infected individual. We describe the
models as a PCRN where ki ∈ [0.005, 0.3], kr ∈ [0.005, 0.2] and consider an initial
population (S, I, R) = (95, 5, 0). We are interested in estimating the parameters ki, kr
such that the infection gets extinct between 100 and 120 units of time. This can be
modeled with the following STL formula:

ϕ = (I > 0)U[100,120] (I = 0) (7.1)

The parameters ϑ = (ki, kr) rules the timing of disease extinction which in this SIR
formulation happens with probability 1. In the following, we report experiments to
synthesize the parameter region such that Pϕ(ϑ) > α, with α = 0.1, volume tolerance
ε = 0.1, and confidence δ = 95%. We achieve it in three different parameters settings,
see the first two columns of Table 7.1.

The initial training set of the Algorithm initialization has been obtained by sampling
point on a grid as described in Section 7.2.1, of size 40 points for 1D case and 400 points
for the 2D case. The satisfaction probability of each parameter has been estimated by
simulating and testing the STL formula with 1000 repetitions per parameter points.
The tessellation for each case are shown in Figure 7.1.

We perform 3 kinds of analysis in order to measure Efficiency, Accuracy and Scala-
bility.

Efficiency. The execution time of our approach which is reported in Table 7.1 shows
good performance despite the algorithm have been implemented in Python rather than
more efficient programming language such as C. More specifically, our implementation
if compare with the exact method [CDP+17] shows an improvement of 42%, 18% and
7% for Case 1, Case 2 and Case 3.

Accuracy. We perform a statistical accuracy test which consists in computing a more
precise approximation of the satisfaction probability by means of 10000 repetitions in
each parameter close to the undefined region. The number of misclassified points is
further evaluated. In Case 1 we consider 300 equally-spaced points between 0.01 and
0.07 (consider that a portion of the undefined region is located in a neighborhood of
0.05, see Figure 7.1a). All points turned to be classified correctly, pointing out to the
accuracy of the smMC prediction.
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Pop. Size α δ Time (sec)
200 0.13 10% 13, 05± 3, 22
400 0.08 10% 13, 86± 5, 99
800 0.2 4% 15, 02± 0, 05
1000 0.23 4% 17, 44± 0, 23
2000 0.3 4% 28, 81± 0, 07

Table 7.2: Scalability of the method w.r.t. the size of the state space of the SIR model,
increasing initial population N . α and δ are the threshold and volume tolerance used
in the experiments.

Scalability. As a scalability test we increase the size of the state space of the PCRN
model and the initial population size N of the SIR model (case 1) by maintaining the
original proportion I

S = 1
19 . Moreover we consider different thresholds α and volume

tolerance ε in order to force the algorithm to execute at least one refinement step, as
the shape of the satisfaction function changes with N . The execution time increases
moderately, following a linear trend as shown in Table 7.2.

7.4 Conclusion and Future Works

We present a statistical algorithm which is able to identify the region of the parameter
space where the target STL formula is satisfied. This algorithm leverages the Smoothed
Model Checking technique and an active learning strategy which pushes the algorithm
effort toward the undefined region (i.e., the region where the satisfaction probability
is near the threshold α). The results are good in term of the execution time and
outperform the exact algorithm developed in [CDP+17], retaining good accuracy at the
price of having only statistical guarantees of correctness.

Note that we compared with the performance of [CDP+17] and not of their Graph-
ics Processing Unit (GPU) implementation [CPP+16], as our method uses only CPU
computing power at the moment. However, it can be implemented on a GPU where we
expect a substantial increase in the performance.

As future work, we can proceed in two main directions. The first consists in in-
creasing the performance of our approach by improving the tessellation strategy. An
adaptive strategy which divides and conquer to split the parameter space will reduce
the cost of smMC. A similar outcome can be obtained by an improvement of the GP
reconstruction method used by smMC. Here we can use classic sparsity methods [RW06]
and more recent methods for GPs tailored to work on grids [WN15, WHSX16]. These
last approaches have a computational cost of O(n) instead of standard implementation
which costs O(n3). The second direction consists in defining a hybrid approach which
uses the beneficial aspects of both the exact and the statistical methods. The idea is
to use our algorithm to produce a rough tessellation by cutting out the region of the
parameters with higher statistical confidence to be not an undefined region. Further,
the exact algorithm can be used in the remaining region to refine it. This combined
approach will reduce the computation effort of the exact method, and at the same time
will have an exact accuracy where it is needed.
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8
System Design with logical

objectives

In the Introduction, we have already discussed the importance of system design. In
synthetic biology, where the experiments are costly and the analyzed processes are
usually complex, a system design approach is widely applied. As typical in computer-
aided engineering, this approach consists in building a model of the system of interest,
in formalizing objectives to be achieved, in tuning controllable parameters to satisfy
the desired goals as robustly as possible. In this chapter1 we use the logical methods
in a multi-objective fashion to perform system design of Chemical Reaction Networks
(CRN) (Definition 4). The idea is to explore and discover parameters of the CRN
which corresponds to the best trade-off between multiple requirements. We will analyze
a specific case where the maximization of the satisfaction probability of two different
formulae can be effectively solved in a multi-objective paradigm (Section 4.2). Moreover,
we discuss how the average robustness of this formula can be effectively used to reach
that goal but we also discuss a possible pitfall in the use of that robustness score, related
to a difference in the scale of atomic propositions.

Related work. Multi-objective optimization techniques have been widely studied over
the last fifteen years due to their increasing importance in many academic research fields
(economics, operational research, stochastic control theory, etc.) as well in industrial
research (see [CL04]). Several solution methods exist (e.g., evolutionary algorithms
[Deb01, ZQL+11], gradient optimizer with restart, single weighted sum), mostly based
on heuristic search. The multi-objective approaches to model checking verification have
been described in [EKVY07, CMH06, FKP12]. The most common technique consists
in transforming the original problem in a linear programming problem. The system
design of stochastic models through the maximization of the robustness of temporal
properties is a rather new field of research [BBNS15] and in particular the multi-objective
approaches in this case have not been yet deeply explored.

1This contribution has been published in [BPS16].



90 8. System Design with logical objectives

8.1 Problem Formulation and Methodology

We consider the following system design problem:

given a Parametric Reaction Network (PRN) Mϑ (Definition 4), with h
tunable parameters ϑ = (ϑ1, . . . , ϑh) ∈ Θ ⊂ R

h and k STL formulae Φ =
{ϕ1, . . . , ϕk}, find a value ϑ∗ ∈ Θ of the parameters such that all formu-
lae are satisfied “as much as possible” (i.e., their satisfaction probability is
maximised).

There is obviously a problem here, as we have k formulae that can represent con-
flicting objectives. Hence it may be impossible to maximise the satisfaction probability
of all formulae at the same time. Moreover, different formulae can play a different role:
we need to solve a multi-objective optimization problem, that is we need to estimate
the Pareto front (Section 4.2). Additionally, we have two semantics for our logic, so
we can decide to optimize either the satisfaction probability Pϕj

(ϑ) or the expectation
value of the robustness stochastic variable Rϕj

(ϑ), i.e., ̺ϕj
(ϑ) = E(Rϕj

(ϑ)). Note that
both these quantities are functions of the model parameters ϑ ∈ Θ. We consider and
compare three different approaches:

Direct probability Approach (DpA): solve directly the multi-objective problem as-
sociated to the maximization of the probability

PΦ(ϑ) = (Pϕ1(ϑ), Pϕ2(ϑ), . . . , Pϕk
(ϑ))

Direct robustness Approach (DrA): solve the multi-objective problem associated
to the maximization of the average robustness

̺Φ(ϑ) = (̺ϕ1
(ϑ), ̺ϕ2

(ϑ), . . . , ̺ϕk
(ϑ))

Mixed Approach(MA): combine the two approaches automatically switching among
them

Considering our goal, the DpA seems the natural choice. However, the quantita-
tive semantics carries information about the satisfiability of a formula for each trace,
plus additional information about robustness of satisfaction. As discussed in [BBNS15],
when we average the robustness score over all trajectories, according to the distribu-
tion Pϑ on trajectories, induced by a PRN Mϑ, we typically obtain a score which is
positively correlated with the satisfaction probability. This means that, as a function
of ϑ, typically satisfaction probability increases when average robustness does (see for
instance Figure 8.1).

Furthermore, the robustness score typically carries more information in regions of
the parameter spaces in which the satisfaction probability is flat, e.g., equal to zero or
to one. In some cases, in fact, it happens that the probability vector is higher than zero
only in a very tiny zone of the parameters space (this will be the case, for instance, in
the genetic toggle switch). The flatness of the objective vector function in a large area
of the search space is a serious challenge for the optimization process, which will be
forced to explore the objective space randomly and it is likely to remain stuck in such
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region. In these regions, however, the robustness score is typically non-constant, hence
robustness is used to guide the optimization in these cases.

However, one can easily check that ̺ϕi
(ϑ) > ̺ϕi

(ϑ′) 6⇒ Pϕi
(ϑ) > Pϕi

(ϑ′). This
implies that maximizing directly the average robustness (DrA) could produce under
optimal results. In fact, even if typically an increase in the average robustness corre-
sponds to an increase in the satisfaction probability (Figure 8.1), this may fail for some
parameters ϑ and ϑ′ such that ̺ϕi

(ϑ) > ̺ϕi
(ϑ′) and Pϕi

(ϑ) < Pϕi
(ϑ′).

This discussion leads us naturally to consider mixed strategies. In the MA approach,
we have modified a genetic algorithm allowing the possibility to compare two designs
based on the probability or on the robustness degree automatically. When two designs
have the same probability of the STL formulae, the algorithm will automatically switch
to the robustness degree. Basically, this algorithm has the possibility to switch to
robustness whenever it is stuck in a plateau of the satisfaction probability vector, which
typically happens not only when all formulae are satisfied with probability zero, but also
with probability one (which is part of the Pareto front). In this region, the robustness
score leads us to pick the most robust ϑ∗ satisfying the design problem.

Computing the satisfaction probability and the robustness scores. The exact
computation of the satisfaction probability or of the expected robustness, up to a fixed
numerical precision ε is unfeasible, hence we will exploit statistical methods. More
specifically, for each fixed ϑ, we sample N trajectories Traj = {x1,x2, . . . ,xN} of the
PRN using Gillespie’s algorithm [Gil77]. Then, for each STL formula ϕi of interest, we
estimate Pϕi

(ϑ) and ̺ϕi
(ϑ) as

P̂ϕi
(ϑ) =

|x ∈ Traj | (x, 0) |= ϕi|
N

; ˆ̺ϕi
(ϑ) =

∑k
j=1 ̺(ϕi,xj , 0)

N

Estimating statistically the functions to optimize is computationally feasible, but
has the side effect of making their evaluation noisy, which must be taken into account
in the optimization phase. Here we try to reduce this effect by using a large number of
simulations per point of the parameter space explored (here we used 500 runs per point,
as a good trade-off between noise and computational cost). An appealing alternative
would be to rely on statistical regularization methods like Gaussian processes-based
emulation (Section 3.1), which are typically an ingredient of active learning algorithms,
like Pareto Active Learning (PAL, [ZSKP13]).

The multi-objective optimization algorithm. The optimizer we have used is
the NSGA-II [DAPM02], a well known genetic algorithm largely used to solve multi-
objective optimization problems, which we also introduce in Subsection 4.2.1. It com-
bines mutation and crossover operators to allow the creation of new points. A com-
parison procedure based on the Pareto dominance will give preference to points which
dominate the largest number of other points, pushing effectively the optimization al-
gorithm towards the Pareto front. We have slightly modified the comparison process:
if two points have the same probability with respect to an STL formula, the compari-
son between them will be based on the robustness degree. Otherwise, the comparison
is based on the probability. This strategy permits the optimization process to easily
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rapid switching between equilibria. In the first case the system will tend to stabilize for
a long time in one of the two stable equilibria, (either X1 ≥ X2 or X2 ≥ X1). In the
second case, the system frequently switches from the state X1 ≥ X2 to X2 ≥ X1, and
viceversa.

8.2.2 Epidemic model: SIRS

The SIR model [GCC00] is still widely used to simulate the spreading of a disease among
a population. The basic SIR model already introduced in Example 1 can be modified
in many ways: considering vaccinations, introducing natural birth and death process,
describing a latent phase of the disease, see [Bra08] for an overview. We consider a
version of the model described by the following set of reactions:

r1 : S + I
α1−→ 2I α1 = ksi ·

Xs ·Xi

N

r2 : I
α2−→ R α2 = kir ·Xi

r3 : S
α3−→ R+ V α3 = kv ·Xs

r4 : I
α4−→ S α4 = kis ·Xi

r5 : R
α5−→ S α5 = krs ·Xr

The population of N individuals is typically divided in three classes (though we will
consider an extra one for vaccination):

• susceptible S, representing healthy individuals that are vulnerable to the infection.

• infected I, describing individuals that have been infected by the disease and are
actively spreading it.

• recovered R and vaccinated V , modelling individuals that are immune to the dis-
ease, by having recovered from the disease (R), or by vaccination (V ).

Here, r1 describes the possibility that a susceptible gets the disease and becomes
infected. The reaction r2 models the recovery of an infected agent. The reaction r3
describes the possibility that susceptible becomes directly a recovered by vaccination
(kv is the vaccination rate). Note that here the population V counts the total number
of vaccinated people. Finally, r4 describes the possibility that an infected individual
recovers without gaining immunity, while r5 models the loss of immunity of a recovered
individual. Depending on the parameters ϑ = (ksi, kir, kv, kis, krs), different behaviors
of the disease could occur, such as the disease rapidly stops, or it becomes endemic, or
there are periodic cycles of infections, and so on.

8.3 Results

We discuss now two bi-objective optimization problems, one for each case study. The
stochastic systems were simulated and the STL formulae verified with the U-check tool
(see. [BMS15]).
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8.3.1 Genetic Toggle Switch

In the genetic toggle switch model described in Subsection 8.2.1 there are 4 parameters,
(a1, a2, b1, b2), which we assume that can take values in [10−4, 5], fixing the initial con-
ditions to (X1(0), X2(0)) = (1, 1). Depending on the parameters, the system can have
two stable equilibria, typically one for which X1 > X2 and one for which X2 > X1. In
particular, when the difference between X1 and X2 is above a certain threshold, then
the system tends to stabilize in one equilibrium, and the switching probability (i.e.,
spontaneously jumping to the other equilibria) will be low. Thus, we consider the two
STL formulae:

ϕ1 := F[0,1000] |X1 −X2| > 300 (8.1)

ϕ2 := F[0,300] G[0,50](X1 > X2) ∧ F[300,550]G[0,50](X1 < X2). (8.2)

The first formula describes a situation in which equilibria are clearly separated. This
has as the side effect the tendency to stabilise the system into one equilibrium. The
second formula, instead, describes a switch between equilibria, and hence it is in conflict
with the previous goals. In particular, the higher is the difference between X1 and X2,
the lower is the probability of ϕ2. However, one may be interested in maximising the
probability of both goals, to obtain a system with well separated configurations and the
ability to explore them by the effect of noise. This is a typical use of randomness in
cellular decision making, see for instance [BvOC11].

The bi-objective optimization problem we have considered is therefore:

max
a1,a2,b1,b2∈[10−4,5]

{Pϕ1({a1, a2, b1, b2}), Pϕ2({a1, a2, b1, b2})} (8.3)

The three approaches described in Section 8.1 are compared in Figure 8.3. It can
be seen that the mixed (MA) approach performs best, while using only satisfaction
probability (DpA) produces very bad results. This is caused by the fact that both
STL formulae have a non-zero probability only in a small fraction of the parameter
space, and the DpA approach is not able to reach this region. The direct robustness
approach (DrA) also produce bad results. In this case the optimization concentrates
itself on optimizing the robustness in the zone of the robustness degree space where the
probability (at least for ϕ2) is zero (see Figure 8.3b).

8.3.2 Epidemic model: SIRS

We consider now the SIRS model2 of Section 8.2.2 and look for the best vaccination
rate kv to obtain the following behaviour for susceptible individuals

ϕ1 := G[20,40] (S < 30 ∧ S > 10) ∧ F[40,60] (S > 50) (8.4)

forcing susceptibles to be between 10 and 30 during time 20 to 40 and to get above 50
between time 40 and 60. We additionally want to constraint the number of vaccinations
to be below 180 (say the amount of vaccines in storage, so that an higher consumption

2Rate coefficients are as follows: ksi = 0.5, kir = 0.05, kis = 0.1, krs = 0.05, kv ∈ [0.08, 10]. The
vaccination rate is the only free parameter that is optimized.
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problem. We have modified its comparison criterion in order to use a combination
of satisfaction probability and robustness degree. We plan to investigate the use of
statistically more refined optimization methods to deal with noise in the estimation
of the objective function due to the use of simulation, like Pareto Active Learning
[ZSKP13]. This will allow us to reduce the number of simulation runs per point of the
parameter space, thus improving complexity.



9
Falsification of Cyber-Physical

Systems

Model-based Development (MBD) is a well known design framework of complex engi-
neered systems, concerned with reducing cost and time of the prototyping process. Most
prominently, this framework has been adopted in the industrial fields such as automotive
and aerospace where the conformity of the end product is extremely important. The ma-
jority of systems in these areas are Cyber-Physical Systems (CPS) [LS16] (Section 1.1),
where physical and software components interact producing complex behaviors. These
systems can be described by appropriate mathematical models which are able to cap-
ture all the system behaviors. Moreover, it is necessary to have a suitable specification
framework capable of analyzing the output of such models.

Hybrid systems [MMP91] are the mathematical framework usually adopted, while
temporal logic (Chapter 2), due to its ability to describe temporal events, is generally
used as specification framework. The high level of expressivity of hybrid systems, which
is the main reason for their success, is also the cause of their undecidability, even for
simple logic formulae. Subclasses of hybrid systems which are decidable for specific
temporal logic formulae exist and have been widely studied during the last 15 years, as
well as model checking techniques capable of verifying them [ACH+95]. Unfortunately,
the majority of CPS used nowadays in the industrial field are much more complex than
decidable hybrid systems. They are mainly described by using block diagram tools (i.e.,
Simulink/Stateflow, Scade, LabVIEW, and so on) where several switch blocks, 2/3-D
look-up tables and state transitions coexist. These CPS are generally not decidable and
standard model checking techniques are not feasible, leading to the proposal of different
techniques [ALFS11b].

Testing procedures with the purpose of verifying the model on specific behaviors have
been adopted for several years. These are feasible approaches whenever it is possible to
write in advance collections of test cases which extensively cover all the possible events
leading to system failure [Vin98]. With the increase of complexity, such an a priori
assumption is not viable in most of the real cases and for this reason different techniques,
such as random testing and search-based testing, have been introduced [ZKH03]. The
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general idea consists in expressing the falsification procedure as an optimization process
aiming at minimizing a target quantity which describes “how much a” given property is
verified. For example, achieving a negative value of the robustness semantics of a given
Signal Temporal Logic (STL) [DM10] formula means falsifying the system with respect
to that formula.

Related Work. Different approaches have been proposed to achieve the falsification
of black box models, starting from test based approaches until recently, when search-
based test approaches have become more popular. Stochastic local search [DJKM15],
probabilistic Monte Carlo [AFS+13] and mixed coverage/guided strategy [DDD+15] ap-
proaches have been proposed and benchmark problems created [JDK+14, HAF14]. Two
software packages [Don10, ALFS11b] implement the aforementioned techniques. Both
these software tools assume a fix parameterization of the input function, differently from
us. Similarly to our approach, in [DDD+15] and [DJKM15] the fixed parameterization
is avoided. More specifically in [DDD+15] no parameterization has been used at all and
the input signals are modified on the fly based on the robustness of the partial system
trajectories. In [DJKM15] a uniform discretization of the input domains (both time
and values) is dynamically applied to discretize the search space. The use of Gaussian
processes for falsification has been adopted in [Aka16] but it is restricted to conditional
safety properties.

Contribution. In this chapter1 we study the falsification problem of black box sys-
tems (i.e., block diagram models such as Simulink/Stateflow model or sets of ordinary
differential equations generally used in automotive or aerospace industrial fields) which
takes as input and produce as output continuous or piecewise continuous (PWC) sig-
nals. The requirements are expressed by using STL. Solving such falsification problems
in a search-based framework poses two main challenges. Generally, the simulation of
block diagram models is time consuming, hence it is necessary to falsify the model with
as few simulations as possible. Moreover, the models accept continuous and/or PWC
signals as inputs and an efficient finite dimensional parametrization is necessary to per-
form an optimization procedure. The contribution we propose in this work is to tackle
these challenges by a novel strategy leveraging machine learning techniques (Gaussian
processes and active learning) and by using a new adaptive version of the control points
parameterization approach.

9.1 Domain Estimation with Gaussian Processes

We now define the domain estimation problem and solve it by using Gaussian processes.
In this section we describe how to cast the falsification problem into a domain estimation
problem.

Definition 23. Consider a function f : D → R, where D ⊆ R
k is a general domain

space, and an interval I = [a, b] ⊆ R. We define the domain estimation problem as the

1This contribution has been published in [SPB17b].
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task of identifying the set B of points x ∈ D such that f(x) ∈ I:

B = {x ∈ D | f(x) ∈ I} ⊆ D, (9.1)

In practice, if B 6= ∅, we will limit us to identify a subset B ⊆ B of size n.

Gaussian Processes (GP) can be efficiently used to solve this task. Similarly to the
cross-entropy methods for optimization [RK13], the idea is to implement an iterative
sample strategy in order to increase the probability to sample a point in B, as the
number of iterations increases. Consider the set K(f) = {(xi, f(xi) )}i≤n representing
the partial knowledge we have collected after n iterations and the Gaussian process
fK(x) ∼ GP (mK(x), σK(x)) trained on K(f). We can easily estimate P (x ∈ B) =
P (fK(x) ∈ I), where I = [a, b], by computing the probability of a Gaussian distribution
with mean mK(x) and variance σ2

K(x) as follows

P (x ∈ B) = Φ

(
b−mK(x)

σK(x)

)

− Φ

(
a−mK(x)

σK(x)

)

(9.2)

This2 corresponds to our uncertainty on the value of f(x) belonging to I, as captured
by the GP reconstruction of f . The previous probability can be effectively used to solve
the domain estimation problem described in Definition 23. Our approach is described
in Algorithm 7. The idea is to use P (fK(x) ∈ I) to guide the sampling.

• During initialization (line 1), we set the iteration counter (i) and the minimum
distance (d) from the interval I. The set (B) containing the elements of (B) is
set to empty ensuring that the algorithm is run at least once. The knowledge set
K(f) is initialized with some randomized points sampled from D (line 2).

• In the iterative loop (line 3), the algorithm first checks if the number of coun-
terexamples (ce) or maximum number of iterations (maxIter) has been reached.
In this case, the method stops returning the estimated set (B) and the minimum
distance from I that has been registered until that point. Otherwise new GPs
are trained by using K(f) (line 4) and a set composed by m points (Dgrid) is
generated by a Latin Hypercube sampling [MBC79], so to have a homogeneous
distribution of points in space (line 5). For each of these points x, the probability
P (x ∈ B) = P (fK(x) ∈ I) is evaluated and the set {(x, P (x ∈ B)), x ∈ Dgrid} is
then created. Afterwards, a candidate point xnew is sampled from Dgrid propor-
tionally to its associated probability (line 6) so to increase the sampling of points
with higher estimated probability of belonging to B. Consequently, K(f) is up-
graded and if x ∈ B then x is added to B (line 11). The procedure outputs also
d, the minimum distance of the evaluated points from the interval I calculated
during the procedure.

9.2 The Falsification Process

We adopt a black box optimization approach, meaning that we consider the target
block diagram model as a black box dynamical systemM = {U×X, sim} (see Subsec-

2Φ is the CDF of the standard normal distribution.
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Algorithm 7 domainEstimation algorithm

Require: maxIter, ce,m, f, I
1: i← 0, B ← ∅, d← +∞
2: initialize(K(f))
3: while ( |B| ≤ ce and i ≤ maxIter) do
4: fK(f) ∼ trainGaussianProcess(K(f))
5: Dgrid ← lhs(m)
6: xnew ← sample{(x, P (x ∈ B)), x ∈ Dgrid}
7: fnew ← f(xnew)
8: d← min(d,distance(fnew, I))
9: K(f)← K(f) ∪ {(xnew, fnew)}

10: if fnew ∈ I then
11: B = B ∪ {xnew}
12: end if
13: i← i+ 1
14: end while

tion 1.3.3).
A big effort during the prototyping process consists in verifying the requirements

usually expressed as safety property, such as:

∀(u, x0) ∈ UT ×X0 , ̺(ϕ, (u,x), 0) > 0 (9.3)

meaning that for each input function and initial state x0 ∈ X0 ⊆ X, the dynamics of
the systems represented by the couple (u,x), where u ∈ UT is the input function and
x ∈ XT is the state function, satisfies the STL formula ϕ. It is possible to interpret the
safety condition (9.3) as a domain estimation problem associated with

B = {(u, x0) ∈ UT ×X0 , ̺(ϕ, (u,x), 0) < 0} (9.4)

with the purpose of verifying its emptiness, which entails that (9.3) is satisfied. We call
B the counterexample set and its elements counterexamples.

Solving the previous domain estimation problem could be extremely difficult because
of the infinite dimensionality of the input space, which is a space of functions. For this
reason, it is mandatory to parameterize the input function by means of an appropriate
finite dimensional representation.

Let us consider for simplicity that U = U1 × · · · × Um, where m < +∞. One of
the most used parameterization—mainly for its simplicity—is the fixed control point
parameterization (fixCP): after having fixed the times (tk1 , . . . , t

k
nk
), the control points

{(tk1 , uk1), . . . , (tknk
, uknk

)} are chosen as parameter of the k-th input signals. We also need
to choose an interpolation set of function with nk degrees of freedom for each k-th input
signals (Fk

nk
⊂ {T → Uk}, e.g., piecewise linear, polynomials of degree nk, and so on

(see [SF12])), the fixCP parameterization will associate with each control point ck =
{(tk1 , uk1), . . . , (tknk

, uknk
)} the unique function Fck ∈ Fk

nk
satisfying ∀i ≤ n , Fck(t

k
i ) = uki .

Let us denote by Fn = (F1
n1
, . . . ,Fm

nm
) the set of interpolating functions.

It is clear that by increasing the number of control points, we will enlarge the set
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of approximant functions Fn: n ≤ m implies Fn ⊂ Fm, where n ≤ m is intended
pointwise. As piecewise linear or polynomial functions are known to be dense in the
space of continuous functions, by choosing an appropriately large n, we can approximate
any input function with arbitrary precision.

Considering an n-fixCP, which is a fixCP where n = (n1, . . . , nm) represents the
number of control points used for each input variables, it is possible to introduce the
domain estimation problem (9.4) associated with the following set:

B = {(c̄, x0) ∈ {Un1
1 × · · · × Unm

m } × X0, ̺(ϕ, (Fn(c̄), x), 0) < 0} (9.5)

which , differently from (9.4), is a finite dimensional set described by using
∑m

j=1 nj +
dim(X0) variables.

By the density argument it is clear that

(9.4) has at least one element ⇐⇒ ∃n ∈ ωm, (9.5) has at least one element

A possible strategy is to solve the domain estimation problem associated with (9.5)
by choosing the minimum n such that Fn × X0 contains a counterexample. Applying
that strategy, even in simple cases, could be cumbersome as shown in the following
example.

Toy example. Consider a simple black box model which accepts a single piecewise
constant function u : [0, 1] → [0, 1] as input function and returns the same function
x = u as output. Considering the following requirement ϕ := ¬(G[0,0.51] 0 < x <
0.2∧G[0.55,1] 0.8 < x < 1), it is evident that it could be falsified only in a control point
parameterization having at least the point (ti, ui) such that ti ∈ [0.51, 0.55]. Otherwise
if this points does not exists it means the output signals will assume a constant value
in [0.51, 0.55] which implies that or G[0.55,1] (0.8 < x < 1) or G[0,0.51] (0 < x < 0.2) is
false, meaning that ϕ is not falsified. The minimum number of uniformed fixed control
points necessary to achieve it is 9, which entails a considerable computational effort.

A natural way to overcome the limitation of the fixCP consists in considering the
times of the control points as variables. An n-adaptive Control Points parameterization
(n-adaCPP) consists in a function F̄ k

nk
: Tnk × Unk

k → Fk
nk
, which has twice as much

parameters than the fixed version: values at control points and times (which are con-
strained by ∀i < n ti ≤ ti+1). The adaptive parameterization is preferable with respect
to the fixed one because of its ability to describe functions with local high variability
even with a low number of control points. In fact it is possible to concentrate any frac-
tion of the available control points in a small time region, inducing a large variation in
this region, while letting the parameterized function vary much less outside it.

9.2.1 Adaptive Optimization

The idea of the adaptive optimization approach consists in falsifying (9.3) starting from
a simple input function and increasing its expressiveness by increasing the number of
control points. After having defined a parameterization for each of the m input signals
(which compose the input function u), Algorithm 8 works as following:
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• At the first iteration a parameterization Fn0
= {F 0

1 , . . . , F
0
n} with zero control

points for each signals (n0 = (0, . . . , 0)) is considered (line 1). Zero control points
means defining input signals which are constant functions. The final counterex-
ample set (B) is set to empty, which ensures the optimization is run at least once
(line 2).

• In the iterative loop, the algorithm first checks if the number of counterexamples
(ce) or if the maximum global number of iterations (mgi) has been reached. In this
case, the method stops returning the counter example set (B). Otherwise, the fal-
sification problem is solved by using the domain estimation procedure domainEs-
timation (Algorithm 7) which returns the counterexample set and the minimum
value of the robustness found by using that parameterization (see Section 9.1 for
details). The parameterization is then expanded by picking a coordinate of the
input signal (line 5 - 9) and adding a new control point (line 10), obtaining a new
parameterization Fni+1

.

Algorithm 8 adaptiveGPFalsification algorithm

Require: mgi,mii, ce,m, ϕ
1: Input: mgi,mii, ce,m, ϕ
2: n0 ← (0, . . . , 0)
3: B ← ∅, k0 ← 0, i← 0, d0 ← +∞
4: while (|B| ≤ ce and i ≤ mgi) do
5: [B−, di+1] = domainEstimation(mii,ni, ce− |B|,m, ̺(ϕ, ·, t), (−∞, 0))
6: if di+1 > di then
7: ki+1 ← ki
8: else
9: ki+1 ← (ki + 1) mod n

10: end if
11: ni+1 ← ni + ek
12: i← i+ 1
13: B ← B ∪B−

14: end while

The general idea of this approach is to keep low the number of parameters by starting
from constant signal and gradually increasing the number of control points of the input
functions. In the adaptive control points parameterization, adding a control point means
adding two new degrees of freedom (one for the time and one for the value of the control
point). This means, on the one hand, having more expressiveness and so more chances
to falsify the system, but on the other hand this complicates the optimization process
and increases the dimension of the search space as well, hence, the minimum number of
simulations required to solve it. For this reason it is convenient to add control points
only where it is truly necessary.
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9.3 Probabilistic Approximation Semantics

Gaussian processes can be used to estimate the probability that a given input falsifies
a system as described in Section 9.1 and Section 9.2. This fact offers the possibility to
define an approximate semantics which generalizes the concept of probability of falsifi-
cation that we can infer considering the knowledge of the system we have collected. The
basic idea is to decompose an STL formula as a Boolean combination of temporal modal-
ities, propagating the probability of the temporal operators, estimated by GPs, through
the Boolean structure. Formally, let L0 be the subset of STL containing only atomic
propositions and temporal formulae of the form ϕ1U[T1,T2]ϕ2, F[T1,T2]ϕ and G[T1,T2]ϕ,
that cannot be equivalently written as Boolean combinations of simpler formulae. For
example FT (ϕ1∨ϕ2) is not in L0 because FT (ϕ1∨ϕ2) ≡ FTϕ1∨FTϕ2. Furthermore, let
L be the logic formed by the Boolean connective closure of L0. Clearly L is isomorphic
to STL. 3

For simplicity, let us denote by ϑ a parameter and describe the input function by
uϑ and the initial state by x0ϑ. We write xϑ to indicate the path generated by the
simulator, given as input uϑ and x0ϑ, according to Section 1.3.3. We want to define an
(approximate) semantics giving the probability that a path xϑ satisfies a given formula
ψ ∈ L (without simulating it). The idea is to evaluate the quantitative semantics of
the atomic formulae ϕj ∈ L0 of ψ on a finite collection of parameters ({ϑi}i≤n), then
building GPs in order to estimate the probability that the quantitative semantics of each
formula ϕj is higher than zero on a target parameter. This is again a Domain Estimation
Problem (Section 9.1), where the function is the robustness associated with the STL
formula ϕj and the interval I is (0,+∞). We propagate this probability through the
Boolean structure of ψ according to the following:

Definition 24 (Probabilistic Approximation Semantics of L). The probabilistic approx-
imation function γ : L ×UT × [0,∞)→ [0, 1] is defined by:

• γ(ϕ, ϑ, t) = P (fK(ϕ)(ϑ) > 0)

• γ(¬ψ, ϑ, t) = 1− γ(ψ, ϑ, t)
• γ(ψ1 ∧ ψ2, ϑ, t) = γ(ψ1, ϑ, t) ∗ γ(ψ2, ϑ, t)

• γ(ψ1 ∨ ψ2, ϑ, t) = γ(ψ1, ϑ, t) + γ(ψ2, ϑ, t)− γ(ψ1 ∧ ψ2, ϑ, t)

where K(ϕ) = {ϑi, ̺(ϕ, ϑi, t)}i=1,..,n is the partial knowledge of the satisfiability of ϕ ∈
L0 that we have collected performing n simulations for parameters (ϑi)i=1,..,n. fK(ϕ) is
the GP trained on K(ϕ), and P refers to its probability. For simplicity we use γ(ψ, ϑ, t)
to mean γ(ψ, (uϑ, xϑ), t).

In the previous definition, the probability P (fK(ϕ)(ϑ) > 0) is easily computed, as
fK(ϕ)(ϑ) is normally distributed.

Including the Probabilistic Approximation Semantics (PAS) in our falsification pro-
cedure (Algorithm 8) is straightforward. Given the formula we have to falsify, first we
negate and decompose it in order to identify the L formula and ist atom in L0 associated

3ϕ ∈ L iff ψ := ϕ | ¬ψ |ψ ∨ ψ |ψ ∧ ψ, with ϕ ∈ L0.
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Adaptive PAS Adaptive GP-UCB S-TaLiRo

Req nval times nval times nval times Alg

ϕAT
1 (160, 4500) 4.42± 0.53 2.16± 0.61 4.16± 2.40 0.55± 0.30 5.16± 4.32 0.57± 0.48 UR

ϕAT
1 (160, 4765) 6.90± 2.22 5.78± 3.88 8.7± 1.78 1.52± 0.40 39.64± 44.49 4.46± 4.99 SA
ϕAT
2 (75, 4500) 3.24± 1.98 1.57± 1.91 7.94± 3.90 1.55± 1.23 12.78± 11.27 1.46± 1.28 CE

ϕAT
2 (85, 4500) 10.14± 2.95 12.39± 6.96 23.9± 7.39 9.86± 4.54 59± 42 6.83± 4.93 SA

ϕAT
2 (75, 4000) 8.52± 2.90 9.13± 5.90 13.6± 3.48 4.12± 1.67 43.1± 39.23 4.89± 4.43 SA

ϕAT
3 (80, 4500) 5.02± 0.97 2.91± 1.20 5.44± 3.14 0.91± 0.67 10.04± 7.30 1.15± 0.84 CE

ϕAT
3 (90, 4500) 7.70± 2.36 7.07± 3.87 10.52± 1.76 2.43± 0.92 11± 9.10 1.25± 1.03 UR

Table 9.1: Results. All the times are expressed in seconds. Legend - nval: number
of simulations, times: time needed to falsify the property, Alg: the algorithm used as
described in Section 9.4.

homogeneous exploration. In addition, the paraboloid γ(ϕ1, x, 0) is smooth and requires
few evaluations for a precise reconstruction.

9.4 Case Studies

In this section we discuss a case study to illustrate our approach, taken from [SF12].
We will compare and discuss the performance of a prototype implementation in Mat-
lab of our approach with S-TaLiRo toolbox [FSUY12]. We use S-TaLiRo to compute
the robustness, and the implementation of Gaussian Process regression provided by
Rasmussen and Williams [RN10].

Automatic Transmission (AT). We consider a Simulink model of a Car Automatic
Gear Transmission Systems. There are two inputs: the throttle and the brake angle
dynamics describing the driving style. Modes have two continuous state variables, de-
scribing vehicle (v) and engine (ω) speed. The Simulink model is initialized with a
fixed initial state (w0, v0) = (0, 0), it contains 69 blocks (2 integrators, 3 look-up tables,
Stateflow Chart, . . . ). The requirements are described by means of STL formulae as
reported in Figure 9.1b. The first requirement (ϕAT

1 ) is a so called invariant, which
says that in the next 30 seconds the engine and vehicle speed never reach ω̄ rpm and
v̄ km/h, respectively. The second requirement (ϕAT

2 ) says that if the engine speed is
always less than ω̄ rpm, then the vehicle speed can not exceed v̄ km/h in less than 10
seconds. Finally, the third requirement (ϕAT

3 ) basically says that if within 10 seconds
the vehicle speed is above v̄ km/h then from that point on the engine speed is always
less than ω̄ rpm.

Results. We analyze the performance of our approach in terms of the minimum num-
ber of simulations and computational time needed to falsify the previous test cases.
We have performed 50 optimization runs for each STL formula and compared its per-
formance with the best statistics achieved among a Cross Entropy (CE), Montecarlo
Sampling (SA) and Uniform Random Sampling (UR) approaches performed with the S-
TaLiRo tool [ALFS11b] and the GP-UCB algorithm applied to falsification as described
in [Aka16]. As the table shows, our approach (Adaptive PAS) has good results in terms
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of the minimum number of evaluations needed to falsify the systems with respect to
the STL formulae, outperforming in almost all tests the methods of the S-TaLiRo suite
and the Adaptive GP-UCB approach. This is the most representative index, as in real
industrial cases the simulations can be considerably expensive (i.e., cases of real mea-
surements on power bench, time and computation intensive simulations). In these cases
the total computational time is directly correlated with the number of simulations and
the time consumed by the optimizer to achieve its strategy becomes marginal. Further-
more, we are testing our method with a prototype implementation which has not been
optimized, in particular for what concerns the use of Gaussian processes. Despite this,
the numerical results in terms of the minimum number of simulations are outperforming
S-TaLiRo and GP-UCB approach.

Conditional Safety Properties. When we define a conditional safety property i.e.
GT (ϕcond → ϕsafe) we would like to explore cases in which the formula is falsified but
the antecedent condition holds (see [Aka16]). This is particularly relevant when the
formula cannot be falsified, as it reduces the search space, ignoring regions where the
formula is trivially true due to a false antecedent. Focusing on the region where ϕcond

holds requires a straightforward modification of the sampling routine of the Domain
Estimation Algorithm (Algorithm 7, line 6-7). Instead of performing the sampling
directly on the input provided by the Latin Hypercube Sampling Routine (Algorithm 7,
line 6), we previously define a set of inputs verifying the antecedent condition (by the
standard Domain Estimation Algorithm using the Gaussian processes trained on the
robustness of the antecedent condition) and then we sample from this set the candidate
point (Algorithm 7, line 7).

To verify the effectiveness of this procedure we consider the STL formula G[0,30](ω ≤
3000 → v ≤ 100) which cannot be falsified by any configuration of the AT model. We
tray to falsify it and calculate the percentage of sampled inputs satisfying its antecedent
condition (i.e., ω ≤ 3000). This percentage is 43% for the GP-UCB algorithm, but
increases to 87% for the modified domain estimation algorithm.

9.5 Conclusion and Future Works

In this chapter, we propose an adaptive strategy to find bugs in black box systems.
We search in the space of possible input functions, suitably parameterized in order to
make it finite dimensional. We use a separate parameterization for each different input
signal, and we use an adaptive approach, increasing gradually the number of control
points as the search algorithm progresses. This allows us to solve falsification problems
of increasing complexity, looking first for simple functions and then for more and more
complex ones. The falsification processes are then cast into the domain estimation prob-
lem framework, which uses the Gaussian Processes (GP) to constructs an approximate
probabilistic semantics of STL formulae, giving high probability to regions where the
formula is falsified. The advantage of using such an approach is that it leverages the
Bayesian emulation providing a natural balance between exploration and exploitation,
which are the key ingredients in a search-based falsification algorithm. In addition to a
novel use of GP, we also rely on a new adaptive parameterization, treating the time of
each control point as a variable, thus leading to an increase in expressiveness and flexi-
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bility, as discussed in Section 9.2. Moreover with a slight modification of our algorithm
we efficiently manage the falsification of the conditionsl safety properties, increasing the
efficiency of the usual GP-UCB algorithm in focussing the search on the region of points
satisfying the antecedent.

The experimental results are quite promising, particularly as far as the number of
simulations required to falsify a property is concerned, which is lower than other ap-
proaches. The computational time of the current implementation, however, is in some
cases higher than S-TaLiRo. The main problem is in the cost of computing predictions
of the function emulated with a GP. This cost, in fact, is proportional to the number
of already evaluated inputs used to train the GP. To reduce this cost, we can leverage
the large literature about sparse representation techniques for GP [RW06]. Further-
more, with the increase in the number of control points, we face a larger dimensional
search space, reflecting in an increased number of simulations needed to obtain an ac-
curate representation of the robustness for optimization, with a consequent increase of
computational time. We can partially improve on this problem, typical of naive imple-
mentations of the Bayesian approach, by refining the choice of the covariance function
and/or constraining some of its hyperparameters so as to increment the exploration
propensity of the search. In the future, we also plan to improve the adaptive approach
which is in charge of increasing the control points of an input signal, with the goal of
dropping control points that are not useful. In the current work, we use the GP-based
sampling scheme to deal efficiently with falsification. However, our approach can be
modified to deal with the coverage problem [DDD+15], i.e., the identification of a given
number of counterexamples which are homogeneously distributed in the falsification do-
main. Our idea is to modify the sampling algorithm (Algorithm 7, line 7) by adding a
memory of already visited areas, so to distribute samples homogeneously in space.





Concluding Remarks

This thesis combines formal methods and machine learning approaches to face the new
challenges of model-based development. Our research starts from the consideration that
even if formal methods are currently used in some specific areas, they are not used in
many others where they might be successfully applied. As already discussed in the In-
troduction, the motivations are somewhat complex. First, there is a lack of knowledge
in this area of computer science, for example, many engineers do not even encounter
them in their academic studies. Second, standard model checking techniques are not
able to deal with real industrial cases. In this thesis, machine learning approaches have
been used to make formal methods applicable even in complex industrial scenarios by
including, in addition, some common requirements of this context, such as the black
box modeling and the minimization of the computational cost derived from model sim-
ulations.

Conclusions and future works have been already discussed at the end of each contri-
bution. In this final chapter, we would like to focus on some section of this thesis which
we think are more interesting, give some future directions and a critic review of some
contributions.

Signal convolution logic, introduced in Chapter 5, is one of the most interesting
contributions from the formal methods side that we presented in this thesis. But at
the same time, I think, it needs more improvements than the other contributions. First
of all its motivation is clear and reasonable, and goes in the direction of enriching
the expressivity of “standard” temporal logic such as Signal Temporal Logic (STL) to
manage the complexity of new models and systems, i.e., cyber-physical systems. Other
authors had tackled this goal at different levels. In the falsification domain, for example,
Takumi al. in [AH15] extend STL by introducing a novel logic called Average Signal
Temporal Logic (AvSTL) which implements new average temporal operators. Their new
language continues the mission which is well represented by the slogan: expressivity of
temporal logic should help falsification. At the level of Boolean semantics, STL and
AvSTL are identical. Differences arise at the level of quantitative semantics where
time inhomogeneity can also be described. For example, the robustness of AvSTL can
differentiate among two trajectories that both satisfies – after heavy braking, the airbag
must operate within 10 ms – by giving more importance to the trajectory which realizes
the airbag opening as soon as possible. Our approach is different and works at the
level of Boolean semantic but shares with [AH15] the idea of increasing the expressivity
of STL to achieve different purposes. A common problem of extending a language
to get more expressivity is a consequent increase in the complexity of its verification
monitoring. The algorithm we propose is rather simple and need improvements which
have been planned for a future publication. Another common problem is related to its
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usability. In our extension the interpretation of the flat kernel is rather simple and can
find a natural domain of applicability, for example, 〈flat[0,30min], 0.50〉ϕ measures if in
the next 30 minutes ϕ holds for at least 15 minutes in total. The introduction of other
kernels is useful because permits to weight not uniformly the time where ϕ is satisfied.
As an example, while measuring the glucose level in blood, it is more dangerous if its
level is high just before a meal (see Chapter 5). To capture this, one could give different
weights if the formula is satisfied, or not, at the end of a specific time interval, i.e.,
by consider an increasing exponential kernel such as 〈exp[0,60min], 0.80〉 (G(t) ≥ 180),
where G(t) is the glucose level, 180 is the hyperglycemia threshold, and the meal will be
provided at the end of the next 60 min. A problem with these kinds of kernels is their
usability. Indeed, if in the previous example it is quite obvious which type of kernel
to consider (i.e., an increasing kernel), it is much less clear which kind of increasing
function should be chosen (e.g., exp[2](x) or exp[3](x), etc.). An interesting use of
signal convolution logic can be related to the classification of trajectories that we have
discussed in Chapter 6. In that contribution, we have used Parametric Signal Temporal
Logic (PSTL) to define a suitable classifier capable of classifying between anomalous
and regular trajectories. We use a heuristics algorithm to solve this task and relay on
the translation property of PSTL formula (i.e., translating all the atomic predicates of
the same quantity the value of the robustness increase or decrease of the same amount
as well ). A simple improvement consists in using the monotonicity properties of PSTL
formulas to learn the parameter of a formula. We think that the high expressivity of
SCL can be useful in this domain and a parameterized version of SCL can even be used
to identify suitable classifiers. A prerequisite is an efficient quantitative monitoring
Algorithm for such language which is planned for future works.

At the level of falsification, the contribution of Chapter 9 combines the power of
Gaussian processes with the expressivity of STL. The most exciting aspect, I think, is
the black box assumption which permits to define a general approach to the falsification
of block diagram models. This kind of assumption is usually adopted in the industrial
sectors for different reasons already described in the introduction and Chapter 9. An
essential requirement that we consider consists in achieving the falsification of a model
with a minimum number of simulations. This requirement is mainly motivated by the
typical situation, in the industrial fields, that simulations are very costly. The number
of simulations is, for this reason, an essential parameter to considers but it is not the
tightest we can find. We can indeed consider the total simulation time in an independent
manner w.r.t the number of simulation. If we perform 100 simulations of one minute
each, we perform a total of 100 minutes simulation which is better than 50 simulations of
3 minutes each (i.e., an overall simulation time of 150 minutes). Therefore, minimizing
the number of simulations is a right goal if all the simulations have the same duration,
or a mandatory requirement if we cannot predict the simulation time for different model
configurations. A possible improvement of our methods consists in leveraging the GP-
UCB algorithm and using online monitoring for STL robustness. At each iteration,
the GP-UCB algorithm for minimization will sample a new point which has a higher
probability to be lower than the minimum value found so far. However, it could happen
that this point is not so interesting (i.e., its value is higher than the already achieved
minimum). My guess is that it is not necessary to discover its precise value to permit
the GP-UCB to find the minimum, but it should be enough to find that its value is
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above a given threshold. This information can be further generalized to nearby points,
and that particular area will no more be considered by the GP-UCB algorithm, which
will explore new and more promising areas. The nice part is that the online monitoring
of STL [DDG+17] can be used efficiently to discover such inequalities before the planned
simulation ends, with a consequent saving of the total simulation time.
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