83,405 research outputs found

    Support Vector Regression Based S-transform for Prediction of Single and Multiple Power Quality Disturbances

    Get PDF
    This paper presents a novel approach using Support Vector Regression (SVR) based S-transform to predict the classes of single and multiple power quality disturbances in a three-phase industrial power system. Most of the power quality disturbances recorded in an industrial power system are non-stationary and comprise of multiple power quality disturbances that coexist together for only a short duration in time due to the contribution of the network impedances and types of customers’ connected loads. The ability to detect and predict all the types of power quality disturbances encrypted in a voltage signal is vital in the analyses on the causes of the power quality disturbances and in the identification of incipient fault in the networks. In this paper, the performances of two types of SVR based S-transform, the non-linear radial basis function (RBF) SVR based S-transform and the multilayer perceptron (MLP) SVR based S-transform, were compared for their abilities in making prediction for the classes of single and multiple power quality disturbances. The results for the analyses of 651 numbers of single and multiple voltage disturbances gave prediction accuracies of 86.1% (MLP SVR) and 93.9% (RBF SVR) respectively. Keywords: Power Quality, Power Quality Prediction, S-transform, SVM, SV

    Identification of nonlinear time-varying systems using an online sliding-window and common model structure selection (CMSS) approach with applications to EEG

    Get PDF
    The identification of nonlinear time-varying systems using linear-in-the-parameter models is investigated. A new efficient Common Model Structure Selection (CMSS) algorithm is proposed to select a common model structure. The main idea and key procedure is: First, generate K 1 data sets (the first K data sets are used for training, and theK 1 th one is used for testing) using an online sliding window method; then detect significant model terms to form a common model structure which fits over all the K training data sets using the new proposed CMSS approach. Finally, estimate and refine the time-varying parameters for the identified common-structured model using a Recursive Least Squares (RLS) parameter estimation method. The new method can effectively detect and adaptively track the transient variation of nonstationary signals. Two examples are presented to illustrate the effectiveness of the new approach including an application to an EEG data set

    Time-varying signal processing using multi-wavelet basis functions and a modified block least mean square algorithm

    Get PDF
    This paper introduces a novel parametric modeling and identification method for linear time-varying systems using a modified block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be used to track rapidly or even sharply varying processes and is more suitable for recursive estimation of process parameters by combining wavelet approximation theory with a modified block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstatinoary processes

    Identification of time-varying systems using multiresolution wavelet models

    Get PDF
    Identification of linear and nonlinear time-varying systems is investigated and a new wavelet model identification algorithm is introduced. By expanding each time-varying coefficient using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant problem and the identification reduces to regressor selection and parameter estimation. Several examples are included to illustrate the application of the new algorithm

    Integral projection models for species with complex demography

    Get PDF
    Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation ( e. g., body size). The integral projection model ( IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross- classification by several attributes ( e. g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/ elasticity analysis for density- independent models, local stability analysis in density- dependent models, and optimal/ evolutionarily stable strategy life- history analysis. Our presentation centers on an IPM for the thistle Onopordum illyricum based on a 6- year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. The online edition of the American Naturalist includes a zip archive of R scripts illustrating our suggested methods
    • …
    corecore