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Abstract 
 

This paper presents a novel approach using Support Vector Regression (SVR) based 
S-transform to predict the classes of single and multiple power quality disturbances in a 
three-phase industrial power system. Most of the power quality disturbances recorded in an 
industrial power system are non-stationary and comprise of multiple power quality 
disturbances that coexist together for only a short duration in time due to the contribution 
of the network impedances and types of customers’ connected loads. The ability to detect 
and predict all the types of power quality disturbances encrypted in a voltage signal is vital 
in the analyses on the causes of the power quality disturbances and in the identification of 
incipient fault in the networks. In this paper, the performances of two types of SVR based 
S-transform, the non-linear radial basis function (RBF) SVR based S-transform and the 
multilayer perceptron (MLP) SVR based S-transform, were compared for their abilities in 
making prediction for the classes of single and multiple power quality disturbances. The 
results for the analyses of 651 numbers of single and multiple voltage disturbances gave 
prediction accuracies of 86.1% (MLP SVR) and 93.9% (RBF SVR) respectively. 
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1.  Introduction 
Over the years, many people involved in power quality have defined and perceived power quality 
problems differently. The most accepted definition of power quality was made by Dugan et al. (1996), 
who defined it as “Any electrical power problem manifested in voltage, current, or frequency 
deviations that results in failure or mis-operation of customers’ operation." In its broadest sense, power 
quality is a set of boundaries that allows electrical systems to function in their intended manner without 
significant loss in performance or lifetime. This term is used to describe electric power that drives an 
electrical load and the load's ability to function properly with that electric power. Without the proper 
power, an electrical device (or load) may malfunction, fail prematurely or not operate at all. There are 
many ways in which electric power can be of poor quality and many more causes of poor power 
quality. The proliferation of electronic equipment in automated manufacturing process industries has 
brought power quality to the center stage of power supply system planning, design, and utilization. 

Variations in the power quality, even for a very short time, that were not a concern before can 
now be very costly in terms of process shut-downs and electrical equipment malfunctions in 
manufacturing plants. Modern day customers demand high power quality for improved production 
output as well as for maintaining an optimal operating cost. As customers seek to increase efficient 
utilization of resources, power utilities must now strive to better understand power quality problems 
affecting their customers. There are many events, some man-made and others due to nature, that can 
cause power quality problems. Analysis of these events is usually difficult because the causes are often 
unclear. The causes of the disturbances may be related to either a switching operation within the 
manufacturing facility or a power system fault hundreds of kilometers away. 

The increasing use of technologies that are sensitive to minor voltage disturbances has created a 
need for the implementation of an online power quality monitoring system (PQMS). The PQMS will 
enable the power utility to perform continuous monitoring of the power systems in order to evaluate 
the level of the quality of the offered electrical powers, whether they are within pre-specified standards 
or not and also to obtain the necessary information to detect potential system problems and respond 
faster to any customer complaints. The general configuration of a PQMS is shown in Figure 1. The 
PQMS will receive voltage input from the common distribution bus and current input from only one 
feeder i.e. feeder B4. When a fault occurs either on a transmission or distribution network, it typically 
draw energy from the power networks. Depending on the relationship between the fault location and 
monitoring location, either a voltage sag or voltage interruption event will happen. When a fault 
happens at location E on a transmission line, voltage sag rather than a voltage interruption is observed 
in the PQMS. When a fault occurs at location F on a parallel distribution circuit, voltage sag will also 
be observed in the PQMS. Thus, voltage sag will appear when a fault occurs in the power networks. As 
soon as the fault is cleared by a circuit breaker, the voltage restores to the pre-sag value. The duration 
of a voltage sag event is associated with the time required for a relay and circuit breaker to detect and 
clear a fault. The PQMS will record all the behavior of both the voltage and current waveforms during 
the whole process of fault occurrences and fault clearing. 
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Figure 1: Architecture of the PQMS 
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The power quality waveforms i.e. voltages and currents, recorded by the PQMS can provide 
excellent information for the identification of the types and causes of the power quality disturbances. 
These signatures can also be used to detect the existence of partial discharges and incipient fault and 
the needs to conduct conditioned-based maintenance (CBM) activities. The CBM activities, i.e., 
thermal imaging and ultrasound scanning are necessary to pinpoint the root causes of the partial 
discharges and incipient faults. Incipient fault occurs when damage or contamination progressively 
weakens the integrity of the network components over time and leads to insulation failure. These faults 
are predictable and avoidable if the degradation processes are known by analyzing the disturbance data. 
In future papers, the author will present the effectiveness of this novel approach in the detection of 
partial discharges and incipient faults in the networks. 

To interpret all the power quality disturbance data will require a high level of engineering 
expertise. To analyze the causes of the power quality disturbances is also a nontrivial task, mainly due 
to the huge volume of disturbance records. Therefore, to solve both data volume and lack of expertise 
problems, a technique that can perform automatic identification of single and multiple power quality 
disturbances is required. 
 
 
2.  A Novel Approach to Predict Single and Multiple Power Quality Disturbances 
In this paper a novel approach to perform automatic prediction of single and multiple power quality 
disturbances is presented. The block diagram for the new approach shown in Figure 2 was developed 
using the S-transform and the Support Vector Regression (SVR) techniques. The whole process will 
start with the recording of power quality disturbance data using power quality recorders in the PQMS. 
These data will then be processed by the S-transform and features that can characterize the 
disturbances will be extracted. These features will then be applied to the SVR to predict the classes of 
the disturbances. The results of this new approach will be categorized into three categories: 1) The first 
category is the classes of disturbances related to the fundamental components (sags, swells and 
interruption), 2) the second category is the classes for other disturbances (harmonics, notches, 
transients etc) and lastly, 3) the third category is called incipient fault. In this study, only the results 
related to the first and second categories will be presented. 
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Figure 2: Process flow for the prediction of classes of power quality disturbances 
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The arrangement of this paper is as follows. In section 3, the description on the application of 
the S-transform in the detection of power quality disturbances is presented. The theory of the S-
transform and selection of features for the detection of the disturbances will be explained in detailed. In 
section 4, the theory of SVR and its application in predicting the disturbances will be presented. And 
lastly the results and discussion of the application of the new approach in the prediction of single and 
multiple power quality disturbances are presented in section 5. 
 
 
3.  Application of S-transform for detecting power quality disturbances 
The S-transform is considered to be one of the most recent techniques developed for performing signal 
processing. It produces a time-frequency representation of a time series signal. The S-transform is also 
a generalization of the Short-time Fourier transform (STFT), an extension of the continuous wavelet 
transforms (CWT), and it overcomes some of the disadvantages of the wavelet transforms (Stockwell 
et al, 1996). The S-transform will perform multiresolution analysis (MRA) on a time varying power 
signal, as its window width varies inversely with the frequency. The basis function for the S-transform 
is a Gaussian modulation cosinusoid. The cosinusoid frequencies are used for the interpretation of a 
signal that will result in the time frequency spectrum. The output of the S-transform is an N x M matrix 
called the S-matrix whose rows pertain to the frequency and columns to time. Each element of the S-
matrix is complex valued and can be used as features to classify the non-stationary single and multiple 
power quality disturbances. In the latest development in power quality analysis, the S-transform was 
reported to be the most superior signal processing technique because it is based on dynamic time-
frequency dependent resolutions, which allows for the detection of high frequency bursts (Pinnegar and 
Mansinha, 2003: Pinnegar and Mansinha, 2004). High frequency burst is a common signature for the 
phase current during incident of partial discharges which will generate incipient fault (Weeks and 
Steiner, 1982). 

The S-transform for a function h(t) can be calculated by defining a CWT with a specific mother 
wavelet function multiplied with a phase factor as shown accordingly, 

),(),( 2 ftwefS fi τπτ =  (1) 
where the mother wavelet function is defined as 
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Explicitly, the S-transform can be written as 
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Equation (3) is further simplified as follows, 
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where ),( fg τ  is the Gaussian modulation function which is given by, 
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The S-transform will generate time frequency contours, which will display the disturbance 
patterns for visual identification for the single and multiple power quality disturbances. These contours 
can provide excellent features, which can be used by a pattern recognition system for classifying the 
power quality disturbances. Examples on the time frequency contours for voltages and currents for a 
power quality disturbance are shown in Figure 3. The data in the figure were recorded in one substation 
in Malaysia. In the figure, the first row showed the time frequency contours for three phase voltage 
sags and in the second row are the respective time frequency contours for the phase currents. The cause 
of the three phase voltage sag was due to lightning activities at the transmission networks. The S-
transform clearly showed the existence of voltage sags by the sudden changes in the time frequency 
contours. The resolutions of the contours showed brief reduction during the voltage sag events. The 
same condition was also reflected for time frequency contours for the currents which also showed brief 
reduction during the voltage sags events. 
 

Figure 3: Plots of the time frequency contours for voltages and currents 
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In this study, nine features were extracted from the time frequency contours of the S-transform. 
The first set of features was based on the maximum values in the S-matrix. In Figure 4, comparison 
between the original disturbance waveforms (1st row) and the maximum value plots (2nd row) is shown. 
The maximum value plots for the red, yellow and blue phases showed the existence of voltage sags 
which coincided with the disturbances seen in the original waveforms. Based on this observation, it 
was shown that the maximum value plots are very suitable for the detection of classes of disturbances 
related to the fundamental components (sags, swells and interruption). Four features (F1, F2, F3 and 
F4) were selected from the maximum value plots. The details of these features are explained in Table 
1. In Table 1, the parameters of 0.90 and 1.10 were selected based on the parameters used to define 
voltage sag and swell as stated in IEEE 1159:1992 standard. Voltage sag is detected when the root 
mean square (rms) voltage reduce below 90% of the nominal line to neutral voltage for duration 
between 10 ms to 60 second. And voltage swell is defined when the rms voltage increase above 110% 
of the nominal line to neutral voltage for the same duration. In this study, the same parameters were 
used to evaluate the maximum value plots. If the minimum value of the plot is less than 0.90 of the 
normalized value, then voltage sag is detected. The same methodology is applied for the detection of 
voltage swell. 

 
Figure 4: Comparison between plots of the (a) original waveforms, (b) maximum values in the S-matrix 
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Table 1: Descriptions of features based on the maximum values in the S-Matrix 
 

Features Description 

F1 Values of time resolution (ms) for the data below the absolute value of 0.90 in the maximum value 
plots. 

F2 Values of time resolution (ms) for the data above the absolute value of 1.10 in the maximum value 
plots. 

F3 The minimum value below the absolute value of 0.90 in the maximum value plots. 
F4 The maximum value above the absolute value of 1.10 in the maximum value plots. 

 
The second set of features was selected from the values of the frequency resolutions in the S-

matrix. In a study on a set of 124 power quality disturbances, it was observed that most of the voltage 
disturbances could be characterized by the values of the frequency resolutions, except for voltage sags 
and swells. The results of the analysis showed that both voltage sags and swells have the same 
frequency resolution ranging from 0.000 to 0.0061. Harmonics can be detected between the frequency 
resolutions of 0.0061 and 0.022, and notches are detected between 0.022 and 0.080. Oscillatory and 
impulsive transients can be detected between the frequency resolutions of (0.080 to 0.4) and (0.4 to 
0.5), respectively. The summary of the second set of features selected based on frequency resolutions 
are explained in Figure 5 and Table 2. The performance of these new features in detecting power 
quality disturbances will be presented in other section of this paper. 

 
Figure 5: Features from the S-transform frequency resolutions 
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Table 2: Descriptions of features based on the values of the frequency resolutions in the S-Matrix 
 

Features Description 
F5 Values of frequency resolution from 0.0061 to 0.022 
F6 Values of frequency resolution from 0.022 to 0.04 
F7 Values of frequency resolution from 0.04 to 0.08 
F8 Values of frequency resolution from 0.08 to 0.40 
F9 Values of frequency resolution from 0.40 to 0.50 

 
 
4.  Support Vector Regression for prediction of power quality disturbances 
The foundations of Support Vector Machines (SVMs) have been developed by Vapnik and Cortez 
(1995), and they are gaining popularity due to many attractive features and promising empirical 
performance. Their formulation embodies the structural risk minimization (SRM) principle, which has 
been shown to be superior to the traditional empirical risk minimization (ERM) principle, employed by 
conventional neural networks (Vapnik, 1995). SRM minimizes an upper bound on the expected risk, as 
opposed to ERM, which minimizes the error on the training data. It is this difference that equips SVMs 
with a greater ability to generalize, which is the goal in statistical learning. Initially, SVMs were 
developed to solve classification problems, but recently, they have been extended to the regression 
problem domain (Vapnik et al, 1996). The term SVM is typically used to describe classification with 
support vector methods, and support vector regression (SVR) is used to describe regression with 
support vector methods. 

Originally, the SVM was introduced within the context of statistical learning theory and SRM. 
Viewing input data as two sets of vectors in an n-dimensional space, an SVM will construct a 
separating hyperplane in that space, one that maximizes the margin between the two data sets. To 
calculate the margin, two parallel hyperplanes are constructed, one on each side of the separating 
hyperplane, which are "pushed up against" the two data sets. Intuitively, a good separation is achieved 
by the hyperplane that has the largest distance to the neighboring data points of both classes, since, in 
general, the larger the margin is, the better the generalization error of the classifier. Consider the 
sample data below, i.e., training data, which are a set of points of the form: 

n
ii

p
iii cRxcxD 1}1,1{,|),{( =−∈∈=  (6) 

where ci is either 1 or −1, indicating the class to which the point ix  belongs. Each ix is a p-dimensional 
real vector. To classify the data set, a maximum-margin hyperplane is required that can divide the 
points having ci = 1 from those having ci = − 1. The classification is done by means of a dividing 
hyperplane, which takes the form of the equation: 

bxwxf T −=)(  (7) 
where w : orthogonal weight vector T

nwww ],....,[ 21  and b : a scalar used to increase the margin 
The vector w is a normal vector: it is perpendicular to the hyperplane. The parameter b 

determines the offset of the hyperplane from the origin along the normal vector w . The dividing 
hyperplane is achieved when 0. =− bxw . Without this parameter, the hyperplane created will be 
restricted to pass through the origin only. Thus, the position of the dividing hyperplane is determined 
by the vector w and scalar b. In order to distinguish between the two classes, label iy is used as: 

iy  = +1 if x belong to Class 1, (8) 

iy  = -1 if x belong to Class 2, (9) 
In other words, the dividing hyperplane has to follow the following constraints: 

0)( ≥ixf , if 1+=iy  (10) 
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0)( ≤ixf , if 1−=iy  (11) 
Thus, two parallel hyperplanes are created on each side of the dividing hyperplane, satisfying 

the above constraints. The hyperplanes can be described by these equations: 
1. +=− bxw and 1. −=− bxw  (12) 

The samples on the margin in Figure 3 are called the support vectors. By using geometry, the 
distance between these two hyperplanes is ||

2
w . The optimal dividing hyperplane is obtained by 

maximizing the margin ||
2
w , such that there are no points between the above parallel hyperplanes and 

thus minimizing || w  . 
 

Figure 3: Maximum-margin hyperplane and margins for an SVM trained with samples from two classes 
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In statistics, regression analysis is a collective name for techniques used in the modeling and 
analysis of numerical data consisting of values of a dependent variable (also called response variable or 
measurement) and of one or more independent variables (also known as explanatory variables or 
predictors) (Rodríguez, 1996). The dependent variable in the regression equation is modeled as a 
function of the independent variables, corresponding parameters ("constants"), and an error term. The 
error term is treated as a random variable. It represents unexplained variation in the dependent variable. 
The parameters are estimated so as to give a "best fit" of the data. Most commonly, the best fit is 
evaluated by using the least squares method, but other criteria have also been used. The uses of 
regression rely heavily on the underlying assumptions being satisfied. The support vector method can 
also be applied to the case of regression while maintaining all the main features that characterize the 
maximal margin algorithm: a non-linear function is learned by a linear learning machine in a kernel-
induced feature space, while the capacity of the system is controlled by a parameter that does not 
depend on the dimensionality of the space. As explained earlier, the roots of SVM lie in statistical 
learning theory, which describes properties of learning machines that enable them to generalize well to 
unseen data. In the case of SVR, the goal is to find a function that predicts the target values of the 
training data with a deviation of at most ε while requiring this function to be as flat as possible 
(Drucker et al, 1998). According to Smola and Scholkpof (1998), the core of the support vector 
algorithm does this for linear functions f(x) = (w,x) + b, where (w,x) denotes the dot product of vectors 
w and x, thereby enforcing flatness by minimizing |w| (|w| denotes the Euclidian norm of vector w). By 
using a dual representation of the minimization problem, the algorithm requires only dot products of 
the input patterns. This allows the application of non-linear regression by using a kernel function that 
represents the dot product of the two transformed vectors. The support vector algorithm will now fit a 
flat-as-possible function by searching for a suitable separating hyperplane for the SVR. 
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In this paper, the SVR performed regression to predict the existence of single and multiple 
power quality disturbances. Two types of SVRs were developed based on two different kernel 
functions for performance comparison. The use of the kernel trick provides a powerful way to obtain 
non-linear algorithms capable of handling non-separable data sets in the original input space. The idea 
of the kernel function is to enable operations to be performed in the input space rather than the 
potentially high-dimensional feature space. The basic concept is to construct a mapping into a higher 
dimensional feature space by the use of reproducing kernels. However, the computation is still heavily 
dependent upon the number of training patterns, and generating a good data distribution for a high-
dimensional problem will generally require a large training set. The first SVR uses the radial basis 
function (RBF) kernel and is shown in equation 13. The parameter σ is associated with the RBF 
function and will be tuned in order to get the targeted results. 

)
2

||(
2

2

),( σ
yx

eyxk
−

−
=  (13) 

The second SVR was developed based on the multi-layer perceptron (MLP) kernel, and the 
equation for the MLP kernel is shown in equation 14. The value of the kernel will depend on certain 
values of the scale, ρ, and offset, ∂, parameters. Here the MLP SVR corresponds to the first layer and 
the Lagrange multipliers to the weights. 

)),(tanh(),( ∂+= yxyxk ρ  (14) 
 
 
5.  Experimental tests and results 
5.1. Preparation of training database and testing data 

The performance of the SVR based S-transform is dependent on the training database. The first part of 
the study involved the development of the training database. The training database was developed 
based on analyses performed on 525 number of disturbance data with known causes. The measurement 
data included a short pre-fault waveform (approximately 6 cycles long) followed by the actual 
disturbance and a post fault waveform (approximately 10 cycles). The description of the classes of the 
power quality disturbances to be predicted by the SVR based S-transform is shown in table 3. Overall 
there are 21 numbers of classes to be predicted by the SVR. 
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Table 3: Descriptions of classes of power quality events 
 

Types of power quality disturbances Classes 
Pure waveform/Normal voltage C1 
Voltage sag C2 
Voltage swell C3 
Harmonics C4 
Notches C5 
Oscillatory transient C6 
Impulsive transient C7 
Sag & harmonic C8 
Sag & notch C9 
Sag & Oscillatory transient C10 
Sag, harmonic & notch C11 
Sag, notch & oscillatory transient C12 
Swell & harmonic C13 
Swell & notch C14 
Swell & oscillatory transient C15 
Swell, harmonic & notch C16 
Swell, notch & oscillatory transient C17 
Harmonic & notch C18 
Notch & oscillatory transient C19 
Sag & impulsive transient C20 
Sag, harmonic & impulsive transient C21 

 
In table 4 are the statistics for both the training and testing data for the experiments. The testing 

data are the data to be analyzed and predicted by the SVR for their respective classes. Lastly, in order 
to make the SVR training database, two extra parameters are needed which the details and values are 
explained in table 5. 
 
Table 4: Number of voltage disturbances for training and testing of SVR 
 

Disturbance class Number of training data of each disturbance 
class Number of  data for testing for each class 

C1 25 31 
C2 25 31 
C3 25 31 
C4 25 31 
C5 25 31 
C6 25 31 
C7 25 31 
C8 25 31 
C9 25 31 

C10 25 31 
C11 25 31 
C12 25 31 
C13 25 31 
C14 25 31 
C15 25 31 
C16 25 31 
C17 25 31 
C18 25 31 
C19 25 31 
C20 25 31 
C21 25 31 

Total 525 651 
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Table 5: Description and values of the parameters for the SVR 
 

Parameters Descriptions Values 

γ (gam) This is the regularization parameter, determining the trade-off between the fitting error 
minimization and smoothness 10 

σ2 (sig2) This is the bandwidth of the RBF Kernel 0.2 
 

The first step in the experiments was to extract all the nine features using the S-transform for 
the 525 numbers of training data and to rearrange the features based on the format in table 6 in order to 
classify the disturbances. This data will be termed as training database for the SVR. Next, the testing 
data will be analyzed using the SVR based S-transform and new set of features will be extracted for 
making prediction of the disturbances. Next, two experiments using both the SVR techniques, the non-
linear radial basis function (RBF) SVR and the multi-layer perceptron (MLP) SVR, were conducted. In 
these experiments, both the SVRs were trained with the training data base. Once the trainings were 
completed, both the RBF SVR and MLP SVR were tested for their abilities to perform prediction for 
the 651 numbers of testing data. 
 
Table 6: Features arrangement for data prediction by the SVR 
 

F1 F2 F3 F4 F5 F6 F7 F8 F9 Class 
0 0 0.99836 1.00340 0 0 0 0 0 C1 

11 0 0.80734 1.00067 0 0 0 0 0 C2 
0 348 0.97844 1.26610 0 0 0 0 0 C3 
0 0 0.99384 1.00616 5 0 0 0 0 C4 
0 0 0.98136 1.01888 0 84 69 0 0 C5 
0 0 0.95790 1.00510 0 0 123 346 0 C6 
0 0 0.99794 1.00484 0 0 0 1272 1085 C7 

133 0 0.54167 1.00517 46 0 0 0 0 C8 
1400 0 0.87040 0.91010 12 0 77 0 0 C9 
850 0 0.11020 1.00540 0 0 0 88 0 C10 
117 0 0.80827 1.00000 111 0 0 92 0 C11 
653 0 0.45020 1.08100 0 100 100 100 0 C12 

0 806 0.99862 1.69500 25 0 0 0.00 0 C13 
0 541 0.95210 1.14020 23 500 500 500 0 C14 
0 1543 0.91110 1.45120 0 0 0 11 0 C15 
0 850 1.00500 1.25110 27 0 0 88 0 C16 
0 200 0.96010 1.76120 0 98 75 123 0 C17 
0 0 0.99467 1.06154 2302 0 298 0 0 C18 
0 0 0.99896 1.00616 0 0 0 251 0 C19 

28 0 0.87870 1.00011 277 1521 0 2425 128 C20 
478 0 0.86054 1.00002 12270 34734 0 54899 20466 C21 

 
5.2. Prediction results 

The results of the conducted experiments are shown in table 7 through table 12. These tables contained 
the prediction results in terms of correct prediction (diagonal elements) and mis-prediction (the 
numbers outside the diagonal elements). Furthermore the overall prediction rate (i.e., the number of 
correctly predicted disturbances divided by the total number of disturbances) is also given in the tables. 



249 M F Faisal, A Mohamed, A Hussain and M Nizam 

 

Table 7: RBF SVR prediction results for experiment 1 for classes C1 to C8 
 

 C1 C2 C3 C4 C5 C6 C7 C8 Prediction rate % 
C1 31 0 0 0 0 0 0 0 100.0% 
C2 0 31 0 0 0 0 0 0 100.0% 
C3 0 0 31 0 0 0 0 0 100.0% 
C4 0 0 0 28 1 1 0 1 90.3% 
C5 0 0 1 0 28 2 0 0 90.3% 
C6 0 0 0 0 0 27 2 2 87.1% 
C7 0 0 0 0 0 1 28 2 90.3% 
C8 0 0 0 0 2 1 0 28 90.3% 

Overall prediction accuracy: 93.5 % 
 
Table 8: RBF SVR prediction results for experiment 1 for classes C9 to C15 
 

 C9 C10 C11 C12 C13 C14 C15 Prediction rate % 
C9 29 0 0 0 1 1 2 93.5% 

C10 0 29 2 0 0 0 0 93.5% 
C11 0 0 29 1 0 1 0 93.5% 
C12 0 0 1 30 0 0 0 96.8% 
C13 0 0 0 2 29 0 0 93.5% 
C14 0 0 0 0 3 28 0 90.3% 
C15 0 0 0 0 2 1 28 90.3% 

Overall prediction accuracy: 93.1 %. 
 
Table 9: RBF SVR prediction results for the experiment 1 for classes C16 to C21 
 

 C16 C17 C18 C19 C20 C21 Prediction rate % 
C16 29 1 0 0 1 0 93.5% 
C17 1 30 0 2 1 0 96.8% 
C18 0 1 30 0 0 0 96.8% 
C19 0 0 0 31 0 0 100.0% 
C20 0 0 2 1 29 1 93.5% 
C21 0 0 0 2 1 28 90.3% 

Overall prediction accuracy: 95.2 %. 
 
Table 10: MLP SVR prediction results for experiment 2 for classes C1 to C8 
 

 C1 C2 C3 C4 C5 C6 C7 C8 Prediction rate % 
C1 31 0 0 0 0 0 0 0 100.0% 
C2 0 31 0 0 0 0 0 0 100.0% 
C3 0 0 31 0 0 0 0 0 100.0% 
C4 0 0 0 25 2 1 0 3 80.6% 
C5 0 0 1 1 23 3 0 3 74.2% 
C6 0 0 1 1 0 27 2 0 87.1% 
C7 0 0 1 1 1 1 25 2 80.6% 
C8 0 0 1 1 1 0 1 27 87.1% 

Overall prediction accuracy: 88.7%. 
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Table 11: MLP SVR prediction results for experiment 2 for classes C9 to C15 
 

 C9 C10 C11 C12 C13 C14 C15 Prediction rate % 
C9 29 1 0 1 0 0 0 93.5% 

C10 0 26 0 1 1 0 3 83.9% 
C11 0 1 25 2 1 0 2 80.6% 
C12 2 1 1 25 0 0 2 80.6% 
C13 0 0 0 2 29 0 0 93.5% 
C14 1 1 0 0 1 27 1 87.1% 
C15 1 1 1 1 1 0 26 83.9% 

Overall prediction accuracy: 86.2 %. 
 
Table 12: MLP SVR prediction results for experiment 2 for classes C16 to C21 
 

 C16 C17 C18 C19 C20 C21 Prediction rate % 
C16 28 2 0 0 0 1 90.3% 
C17 1 28 0 1 0 1 90.3% 
C18 2 1 24 0 2 2 77.4% 
C19 2 2 0 25 2 0 80.6% 
C20 3 2 2 1 23 0 74.2% 
C21 0 1 1 2 0 27 87.1% 

Overall prediction accuracy: 83.3 %. 
 
5.3. Comments regarding the experiments 

In this paper, two experiments were performed to evaluate the performance of the novel approach in 
the prediction of single and multiple power quality disturbances. Both the experiments applied all the 
nine features extracted from the S-transform. The first experiment was conducted using the RBF SVR, 
and the second experiment was done using the MLP SVR. The individual detection rates for 
experiment 1 range from 93.1% to 95.2%. These rates were sufficiently high to validate the high 
performance of the RBF SVR based S-transform technique. Based on these results, it was proven that 
the RBF SVR based S-transform technique was able to predict precisely all the classes of power 
quality disturbances in the voltage signals with an overall detection rate of 93.9%. In experiment 2, the 
individual detection rate range from 84.4% to 89.9%. The overall detection rate for the MLP SVR was 
at 86.1% which is lower than the RBF SVR technique. It is important to note that for the RBF SVR, 
the kernel selected was the Gaussian radial basis function and that the corresponding feature space is a 
Hilbert space of infinite dimension. As maximum margin classifiers are well regularized, the infinite 
dimension does not spoil the results but improves the efficiency of the RBF SVR (Gunn, 1998). 
 
 
6.  Conclusion 
In this paper, a novel approach to perform data prediction using Support Vector Regression (SVR) 
based S-transform techniques is presented. The results of the two experiments performed in this study 
gave high prediction accuracy, implying that the SVR based S-transform prediction technique is an 
attractive choice for performing prediction for both single and multiple power quality disturbances. In 
performing prediction, generalized control of the prediction is obtained by maximizing the hyperplane 
margin, which corresponds to minimizing the weight vector in a canonical framework. The support 
vectors lie on the boundary and, as such, summarize the information required to separate the 
disturbance data. The choice of the kernel functions could also dictate the prediction accuracy of the 
SVR. Both the RBF and MLP kernel mappings provide a unifying framework for the SVR model 
architectures, enabling prediction to be performed. In this study, the RBF SVR was proven to be 
superior to the MLP SVR in the prediction of single and multiple power quality disturbances. This new 
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prediction method will be useful to the PQMS for performing for real-time prediction of the classes of 
the recorded power quality disturbances. 
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