1,472 research outputs found

    A Practical Approach for the Auto-tuning of PD Controllers for Robotic Manipulators using Particle Swarm Optimization

    Get PDF
    An auto-tuning method of PD controllers for robotic manipulators is proposed. This method suggests a practical implementation of the particle swarm optimization technique in order to find optimal gain values achieving the best tracking of a predefined position trajectory. For this purpose, The integral of the absolute error IAE is used as a cost function for the optimization algorithm. The optimization is achieved by performing the desired movement of the robot iteratively and evaluating the cost function for every iteration. Therefor, the necessary constraints that guarantee a safe and stable movement of the robot are defined, which are: a maximum joint torque constraint, a maximum position error constraint and an oscillation constraint. A constraint handling approach is suggested for the optimization algorithm in order to adapt it to the problem in hand. Finally, the efficiency of the proposed method is verified through a practical experiment on a real robot

    Particle Swarm Optimization—An Adaptation for the Control of Robotic Swarms

    Get PDF
    Particle Swarm Optimization (PSO) is a numerical optimization technique based on the motion of virtual particles within a multidimensional space. The particles explore the space in an attempt to find minima or maxima to the optimization problem. The motion of the particles is linked, and the overall behavior of the particle swarm is controlled by several parameters. PSO has been proposed as a control strategy for physical swarms of robots that are localizing a source; the robots are analogous to the virtual particles. However, previous attempts to achieve this have shown that there are inherent problems. This paper addresses these problems by introducing a modified version of PSO, as well as introducing new guidelines for parameter selection. The proposed algorithm links the parameters to the velocity and acceleration of each robot, and demonstrates obstacle avoidance. Simulation results from both MATLAB and Gazebo show close agreement and demonstrate that the proposed algorithm is capable of effective control of a robotic swarm and obstacle avoidance

    Action Generalization in Humanoid Robots Through Artificial Intelligence With Learning From Demonstration

    Get PDF
    Mención Internacional en el título de doctorAction Generalization is the ability to adapt an action to different contexts and environments. In humans, this ability is taken for granted. Robots are yet far from achieving the human level of Action Generalization. Current robotic frameworks are limited frameworks that are only able to work in the small range of contexts and environments for which they were programmed. One of the reasons why we do not have a robot in our house yet is because every house is different. In this thesis, two different approaches to improve the Action Generalization capabilities of robots are proposed. First, a study of different methods to improve the performance of the Continuous Goal-Directed Actions framework within highly dynamic real world environments is presented. Continuous Goal-Directed Actions is a Learning from Demonstration framework based on the idea of encoding actions as the effects these actions produce on the environment. No robot kinematic information is required for the encoding of actions. This improves the generalization capabilities of robots by solving the correspondence problem. This problem is related to the execution of the same action with different kinematics. The second approach is the proposition of the Neural Policy Style Transfer framework. The goal of this framework is to achieve Action Generalization by providing the robot the ability to introduce Styles within robotic actions. This allows the robot to adapt one action to different contexts with the introduction of different Styles. Neural Style Transfer was originally proposed as a way to perform Style Transfer between images. Neural Policy Style Transfer proposes the introduction of Neural Style Transfer within robotic actions. The structure of this document was designed with the goal of depicting the continuous research work that this thesis has been. Every time a new approach is proposed, the reasons why this was considered the best new step based on the experimental results obtained are provided. Each approach can be studied separately and, at the same time, they are presented as part of the larger research project from which they are part. Solving the problem of Action Generalization is currently a too ambitious goal for any single research project. The goal of this thesis is to make finding this solution one step closer.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Saffiotti Alessandro.- Secretario: Santiago Martínez de la Casa Díaz.- Vocal: Fernando Torres Medin

    Data-Driven Predictive Modeling to Enhance Search Efficiency of Glowworm-Inspired Robotic Swarms in Multiple Emission Source Localization Tasks

    Get PDF
    In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (\u3c 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Combining Differential Kinematics and Optical Flow for Automatic Labeling of Continuum Robots in Minimally Invasive Surgery

    Get PDF
    International audienceThe segmentation of continuum robots in medical images can be of interest for analyzing surgical procedures or for controlling them. However, the automatic segmentation of continuous and flexible shapes is not an easy task. On one hand conventional approaches are not adapted to the specificities of these instruments, such as imprecise kinematic models, and on the other hand techniques based on deep-learning showed interesting capabilities but need many manually labeled images. In this article we propose a novel approach for segmenting continuum robots on endoscopic images, which requires no prior on the instrument visual appearance and no manual annotation of images. The method relies on the use of the combination of kinematic models and differential kinematic models of the robot and the analysis of optical flow in the images. A cost function aggregating information from the acquired image, from optical flow and from robot encoders is optimized using particle swarm optimization and provides estimated parameters of the pose of the continuum instrument and a mask defining the instrument in the image. In addition a temporal consistency is assessed in order to improve stochastic optimization and reject outliers. The proposed approach has been tested for the robotic instruments of a flexible endoscopy platform both for benchtop acquisitions and an in vivo video. The results show the ability of the technique to correctly segment the instruments without a prior, and in challenging conditions. The obtained segmentation can be used for several applications, for instance for providing automatic labels for machine learning techniques

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema
    • …
    corecore