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Abstract: Particle Swarm Optimization (PSO) is a numerical optimization technique based on the
motion of virtual particles within a multidimensional space. The particles explore the space in an
attempt to find minima or maxima to the optimization problem. The motion of the particles is linked,
and the overall behavior of the particle swarm is controlled by several parameters. PSO has been
proposed as a control strategy for physical swarms of robots that are localizing a source; the robots
are analogous to the virtual particles. However, previous attempts to achieve this have shown that
there are inherent problems. This paper addresses these problems by introducing a modified version
of PSO, as well as introducing new guidelines for parameter selection. The proposed algorithm links
the parameters to the velocity and acceleration of each robot, and demonstrates obstacle avoidance.
Simulation results from both MATLAB and Gazebo show close agreement and demonstrate that the
proposed algorithm is capable of effective control of a robotic swarm and obstacle avoidance.

Keywords: particle swarm; PSO; swarm robotics; obstacle avoidance

1. Introduction

Particle Swarm Optimization (PSO) [1] is a popular swarm intelligence algorithm that
is used to minimize a cost function (or maximize a fitness function) in a multidimensional
space. PSO uses multiple particles, with the velocity of each particle updated based on
costs evaluated and shared by the entire swarm. PSO has been used successfully in many
different tasks, including artificial neural network training, scheduling problems, and cali-
bration problems [2–5]. Optimization commonly takes place in a synthetic environment,
where virtual particles are allowed to roam without any physical constraints.

The PSO algorithm itself has multiple parameters, and many studies have provided
design guidelines for selecting these parameters to ensure both stability and rapid conver-
gence [6–10]. These studies have made several assumptions. The non-stagnant distribution
assumption model is so far the closest to completely describing PSO, and the study employ-
ing it was able to prove order-1 and order-2 stability of the algorithm [10]. These orders
of stability show that over time, both the expected position of a particle and its variance
converge to a constant. All the existing analyses study the evolution of the swarm as a
whole, and there are no studies of the short-term behavior of each particle.

1.1. PSO in Swarm Robotics

Swarm Robotics is the study of how a swarm of small, simple, and usually identi-
cal robots can be used to perform tasks that are not readily performed by a single robot.
A swarm robotic system can be characterized by its robustness, flexibility and scalabil-
ity [11,12]. Swarm robotic systems can be used for many different tasks (e.g., spatial
organization, collective motion and decision making [12]). The particle swarms in PSO are
analogous to a physical robotic swarm. Therefore, it comes as no surprise that PSO has been
proposed as a control strategy for swarm robotic systems [13]. Indeed, several modified
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PSO algorithms have been proposed for this purpose [14–16]. The main focus of these
algorithms is to incorporate obstacle avoidance in the movement of the robots. Some other
swarm intelligence algorithms that have been proposed for use as swarm controllers in
target localization tasks are Glowworm Swarm Optimization (GSO), Artificial Bee Colony
Optimization (ABCO), Bacterial Foraging Optimization (BFO), the Firefly algorithm and
the Bees algorithm [13].

The use of PSO as a robot controller in swarm robotic systems has the following
general problems:

1. As recognized by Hereford et al [17], the particles in PSO are assumed to be physically
unconstrained (i.e., unconstrained velocity and acceleration); an assumption that does
not hold for physical robots.

2. The control of the robots, and the updating of the robots’ states, are performed
asynchronously. The rate at which the velocity is updated depends on the speed of
robot control system. Therefore, changing the loop delay of a controller will result
in different characteristics of the physical system, even if the PSO parameters used
remain the same.

The parameter tuning guidelines that are suitable for PSO as applied to numeri-
cal parameter optimization are not therefore applicable for swarm robotics applications.
Furthermore, PSO when used specifically in source localization tasks, also has the follow-
ing problems:

3. PSO assumes an immutable environment. That is because PSO does not consider if the
cost (fitness) of past locations might change with time. This is clearly incompatible to
real-world robotic applications where both the state of the source and the environment
can change.

4. It is impossible for the swarm to know the location of a source before a particle has
passed directly over it, this is incompatible with collision avoidance.

These problems have prevented PSO from being more widely used in swarm robotics.
The first problems that need to be addressed are Problems 1 and 2 since they prevent
PSO from being used in swarm robotics in general (i.e., they are not limited to source
localization). In this paper necessary changes are introduced to the original PSO algorithm
to solve these problems. Furthermore, a formalized parameter selection technique is
presented that ensures order-1 and order-2 stability of the system, while accommodating
the physical constraints (velocity and acceleration limits) of the individual robots. This
leads to a new form of PSO with dynamic velocity control and obstacle avoidance that
outperforms existing methods. Section 2 provides an introduction to PSO. Section 3
modifies the PSO algorithm for use in swarm robotic systems and develops formalized
parameter selection methods. A simulation environment and working example is described
in Section 4 and results are given in Section 5.

2. Particle Swarm Optimization Theory

The fundamental aim of PSO is to identify the location inside a multidimensional
space that minimizes a cost function by using a swarm of particles. It is also possible to
maximize the function, but from this point onwards the assumption will be minimization.
At each timestep, every particle calculates the cost of its current location. Each particle
stores the location of its lowest cost (personal best location) and communicates it to the
rest of the swarm. Therefore, every particle also knows the location with lowest cost of the
whole swarm (global best location). After computing and communicating the personal and
global best locations each particle updates its velocity based on these values.

Let f : Rd → R be the cost function that needs to be minimized, where d is the number
of dimensions. Let the particle swarm Ω[k] be a set of N particles located in Rd, at timestep
[k]. Each particle computes the cost of its current location using f . The movement of the
particles is then determined by the displacement update equation

xi[k + 1] = xi[k] + ui[k + 1] (1)
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and the velocity update equation

ui[k + 1] = ωui[k] + c1r1 ◦ (yi[k]− xi[k]) + c2r2 ◦ (yg[k]− xi[k]), (2)

where ui[k] and xi[k] are the velocity and displacement of each particle i at timestep [k],
respectively. The ◦ operator represents element-wise multiplication (i.e., the Schur product).
Each element of the vectors r1 and r2 is drawn from the uniform distribution,

r1,j, r2,j ∼ U(0, 1) 1 ≤ j ≤ d. (3)

The location yi is the personal best location for particle i, such that for any timestep
[l] ∈ Z+, [l] ≤ [k]

f (yi[k]) ≤ f (xi[l]). (4)

Similarly, yg is the global best location, such that for any particle i ∈ [1 : N]

f (yg[k]) ≤ f (yi[k]). (5)

The parameters ω, c1 and c2 are the inertia weight, the cognitive coefficient and the
social coefficient respectively [10]. The inertia weight ω prevents the particles of the swarm
from diverging uncontrollably from either the personal or global best locations. Larger
values of ω are perceived as allowing more exploration and expansion of the swarm
in the problem space. Lower values of ω are instead used to enable rapid convergence.
The cognitive coefficient c1 and social coefficient c2 control the rate of convergence towards a
personal best (y) or global best (yg) location. When c1 > c2, each particle will favor moving
towards its personal best location, and when c1 < c2, the global best location [18–20].

To simplify further analysis, and in line with assumptions made in previous analyses,
yg will be drawn from a distribution with well-defined mean µ and variance σ [9,10].
To follow these previous analyses further, only the behavior of a single particle will be
considered, and so the index i will be omitted.

2.1. Parameter Tuning

PSO stability analyses typically aim to guarantee order-1 and order-2 stability [10],
although higher orders of stability can be also studied [21]. Order-1 is guaranteed by

− 1 < ω < 1 0 < ĉ < 4(ω + 1), (6)

where ĉ is the behavior coefficient and is given by

ĉ = c1 + c2. (7)

Order-2 is guaranteed by

− 1 < ω < 1 0 < ĉ <
24(1−ω2)

7− 5ω
. (8)

These safe operating regions are visualized in Figure 1. The limits ensure convergence
towards either of the currently known personal and global best locations [10].
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Figure 1. The safe operating regions defined by allowable values of ω, ĉ that guarantee order-1 and
order-2 stability.

2.2. Introduction to RPSO

Robotic Particle Swarm Optimization (RPSO) is a popular approach that incorpo-
rates obstacle avoidance into PSO using an additional acceleration term [14]. Therefore,
the velocity update equation becomes

u[k + 1] = ωu[k] + c1r1 ◦ (y[k]− x[k]) + c2r2 ◦ (yg[k]− x[k]) + c3r3 ◦ (Ft[k]) (9)

where c3 is the obstacle susceptibility coefficient and each element of r3 is drawn from the
uniform distribution U(0, 1). The vector Ft is a virtual force used to push the robot away
from surrounding obstacles and it is given by

Ft =
P

∑
p=1

Fp (10)

where P is the total number of obstacles around the robot and Fp is a virtual repulsive
force exerted by obstacle p ∈ [1 : P]. Virtual forces are a well-studied feature in swarm
robotics, used to control the position of a robot relative to its direct surroundings (e.g.,
obstacles or other robots). They are part of the more general Virtual Physics-based Design
concept. A number of papers discuss virtual forces and offer different ways of how they
can be calculated, ranging from simple position-dependent functions to more complex
functions that are typically inspired from real-world physical forces (e.g., spring-dumper
systems) [22–25]. In this paper we make use of simple position-dependent virtual forces to
achieve aggregation, but more complex functions should be equally applicable. To define
Fp, let s be a vector of distances between the robot and surrounding obstacles, such that
at sp = 0 the robot has collided with obstacle p. Therefore, a virtual repulsive force Fp is
given by

Fp =
γ

sp

(xr − xp)

|xr − xp|
(11)

where xr is the position of the center of the robot, xp is the position of the center of obstacle
p. The parameter γ > 0 is the sensitivity parameter and adjusts the intensity of the
repulsive force.

The value of c3 relative to c1 and c2 greatly affects the performance of the algorithm [14].
When c3 � max(c1, c2), the effect of the last term of (9) may not be sufficient to force the
robot to avoid an obstacle. On the other hand, when c3 � max(c1, c2), the robot becomes
overly sensitive to obstacles. Furthermore, all three acceleration terms are unbounded and
can increase arbitrarily, leading to further collisions.
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2.2.1. Dynamic Velocity Control

Traditionally PSO parameters are tuned before running the algorithm and they remain
constant throughout the operation of the algorithm. Couceiro et al. proposed that the
value of c3 could be dynamically recalibrated [14]—a form of Dynamic Velocity Control
(DVC). When no obstacles are present, c3 tends to 0, but it grows the closer the robot is
to an obstacle. However, even if this strategy is employed the unbounded nature of the
acceleration terms in (9) can still result in collisions.

For the strategy to work, it must be possible to calculate the maximum velocity that
a robot can reach without colliding with an obstacle, and then ensure that this velocity
is never exceeded by the RPSO controller. Fortunately, this requirement aligns with the
more general problems given in Section 1.1, and they can be solved together by relating the
RPSO parameters to the maximum velocity of the robot.

3. Particle Swarm Optimization in Swarm Robotics
3.1. Adaptation of PSO for Swarm Robotics

To formalize the relationship between the PSO parameters and the velocity (and
acceleration) of the robot it is necessary to re-state the governing equations. First, a modified
form of the update Equation (1) is required,

x[k + 1] = x[k] + ∆t u[k + 1], (12)

where ∆t represents the discrete timestep (and thus 1/∆t the update rate) of the PSO
controller, which represents the time taken to evaluate a new displacement and velocity
vector. Delays caused by inter-robot communication and processing of sensor input will
lead to larger values of ∆t. The robot may employ other low-level local controllers for tasks
that require a higher refresh rate (e.g., motor controllers, data collection and data fusion
controllers etc.).

Furthermore, in (2), the terms (y[k]− x[k]) and (yg[k]− x[k]) are unconstrained, pro-
ducing what was called Acceleration by Distance by Kennedy [1]. Constraints can be
realized by replacing (2) with

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y[k]− x[k]) + c2r2 ◦ sgn(yg[k]− x[k]) (13)

The sgn function, which is given by

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

 (14)

is also taken from the work of Kennedy (where its use is implied), and limits the maximum
acceleration of a single robot by constraining each term of the velocity update equation.
Please note that the sgn function is not a smooth function and may result in chattering [26]
under certain conditions. A smooth function can be used instead (e.g., tanh or some type
of a logistic function with outputs in the range (−1,1)) to avoid this. This paper considers
the sgn function for simplicity, but all the results of the following analysis can be applied
to the aforementioned smooth functions as well.

3.2. Updated Parameter Tuning Stability Criteria

The stability criteria of (6) and (8) must now be redefined for (13) to ensure stability.
Using any of the stability analysis methods mentioned (i.e., [9,10]), the criteria for both
order-1 and order-2 stability now become

− 1 < ω < 1 ĉ ∈ R. (15)
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However, using negative values of ω would result in the velocity of the robot changing
direction at every timestep. Similarly, using negative values for ĉ would drive the robots
away from the personal and global best locations. Therefore, the criteria of (15) become

0 ≤ ω < 1 ĉ > 0. (16)

3.3. Control of Velocity and Acceleration

An analysis of how the inertia weight ω and the cognitive coefficient ĉ impact on
the velocity and acceleration of the robot is now possible. This analysis will consist of
three stages: First a state model will be derived in matrix form that describes a robot at
each timestep, secondly the state model will be decomposed to understand how the state
changes from one timestep to another, and finally expressions for the maximum velocity
and acceleration of the robot will be derived in terms of ω and ĉ.

Equation (13) can be simplified based on the stability study of Trelea [7] so that

u[k + 1] = ωu[k] + ĉr̂ ◦ sgn(ŷ[k]− x[k]), (17)

where ŷ[k] is the weighted average of y[k] and yg[k] as shown below

ŷ[k] =
c1

c1 + c2
y[k] +

c2

c1 + c2
yg[k].

The vector r̂ is a random vector of which each component rj is drawn from the uniform
distribution such that

r̂j ∼ U(0, 1), 1 ≤ j ≤ d.

3.3.1. State Model

In control theory, the state of a robot may be described by its position and velocity at a
specific timestep. The state vector z[k], which describes the state of motion in each of the d
dimensions for a single robot, is given by

z[k] =


z[k]1
z[k]2

...
z[k]d

 (18)

where zj[k] describes the state of motion in only a single dimension j such that

zj[k] =
[

x j[k]
u j[k]

]
, (19)

where xj[k] and uj[k] are the jth components of position (x) and velocity (u). PSO algorithms
have no interdependency between dimensions, therefore it is possible to use the single-
dimension state vector zj[k] as a general description of every dimension of z[k]. Therefore,
Equations (12) and (17) can be written in matrix form for each dimension j as

zj[k + 1] = Mzj[k] + bj[k], (20)

where the right-hand-side consists of a deterministic term Mzj[k] and a stochastic term
bj[k], such that

M =

[
1 ∆ t
0 ω

]
, bj[k] = ĉ× sgn(ŷj[k]− xj[k])

[
∆ t
1

]
× rj.
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This is a second order system in terms of position and velocity. However, as the objective
is to understand how ω and ĉ will affect velocity and acceleration, acceleration will be
included as a state variable. By differentiating (17), the acceleration is given by

a[k + 1] =
(ω− 1)u[k] + ĉr̂ ◦ sgn(ŷ[k]− x[k])

∆t
. (21)

The positional stability of PSO has been proven previously, and both the velocity and
the acceleration are linearly independent of the position [9,10]. Therefore, for the sake of
simplification position will be removed from the state. Thus, a new single-dimension state
vector ẑ is defined as

ẑj[k] =
[

u j[k]
a j[k]

]
, 1 ≤ j ≤ d.

Using (17) and (21), the new state model is given by

ẑj[k + 1] = M̂ẑj[k] + b̂j[k], (22)

where the right-hand-side consists of a deterministic term M̂ẑj[k] and a stochastic term
b̂j[k], such that

M̂ =

[
ω 0

(ω−1)
∆t 0

]
, b̂j[k] = ĉ× sgn(ŷj[k]− xj[k])

[
1
1

∆t

]
× rj.

3.3.2. State Space Analysis

As explained, (22), describes only a single dimension j. Similarly, the following
analysis will initially be performed on a single dimension j and at the end all dimensions
will be combined to describe the behavior of the full velocity and acceleration vectors.

Figure 2a–c are phase-space plots that describe the effect of the linear dependencies
of the system (i.e., the deterministic term) for ω = 0, 0 ≤ ω < 1 and ω = 1. In these
plots, each state vector (e.g., ẑj[k], M̂ẑj[k]) describes a single point. The arrows in the
phase-space plots show the direction of change from ẑj[k] to M̂ẑj[k] and the length of the
arrows is proportional to the magnitude |M̂ẑj[k]− ẑj[k]|. The arrows in the phase-space
plots show that the linear dependencies described by M̂ always cause the state vector ẑ to
asymptotically converge towards the origin for 0 ≤ ω < 1.

The phase-space plots do not show the exact location of M̂ẑj[k] on the plots. It can be
shown that M̂ẑj[k] always lies on the line

a1(u, ω, ∆t) =
ω− 1
ω∆t

u. (23)

For proof, see Appendix A. Combining this with Figure 2a–c, it is possible to completely
predict the location of M̂ẑj[k] for any ẑj[k], as shown in Figure 3a.

With the location of M̂ẑj[k] known, the possible locations of ẑj[k + 1] can now be
calculated. It is possible to show that ẑj[k + 1] always lies in between the lines

a2(u, ω, ∆t, ĉ) = a1(u− ĉ, ω, ∆t) +
ĉ

∆t

a3(u, ω, ∆t, ĉ) = a1(u + ĉ, ω, ∆t)−
ĉ

∆t
.

(24)

For proof, see Appendix A.1. An example of this can be also seen in Figure 3b.
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Figure 2. The phase-space graph for three different cases: (a) ω = 0, (b) 0 ≤ ω < 1 (in this specific
case ω = 0.6), (c) ω = 1. In all three cases the system is stable. Also, in (a) (extreme case) and
(b) (normal case), the system is asymptotically convergent towards the origin.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Velocity (ms
-1

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
c
c
e
le

ra
ti
o
n
 (

m
s

-2
)

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Velocity (ms
-1

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
c
c
e

le
ra

ti
o

n
 (

m
s

-2
)

Stochastic Component

Max Velocity

Max Deceleration

Max Acceleration

(b)

Figure 3. Example that shows the deterministic effect of M̂ (a) and the stochastic effect of b̂j[k] (b) on a random position of
ẑj[k], for ω = 0.6, ĉ = 4 and ∆t = 1. No matter the location of ẑj[k], the point M̂ẑj[k] will always be located closer to the
origin, lying on a1. The point ẑj[k + 1] will always be located in between the lines a2 and a3. The vector b̂j[k] is always
parallel to the hatching lines of the shaded-hatched region, which have gradient 1

∆t . The shaded-hatched region represents
all possible states ẑj[k + 1]. For this system, A+

j = 4 m/s2, A−j = 8 m/s2 and Uj = 10 m/s.
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3.3.3. Derivation of Extreme Cases

Lastly, the purpose of this analysis was to identify the relationship between maximum
velocity and acceleration and the values of ω and ĉ. It can be shown that there will always
exist an asymptotically maximum velocity Uj ≥ 0 given by

Uj =
ĉ

1−ω
(25)

such that |u[k]j| ≤ Uj. For proof see Appendix A.2. Figure 3b (green/shaded region)
illustrates all the possible locations of ẑj[k + 1], when −Uj ≤ uj[k] ≤ Uj. The stars (H)
represent the locations with velocity Uj or −Uj.

Similarly, it can be shown that there will always exist a maximum acceleration A+
j ≥ 0

given by

A+
j =

ĉ
∆t

, (26)

and an asymptotically maximum deceleration A−j ≤ 0 given by

A−j =
−2ĉ
√

d
∆t

= −2A+
j . (27)

For proof see Appendix A.3. The squares (n) in Figure 3b represent the points of maximum
deceleration A−j and the diamonds (u) the points of maximum acceleration A+

j .
To find the maximum magnitude U of the velocity vector u it is necessary to equate

each of its components to Uj, such that

U = Uj
√

d =
ĉ
√

d
1−ω

. (28)

Similarly,

A+ = A+
j

√
d =

ĉ
√

d
∆t

, (29)

A− = A−j
√

d =
2ĉ
√

d
∆t

= 2A+. (30)

Finally, it is now possible to find expressions for the behavior coefficient ĉ and inertia
weight ω in terms of A+, A−, U, d and ∆t that consider the physical capabilities of the robots

ĉ =
A+(∆t)√

d
=

A−(∆t)
2
√

d
, (31)

ω = 1− A+(∆t)
U

= 1− A−(∆t)
2U

. (32)

Equation (32) can be difficult to use in its current form. To simplify it, a new parameter
β ∈ (0, 1] is introduced. In (32), it must be the case that A+(∆t) ≤ U and A−(∆t) ≤ 2U,
in order for 0 ≤ ω < 1 to be satisfied. That means that the larger the maximum acceleration
is compared to the maximum velocity, the smaller ∆t must be to ensure stability of the
system. Therefore, A+ and A− can be also expressed using

A+ = β
U
∆t

or A− = β
2U
∆t

. (33)

Following this, it can be made sure that ω satisfies the conditions of (16) using

ω = 1− β. (34)
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3.4. Generalized Adapted PSO

The analysis presented can now be applied to a more general velocity update equation
that has an arbitrary number of n acceleration terms. Let us define the velocity update
equation of the Generalized Adapted PSO as

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y1[k]− x[k])

+c2r2 ◦ sgn(y2[k]− x[k])

+ ... + cnrn ◦ sgn(yn[k]− x[k]),

(35)

where y1, y2, . . . , yn are locations in the real world and

r1,j, r2,j, ... , rn,j ∼ U(0, 1) 1 ≤ j ≤ d. (36)

Please note that the coefficients c4, c5 ... cn do not have a name at this stage. Equation (35)
is algebraically equivalent to (17) if

ĉ = c1 + c2 + ... + cn, (37)

and

ŷ[k] =
c1

c1 + c2 + ... + cn
y1[k] +

c2

c1 + c2 + ... + cn
y2[k] + ... +

cn

c1 + c2 + ... + cn
yn[k].

Therefore, it is now possible to apply the analysis presented in this paper, starting
from Section 3.3, to the Generalized Adapted PSO algorithm. The rest of this section will
outline design guidelines explaining how the Generalized Adapted PSO can be tuned
to ensure that it outputs the desired maximum velocity and acceleration. Afterwards,
the next section will show how RPSO can be adapted so that it is described by Generalized
Adapted RPSO and how the design guidelines can be used to properly implement DVC
(see Section 2.2.1) to avoid collisions with obstacles.

3.5. Guidelines

It is now possible to provide a set of design guidelines for the application of the
Generalized Adapted PSO to swarm robotic tasks. The parameter selection steps are
as follows:

1. Identify the controller loop delay: ∆t needs to be large enough to accommodate
the time delay introduced by computationally expensive tasks and communications
between robots.

2. Identify U: The desired maximum speed of the robot. It must be made sure that this
does not exceed the actual maximum speed that the robot can achieve.

3. Calculate either A+ or A−: The desired maximum acceleration or deceleration us-
ing (33). It must be made sure that they do not exceed the actual maximum accelera-
tion or deceleration that the robot can achieve.

4. Calculate ω and ĉ: Use (31) and (32) respectively.
5. Ensure that ω and ĉ satisfy the criteria of (16): If not, then a faster controller is required

(i.e., smaller ∆t)
6. Select appropriate values for c1, c2, . . . , cn: The sum of the individual coefficients

c1 + c2 + ... + cn must satisfy (37).

Traditional guidelines for PSO tuning in parameter optimization tasks aim to control
the convergence properties of the swarm (e.g., faster convergence, exploration/exploitation
tendencies etc.). This is because in original PSO, the PSO parameters are directly linked to
the convergence behavior of the swarm. In Generalized Adapted PSO though, the PSO
parameters are primarily used to provide optimal control of the robots. The guidelines
provided ensure that the values of ω, c1, c2, . . . , cn are properly tuned to provide the desired
maximum velocity and acceleration, which will often be the physical maximum velocity
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and acceleration of the robot. Increasing the values of these parameters further will not
result in faster convergence, and it can cause desynchronization between the PSO controller
and the robot, resulting in poor control. Therefore, if faster convergence is required, robots
with higher maximum velocity and acceleration need to be used. The practitioner can still
control the exploration/exploitation tendencies of the swarm, by adjusting the values of c1,
c2, . . . , cn, like in the original PSO, but the limitations and guidelines provided in this paper
should also be followed.

Generalized Adapted PSO can become more computationally intensive, the more
terms are added to the velocity update equation. Nevertheless, due to the simplicity of
the algorithm, it is expected to be computationally simple compared to other tasks that
robots usually need to perform (e.g., distance measurement using LiDAR, communication,
vision etc.). On the other hand, other computationally intensive tasks may interfere with
the operation of Generalized Adapted PSO. To avoid this, the value of ∆t needs to be
carefully selected. The timestep size ∆t is a powerful feature of Generalized Adapted
PSO that allows the robot to predict its state in the next timestep. Therefore, as long as ∆t
accommodates all possible delays, it can ensure optimal control of the swarm.

4. Application to a Real-World System

In contrast to previous work, the analysis presented in this paper focuses on the
timestep-to-timestep behavior of the robots. Therefore, (31) and (32) can be used to dy-
namically adjust the Generalized Adapted PSO parameters independently for each robot,
based on the maximum velocity and acceleration that are desired at any time. This can be
achieved by using the guidelines of Section 3.5. This is a novel and important capability,
and an absolute necessity for the implementation of DVC. To showcase the importance of
this capability, and the power of DVC, several simulations were performed.

4.1. Implementation of Dynamic Velocity Control

The following algorithm aims to dynamically adjust the RPSO parameters at each
timestep, to control the maximum velocity of each robot. The algorithm forces the robot
to move at lower speeds, the closer it is to obstacles or other robots. When implemented
correctly, this can prevent collisions with obstacles and other agents.

First, it is important to bound each accelerating term of (9), using the sgn function.
Therefore, the RPSO velocity update equation becomes

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y[k]− x[k])

+c2r2 ◦ sgn(yg[k]− x[k]) + c3r3 ◦ sgn(Ft[k]).
(38)

Now (31) and (32) can be used to dynamically re-calibrate the RPSO parameters at
every timestep (given that ĉ = c1 + c2 + c3). Thus, the robot can slow down in the presence
of an obstacle so that it is easier to avoid. In order to perform this dynamic re-calibration
s (the list of distances to the nearest obstacles) is sorted in order from smallest to largest,
such that s1 is the distance to the closest obstacle. Similarly, let

ν =
s

∆t
, (39)

be a vector of speeds, such that ν1 is the minimum speed required for the robot to collide
with the closest obstacle in the next timestep. The value νp can be used to prevent collision
with obstacle p by selecting a desired maximum speed U using

U = α× νp, (40)

where 0 < α < 1. The value of α can be reduced to accommodate for a larger error in
odometry and distance measurements. From here, the RPSO parameters are calibrated
using the guidelines of Section 3.5. The calibration strategy follows three main steps.
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Step 1: The sum c1 + c2 must be small enough to ensure that at least for the next
timestep, it will be impossible for the robot to collide with the closest obstacle. In this
case, c3 is assumed to be 0 and ĉ = c1 + c2. This addresses the case where the robot is not
repelled by the closest obstacle at a specific timestep, because r3 happens to be small.

• Set the desired maximum speed U = α× s1.
• Using (33), calculate the desired maximum acceleration A+.

• Using (31), ĉ = A+(∆t)√
2

.

• Using ĉ = c1 + c2, calculate c1 and c2 based on the desired ratio c1
c2

.

Step 2: The sum c1 + c2 + c3 must be small enough to ensure that at least for the next
timestep, it will be impossible for the robot to collide with the second closest obstacle. This
prevents the problematic case where while being repelled by the closest obstacle, the robot
ends up colliding with another obstacle. In this case, ĉ = c1 + c2 + c3. As before,

• Set the desired maximum speed U = α× s2.
• Using (33), calculate the desired maximum acceleration A+. Please note that β needs

to be the same as in the previous step, in order to result in the same value for ω as
described in (34).

• Using (31), ĉ = A+(∆t)√
2

.

• Finally, c3 = ĉ− c1 − c2.

Step 3: The inertia weight ω can be calculated using (34). One important characteristic
of this calibration strategy is that when s1 = s2, then c3 = 0. This means that when the
robot is at an equal distance from two obstacles, there is no repulsive effect on the robot,
allowing it to pass through the obstacles. This will happen no matter how big the opening
is between the obstacles, as long as the robot can fit through it.

5. Results

To demonstrate the performance of the DVC algorithm proposed in Section 4.1, a num-
ber of simulations were performed in MATLAB and Gazebo [27]. The MATLAB simulations
were idealized, whereas the Gazebo simulations included a more detailed real-time physics
model where the inertia of the robots is applied. The algorithms compared in the simula-
tions are:

• The original RPSO algorithm described by (9) with constant parameters.
• The adapted RPSO algorithm described by (38) with constant parameters.
• The adapted RPSO algorithm described by (38) with DVC.

5.1. World and Robot Description

The world used in all simulations is shown in Figure 4, the blue square is the area
where the robots are initialized, the red square is the target (global minimum of the cost
function, the cost is equal to the distance between the robot and the source) and the circles
are obstacles. The obstacles become denser the closer to the target.

Swarm intelligence algorithms such as PSO are inherently scalable [13]. That means
that the same algorithm should be applicable to large swarms (>100 robots) and small
swarms (<20 robots) without additional tuning. That said, there is a minimum number
of robots required for a swarm to be effective. In this paper, it was chosen to demonstrate
the new PSO algorithms on a small swarm of 6 robots. The robots of the swarm are based
on the Robotnik Summit XL Steel platform [28], a popular robotic platform with available
specifications and simulation models (e.g., Gazebo models). The robots can move within
the two-dimensional world, and collisions with obstacles or other robots can occur. If a
collision occurs the robot is considered to become disabled and cannot move any further.
The robots are assumed to have unlimited communication range and bandwidth, and each
robot can communicate with every other robot in the swarm at all times.
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Figure 4. The obstacle map used in both MATLAB and Gazebo simulations. The blue square on the
left shows the starting area where robots are initialized and the red square on the right shows the
position of the target. The obstacles become denser the closer to the target.

A low-cost obstacle-detection short-range LiDAR sensor can have maximum range
starting from 4 m [29], so the obstacle-detection range was set to 3 m, to avoid operating
at the sensor’s maximum range. Due to the way that the Gazebo simulations operate,
a robot can detect obstacles in its detection range even if they are “hidden” behind other
obstacles. This contradicts how a LiDAR would detect obstacles and it can result in multiple
repulsive forces being exerted from the same direction. To avoid this, each robot separates
its surroundings into six equally sized radially separated regions. Only the repulsive forces
exerted by the closest body in each region are accounted for the calculation of the total
repulsive force.

The robots are limited to 3 m/s maximum speed (the actual maximum speed of the
Summit XL Steel). The actual maximum acceleration of Summit XL Steel is not available,
but it is assumed to be very high, since it uses electric motors which are characterized by
high acceleration. To achieve a large A+, the weight β must be also large and therefore ω
needs to be small (see (33) and (34)).

The cognitive coefficient c1 allows the robot to explore the environment around it and
overcome obstacles, while the social coefficient c2 encourages the robot to move towards
the global best location yg. As both coefficients are of importance in source localization
tasks it is assumed that

c1 = c2. (41)

The values for c1, c2 and c3 can be either constant or dynamic at every timestep. Both
scenarios will be studied in the following simulations.

5.1.1. Original RPSO with Constant Values

For the original RPSO algorithm, the magnitudes of the single values c1, c2 and c3
rarely matter. This is because it is very easy for the resulting velocity of the algorithm to be
higher than the maximum velocity of the robot. Instead, what matters is the ratio c3

c1+c2
,

as it is also suggested by the original RPSO work, since this will control the direction of the
requested velocity. In order to allow direct comparison between the algorithms, the same
cases will be used for the original RPSO, as for the adapted RPSO with constant values.

5.1.2. Adapted RPSO with Constant Values

In the case of the adapted RPSO, all the terms of the velocity update equation are
bounded using the sgn function. Therefore, it is possible to tune the parameters using (31)
and (32). The parameters are tuned so that the desired maximum velocity U is always
equal to the physical maximum velocity of the robot. The desired maximum acceleration
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A+ can be calculated using (33). From here, it is now possible to calculate the values of c1,
c2 and c3, based on the desired value of the ratio c3

c1+c2
. For the following simulations, three

cases will be tested: c3 ≈ c1 + c2, c3 � c1 + c2, and c3 � c1 + c2.

5.1.3. Adapted RPSO with DVC

For adapted RPSO with DVC, c1, c2 and c3 will be recalibrated at every timestep for
each robot depending on its current state, as explained in Section 4.1. Lastly, the simulations
were created to resemble typical real-world robotic applications (e.g., a swarm of drones
navigating through a forest or a city). The values of some of the parameters used (α, β, γ,
∆t and ω) were selected heuristically to match such applications. Changing the value of
the parameters β, γ, ∆t and ω is expected to affect all cases in the same way. In the case
of α, it is only used by one of the tested cases (adapted PSO with DVC) and optimization
of this parameter is beyond the scope of this paper. Table 1 shows the values assigned to
these parameters throughout all the simulations, along with the values of the parameters
c1, c2 and c3 for each tested case.

To assess the performance of each swarm, the fitness of the swarm is calculated using

f itness =
∑N

i=1 xi
1

N
, (42)

where the right-hand side of the equation is the horizontal distance from the origin to the
Center of Mass (CoM) of the swarm. As previously mentioned, robots that have collided
with obstacles or other robots are considered to be “collided”. The percentage of robots
that have collided by the end of the simulation is also used as a secondary metric.

Table 1. Table of values used for different parameters.

Algorithm Case α β γ ∆t c1 = c2 c3

DVC 0.9 0.9 1 1 - -

c3 � c1 + c2 0.2864 1.1455

c3 ≈ c1 + c2 0.4296 0.8591Adapted RPSO

c3 � c1 + c2

- 0.9 1 1
0.5728 0.5728

c3 � c1 + c2 0.2864 1.1455

c3 ≈ c1 + c2 0.4296 0.8591Original RPSO
c3 � c1 + c2

- 0.9 1 1
0.5728 0.5728

5.2. MATLAB Simulations

MATLAB was used to simulate the swarm over 100 repeats, with no physics engine.
This number of simulations was selected because it could produce a clear behavioral trend
for each algorithm. Figure 5a shows the median CoM fitness over time for each algorithm
and Figure 6a shows the median number of collided vs operational robots at the end of
the simulation.

As it can be seen from the results of Figure 5a, with adapted RPSO with DVC, the CoM
of the average swarm manages to pass through the fifth layer of obstacles (fifth dotted
line) before the end of the simulation. This contrasts with the other algorithms that do not
manage to pass through the third layer. All cases of the original RPSO appear to progress
quickly at the beginning, this is in fitting with the fact that the original RPSO almost always
operates at the maximum velocity permitted by the physical constraints of the robot. On the
other hand, all cases of the adapted RPSO (including DVC) progress more slowly.

In Figure 6a, it can be seen that all cases of both the original RPSO and the adapted
RPSO follow the predicted behavior, i.e., as c3 gets larger compared to c1 + c2, the number
of collisions decreases. For small c3, adapted RPSO results in only collisions, while for
large c3, it results in no collisions. All the cases of original RPSO however have very
low survivability.
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Figure 5. Median CoM fitness over time results for different cases. The dotted lines represent the obstacle layers of the
obstacle course.

Lastly, the only cases that end up with absolutely no collisions are the adapted RPSO
with large c3 and the adapted RPSO with DVC. Comparing the two cases in Figure 5a, it
can be seen that the adapted RPSO with large c3 has the lowest overall fitness out of all
cases. In contrast, the adapted RPSO with DVC has the highest overall fitness. This shows
that the adapted RPSO with DVC completely overshadows all other cases, both in terms of
fitness and robot survivability. This is attributed to the DVC strategy used. The strategy
makes use of the velocity boundaries introduced by adapted RPSO, to slow down a robot
in the presence of an obstacle, making it practically impossible to collide with any obstacles
or other agents. At the same time, the robot is still capable of navigating through small
openings; a capability that is not shared by the other two algorithms.
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Figure 6. The expected number of collided vs operational robots at the end of the median simulation for different cases.
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5.3. Gazebo Simulations

To expand on the results of the MATLAB simulations, a number of more realistic
simulations were run in Gazebo (benefiting from a detailed Physics Engine). The robots
are equipped with contact sensors to detect collisions and with mecanum wheels for
holonomic motion. The motion of the robots is governed by the forward and inverse
kinematic equations of the mecanum wheels [30]. The robots move by forces being applied
on them and they have inertia. Please note that for the Gazebo simulations, apart from the
high-level swarm behavior controller described by each studied RPSO case, each robot also
employs underlying low-level motor controllers and data collection nodes that operate at a
higher refresh rate. The timestep used for these controllers is ∆t = 0.1 s.

Figures 5b and 6b show the median CoM fitness over time and the median number of
collided vs operational robots for each tested case, respectively. Comparing Figure 5a,b,
it can be seen that there are small differences. Specifically, there is a small reduction in
the overall performance of the adapted RPSO cases, which can be probably attributed to
the imperfect motion of mecanum wheels (i.e., the maximum speed of the robot is limited
when it is moving towards certain directions). However, the adapted RPSO with DVC
performs better than the other algorithms, reaching an average fitness of 47 by the end
of the simulation. When it comes to Figure 6a,b, the results look almost identical for all
cases. The original RPSO with c3 � c1 + c2 appears to have limited survivability that is
not observed in the MATLAB simulations.

6. Discussion

This paper has introduced a modified version of the Particle Swarm Optimization
algorithm, called Adapted PSO, for use as a robot controller in robotic swarms. This
was achieved by bounding the terms of the PSO velocity update equation using the sgn
function and by including the timestep size ∆t. A PSO parameter selection process was
also formalized, by analysing the timestep-to-timestep behavior of a PSO particle. The new
parameter tuning equations offer direct control of the desired maximum velocity and
maximum acceleration of each robot.

To validate the proposed changes, another modified PSO algorithm called Robotic-
PSO (RPSO) that includes obstacle avoidance, was adapted according to the proposed
guidelines. The parameter tuning equations were also used to dynamically retune the
parameters of Adapted RPSO in real time; a process called Dynamic Velocity Control
(DVC). Adapted RPSO was compared to original RPSO in simulations, and it was shown
to offer significantly better control over the swarm. Adapted RPSO with DVC was able to
navigate inside a difficult environment of obstacles without resulting in any collisions. This
contrasts with the original RPSO which was not able to navigate far into the environment
and almost always resulted in collisions.

The inclusion of the sgn function effectively bounds the terms of the velocity update
equation, addressing Problem 1. The inclusion of the parameter ∆t in the parameter tuning
equations solves the synchronisation problem between the PSO position and velocity
update equations, addressing Problem 2. The effect of this can be directly seen in the results
of Sections 5.2 and 5.3, where ∆t = 1 s. Such a large loop delay is typically unsuitable for
most applications of this scale (1–100 m) as it can result in collisions and poor control of
the robot. That being said, adapted RPSO with DVC controls the swarm such that robots of
diameter 1 m can pass through openings of size 1.2 m without any risk of colliding, even
when such a large value of ∆t is used.

In its current form, the PSO controller presented in this paper can be used for tasks that
require the swarm to move to a certain location by setting the global best location yg as that
location. It is furthermore possible to use the algorithm in several source localization and
tracking tasks (i.e., source localization using olfaction). That being said, for PSO to be used
as a generalized source localization algorithm, Problems 3 and 4 still need to be overcome.
Nevertheless, there already exist candidate solutions. For example it might be possible to
overcome the limitation that PSO needs to operate in an immutable environment (Problem
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3), by slowly increasing the cost of the current personal best and global best locations
exponentially, forcing the robot to re-update them. The performance of these candidate
solutions can now be properly implemented on simulated and physical swarms using the
methods proposed in this paper, ensuring that the operation of the swarms will not be
affected by Problems 1 and 2.

Finally, the adaptation of RPSO in this paper provides a direct application of the
adapted PSO algorithm presented. The performance of Adapted RPSO with DVC in
Sections 5.2 and 5.3 shows that it is possible to incorporate different tasks into the Gen-
eralized Adapted PSO velocity update equation as individual terms and control them
by re-calibrating the PSO parameters at each timestep. Similarly, it might be possible
to incorporate other tasks (e.g., flocking, target trapping and pattern formation) into the
Generalized Adapted PSO equation as additional PSO terms. Each task is run separately
from the rest and they are all merged by the Generalized Adapted PSO velocity update
equation. The practitioner needs only to identify a simple strategy for the re-calibration of
the PSO parameters that will control which tasks are given more importance in different
situations. In this way, the Generalized Adapted PSO velocity update equation takes the
form of a general swarm control framework for robotic swarms. Such a framework could
eventually lead to the standardization of swarm intelligence algorithms.

The work presented is generalized, and there exist many parameters that can affect the
behavior of the robot that could be further included into the tuning process. Some of the
most important are minimum turning radius, maximum rotational speed and maximum
rotational acceleration. These characteristics represent significant obstacles in the use
of PSO as a controller for the traditional non-holonomic robots (e.g., differential drive,
traditional steering, forward flight etc.).

7. Conclusions

This paper introduced a new PSO algorithm called Adapted PSO and formalized
parameter selection guidelines that specifically enable the application of PSO as a controller
in robotic swarms. This has been achieved by considering the physical properties of the
robots, including the desired maximum velocity and acceleration, and relating these to
the inertia weight and the cognitive and social coefficients via a state model. Coupled
with the introduction of the controller loop delay, these new guidelines also guarantee
both order-1 and order-2 stability. Thus, solving the two key problems (lack of constraints
and asynchronous control) that have so far limited the formal application of PSO to the
control of robotic swarms. The new algorithm is compared to original PSO in simulations,
and it is shown to excel both in terms of navigation through a difficult environment and
robot survivability.

Future work should include further physical limitations, such as angular acceleration,
and the application of formalized parameter selection techniques for the tuning of other
variations of PSO (e.g., [14–16]).
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Appendix A. Lemma 1

Lemma 1. For all ẑj[k] ∈ R2, M̂ẑj[k] will always lie on the line given by:

a1(u, ω, ∆t) =
ω− 1
ω∆t

u (A1)

Proof. The matrix M̂ has eigenvectors

v− = a
[

0
1

]
, v+ = b

[
1

ω−1
ω∆t

]
, a, b ∈ R

and respective eigenvalues
λ− = 0, λ+ = ω

Matrix M̂ is diagonalizable, since it is of size 2× 2 and has 2 distinct eigenvalues. Therefore,
the column space of M̂ is fully described by the span of the eigenvectors that are associated
with non-zero eigenvalues as shown below

C(M̂) = span({v+}) for 0 ≤ ω < 1

This implies that C(M̂) is a line and its characteristic equation is given by

a =
ω− 1
ω∆t

u (A2)

and the vector M̂ẑj[k] will always lie on it.

Appendix A.1. Lemma 2

Lemma 2. For all ẑj[k] ∈ R2, the vector ẑj[k + 1] will always be located in between the lines

a2(u, ω, ∆t, ĉ) = a1(u− ĉ, ω, ∆t) +
ĉ

∆t

a3(u, ω, ∆t, ĉ) = a1(u + ĉ, ω, ∆t)−
ĉ

∆t

(A3)

Proof. The vector b̂j[k] is a vector of random magnitude and is always parallel to the line

a(u, ∆t) =
u
∆t

It has maximum length when

r̂j = 1, sgn(ŷj[k]− xj[k]) = ±1 =⇒ b̂j[k] =
[
±ĉ
±ĉ/∆t

]
(A4)

Lemma 1 says that M̂ẑj[k] always lies on the line a1 of (23). When b̂j[k] =
[

ĉ
ĉ/∆t

]
as

shown in (A4), the vector ẑj[k + 1] must lie on the line

a2 =
ω− 1
ω∆t

(u− ĉ) +
ĉ

∆t
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Conversely, when b̂j[k] =
[
−ĉ
− ĉ/∆t

]
, the vector ẑj[k + 1] must lie on the line

a3 =
ω− 1
ω∆t

(u + ĉ)− ĉ
∆t

Therefore, in all other cases, the vector ẑj[k + 1] must always be located between the lines
a2 and a3.

Appendix A.2. Theorem 1

Theorem 1. For all ω, 0 ≤ ω < 1 and ĉ > 0, there will always exist a maximum velocity Uj ≥ 0
such that |u[k]j| ≤ Uj

Proof. To find the value of Uj, let a robot accelerate in a single direction so that

u[k + 1]j = ωu[k]j ± ĉ (A5)

In this case, (A5) represents a non-homogeneous first-order linear recurrence relation.
Assuming that 0 ≤ ω < 1 and ĉ > 0, the maximum velocity Uj is given by

Uj = lim
[k]→∞

|u[k]j| =
ĉ

1−ω
(A6)

Therefore, if a robot is allowed to accelerate as much as possible towards a specific direction,
its velocity will asymptotically approach Uj resulting in |u[k]j| ≤ Uj for any value of [k].

Appendix A.3. Theorem 2

Theorem 2. For all ω, 0 ≤ ω < 1 and ĉ > 0, there will always exist a maximum acceleration
A+

j ≥ 0 and a maximum deceleration A−j ≤ 0.

Proof. The maximum acceleration can be found by setting u[k]j = 0 in (21) and assuming
that the sgn function is positive, resulting in

A+
j =

ĉ
∆t

(A7)

Conversely, the maximum deceleration can be found by setting u[k]j = Uj in (21) and
assuming that the sgn function is negative, resulting in

A−j =
(ω− 1)Uj − ĉ

∆t
(A8)

Substituting (A6) in (A8) results in the relationship between A+
j and A−j

A−j =
−2ĉ
√

d
∆t

= −2A+
j (A9)

Equations (26) and (A9) are well-defined expressions of A+
j and A−j in terms of ω, ĉ and

∆t, under the only conditions that 0 ≤ ω < 1 and ĉ > 0. Therefore, under these conditions,
A+

j ≥ 0 and A−j ≤ 0.
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