604 research outputs found

    Trennung und SchĂ€tzung der Anzahl von Audiosignalquellen mit Zeit- und FrequenzĂŒberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We ïŹrst address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, conïŹrming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to ïŹnd modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. FĂŒr diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine hĂ€uïŹge Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollstĂ€ndig ĂŒberlappen. In dieser Arbeit betrachten wir jedoch einige FĂ€lle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-ReprĂ€sentationen und leistungsfĂ€higere Modelle notwendig sind. Um die zwei genannten Probleme zu bewĂ€ltigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunĂ€chst auf das Problem der Quellentrennung fĂŒr Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine SchĂ€tzung der Grundfrequenz als zusĂ€tzliche Information nutzt. FĂŒr FĂ€lle, in denen diese SchĂ€tzungen nicht verfĂŒgbar sind, stellen wir ein unĂŒberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitverĂ€nderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthĂ€lt eine neuartige ReprĂ€sentation, die die Separierbarkeit fĂŒr ĂŒberlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschĂ€ftigen wir uns mit der SchĂ€tzung der Anzahl von Quellen in einer Mischung, was fĂŒr reale Szenarien wichtig ist. Unsere Arbeit an der SchĂ€tzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzufĂŒhren, die bestĂ€tigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschĂ€tzen. Um nun die Frage zu beantworten, ob Maschinen dies Ă€hnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der SchĂ€tzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adĂ€quate Darstellung, um die Überlappung von Signalen fĂŒr die Trennung zugĂ€nglich zu machen und eine Inspektion unseres DNN-ZĂ€hlmodells ergab schließlich, dass sich auch hier modulationsĂ€hnliche Merkmale ïŹnden lassen

    Concatenative Synthesis for Novel Timbral Creation

    Get PDF
    Modern day musicians rely on a variety of instruments for musical expression. Tones produced from electronic instruments have become almost as commonplace as those produced by traditional ones as evidenced by the plethora of artists who can be found composing and performing with nothing more than a personal computer. This desire to embrace technical innovation as a means to augment performance art has created a budding field in computer science that explores the creation and manipulation of sound for artistic purposes. One facet of this new frontier concerns timbral creation, or the development of new sounds with unique characteristics that can be wielded by the musician as a virtual instrument. This thesis presents Timcat, a software system that can be used to create novel timbres from prerecorded audio. Various techniques for timbral feature extraction from short audio clips, or grains, are evaluated for use in timbral feature spaces. Clustering is performed on feature vectors in these spaces and groupings are recombined using concatenative synthesis techniques in order to form new instrument patches. The results reveal that interesting timbres can be created using features extracted by both newly developed and existing signal analysis techniques, many common in other fields though not often applied to music audio signals. Several of the features employed also show high accuracy for instrument separation in randomly mixed tracks. Survey results demonstrate positive feedback concerning the timbres created by Timcat from electronic music composers, musicians, and music lovers alike

    Final Research Report on Auto-Tagging of Music

    Get PDF
    The deliverable D4.7 concerns the work achieved by IRCAM until M36 for the “auto-tagging of music”. The deliverable is a research report. The software libraries resulting from the research have been integrated into Fincons/HearDis! Music Library Manager or are used by TU Berlin. The final software libraries are described in D4.5. The research work on auto-tagging has concentrated on four aspects: 1) Further improving IRCAM’s machine-learning system ircamclass. This has been done by developing the new MASSS audio features, including audio augmentation and audio segmentation into ircamclass. The system has then been applied to train HearDis! “soft” features (Vocals-1, Vocals-2, Pop-Appeal, Intensity, Instrumentation, Timbre, Genre, Style). This is described in Part 3. 2) Developing two sets of “hard” features (i.e. related to musical or musicological concepts) as specified by HearDis! (for integration into Fincons/HearDis! Music Library Manager) and TU Berlin (as input for the prediction model of the GMBI attributes). Such features are either derived from previously estimated higher-level concepts (such as structure, key or succession of chords) or by developing new signal processing algorithm (such as HPSS) or main melody estimation. This is described in Part 4. 3) Developing audio features to characterize the audio quality of a music track. The goal is to describe the quality of the audio independently of its apparent encoding. This is then used to estimate audio degradation or music decade. This is to be used to ensure that playlists contain tracks with similar audio quality. This is described in Part 5. 4) Developing innovative algorithms to extract specific audio features to improve music mixes. So far, innovative techniques (based on various Blind Audio Source Separation algorithms and Convolutional Neural Network) have been developed for singing voice separation, singing voice segmentation, music structure boundaries estimation, and DJ cue-region estimation. This is described in Part 6.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Cognitive Component Analysis

    Get PDF

    Populating the mix space : parametric methods for generating multitrack audio mixtures

    Get PDF
    The creation of multitrack mixes by audio engineers is a time-consuming activity and creating high-quality mixes requires a great deal of knowledge and experience. Previous studies on the perception of music mixes have been limited by the relatively small number of human-made mixes analysed. This paper describes a novel mix-space, a parameter space which contains all possible mixes using a finite set of tools, as well as methods for the parametric generation of artificial mixes in this space. Mixes that use track gain, panning and equalisation are considered. This allows statistical methods to be used in the study of music mixing practice, such as Monte Carlo simulations or population-based optimisation methods. Two applications are described: an investigation into the robustness and accuracy of tempo-estimation algorithms and an experiment to estimate distributions of spectral centroid values within sets of mixes. The potential for further work is also described

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies
    • 

    corecore