43 research outputs found

    Linear-assisted DC/DC converters with modified current-mode control applied to photovoltaic solar systems

    Get PDF
    This article shows the proposal of a current-mode one-cycle control for linear-assisted DC/DC converters. Linearassisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators (classic NPN topology or LDO –low dropout–) and switching DC/DC converters. The current-mode one-cycle control technique is proposed in order to obtain the duty cycle of the linear-assisted converter switch. The proposed structure can provide an output with suitable load and line regulations. Thus, the paper shows the design and simulation results of the proposed current-mode one-cycle linear-assisted converter.Postprint (published version

    Switching Pattern Improvement for One-Cycle Zero-Integral-Error Current Controller

    Get PDF
    The one-cycle current control is a non-linear technique based on the cycle-by-cycle calculation of the ON time of the power converter switches. Its application is not common in tracking fast-changing reference currents, due to the necessity of fast and accurate measurements, and high-speed computing. In a previous study, a one-cycle digital current controller based on the minimization of the integral error of the current was developed and applied to the control of a three-phase shunt active power filter. In the present work, the one-cycle controller has been improved by proposing a new switching pattern. It allows an easy implementation that reduces the critical computational cost and avoids the main drawbacks of the previous implementation. The controller has been applied in a three-leg four-wire shunt active power filter, including a stability analysis considering the proposed switching pattern. Simulated and experimental results are presented to validate the proposed controller

    Switching Pattern Improvement for One-Cycle Zero-Integral-Error Current Controller

    Full text link
    [EN] The one-cycle current control is a non-linear technique based on the cycle-by-cycle calculation of the ON time of the power converter switches. Its application is not common in tracking fast-changing reference currents, due to the necessity of fast and accurate measurements, and high-speed computing. In a previous study, a one-cycle digital current controller based on the minimization of the integral error of the current was developed and applied to the control of a three-phase shunt active power filter. In the present work, the one-cycle controller has been improved by proposing a new switching pattern. It allows an easy implementation that reduces the critical computational cost and avoids the main drawbacks of the previous implementation. The controller has been applied in a three-leg four-wire shunt active power filter, including a stability analysis considering the proposed switching pattern. Simulated and experimental results are presented to validate the proposed controller.Orts-Grau, S.; Balaguer-Herrero, P.; Alfonso-Gil, JC.; Martínez-Márquez, CI.; Martínez-Navarro, G.; Gimeno Sales, FJ.; Segui-Chilet, S. (2022). Switching Pattern Improvement for One-Cycle Zero-Integral-Error Current Controller. IEEE Access. 10:158-167. https://doi.org/10.1109/ACCESS.2021.31377581581671

    A Five Level Modified Cascaded H-Bridge Inverter STATCOM for Power Quality Improvement

    Get PDF
    Multilevel converters have received serious attention on account of their capability of high voltage operation, high efficiency, and low electromagnetic interference. It has many advantages compared to conventional two-level inverters such as high dc-link voltages, reduced harmonic distortion, fewer voltage stresses, and low electromagnetic interferences. The multilevel converters have been used for STATCOM widely as it can improve the power rating of the compensator to make it suitable for medium or high-voltage high power applications. While deploying multilevel STATCOMs, designer’s role is to reduce the number of switching devices since, the total switching losses are proportional to the number of switching devices. The reduction in the count of switching devices also reduces the size and cost. In this paper, a five-level modified cascaded H-bridge inverter STATCOM is proposed for mitigation of harmonics. Modified Five-level CHB configuration is the most suitable as with lesser number of switches, give better performance resulting in a compact system. The PQ theory-based controller is developed for control of STATCOM operation. MATLAB simulation results are presented to demonstrate mitigation of harmonics

    Current-Mode One-Cycle Control Applied to Linear-Assisted DC/DC Converters

    Get PDF
    This article shows the proposal of an current-mode one-cycle control for linear-assisted DC/DC converters. Linearassisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators (classic NPN topology or LDO –low dropout–) and switching DC/DC converters. The current-mode one-cycle control technique is proposed in order to obtain the duty cycle of the linear-assisted converter switch. The proposed structure can provide an output with suitable load and line regulations. The paper shows the design and simulation results of the proposed current-mode one-cycle linear-assisted converter.Postprint (published version

    Linear–Assisted DC/DC Converters with Modified Current-Mode Control Applied to Photovoltaic Solar Systems

    Get PDF
    Los convertidores DC/DC asistidos linealmente (linear-assisted DC/DC converters) son estructuras que permiten aprovechar las ventajas de las dos alternativas clásicas en el diseño de sistemas de alimentación: reguladores de tensión lineales (ya sean éstos con topología clásica NPN o del tipo LDO –baja tensión de dropout–), y convertidores DC/DC conmutados. En este trabajo se muestra la propuesta de un control de un ciclo en modo corriente modificado (modified current-mode one-cycle control technique) para convertidores DC/DC conmutados asistidos linealmente. Se propone esta técnica de control de un ciclo en modo corriente modificado con el fin de obtener el ciclo de trabajo del interruptor del convertidor conmutado. La estructura propuesta puede proporcionar una salida con adecuadas regulaciones de carga y de línea. El trabajo muestra el diseño de las propuestas del regulador DC/DC asistido linealmente, así como los resultados de simulación que validan la propuesta presentada en el artículo.Peer Reviewe

    Current–Mode One-Cycle control applied to linear–assisted DC/DC converters

    Get PDF
    This article shows the proposal of an current-mode one-cycle control for linear-assisted DC/DC converters. Linear-assisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators (classic NPN topology or LDO –low dropout–) and switching DC/DC converters. The current-mode one-cycle control technique is proposed in order to obtain the duty cycle of the linear-assisted converter switch. The proposed structure can provide an output with suitable load and line regulations. The paper shows the design and simulation results of the proposed current-mode one-cycle linearassisted converter.Postprint (published version

    Current-mode one-cycle control applied to linear–assisted DC/DC converters

    Get PDF
    This article shows the proposal of an current-mode one-cycle control for linear-assisted DC/DC converters. Linear-assisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators (classic NPN topology or LDO –low dropout–) and switching DC/DC converters. The current-mode one-cycle control technique is proposed in order to obtain the duty cycle of the linear-assisted converter switch. The proposed structure can provide an output with suitable load and line regulations. The paper shows the design and simulation results of the proposed current-mode one-cycle linearassisted converter.Postprint (published version

    Applications of Power Electronics

    Get PDF
    Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels

    Direct Power based Sliding Mode Control of AC-DC Converter with Reduced THD

    Get PDF
    Direct Power based Sliding Mode (DPSMC) control for controlling single phase AC-DC pre regulator assuring unity power factor and stable output voltage under load variation is proposed in this paper. Direct Power Based Control (DPC) commonly applied for three phase circuits, is combined with Sliding mode control (SMC) to control and regulate the single-phase AC-DC pre regulator. The proposed DPSMC apart from being simple to design and robust to parameter variations also helps in reducing the line current distortion inherent to AC-DC Converters. The design of the proposed power based sliding mode control along with its existence condition is discussed. The performance of the proposed method over conventional sliding mode control is assessed through computer simulations and the feasibility of the proposed controller is confirmed through experimental implementation carried out with the help of LabVIEW and sbRIO FPGA development board
    corecore