10 research outputs found

    Blood Pressure Estimation from Speech Recordings: Exploring the Role of Voice-over Artists

    Get PDF
    Hypertension, a prevalent global health concern, is associated with cardiovascular diseases and significant morbidity and mortality. Accurate and prompt Blood Pressure monitoring is crucial for early detection and successful management. Traditional cuff-based methods can be inconvenient, leading to the exploration of non-invasive and continuous estimation methods. This research aims to bridge the gap between speech processing and health monitoring by investigating the relationship between speech recordings and Blood Pressure estimation. Speech recordings offer promise for non-invasive Blood Pressure estimation due to the potential link between vocal characteristics and physiological responses. In this study, we focus on the role of Voice-over Artists, known for their ability to convey emotions through voice. By exploring the expertise of Voice-over Artists in controlling speech and expressing emotions, we seek valuable insights into the potential correlation between speech characteristics and Blood Pressure. This research sheds light on presenting an innovative and convenient approach to health assessment. By unraveling the specific role of Voice-over Artists in this process, the study lays the foundation for future advancements in healthcare and human-robot interactions. Through the exploration of speech characteristics and emotional expression, this investigation offers valuable insights into the correlation between vocal features and Blood Pressure levels. By leveraging the expertise of Voice-over Artists in conveying emotions through voice, this study enriches our understanding of the intricate relationship between speech recordings and physiological responses, opening new avenues for the integration of voice-related factors in healthcare technologies

    Mobile hyperspectral imaging for structural damage detection

    Get PDF
    Title from PDF of title page viewed May 29, 2020Thesis advisor: ZhiQiang ChenVitaIncludes bibliographical references (pages 60-72)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2020Numerous optical-imaging and machine-vision based inspection methods are found that aim to replace visual and human-based inspection with an automated or a highly efficient procedure. However, these machine-vision systems have not been entirely endorsed by civil engineers towards deploying these techniques in practice, partially due to their poor performance in object detection when structural cracks coexist with other complex scenes. A mobile hyperspectral imaging system is developed in this work, which captures hundreds of spectral reflectance values at a pixel in the visible and near-infrared (VNIR) portion of the electromagnetic spectrum bands. To prove its potential in discriminating complex objects, a machine learning methodology is developed with classification models that are characterized by four different feature extraction processes. Experimental validation with quantitative measures proves that hyperspectral pixels, when used conjunctly with dimensionality reduction, possess outstanding potential in recognizing eight different structural surface objects including cracks for concrete and asphalt surfaces, and outperform the gray-values that characterize the texture/shape of the objects. The authors envision the advent of computational hyperspectral imaging for automating structural damage inspection, especially when dealing with complex structural scenes in practice.Introduction -- Hyperspectral Image -- Preprocessing -- Methodology -- Machine Learning Approach -- Discussion -- Appendix 1-

    Tree Genera Classification by Ensemble Classification of Small-Footprint Airborne LiDAR

    Get PDF
    Tree genera information is useful in environmental applications such as forest management, forestry, urban planning, and the maintenance of utility transmission line infrastructure. The ability of small foot print airborne LiDAR (Light Detection and Ranging) to acquire 3D information provides a promising way of studying vertical forest structures. This provides an extra dimension of information compared to the traditional 2D remote sensing data. However, the techniques for processing this type of data are relatively recent and have becoming an innovative research direction. The existing perspective for processing LiDAR data for tree species classification involve calculating the statistics attributes of the vertical point profile for individual trees. This method however does not explicitly utilize the geometric information of the tree form such as shapes of the tree crown and geometric features that are derivable inside of the tree crown. Therefore, the aim of this dissertation research is to derive geometric features from individual tree crowns and use these features for genera classification. The second goal of this research is to improve classification results by combining the newly developed features with the conventional vertical point profile features through ensemble classification system. Final goal of this research is to design a classification system to cope with the situation where the number of classes in the validation data exceeds the number of classes in the training data. 24 geometric features were initially derived and six of them are selected for the classification of pine, poplar and maple. Average classification accuracy of 88.3% is achieved by using this method. When the geometric features are combined with vertical profile features by ensemble classification system, the average classification accuracy increased to 91.2%. While the individual performance of geometric classifier and vertical classifier is 88.0% and 88.8% respectively for the classification of pine, poplar and maple. Lastly, when samples that do not belong to pine, poplar and maple are added to the validation data, the classification accuracy dropped to 72.8% by using randomly selected samples for training. However, through diversified sampling technique, the classification accuracy increased to 93.8%

    Multi-Criteria Inventory Classification and Root Cause Analysis Based on Logical Analysis of Data

    Get PDF
    RÉSUMÉ : La gestion des stocks de pièces de rechange donne un avantage concurrentiel vital dans de nombreuses industries, en passant par les entreprises à forte intensité capitalistique aux entreprises de service. En raison de la quantité élevée d'unités de gestion des stocks (UGS) distinctes, il est presque impossible de contrôler les stocks sur une base unitaire ou de porter la même attention à toutes les pièces. La gestion des stocks de pièces de rechange implique plusieurs intervenants soit les fabricants d'équipement d'origine (FEO), les distributeurs et les clients finaux, ce qui rend la gestion encore plus complexe. Des pièces de rechange critiques mal classées et les ruptures de stocks de pièces critiques ont des conséquences graves. Par conséquent il est essentiel de classifier les stocks de pièces de rechange dans des classes appropriées et d'employer des stratégies de contrôle conformes aux classes respectives. Une classification ABC et certaines techniques de contrôle des stocks sont souvent appliquées pour faciliter la gestion UGS. La gestion des stocks de pièces de rechange a pour but de fournir des pièces de rechange au moment opportun. La classification des pièces de rechange dans des classes de priorité ou de criticité est le fondement même de la gestion à grande échelle d’un assortiment très varié de pièces. L'objectif de la classification est de classer systématiquement les pièces de rechange en différentes classes et ce en fonction de la similitude des pièces tout en considérant leurs caractéristiques exposées sous forme d'attributs. L'analyse ABC traditionnelle basée sur le principe de Pareto est l'une des techniques les plus couramment utilisées pour la classification. Elle se concentre exclusivement sur la valeur annuelle en dollar et néglige d'autres facteurs importants tels que la fiabilité, les délais et la criticité. Par conséquent l’approche multicritères de classification de l'inventaire (MCIC) est nécessaire afin de répondre à ces exigences. Nous proposons une technique d'apprentissage machine automatique et l'analyse logique des données (LAD) pour la classification des stocks de pièces de rechange. Le but de cette étude est d'étendre la méthode classique de classification ABC en utilisant une approche MCIC. Profitant de la supériorité du LAD dans les modèles de transparence et de fiabilité, nous utilisons deux exemples numériques pour évaluer l'utilisation potentielle du LAD afin de détecter des contradictions dans la classification de l'inventaire et de la capacité sur MCIC. Les deux expériences numériques ont démontré que LAD est non seulement capable de classer les stocks mais aussi de détecter et de corriger les observations contradictoires en combinant l’analyse des causes (RCA). La précision du test a été potentiellement amélioré, non seulement par l’utilisation du LAD, mais aussi par d'autres techniques de classification d'apprentissage machine automatique tels que : les réseaux de neurones (ANN), les machines à vecteurs de support (SVM), des k-plus proches voisins (KNN) et Naïve Bayes (NB). Enfin, nous procédons à une analyse statistique afin de confirmer l'amélioration significative de la précision du test pour les nouveaux jeux de données (corrections par LAD) en comparaison aux données d'origine. Ce qui s’avère vrai pour les cinq techniques de classification. Les résultats de l’analyse statistique montrent qu'il n'y a pas eu de différence significative dans la précision du test quant aux cinq techniques de classification utilisées, en comparant les données d’origine avec les nouveaux jeux de données des deux inventaires.----------ABSTRACT : Spare parts inventory management plays a vital role in maintaining competitive advantages in many industries, from capital intensive companies to service networks. Due to the massive quantity of distinct Stock Keeping Units (SKUs), it is almost impossible to control inventory by individual item or pay the same attention to all items. Spare parts inventory management involves all parties, from Original Equipment Manufacturer (OEM), to distributors and end customers, which makes this management even more challenging. Wrongly classified critical spare parts and the unavailability of those critical items could have severe consequences. Therefore, it is crucial to classify inventory items into classes and employ appropriate control policies conforming to the respective classes. An ABC classification and certain inventory control techniques are often applied to facilitate SKU management. Spare parts inventory management intends to provide the right spare parts at the right time. The classification of spare parts into priority or critical classes is the foundation for managing a large-scale and highly diverse assortment of parts. The purpose of classification is to consistently classify spare parts into different classes based on the similarity of items with respect to their characteristics, which are exhibited as attributes. The traditional ABC analysis, based on Pareto's Principle, is one of the most widely used techniques for classification, which concentrates exclusively on annual dollar usage and overlooks other important factors such as reliability, lead time, and criticality. Therefore, multi-criteria inventory classification (MCIC) methods are required to meet these demands. We propose a pattern-based machine learning technique, the Logical Analysis of Data (LAD), for spare parts inventory classification. The purpose of this study is to expand the classical ABC classification method by using a MCIC approach. Benefiting from the superiority of LAD in pattern transparency and robustness, we use two numerical examples to investigate LAD’s potential usage for detecting inconsistencies in inventory classification and the capability on MCIC. The two numerical experiments have demonstrated that LAD is not only capable of classifying inventory, but also for detecting and correcting inconsistent observations by combining it with the Root Cause Analysis (RCA) procedure. Test accuracy improves potentially not only with the LAD technique, but also with other major machine learning classification techniques, namely artificial neural network (ANN), support vector machines (SVM), k-nearest neighbours (KNN) and Naïve Bayes (NB). Finally, we conduct a statistical analysis to confirm the significant improvement in test accuracy for new datasets (corrections by LAD) compared to original datasets. This is true for all five classification techniques. The results of statistical tests demonstrate that there is no significant difference in test accuracy in five machine learning techniques, either in the original or the new datasets of both inventories
    corecore