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We develop several variable selection methods using signomial function to select relevant variables for multi-
class classification by taking all classes into consideration. We introduce a ‘1-norm regularization function to
measure the number of selected variables and two adaptive parameters to apply different importance weights for
different variables according to their relative importance. The proposed methods select variables suitable for
predicting the output and automatically determine the number of variables to be selected. Then, with the selected
variables, they naturally obtain the resulting classifiers without an additional classification process. The
classifiers obtained by the proposed methods yield competitive or better classification accuracy levels than those
by the existing methods.
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1. Introduction

In the classification context, variable selection is the process of

selecting, from the entire set of input variables, those that can

positively affect classifier performance and efficiency.

Thereby, variable selection improves the prediction perfor-

mance of classifiers and the comprehensibility of the results

while also reducing the computational load (Guyon and

Elisseeff, 2003). In this paper, we focus on the issue of

variable selection in multi-class classification problems. Given

a set of training examples fxigmi¼1 where each xi consists of n

input variables xij and belongs to one class yi 2 K, jKj[ 2.

We seek to find, considering all classes simultaneously, a

common relevant subset of n input variables that is useful for

predicting the class of a new example.

Variable selection methods can be divided into three

categories: filter, wrapper and embedded (Guyon et al, 2002;

Guyon and Elisseeff, 2003; Lal, et al, 2006). Filter methods

score the merits of variables using intrinsic data properties

such as information, distance, dependency and consistency,

and then select a subset of variables as a preprocessing step

independently of the choice of learning machine (Dhillon,

et al, 2003; Torkkola, 2003; Li, et al, 2004; Yang and

Pedersen 1997; Zhang et al, 2008; Bolon-Canedo et al,

2012; Forman, 2004; You and Li, 2011; Rajapakse and

Mundra, 2013). Filter methods usually are fast, but because

they do not consider variable subsets’ effects on the learning

process, they can select a redundant one. Wrapper methods

directly use predetermined learning machines as a black box

with which to score subsets of variables (Kohavi and

Sommerfield, 1995; Kohavi and John, 1997; Pudil et al,

1994; Yang and Honavar, 1998; Somol et al, 2004). These

methods do not need the specific structure of a classification

function and so can be combined with any learning machine.

They are usually good but incur a high computational cost and

are inappropriate for high-dimensional data. Hybrid filter–

wrapper methods, which apply both filter and wrapper

methods in combination, also have been developed (Ruiz

et al, 2006; Gutlein et al, 2009; Peng et al, 2010; Akadi et al,

2011; Bermejo et al, 2012).

Embedded methods, unlike filter and wrapper methods,

incorporate variable selection as part of the training process

and therefore are specific to a learning machine. Embedded

methods can be roughly categorized into three types: forward–

backward, scaling factor optimization, and direct optimization

methods (Guyon and Elisseeff, 2003; Lal et al, 2006). Forward-

backward methods iteratively add or remove variables by
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estimating changes in the objective function (Cun et al, 1989;

Hermes and Buhmann, 2000; Guyon et al, 2002; Rakotoma-

monjy, 2003; Stoppiglia et al, 2003; Rivals and Personnaz,

2003; Perkins et al, 2003; Maldonado and Weber, 2009).

Scaling factor optimization methods select relevant variables

using scaling factors, which are hyper-parameters adjusted by

model selection (Weston et al, 2000; Jebara and Jaakkola, 2000;

Tipping, 2001; Grandvalet and Canu, 2002; Chapelle et al,

2002; Maldonado et al, 2011). Direct optimization methods

include a penalized term that measures the number of selected

variables in the optimization problem used for training of a

classifier (Bradley and Mangasarian, 1998; Weston et al, 2003;

Bi et al, 2003; Fung and Mangasarian, 2004; Zhou et al, 2002;

Zhu et al, 2003; Mangasarian, 1999, 2006; Zou, 2007; Zou and

Hastie, 2005; Wang et al, 2006, 2008).

For variable selection in multi-class classification, filter

methods can be naturally extended to multi-class cases and can

also deal directly with them. However, some filter methods

decompose a multi-class classification problem into several

binary classification problems and combine the variable scores

obtained for each of them (Forman, 2004; You and Li, 2011;

Rajapakse and Mundra, 2013). Wrapper methods, in order to

score subsets of variables, only need to use a classifier that can

handle a multi-class case.

The extension of an embedded method to a multi-class case

is, compared with filter and wrapper methods, much less

trivial. Although there are many multi-class classification

problems in practice, many embedded methods have been

suggested for binary classification. Many algorithms for multi-

class classification decompose a multi-class classification

problem into a set of multiple binary classification problems

(Clark and Boswell, 1991; Anand et al, 1995; Debnath et al,

2004) and combine the outputs of the binary classifiers to

construct a multi-class classifier (Friedman, 1996; Hastie and

Tibshirani, 1997; Hullermeier and Vanderlooy, 2010). Simi-

larly, multiple variable selections for binary classification

problems also can be substituted for variable selection for

multi-class classification. Among such embedded methods,

some select different variable subsets for each binary classifier

using a variable selection method for binary classification

(Veenman and Bolck, 2011; Ramaswamy et al, 2001; Chai

and Domeniconi, 2004). Other methods compute the selection

criteria values of all of the variables for each of the binary

classifiers and select, by combining those values, a common

set of variables for all of the binary classifiers (Chen et al,

2006; Duan et al, 2007; Chapelle and Keerthi, 2008; Liu et al,

2008; Shieh and Yang, 2008; Zhou and Tuck, 2007).

However, there are a number of drawbacks associated with

embedded methods that consider a multi-class classification

problem as multiple binary classification problems (Wang and

Shen, 2007b). First, when a binary classification becomes

highly unbalanced with small examples in one class, it is easy

to ignore the small class. If this occurs, the relevant variables

for the ignored class also are ignored. Second, even though

certain variables might be relevant only to one binary

classification, they can remain in the multi-class classifier,

which degrades the classification performance. Moreover, they

cannot capture correlations between different classes (Cram-

mer and Singer, 2002). To overcome these limitations, it is

necessary to perform variable selection by treating multiple

classes jointly in multi-class classification problems.

There are several embedded methods that simultaneously

take all classes into consideration in the variable selection

process. Decision trees, for example (Quinlan, 1986, 1993;

Breiman et al, 1984), which include algorithms for selection

of variables during the classification process, can handle

multi-class classification problems. For binary classification,

Guyon et al, (2002) proposed SVM-RFE (support vector

machine-recursive feature elimination) to recursively train an

SVM classifier and eliminate variables according to their

weights. A multi-class extension of SVM-RFE that directly

handles multiple classes also has been proposed for variable

selection in multi-class classification (Zhou and Tuck, 2007;

Zhao and Yand, 2010). Additionally, there are several direct

optimization methods with a regularization penalty term for all

classes in which variables are naturally selected for multiple

classes without any additional selection process (Wang and

Shen, 2006, 2007a; Weston et al, 2003; Zhang et al, 2008; Li

and Jia, 2010). Examples include the ‘1-norm penalty (the

lasso penalty) (Wang and Shen, 2006, 2007a), the ‘0-norm

penalty (Weston et al, 2003), the super-norm penalty (Zhang

et al, 2008), and the elastic-net penalty, the latter being a

mixture of the ‘2-norm and the ‘1-norm penalties (Li and Jia,

2010). However, most of them are limited in that they are

applicable only to linear classifiers.

In this paper, we propose several variable selection methods

for multi-class classification using a signomial function.

Hwang et al. (2013) developed embedded variable selection

methods for binary classification using the signomial classifi-

cation method proposed by Lee et al. (2014), but these methods

cannot be naturally extended to the multi-class case. We

attempt to find an optimal variable subset by taking all classes

into consideration in multi-class classification problems con-

sidering the nonlinear interactions of variables. To do this, we

introduce a ‘1-norm regularization function that measures the

number of selected variables. Also, we impose relative-

importance weights on different variables. The proposed

methods select variables suitable for predicting the output

and automatically determine the number of variables to be

selected. With the selected variables, they naturally obtain the

resulting classifiers without any additional learning process.

The remainder of this paper is organized as follows. In

Section 2, we review related studies. We describe variable

selection for multi-class classification using a signomial

function in Section 3. Section 4 develops a multi-class vari-

able selection method using a ‘1-norm regularization function

and then proposes two adaptive parameters to apply different

importance weights for different input variables. Computa-

tional experiments are reported in Section 5, and concluding

remarks are given in the final section.
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2. Related studies

In this section, we provide a description of several variable

selection methods, including two multi-class feature scoring

methods, namely Chi-squared (CHI) and Information gain

(IG), as well as one multi-class variable selection method

based on recursive feature elimination.

2.1. Multi-class feature scoring methods

CHI and IG are filter methods that score variables based on a

certain criterion. Yang and Pedersen (1997) and Forman

(2003) conducted comparative studies of filter methods and

reported that CHI and IG performed effectively. If input

variables have continuous variables, CHI and IG need to

convert them to discretized variables by a discretization

method (Yang and Webb, 2001; Fayyad and Irani, 1993).

2.1.1. Chi-square method (CHI) CHI (Yang and Pedersen,

1997; Forman, 2003) measures the lack of independence

between each variable and class label by calculating the v2

statistic. If the variable X and the classes are independent, the

v2 statistic has a natural value of zero. The v2 statistic of

variable X is defined

v2ðXÞ ¼
X

i

X

j

ðOij � EijÞ2

Eij

; ð1Þ

where Oij is the observed frequency count for the ith level of

the categorical variable X for class j, and Eij is the expected

frequency count for the ith level of the categorical variable X

for class j. Variables with high v2 values deviate significantly

from the independence assumption and therefore are consid-

ered relevant.

2.1.2. Information gain method (IG) IG (Yang and Pedersen,

1997; Forman, 2003; Quinlan, 1993) evaluates the merit of a

variable by measuring the information gain with respect to the

class, which is a correlation measure based on the information-

theoretical concept of entropy. The entropy of class variable Y

is defined

HðYÞ ¼ �
X

p

PðypÞ logðPðypÞÞ; ð2Þ

and the entropy of class variable Y after determining the value

of variable X is defined as

HðY jXÞ ¼ �
X

q

PðxqÞ
X

p

PðypjxqÞ logðPðypjxqÞÞ; ð3Þ

where PðypÞ denotes the prior probabilities of all values of Y

and PðypjxqÞ is the posterior probabilities of Y given the values

of X. Information gain is the amount of the decrease in entropy

of the class when the variable is given vs. absent. It is defined

IGðY ;XÞ ¼ HðYÞ � HðY jXÞ: ð4Þ

If a variable X1 has a higher information gain than a variable

X2 (i.e., IGðY ;X1Þ[ IGðY ;X2Þ), the class variable Y is

regarded as more correlated to X1 than to X2.

2.2. Multi-class support vector machine-recursive feature

elimination (MSVM-RFE)

Guyon et al. (2002) proposed an SVM-RFE algorithm that

recursively trains an SVM classifier and selects variables in a

sequential backward elimination procedure. SVM is a classi-

fication algorithm that constructs a decision function f ðxÞ ¼
wT/ðxÞ þ b to separate examples fxigmi¼1 from two classes

f�1; 1g, where decision functions can be obtained by solving

the following optimization problem:

min Jðw; eÞ ¼ 1

2
jjwjj2 þ C

Xm

i¼1

ei ð5Þ

s:t: yifwT/ðxiÞ þ bg� 1� ei; 8i ¼ 1; . . .;m; ð6Þ
w 2 Rj/ðxÞj; b 2 R;

ei 2 Rþ; 8i ¼ 1; . . .;m:

In these equations, /ðxÞ maps the training data x to a higher

dimensional space, yi denotes the class label of xi and C[ 0 is

the penalty parameter. The dual problem of (5) is

min
1

2

Xm

p¼1

Xm

q¼1

apaqypyqKðxp; xqÞ �
Xm

p¼1

ap ð7Þ

s:t:
Xm

p¼1

ypap ¼ 0; ð8Þ

0� ai �C; 8i ¼ 1; . . .;m;

where Kðxp; xqÞ ¼ /ðxpÞT/ðxqÞ. Then,

w ¼
Xm

p¼1

apyp/ðxpÞ: ð9Þ

SVM-RFE uses, as a variable selection criterion, the change of

the objective function Jðw; eÞ caused by removing a variable

xj. The selection criterion for variable xj is defined, as a

second-order term in the Taylor series of the objective

function, as

cj ¼
1

2

o2J

ow2
j

ðDwjÞ2: ð10Þ

SVM-RFE removes the variable with the least influence on the

weight vector norm jjwjj2; the selection criterion can thus be

written

Kyoungmi Hwang et al—Variable selection methods for multi-class classification using signomial function



cj ¼ jjwjj2 � jjwð�jÞjj2
�� ��

¼ 1

2

Xm

p¼1

Xm

q¼1

a�pa
�
qypyqKðxp; xqÞ

�����

�
Xm

p¼1

Xm

q¼1

a�p
ð�jÞa�q

ð�jÞypyqK
ð�jÞðxp; xqÞj; ð11Þ

where a� is the optimal solution of (7) and where the notation

ð�jÞ indicates that the variable xj has been removed. To reduce

the computational burden, a�p is assumed to be unchanged (i.e.,

a�p ¼ a�p
ð�jÞ). At each recursive step, SVM-RFE trains an SVM

classifier and computes cj for the remaining variables, after

which it eliminates the variable with the minimum cj. This

elimination procedure is repeated until only a single variable

remains.

SVM-RFE has been extended for variable selection in multi-

class classification (Zhou and Tuck, 2007; Zhao and Yand,

2010; Shieh and Yang, 2008; Duan et al, 2007). To deal with

multiple classes, multi-class problems can be decomposed into

several binary classification problems (Zhou and Tuck, 2007;

Shieh and Yang, 2008; Duan et al, 2007). Assuming that all

classes equally contribute to the classification, the variable that

simultaneously minimizes all of the variable selection criteria

of binary classification problems is removed. In this paper, as

the variable selection criterion, we use the summation of the

variable selection criteria of the one-against-all SVM using a

Gaussian kernel (Zhou and Tuck, 2007; Shieh and Yang,

2008).

3. Variable selection for multi-class classification using
signomial function

Let x ¼ ðx1; . . .; xnÞ be a vector of real, positive numbers, and

define a function of x, gdðxÞ ¼
Qn

j¼1 x
dj
j where d ¼

ðd1; . . .; dnÞ is a real vector. Then, the signomial function of

x is defined

f ðxÞ ¼
X

d2D
wdgdðxÞ þ b; ð12Þ

where b 2 R, wd 2 R; 8d 2 D, and where D is a finite subset

of Rn such that 0 62 D. If D ¼ fd 2 Zn
þ : 1�

Pn
j¼1 dj � kg for

a positive integer k, then f ðxÞ is a polynomial function of a

degree less than or equal to k.

In this paper, we consider the set D, the set of exponents d,

which is prespecified by the four parameters, dmin; dmax; L, and

T as

D ¼
�
d 2 Rn : dmin � dj � dmax; j ¼ 1; . . .; n;

Xn

i¼1

jdij �L; Td 2 Zn

�
; ð13Þ

where T [ 0 and L[ 0. From the above definition of D, each

exponent dj takes a value on an equally spaced grid that is

obtained by discretizing the closed interval ½dmin; dmax� . Here,
T controls the level of granularity of the grid, so that each dj is

an integer multiple of 1 / T. If we set dmin ¼ 0, dmax ¼ 1,

T ¼ 1, and L ¼ k for some k 2 Zþ, then f ðxÞ is a polynomial

function of a degree less than or equal to k. If T[ 1 at the

above parameters, exponents can take fractional values. In

Table 1 we show a number of example signomial functions

that can be obtained by changing the parameters of (13).

We consider a given set X ¼ fx1; x2; . . .; xmg of m training

examples xi where xi 2 Rn
þþ consists of n input variables.

Suppose that each example xi belongs to class yi,

yi 2 K :¼ f1; . . .; cg; c[ 2, where c is the number of classes

and Xk is a set of examples belonging to class k, with k 2 K

satisfying
S

k2K Xk ¼ X. We attempt to select a subset of the

n input variables, which is useful for predicting the class of a

new example using a signomial function (12).

Hwang et al. (2015), using a signomial function, developed

multi-class signomial classification (MSC) methods. MSCs

use f ¼ ff1ðxÞ; . . .; fcðxÞg as a decision function vector, where

each fkðxÞ takes the form of a signomial function (12) and

represents the strength of the evidence that an example x

belongs to class k, such that k 2 K. A multi-class signomial

classifier fMðxÞ is defined by f as

fMðxÞ ¼ argmax
k2K

fkðxÞ ¼
X

d2Dk

wk
dgdðxÞ þ bk

( )
: ð14Þ

Here, fMðxÞ assigns an example x to the class having the

largest fkðxÞ. If there are more than one k with a maximum

value, we randomly select one of them.

To obtain the decision function vector f, MSCs minimize

the regularized functional

FðfÞ ¼ RðwÞ þ C1Lðf; yÞ; ð15Þ

Table 1 Examples of signomial functions

dmin dmax T L Example function

0 3 1 3 f ðxÞ ¼ w1x
3
1 þ w2x

2
1x

1
4 þ w3x

1
2x

1
5

0 3 2 3 f ðxÞ ¼ w1x
1:5
1 þ w2x

0:5
1 x2:54 þ w3x

1
2x

1:5
5

�3 3 4 3 f ðxÞ ¼ w1x
1:25
1 þ w2x

�1:5
1 x1:254 x0:255 þ w3x

�1:25
2 x1:755

�1 1 10 1 f ðxÞ ¼ w1x
1
1 þ w2x

�0:5
1 x0:15 þ w3x

�0:5
2 x0:24 x�0:3

5
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where C1 [ 0 is the penalty parameter, Lðf; yÞ ¼
Pm

i¼1P
k2Knfyig j1� fyiðxiÞ þ fkðxiÞjþ, which is a hinge loss func-

tion, and R is a regularization function, RðwÞ ¼
P

k2K kwkk1
or RðwÞ ¼

P
k2K kwkk0. When

P
k2K kwkk1 is adopted, MSC

is referred to as the ‘1-norm method for multi-class signomial

classification (‘1-MSC). MSCs minimize RðwÞ to minimize

the number of signomial terms in the resulting multi-class

classifier. For variable selection, however, it is necessary to

directly minimize the number of input variables rather than

that of decision function terms.

Let r 2 Rn
þ be a vector of indicator variables, where, if

rj [ 0, the jth input variable is selected, while otherwise it is

not. Let SðrÞ be a regularization function that measures the

number of selected variables. For variable selection purposes,

we use ‘1-MSC and add SðrÞ to the objective function (15).

This is formulated as

min
r;w;b

SðrÞ þ C2FðfÞ; ð16Þ

where C2 [ 0 is the parameter that controls the number of

selected variables. In the next section, we present our approach

to solve the variable selection problem (16).

But before closing this section, we need to note how

categorical variables can be handled by our approach. If there

are categorical input variables, we can handle them by

introducing binary variables (dummy variables) for each

categorical variable. For an m-category variable xj, we first

introduce m binary variables xjk for k ¼ 1; . . .;m. If the value

of xj belongs to the kth-category, we set the binary variable xjk
to 1 and the others to zero. Additionally, we define additional

m binary variables �xjk such that �xjk ¼ 1� xjk for k ¼ 1; . . .;m.

Then, to ensure that each data point is positive, we add a small

positive value, for example � ¼ 10�6, to the value of each

dummy variable. The classifier obtained by ‘1-MSC with

parameters dmin ¼ 0, dmax ¼ 1, T ¼ 1, and L ¼ q for some

q 2 Zþ will be a special type of signomial function that can be

used for interpretation purposes.

For instance, let us suppose we have a 4-category variable xj
that takes a value from among A, B, C, and D. We first define

8 binary variables xjk and �xjk for k ¼ 1; . . .; 4 as explained

above. Then, the values A, B, C, and D are represented as four

8-dimensional binary vectors (1, 0, 0, 0, 0, 1, 1, 1), (0, 1,

0, 0, 1, 0, 1, 1), (0, 0, 1, 0, 1, 1, 0, 1) and (0, 0, 0, 1,

1, 1, 1, 0), respectively. After adding a small positive value

to the value of each dummy variable, the resulting classifier

for some specific class might contain terms such as �2:3xj1�xj2,

4�xj1xj4, and so on. We can see that the first term has a negative

impact on a point being a member of the specific class, while

the second has a positive impact. The meaning of the first term

is that if xj ¼ A and xj 6¼ B, the corresponding point could be a

member of one of the other classes. The meaning of the second

term can be interpreted in a similar way.

4. Multi-class variable selection method using ‘1-norm
regularization function

We develop variable selection methods for multi-class clas-

sification using a signomial function. We define a regulariza-

tion function in (16) for variable selection in multi-class

classification and then propose that different importance

weights be imposed on different input variables.

4.1. ‘1-norm regularization function

We propose a ‘1-norm regularization function and a variable

selection method using the ‘1-norm regularization function for

multi-class classification. To construct a multi-class classifier,

we find the decision function vector f by minimizing the

objective function (15). This can be formulated as

[Problem 1]

min
X

k2K
jjwkjj1 þ C

X

k2K

X

i2Xk

X

l2Knfkg
ekli ð17Þ

s:t:
X

d2Dk

wk
dgdðxiÞ þ bk �

X

d2Dl

wl
dgdðxiÞ þ bl

( )
þ ekli � 1;

8l 2 Knfkg; i 2 Xk; k 2 K;

wk 2 RjDk j; bk 2 R; 8k 2 K;

ekli 2 Rþ; 8l 2 Knfkg; i 2 Xk; k 2 K; ð18Þ

where C is the penalty parameter and Dk is the set of

exponents for class k, with k 2 K defined by (13). The ‘1-norm

jjwkjj1 is defined
P

d2Dk jwk
dj for k 2 K, and ekli is the

misclassification error, which is positive if data xi of class k

are misclassified by the classifier flðxÞ for k; l 2 K. The

objective function (17) is to minimize
P

k2K jjwkjj1 and the

sum of any misclassification errors. The parameter C is a

positive real number that controls the relative importance of the

training error to the ‘1-norm of wk.

By replacing wk
d with wkþ

d � wk�
d and jwk

dj with wkþ
d þ wk�

d ,

where wkþ
d � 0 and wk�

d � 0, we convert Problem 1 to a linear

programming (LP) problem that we call Problem 2. The

objective function of Problem 2 is

min
X

k2K

X

d2Dk

ðwkþ
d þ wk�

d Þ þ C
X

k2K

X

i2Xk

X

l2Knfkg
ekli : ð19Þ

The exponent set Dk can be exponentially large, which makes

Problem 2 practically intractable. We, however, can generate

exponents d 2 Dk as needed rather than in advance using a

column generation algorithm, and can therefore solve Problem

2 efficiently (Bertsimas and Tsitsiklis 1997).

Suppose that ðwkþ
d � wk�

d Þ 6¼ 0 for any d 2 Dk with dj 6¼ 0,

k 2 k. This means that the terms with the jth variable

Kyoungmi Hwang et al—Variable selection methods for multi-class classification using signomial function



contribute ðwkþ
d � wk�

d Þ to the resulting classifier fkðxÞ. The jth
variable appears in the resulting classifier fkðxÞ and has been

selected. On the other hand, if the jth variable makes no

contribution to the resulting classifier fkðxÞ for all k 2 K,

ðwkþ
d � wk�

d Þ ¼ 0 for all d 2 Dk with dj 6¼ 0, k 2 K, and the jth

variable is not selected for any fkðxÞ, k 2 K. Let gj 2 Rþ be a

variable that measures the contribution of the jth variable to

the resulting classifier fkðxÞ for all k 2 K,
P

k2K
P

d2Dk ; dj 6¼0

ðwkþ
d þ wk�

d Þ, for j ¼ 1; . . .; n. If gj [ 0, the jth input variable

is selected; otherwise, it is not.

We define a regularization function SðgÞ as the ‘1-norm of

g,
Pn

j¼1 gj. Minimizing the ‘1-norm can force g to be sparse

(Zhu et al, 2003; Huang et al, 2009). We add the ‘1-norm

regularization function to the objective function (19) and

remove the regularization function
P

k2K
P

d2Dk ðwkþ
d þ wk�

d Þ
from the objective function (19). Minimizing jjgjj1 can

perform regularization, and removal of the regularization term

can alleviate the burden of parameter tuning. We can then

construct the following problem:

[Problem 3]

min
Xn

j¼1

gj þ C
X

k2K

X

i2Xk

X

l2Knfkg
ekli ð20Þ

s:t:
X

d2Dk

ðwkþ
d � wk�

d ÞgdðxiÞ þ bk

�
X

d2Dl

ðwlþ
d � wl�

d ÞgdðxiÞ þ bl

( )
þ ekli � 1;

8l 2 Knfkg; i 2 Xk; k 2 K; ð21Þ
X

k2K

X

d2Dk ;dj 6¼0

ðwkþ
d þwk�

d Þ�gj; 8j¼1; . . .;n; ð22Þ

wkþ;wk� 2R
jDk j
þ ;bk 2R; 8k2K;

ekli 2Rþ; 8l2Knfkg;i2Xk;k2K;

gj2Rþ; 8j¼1; . . .;n:

Instead of enumerating all of the elements of the exponent

set Dk, k 2 K, we use only a subset of exponents of a limited

size as Dk can be exponentially large. To generate a subset of

exponents for class k for all k 2 K, we set the penalty

parameter C of Problem 2 to a large value (e.g., 103) and then

solve Problem 2 using a column generation algorithm

(Bertsimas and Tsitsiklis 1997) (see (Hwang et al, 2015)).

This generates as many profitable exponents as possible. Let

D̂
k � Dk be a subset of such exponents for class k, k 2 K. By

replacing Dk with D̂
k
, we construct the restricted problem of

Problem 3, which we call Problem 4. Problem 4 can be solved

using a standard LP technique. After solving Problem 4, we

obtain an optimal subset of the n input variables and the multi-

class signomial classifier with the selected variables.

Let ðŵþ; ŵ�; b̂; ĝÞ be an optimal solution to Problem 4. If

ĝj [ 0, the jth variable is selected in an optimal subset of the

variables; otherwise, it is not. The multi-class signomial

classifier is obtained as

fMðxÞ ¼ argmax
k2K

�
fkðxÞ ¼

X

d2D̂k

ðŵkþ
d � ŵk�

d ÞgdðxÞ þ b̂
k
�
:

ð23Þ

Here, x is classified as belonging in class k if fMðxÞ ¼ k. If

there are more than one k with a maximum value, we randomly

select one of them. We refer to the above variable selection

method as the ‘1-norm multi-class variable selection method

(‘1-MVS). An overview of ‘1-MVS is provided in Figure 1.

4.2. Adaptive parameters

In the previous subsection, the ‘1-norm regularization function is

used to select an optimal subset of n input variables. The

regularization function gives an equal weight of 1 to each of the

n input variables. There might, however, be different impor-

tance weights for each of the n input variables. We propose two

adaptive parameters to apply different importance weights for

different input variables. Variables with small weights can be

selected more easily than those with large parameters.

We introduce two adaptive parameters, the positive real

numbers sj and skj. Here, sj represents the weight of the jth

input variable for j ¼ 1; . . .; n. We impose sj on gj for j ¼
1; . . .; n to apply the different importance weights to each of

the n input variables. We modify Problem 3 to employ sj as
follows:

[Problem 5]

min
Xn

j¼1

sjgj þ C
X

k2K

X

i2Xk

X

l2Knfkg
ekli ð24Þ

s:t:
X

d2Dk

ðwkþ
d � wk�

d ÞgdðxiÞ þ bk

�
X

d2Dl

ðwlþ
d � wl�

d ÞgdðxiÞ þ bl

( )
þ ekli � 1;

8l 2 Knfkg; i 2 Xk; k 2 K; ð25Þ
X

k2K

X

d2Dk ;dj 6¼0

ðwkþ
d þwk�

d Þ�gj; 8j¼1;...;n; ð26Þ

wkþ;wk�2R
jDk j
þ ;bk2R; 8k2K;

ekli 2Rþ; 8l2Knfkg;i2Xk;k2K;

gj2Rþ; 8j¼1;...;n:

Also, it needs to be noted that skj represents the weight of

the jth input variable of class k for j ¼ 1; . . .; n and k 2 K. To

employ skj, we define gkj 2 Rþ as a variable that measures the

Journal of the Operational Research Society



contribution of the jth variable to the resulting classifier fkðxÞ
for k 2 K,

P
d2Dk ;dj 6¼0ðwkþ

d þ wk�
d Þ, for j ¼ 1; . . .; n. If gkj [ 0,

the jth input variable is selected in the classifier fkðxÞ;
otherwise, it is not. By replacing constraint (22) of Problem 3

with the constraint

X

d2Dk ;dj 6¼0

ðwkþ
d þ wk�

d Þ� gkj ; 8j ¼ 1; . . .; n; k 2 K

and modifying its objective function, we construct Problem 6.

The objective function of Problem 6 is

X

k2K

Xn

j¼1

skjg
k
j þ C

X

k2K

X

i2Xk

X

l2Knfkg
ekli :

Problems 5 and 6 can be solved by ‘1-MVS, as explained in

Section 4.1. We refer to these variable selection methods as

adaptive multi-class variable selection I (adaptive MVSI) and

II (adaptive MVSII), respectively.

Let ðŵþ; ŵ�Þ be an optimal solution to Problem 2 and

�wk
j :¼

P
d2Dk ;dj 6¼0ðŵkþ

d þ ŵk�
d Þ. In our implementation, we set

sj and skj as

sj ¼ 1�
P

k2K �wk
jP

k2K
Pn

j¼1 �wk
j

; 8j ¼ 1; . . .; n: ð27Þ

skj ¼ 1�
�wk
jPn

j¼1 �wk
j

; 8j ¼ 1; . . .; n; k 2 K: ð28Þ

5. Computational experiments

5.1. Computational setting

We conducted experiments on several multi-class classifica-

tion problems from the Statlog collection (Michie et al, 1994)

and from the UCI Repository of machine learning databases

(Bache and Lichman 2013). We chose the Image Segmenta-

tion (IS) and DNA data sets from the Statlog collection, and

the Cardiotocography (CARD), Multiple Features (MF) and

Gas Sensor Array Drift (GAS) data sets from the UCI

Repository. Table 2 provides descriptions of these data sets.

The performances of the proposed methods were compared

with combinations of three variable selection methods and five

classification methods. The tested methods are presented in

Table 3. The variable selection methods are two multi-class

feature scoring methods, namely Chi-squared (CHI) (Yang and

Pedersen, 1997; Forman, 2003) and Information Gain (IG)

(Yang and Pedersen, 1997; Forman, 2003; Quinlan, 1993),

along with the multi-class support vector machine-recursive

feature elimination (MSVM-RFE) (Zhou and Tuck, 2007;

Shieh and Yang, 2008).

The classification methods are k-nearest neighbor (kNN)

(Cover and Hart, 1967; Bay, 1998), classification and regres-

sion tree (CART) (Breiman et al, 1984), boosted classification

tree (BCT) (Freund and Schapire, 1997) and two multi-class

SVMs, in this case Weston and Watkins’s multi-class SVM

(WW) (Weston and Watkins, 1999) and Crammer and Singer’s

multi-class SVM (CS) (Crammer and Singer 2002). BCT uses

the AdaBoost.M2 algorithm (Freund and Schapire, 1997), a

multi-class extension of AdaBoost, with weak learners based

on classification trees with default parameters. The default

parameters are as follows: the maximal number of branch

nodes to be split is 1, the minimum size of leaf in order to

Figure 1 ‘1-normmulti-class variable selectionmethod (‘1-MVS).

Table 2 Data sets used in experiments

Data set #Classes #Attributes #Instances

IS 7 19 2310
CARD 3 21 2126
DNA 3 180 3186
MF 10 649 2000
GAS 6 128 13910

Table 3 Tested methods

Method Variable
selection

Classification

Multi-class feature scoring
methods

CHI WW
CS
kNN
CART
BCT

IG WW
CS
kNN
CART
BCT

Recursive feature elimination
method

MSVM-RFE WW
CS

Proposed methods ‘1-MVS
adaptive MVSI
adaptive MVSII

Kyoungmi Hwang et al—Variable selection methods for multi-class classification using signomial function
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obtain deep trees is 1, and the minimum size of parents of each

branch node is 2. Because, unlike the proposed methods, the

variable selection methods (CHI, IG and MSVM-RFE) cannot

give classifiers, the classification methods are additionally

required to train classifiers after the variable selection process.

We used WW, CS, kNN, CART and CT for the multi-class

feature scoring methods (CHI and IG), and WW and CS for

MSVM-RFE.

Additional experiments without considering variable selec-

tion were conducted on the same data sets to determine the

effect of variable selection. These used WW, CS, kNN, CART,

BCT and ‘1-MSC (Hwang et al, 2015).

Here, ‘1-MVS, adaptive MVSI, adaptive MVSII and ‘1-MSC

were implemented with the Xpress Mosel language using the

linear programming solver provided by the Xpress package

(Xpress, 2015). CHI and IG were tested with the R language

(Ihaka and Gentleman, 1996). MSVM-RFE was implemented

with the SVM-KM Toolbox (Canu et al, 2005). WW and CS

were implemented in the BSVM software package (Hsu and

Lin, 2012) using the decomposition method proposed by Hsu

and Lin (2002). We used MATLAB (Matlab, 2010) for kNN,

CART and BCT.

Let X ¼ fx1; x2; . . .; xmg be an original data set where xi 2
Rn for i ¼ 1; . . .;m consists of n input variables. Let Minj :¼
mini¼1;...;m xij and Maxj :¼ maxi¼1;...;m xij for j ¼ 1; . . .; n. For

the proposed methods, it was necessary to use translated data

within the ½1;1Þ range on account of the definition of the

signomial function (12). We translated the original data in

such a way that if Minj\0, xij :¼ xij �Minj þ 1; otherwise

xij :¼ xij þ 1. We conducted experiments on the original data

translated within the ½1;1Þ range. Note that for MSVM-RFE,

we scaled the GAS data set to the [0, 1] range in such a way

that xij :¼ ðxij �MinjÞ=ðMaxj �MinjÞ. The MSVM-RFE

needs to calculate an inverse matrix of K 2 Rm�m, Gaussian

radial basis function kernel Kpq ¼ Kðxp; xqÞ :¼ expð�ckxp �
xqk2Þ for p; q ¼ 1; . . .;m, but the attribute ranges of the GAS

data set are too variable for calculation of an inverse matrix.

Therefore, for the GAS data set, we conducted MSVM-RFE

experiments on the [0, 1] scaled data.

We selected model parameters with all of the input

variables. For parameter setting and performance testing, each

data set was divided into three disjoint subsets: training,

validation, and test sets. We randomly selected the subsets 20

times with a ratio of 5:3:2 while ensuring that the proportions

of the classes were similar in each subset. For various

parameter settings, the classifiers were trained on the training

set and then evaluated using the corresponding validation set.

The model parameters that achieved the highest level of

accuracy on the validation set were selected, and the selected

parameters were then applied to the corresponding test set to

evaluate the performance of the methods.

For the proposed methods and for ‘1-MSC, we defined the

set Dk :¼ fd 2 Rn : �1� dj � 1; j ¼ 1; . . .; n;
Pn

i¼1 jdij � 1;

10d 2 Zng for k 2 K. Thus, we search exponents in an

equal-interval grid having the range of ½�1; 1� and the 1 / 10

scale, and choose less than or equal to 10 non-zero exponents

of gdðxÞ, the absolute sum of which is less than or equal to 1.

For example, when n is 5, we might find exponents such as

d1 ¼ ð1; 0; 0; 0; 0Þ, d2 ¼ ð�0:5; 0; 0; 0; 0:2Þ, and d3 ¼
ð0;�0:5; 0; 0:2;�0:3Þ and then obtain the resulting classifier

f ðxÞ ¼ w1x
1
1 þ w2x

�0:5
1 x0:25 þ w3x

�0:5
2 x0:24 x�0:3

5 . We tested the

proposed methods using seven regularization parameters C:

C ¼ ½10�3, 10�2, 10�1, 1, 10, 102, 103�. For MSVM-RFE,

Table 5 IG performance results: Average classification accuracy ð%Þ and standard deviation for test sets, average time (s) and standard
deviation to select variables and train classifiers, and average number of selected variables

Data set IG

CART BCT

TestAcc SelTrnT SelVar TestAcc SelTrnT SelVar

IS 93.30 ± 1.29 0.36 ± 0.03 14.80 90.03 ± 1.79 4.70 ± 1.22 14.80
CARD 91.21 ± 1.59 0.32 ± 0.04 15.40 88.64 ± 1.46 2.90 ± 1.15 15.40
DNA 90.59 ± 1.51 2.98 ± 0.19 82.80 88.03 ± 1.38 4.94 ± 1.90 82.80
MF 90.49 ± 1.52 18.49 ± 1.29 131.65 82.91 ± 7.18 101.74 ± 16.47 131.65
GAS 95.39 ± 0.51 10.23 ± 1.06 51.10 68.91 ± 0.65 140.06 ± 39.46 51.10

Data set IG

WW CS kNN

TestAcc SelTrnT SelVar TestAcc SelTrnT SelVar TestAcc SelTrnT SelVar

IS 95.23 ± 1.16 0.80 ± 0.27 14.80 95.51 ± 1.41 1.10 ± 0.42 14.80 95.26 ± 1.11 1.66 ± 0.08 14.80
CARD 89.55 ± 1.13 0.50 ± 0.07 15.40 89.16 ± 1.77 0.58 ± 0.12 15.40 88.45 ± 1.29 2.90 ± 0.50 15.40
DNA 95.62 ± 1.06 3.19 ± 0.23 82.80 95.75 ± 0.88 3.54 ± 0.58 82.80 77.88 ± 2.28 5.27 ± 0.91 82.80
MF 96.08 ± 1.12 18.85 ± 1.30 131.65 96.20 ± 1.03 19.84 ± 1.45 131.65 92.85 ± 1.16 21.23 ± 1.34 131.65
GAS 98.40 ± 0.37 34.39 ± 19.58 51.10 98.57 ± 0.29 2300.44 ± 4657.16 51.10 98.19 ± 0.24 51.73 ± 3.97 51.10

We selected as many variables as the number of variables selected by ‘1-MVS

Kyoungmi Hwang et al—Variable selection methods for multi-class classification using signomial function



WW and CS, we used a Gaussian radial basis function kernel

Kðxp; xqÞ :¼ expð�ckxp � xqk2Þ. These methods were tested

using 7� 7 combinations of regularization parameters C and

the kernel parameters c: C ¼ ½10�3, 10�2, 10�1, 1, 10, 102,

103� and c ¼ ½10�3, 10�2, 10�1, 1, 10, 102, 103�. Note that for

the MF and GAS data sets, we conducted WW and CS

experiments with 11� 11 combinations of C and c: C ¼ ½1,
101, . . . , 109, 1010� and c ¼ ½10�10, 10�9, . . ., 10, 1]. kNN was

tested using the different numbers k of nearest neighbors:

k ¼ ½1, 21, 22, . . . ]. CART was tested using seven different

pruning levels p: p ¼ ½0, 1, 2, 3, 4, 5, 6]. BCT was tested using

the different numbers w of weak learners: w ¼ ½1, 2, . . ., 499,
500] except for the GAS data set. For the GAS data set, we

tested using the different numbers w0 of weak learners:

w0 ¼ ½200, 400, . . ., 800, 1000].
As performance criteria, we used the average classification

accuracy of the test sets, the average time to select variables

and train classifiers and the average number of the selected

variables in the optimal variable subset. CHI, IG and MSVM-

RFE require the setting of the variable number to be selected.

Therefore, for these methods, we selected as many variables as

the number selected by ‘1-MVS and then constructed the

resulting classifiers using WW, CS, kNN, CART and BCT.

5.2. Computational results

The computational results are presented in Tables 4, 5, 6 and 7

to 8. The TestAcc denotes the average classification accuracy

and standard deviation for test sets, and the SelVar denotes the

average number of selected variables. In Tables 4, 5, 6 and 7,

the SelTrnT denotes the average time and standard deviation

of variable selection and classifier training processes.

To evaluate the performance of the proposed methods, we

tested them with three existing variable selection methods

(CHI, IG and MSVM-RFE) on the five data sets. Tables 4 and

5 show the performance results of CHI and IG, respectively.

After the variable selection processes of CHI and IG, the five

classification methods (WW, CS, kNN, CART and BCT)

trained classifiers with the selected variables. Table 6 provides

the performance results for the MSVM-RFE method. For the

MSVM-RFE, WW and CS classification methods were used

for training classifiers. The performances of the proposed

methods are indicated in Table 7. Table 8 presents the results

of additional experiments in which variable selection was not

considered with WW, CS, kNN, CART, BCT or ‘1-MSC.

The proposed methods yielded competitive or better clas-

sification accuracy levels for most of the data sets (with the

exception of the CARD data set) as compared with the other

twelve methods (combinations of variable selection and

classification methods; see Table 3). The comparable or better

performance results of the proposed methods are indicated in

bold in Table 7, as compared with those of the CHI, IG and

MSVM-RFE. The twelve existing methods chose as many

variables as the number of variables selected by ‘1-MVS and

then trained the classifiers with those variables. The classifiers

obtained by ‘1-MVS gave competitive or better classification

accuracy levels than those of the twelve existing methods

using the same number of variables for most of the data sets

(with the exception of the CARD data set). In other words, ‘1-

MVS selected variables that are suitable for predicting the

output.

CHI, IG and MSVM-RFE can select variables, but they need

other classification methods (WW, CS, kNN, CART and BCT)

to train classifiers using those variables. The classifiers yielded

varying levels of classification accuracy according to the

classification method used. It was impossible to determine the

best variable selection method for predicting the output in this

case. For CHI, IG and MSVM-RFE, it is necessary to select a

proper classification method. Under the same variable selec-

tion method, multi-class SVMs (WW and CS) showed better

average classification accuracy levels than those of the other

methods.

In terms of the average time for variable selection and

classifier training, the CHI and IG incurred less computational

cost than the proposed methods and MSVM-RFE. This is due

to the fact that the CHI and IG methods individually score

variables based on a certain criterion, while the proposed

methods and MSVM-RFE consider non-linear cases by

introducing a signomial function and a kernel function,

Table 6 MSVM-RFE performance results: Average classification accuracy ð%Þ and standard deviation for test sets, average time (s) and
standard deviation to select variables and train classifiers, and average number of selected variables

Data set MSVM-RFE

WW CS

TestAcc SelTrnT SelVar TestAcc SelTrnT SelVar

IS 95.28 ± 1.30 474.98 ± 63.89 14.80 95.90 ± 1.17 475.13 ± 63.86 14.80
CARD 89.91 ± 1.08 629.08 ± 125.77 15.40 89.43 ± 1.58 629.15 ± 125.77 15.40
DNA 95.65 ± 0.90 2718.39 ± 479.35 82.80 95.63 ± 0.83 2718.65 ± 479.41 82.80
MF 97.26 ± 0.86 1271.26 ± 435.14 131.65 97.21 ± 0.80 1272.07 ± 435.13 131.65
GAS 98.93 ± 0.22 116220.23 ± 13451.53 51.10 98.95 ± 0.18 118281.33 ± 17399.25 51.10

We selected as many variables as the number of variables selected by ‘1-MVS

Journal of the Operational Research Society
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respectively. Notably, for the GAS data set, the MSVM-RFE

took longer than the proposed methods, since the MSVM-RFE

needs to calculate an inverse of the kernel matrix. Although

the proposed methods incurred more computational cost than

the CHI and IG, they could reduce the time to determine the

number of variables to be selected and suitable classification

methods.

Of the proposed methods, the number of variables selected

by ‘1-MVS was similar to that selected by adaptive MVSI and

adaptive MVSII. Compared to ‘1-MVS, the classification

accuracies of adaptive MVSI and adaptive MVSII were

comparable or slightly better for the IS and CARD data sets.

This indicates that imposing different importance weights on

input variables had a good effect on the classification accuracy

in the case of data sets with a small number of variables.

Table 7 shows, by cross-referencing with Table 8, that for

the DNA, MF and GAS data sets, the classifiers obtained by

the proposed methods achieved comparable or better classi-

fication accuracy levels than ‘1-MSC without considering

variable selection. This means that for data sets with a large

number of variables, the proposed methods can reduce the

number of variables while improving the classification accu-

racy. The classification accuracies of the proposed methods

were worse than those of ‘1-MSC for the IS and CARD data

sets. The proposed methods, however, showed competitive or

better levels of classification accuracy than WW, CS, kNN,

CART or BCT for most of the data sets (except for the CARD

data set).

6. Conclusion

We have proposed several variable selection methods for

multi-class classification problems, specifically the ‘1-MVS,

the adaptive MVSI and the adaptive MVSII methods. The

proposed variable selection methods are embedded in ‘1-MSC

and conduct variable selection by treating multiple classes

jointly while also considering the nonlinear interaction of the

variables. The proposed methods automatically determine the

number of variables to be selected, and they obtain classifiers

without any additional training process. Classifiers trained

using the variables selected by the proposed methods yielded

competitive or better classification accuracy levels than those

of twelve existing methods with the same number of selected

variables. Imposing different importance weights on input

variables had a beneficial effect on classification accuracy

when using data sets with a small number of variables. For

data sets with a large number of variables, the proposed

methods reduced the number of variables while improving the

classification accuracy.
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