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RÉSUMÉ 

La gestion des stocks de pièces de rechange donne un avantage concurentiel vital dans de 

nombreuses industries, en passant par les entreprises à forte intensité capitalistique aux entreprises 

de service. En raison de la quantité élevée d'unités de gestion des stocks (UGS) distinctes, il est 

presque impossible de contrôler les stocks sur une base unitaire ou de porter la même attention à 

toutes les pièces. La gestion des stocks de pièces de rechange implique plusieurs intervenants soit 

les fabricants d'équipement d'origine (FEO), les distributeurs et les clients finaux, ce qui rend la 

gestion encore plus complexe. Des pièces de rechange critiques mal classées et les ruptures de 

stocks de pièces critiques ont des conséquences graves. Par conséquent il est essentiel de classifier 

les stocks de pièces de rechange dans des classes appropriées et d'employer des stratégies de 

contrôle conformes aux classes respectives. Une classification ABC et certaines techniques de 

contrôle des stocks sont souvent appliquées pour faciliter la gestion UGS. 

La gestion des stocks de pièces de rechange a pour but de fournir des pièces de rechange au moment 

opportun. La classification des pièces de rechange dans des classes de priorité ou de criticité est le 

fondement même de la gestion à grande échelle d’un assortiment très varié de pièces. L'objectif de 

la classification est de classer systématiquement les pièces de rechange en différentes classes et ce 

en fonction de la similitude des pièces tout en considérant leurs caractéristiques exposées sous 

forme d'attributs. L'analyse ABC traditionnelle basée sur le principe de Pareto est l'une des 

techniques les plus couramment utilisées pour la classification. Elle se concentre exclusivement 

sur la valeur annuelle en dollar et néglige d'autres facteurs importants tels que la fiabilité, les délais 

et la criticité. Par conséquent l’approche multicritères de classification de l'inventaire (MCIC) est 

nécessaire afin de répondre à ces exigences. 

Nous proposons une technique d'apprentissage machine automatique et l'analyse logique des 

données (LAD) pour la classification des stocks de pièces de rechange. Le but de cette étude est 

d'étendre la méthode classique de classification ABC en utilisant une approche MCIC. Profitant de 

la supériorité du LAD dans les modèles de transparence et de fiabilité, nous utilisons deux exemples 

numériques pour évaluer l'utilisation potentielle du LAD afin de détecter des contradictions dans 

la classification de l'inventaire et de la capacité sur MCIC. 
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Les deux expériences numériques ont démontré que LAD est non seulement capable de classer les 

stocks mais aussi de détecter et de corriger les observations contradictoires en combinant l’analyse 

des causes (RCA). La précision du test a été potentiellement amélioré, non seulement par 

l’utillisation du LAD, mais aussi par d'autres techniques de classification d'apprentissage machine 

automatique tels que : les réseaux de neurones (ANN), les machines à vecteurs de support (SVM), 

des k-plus proches voisins (KNN) et Naïve Bayes (NB). Enfin, nous procédons à une analyse 

statistique afin de confirmer l'amélioration significative de la précision du test pour les nouveaux 

jeux de données (corrections par LAD) en comparaison aux données d'origine. Ce qui s’avère vrai 

pour les cinq techniques de classification. Les résultats de l’analyse statistique montrent qu'il n'y a 

pas eu de différence significative dans la précision du test quant aux cinq techniques de 

classification utilisées, en comparant les données d’origine avec les nouveaux jeux de données des 

deux inventaires. 
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ABSTRACT 

Spare parts inventory management plays a vital role in maintaining competitive advantages in 

many industries, from capital intensive companies to service networks. Due to the massive quantity 

of distinct Stock Keeping Units (SKUs), it is almost impossible to control inventory by individual 

item or pay the same attention to all items. Spare parts inventory management involves all parties, 

from Original Equipment Manufacturer (OEM), to distributors and end customers, which makes 

this management even more challenging. Wrongly classified critical spare parts and the 

unavailability of those critical items could have severe consequences. Therefore, it is crucial to 

classify inventory items into classes and employ appropriate control policies conforming to the 

respective classes. An ABC classification and certain inventory control techniques are often 

applied to facilitate SKU management. 

Spare parts inventory management intends to provide the right spare parts at the right time. The 

classification of spare parts into priority or critical classes is the foundation for managing a large-

scale and highly diverse assortment of parts. The purpose of classification is to consistently classify 

spare parts into different classes based on the similarity of items with respect to their characteristics, 

which are exhibited as attributes. The traditional ABC analysis, based on Pareto's Principle, is one 

of the most widely used techniques for classification, which concentrates exclusively on annual 

dollar usage and overlooks other important factors such as reliability, lead time, and criticality. 

Therefore, multi-criteria inventory classification (MCIC) methods are required to meet these 

demands. 

We propose a pattern-based machine learning technique, the Logical Analysis of Data (LAD), for 

spare parts inventory classification. The purpose of this study is to expand the classical ABC 

classification method by using a MCIC approach. Benefiting from the superiority of LAD in pattern 

transparency and robustness, we use two numerical examples to investigate LAD’s potential usage 

for detecting inconsistencies in inventory classification and the capability on MCIC.  

The two numerical experiments have demonstrated that LAD is not only capable of classifying 

inventory, but also for detecting and correcting inconsistent observations by combining it with the 

Root Cause Analysis (RCA) procedure. Test accuracy improves potentially not only with the LAD 

technique, but also with other major machine learning classification techniques, namely artificial 
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neural network (ANN), support vector machines (SVM), k-nearest neighbours (KNN) and Naïve 

Bayes (NB). Finally, we conduct a statistical analysis to confirm the significant improvement in 

test accuracy for new datasets (corrections by LAD) compared to original datasets. This is true for 

all five classification techniques. The results of statistical tests demonstrate that there is no 

significant difference in test accuracy in five machine learning techniques, either in the original or 

the new datasets of both inventories.  

 



ix 

 

 

TABLE OF CONTENTS 

DEDICATION ............................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

RÉSUMÉ ......................................................................................................................................... v 

ABSTRACT .................................................................................................................................. vii 

TABLE OF CONTENTS ............................................................................................................... ix 

LIST OF TABLES ........................................................................................................................ xii 

LIST OF FIGURES ....................................................................................................................... xv 

LIST OF SYMBOLS AND ABBREVIATIONS......................................................................... xvi 

CHAPTER 1 INTRODUCTION ..................................................................................................... 1 

1.1 Statement of the problem .................................................................................................. 1 

1.2 Objective ........................................................................................................................... 2 

1.3 Organization of the Thesis ................................................................................................ 3 

CHAPTER 2 LITERATURE REVIEW .......................................................................................... 4 

2.1 Traditional ABC classification ......................................................................................... 4 

2.2 Multi-criteria inventory classification .............................................................................. 5 

2.2.1 Analytic hierarchy process ........................................................................................ 5 

2.2.2 Data envelopment analysis ........................................................................................ 6 

2.3 Machine learning classification ........................................................................................ 7 

2.3.1 Artificial neural networks .......................................................................................... 7 

2.3.2 Support vector machines ........................................................................................... 7 

2.3.3 K-nearest neighbours ................................................................................................. 8 

2.3.4 Naïve Bayes ............................................................................................................... 8 

CHAPTER 3 METHODOLOGY .................................................................................................. 10 



x 

 

 

3.1 Introduction .................................................................................................................... 10 

3.2 Logical analysis of data .................................................................................................. 11 

3.2.1 Data binarization ..................................................................................................... 12 

3.2.2 Pattern generation and theory formation ................................................................. 14 

3.2.3 Test and classification ............................................................................................. 16 

CHAPTER 4 THE PROCESS OF DATA ANALYSIS ................................................................ 18 

4.1 Tools ............................................................................................................................... 18 

4.2 LAD classification analysis procedure ........................................................................... 18 

4.3 Root cause analysis for misclassification ....................................................................... 19 

4.3.1 Working mechanism of RCA procedure ................................................................. 20 

CHAPTER 5 LAD CLASSIFICATION: NUMERICAL EXAMPLES ....................................... 24 

5.1 Numerical example of spare parts inventory .................................................................. 24 

5.1.1 Introduction ............................................................................................................. 24 

5.1.2 LAD Classification on dataset ................................................................................. 26 

5.1.3 Misclassification analysis ........................................................................................ 27 

5.1.4 Special investigation for misclassification .............................................................. 30 

5.1.5 Analysis results ....................................................................................................... 31 

5.2 Numerical example of medical equipment inventory ..................................................... 34 

5.2.1 Introduction ............................................................................................................. 34 

5.2.2 AHP dataset ............................................................................................................. 35 

5.2.3 Optimal dataset ........................................................................................................ 38 

5.2.4 Scaled dataset .......................................................................................................... 43 

5.3 Summary ......................................................................................................................... 47 

CHAPTER 6 COMPARISON WITH BENCHMARK TECHNIQUES ....................................... 48 



xi 

 

 

6.1 Introduction .................................................................................................................... 48 

6.1.1 Performance metrics ................................................................................................ 48 

6.1.2 Tools and configuration .......................................................................................... 49 

6.2 Comparison of spare parts inventory .............................................................................. 50 

6.2.1 Comparison between original and new datasets ..................................................... 50 

6.2.2 Comparison among classification of machine learning techniques ........................ 52 

6.3 Comparison of medical equipment inventory ................................................................ 53 

6.3.1 Comparison between original and new datasets ..................................................... 54 

6.3.2 Comparison among classification of machine learning techniques ........................ 55 

6.4 Statistical analysis........................................................................................................... 57 

6.4.1 Statistical analysis between the original and new datasets ..................................... 57 

6.4.2 Statistical analysis between datasets and learning techniques ................................ 61 

6.5 Summary ......................................................................................................................... 66 

CHAPTER 7 CONCLUSION AND FUTURE WORK ................................................................ 67 

7.1 Conclusion ...................................................................................................................... 67 

7.2 Future work..................................................................................................................... 68 

BIBLIOGRAPHY ......................................................................................................................... 69 

 



xii 

 

 

LIST OF TABLES 

Table 3.1: Sample of dataset ......................................................................................................... 13 

Table 3.2: Level variables of attributes ......................................................................................... 13 

Table 3.3: Interval variables of attributes ...................................................................................... 13 

Table 3.4: Binary of attributes ....................................................................................................... 14 

Table 4.1: Misclassified observations of test (sample) ................................................................. 20 

Table 4.2: Patterns created in the No. 5 Test ................................................................................ 21 

Table 4.3: Patterns created in the No. 7 Test ................................................................................ 21 

Table 4.4: Patterns created in the No. 9 Test ................................................................................ 22 

Table 4.5: Patterns created in the No. 15 Test .............................................................................. 22 

Table 4.6: RCA result of misclassified observations .................................................................... 23 

Table 5.1: Dataset organized by three ABC classification methods ............................................. 25 

Table 5.2: The average test accuracy of the first round LAD analysis ......................................... 26 

Table 5.3: Misclassified observations from 1st round analysis of the AHP dataset ..................... 27 

Table 5.4: Misclassified observations from 1st round analysis of the VRS dataset ..................... 27 

Table 5.5: Misclassified observations from 1st round analysis of the CRS dataset...................... 28 

Table 5.6: RCA result of 1st round analysis of the AHP dataset .................................................. 28 

Table 5.7: RCA results of 1st round analysis of the VRS dataset ................................................. 29 

Table 5.8: RCA result of 1st round analysis of the CRS dataset .................................................. 29 

Table 5.9: Results of LAD analysis with RCA of the AHP dataset .............................................. 32 

Table 5.10: Results of LAD analysis with RCA of the VRS dataset ............................................ 32 

Table 5.11:Results of LAD analysis with RCA of the VRS dataset ............................................. 33 

Table 5.12: Results of LAD analysis with RCA of the CRS dataset ............................................ 34 

Table 5.13: The misclassified items of 1st round analysis of the AHP dataset ............................. 35 



xiii 

 

 

Table 5.14: RCA results of 1st round analysis of the AHP dataset .............................................. 36 

Table 5.15: Results of LAD Classification with RCA of the AHP dataset ................................... 37 

Table 5.16: Misclassified observations from 1st round analysis of the Optimal dataset .............. 39 

Table 5.17: RCA results of 1st round analysis of the Optimal dataset .......................................... 40 

Table 5.18: Misclassification and RCA results of 2nd round analysis on Optimal dataset ........... 40 

Table 5.19: Misclassification and RCA results of 3rd round analysis on Optimal dataset ........... 41 

Table 5.20: Misclassification and RCA results of 4th round analysis on Optimal dataset ........... 41 

Table 5.21: Misclassification and RCA results of 5th round analysis on Optimal dataset ........... 42 

Table 5.22: Misclassification and RCA results of 6th round analysis on Optimal dataset ........... 42 

Table 5.23: Misclassification and RCA results of 7th round analysis on Optimal dataset ........... 42 

Table 5.24: Misclassification and RCA results of 8th round analysis on Optimal dataset ........... 43 

Table 5.25: Misclassified observations of 1st round analysis on the Scaled dataset ..................... 44 

Table 5.26: RCA results of the 1st round analysis on the Scaled dataset ...................................... 45 

Table 5.27: Misclassification and RCA result of 2nd round analysis on the Scaled dataset .......... 45 

Table 5.28: Misclassification and RCA result of 3rd round analysis on the Scaled dataset .......... 46 

Table 5.29: Misclassification and RCA result of 4th round analysis on the Scaled dataset .......... 46 

Table 6.1: Test accuracy on original and new datasets ................................................................. 50 

Table 6.2: Test accuracy improvement on new datasets ............................................................... 51 

Table 6.3: Test accuracy by machine learning techniques ............................................................ 52 

Table 6.4: Test accuracy improvement by machine learning techniques ..................................... 53 

Table 6.5: Test accuracy on original and new datasets ................................................................. 54 

Table 6.6: Test accuracy improvement on new datasets ............................................................... 54 

Table 6.7: Test accuracy by machine learning technique ............................................................. 56 

Table 6.8: Test accuracy improvement by machine learning technique ....................................... 57 



xiv 

 

 

Table 6.9: Test accuracy on original and new datasets ................................................................. 58 

Table 6.10: Paired t-Test for CRS and CRS-N ............................................................................. 58 

Table 6.11: Paired t-Test for VRS and VRS-N ............................................................................. 59 

Table 6.12: Paired t-Test for AHP and AHP-N ............................................................................ 59 

Table 6.13: Test accuracy on original and new datasets ............................................................... 60 

Table 6.14: Paired t-Test for Scaled and Scaled-N ....................................................................... 60 

Table 6.15: Paired t-Test for Optimal and Optimal-N .................................................................. 61 

Table 6.16: Paired t-Test for AHP and AHP-N ............................................................................ 61 

Table 6.17: Test accuracy of machine learning techniques on original datasets (1st inventory) .. 64 

Table 6.18: Test accuracy of machine learning techniques on new datasets (1st inventory) ....... 64 

Table 6.19: Test accuracy of machine learning techniques on original datasets (2nd inventory) 65 

Table 6.20: Test accuracy of machine learning techniques on new datasets (2nd inventory) ...... 65 

Table 6.21: The results of the Friedman test for machine learning techniques ............................ 66 

 



xv 

 

 

LIST OF FIGURES 

Figure 4.1: Root cause analysis procedure for inconsistency detection ........................................ 23 

Figure 5.1: Visualisation of observations on the AHP dataset ...................................................... 31 

Figure 5.2: The change of test accuracy on the AHP dataset ........................................................ 38 

Figure 5.3: The change of test accuracy on the Optimal dataset ................................................... 43 

Figure 5.4: The change of test accuracy on the Scaled dataset ..................................................... 46 

Figure 6.1: Comparison of test accuracy between original datasets and new datasets ................. 51 

Figure 6.2: Comparison on test accuracy improvement of machine learning techniques ............. 53 

Figure 6.3: Comparison of test accuracy between original datasets and new datasets ................. 55 

Figure 6.4: Comparison of test accuracy improvement of machine learning techniques ............. 56 

Figure 6.5: Example of ranking data ............................................................................................. 62 



xvi 

 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

AHP  Analytic Hierarchy Process  

ANNs  Artificial Neural Networks 

BPNs  backpropagation networks 

CRS  Constant Return to Scale 

DEA  Data Envelopment Analysis 

DMU  Decision Making Unit  

FCM  Fuzzy C-means 

IDEA  Imprecise DEA  

KNN  k-Nearest Neighbours  

LAD  Logical Analysis of Data 

MCIC  Multi-Criteria Inventory Classification  

MDA  Multiple Discriminant Analysis  

NA  Not Applicable 

NB  Naïve Bayes 

OEM  Original Equipment Manufacturer 

OVA  One-Versus-All  

OVO  One-Versus-One 

RBF  Radial Basis Function  

RCA  Root Cause Analysis 

SKUs  Stock Keeping Units 

SVM  Support Vector Machine 

VRS  Variable Return to Scale 



1 
 

 

 

CHAPTER 1 INTRODUCTION 

Spare parts inventory management plays a vital role in maintaining a competitive advantage in 

many industries, from capital intensive companies to service networks, such as railways, airlines, 

telecommunication (Boylan & Syntetos, 2010; Sarmah & Moharana, 2015; Stoll, Kopf, Schneider, 

& Lanza, 2015) etc. The purpose of classification is to consistently classify spare parts into 

different classes based on the similarity of items with respect to their characteristics. Wrongly 

classified critical spare parts and the unavailability of those critical items would have severe 

consequences (Sarmah & Moharana, 2015).  Spare parts inventory management involves all 

parties, from Original Equipment Manufacturer (OEM) to distributors and end customers. Various 

forms of classifications have been widely performed in spare parts inventory management, 

inventory forecasting or production management (van Kampen, Akkerman, & van Donk, 2012).  

The classification of spare parts into priority or criticality classes is the foundation for managing a 

large-scale and highly diverse assortment of parts (Rezaei & Dowlatshahi, 2010). Due to the 

massive quantity of distinct Stock Keeping Units (SKUs), it is almost impossible to control 

inventory by individual  item or pay the same attention to all items (Babai, Ladhari, & Lajili, 2015). 

It is crucial to classify inventory items into classes and employ appropriate control policies 

conforming to these classes. Therefore, an ABC classification and certain inventory control 

techniques are often applied to facilitate SKU management (Fu, Lai, Miao, & Leung, 2015).  

This study will propose using the Logical Analysis of Data (LAD), a pattern based machine 

learning technique, for spare parts inventory classification. The details of the LAD technique will 

be described further in Chapter 3, Methodology. 

1.1 Statement of the problem 

Spare parts inventory management intends to provide the right spare parts at the right time. The 

key problem is how to balance the cost of holding inventory and the risk of stock shortages 

(Kennedy, Wayne Patterson, & Fredendall, 2002). Either to maximize the profit from inventory 

sales or minimize the cost of inventory, we need to understand the characteristics of the machinery 

itself and then carry out the classification of inventories. Research on the classification of spare 
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parts helps to understand the nature of machinery, but we have not yet fully interpreted its attributes 

(van Kampen et al., 2012). 

ABC analysis is one of the most widely used techniques for classification (Rezaei & Salimi, 2015; 

Stoll et al., 2015). The classical ABC classification is based on Pareto's Principle (Ramanathan, 

2006) . Inventory is sorted by the total annual dollar usage, which is decided by unit price multiplied 

by annual usage rate. Though the ABC analysis is very popular for its ease of use, it concentrates 

exclusively on annual dollar usage and overlooks other important factors (Yu, 2011). The focus on 

this single criterion has resulted in taking no notice of other criteria, such as reliability, lead time, 

criticality, replicability, demand volume and inventory cost, which have been considered essential 

factors for inventory classification (Altay Guvenir & Erel, 1998; Ng, 2007; Ramanathan, 2006; 

Sarmah & Moharana, 2015; Stoll et al., 2015). 

Multi-criteria classification methods are mostly divided into two categories, which are 

mathematical models and intelligence-based machine learning techniques. Mathematical models 

for inventory classification include analytic hierarchy process (AHP)(Lolli, Ishizaka, & Gamberini, 

2014; Shamsaddini, Vesal, & Nawaser, 2015), data envelopment analysis (DEA) (Tavassoli, 

Faramarzi, & Saen, 2014) and fuzzy-rule-based approach (Sarmah & Moharana, 2015). On the 

other hand, machine learning techniques contain fuzzy c-means (FCM) clustering (Keskin & 

Ozkan, 2013), genetic algorithm (GA)(Altay Guvenir & Erel, 1998), artificial neural networks 

(ANNs) (Fariborz Y. Partovi & Anandarajan, 2002) etc. More details on classification methods 

will be discussed in Chapter 2, Literature Review. Despite their popularity, these methods either 

rely on certain assumptions about the importance of factors, or increase the complexity by 

recalculating classification with new inventory items. Furthermore, inconsistency in classification 

has been commonly found due to experts’ biases or inaccurate recordings.  

1.2 Objective 

The purpose of this study is to expand the classical ABC classification method by using a multi-

criteria inventory classification approach based on the machine learning technique. The Logical 

Analysis of Data (LAD), a pattern based classification method, is proposed for our experiment. 

LAD is a machine learning technique which is capable of extracting useful knowledge in the form 
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of interpretable patterns from a dataset. The superiority of LAD is in its patterns transparency and 

robustness. In addition, it does not rely on any statistical techniques. 

By utilizing the advantages of LAD technique, this thesis attempts to achieve the following specific 

objectives: 

1. Extend the traditional ABC classification with multi-criteria by LAD; 

2. Investigate the potential use of LAD by detecting inconsistencies of inventory classification; 

3. Provide evidence of the capability of LAD for classification by comparing other machine 

learning classification techniques. 

1.3 Organization of the Thesis  

Chapter 2 introduces the literature review on inventory classification. The methodology of LAD is 

found in Chapter 3. The process of data analysis is described in Chapter 4. Chapter 5 shows our 

experimental results that establish the capability of LAD on spare parts inventory classification, 

which is tested on numerical examples. The statistical analysis results are summarized in Chapter 

6, including the conclusions we have drawn from our research. Chapter 7 suggests several ideas 

for related future work. Following these concluding chapters is the bibliography.   
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CHAPTER 2 LITERATURE REVIEW 

For decades, there has been plenty of research on inventory control and operations management 

with regards to the classification of products. Although there are a few excellent general reviews 

of classification on spare parts inventory, each to some extent reflects the researchers’ personal 

research interests and expertise. Due to the complexity of machine working conditions and the 

breadth of research, a truly comprehensive review is probably impossible, and certainly beyond the 

scope of this thesis. Instead, we focus on ABC classification and its extension schemes, which 

constitute the major goal of the research. The following brief review presents the characteristics of 

classical ABC classification and mathematical model based methods in addition to the principles 

of the popular machine learning techniques for ABC classification. 

2.1 Traditional ABC classification 

The traditional ABC classification is based on Pareto’s principle, also known as the 80-20 rule, 

which was developed at General Electric during the 1950s (Altay Guvenir & Erel, 1998; Keskin & 

Ozkan, 2013). The aim of ABC analysis is to categorize inventory into three classes, namely A 

(very important); B (moderately important) and C (relatively unimportant) (Hatefi, Torabi, & 

Bagheri, 2014). Class A includes all items within the cumulative value of 70-80%, class B includes 

all items with the cumulative value up to 95%, and the rest of the items are class Cs(Ng, 2007). 

Accordingly, each class is assigned a control level and a service level that are applied to all Stock 

Keeping Units (SKUs) in a specific class. More details on inventory control policies can be found 

in Silver, Pyke, and Peterson (1998). 

ABC analysis is the most popular method for inventory classification by virtue of its clarity and 

capability. The classification of spare parts inventory is mostly based on the managerial efficiency 

concern and concentrates on the most valuable items (Braglia, Grassi, & Montanari, 2004). This 

practice inevitably overlooks other attributes of spare parts, such as lead time and reliability, and 

hardly satisfies the operations’ requirements for high availability at a low cost. Some researchers 

have introduced second criterion criticality of spare parts, aside from annual dollar usage, to extend 

the ABC analysis (Duchessi, Tayi, & Levy, 1988). This approach actually involves several other 

parameters, such as lead time and expected failure, to determine the criticality.  However, either 

one-dimensional or two-dimensional classification schemes have limitations on the separation of 
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important factors from all potential useful parameters. A number of researchers have proposed the 

use of multiple criteria, such as lead time, reliability and obsolescence, to extend the ABC 

classification. The next section provides a brief review of Multi-Criteria Inventory Classification 

(MCIC). 

2.2 Multi-criteria inventory classification 

2.2.1 Analytic hierarchy process 

Although classical ABC analysis is best known for its easy implementation and simplicity, it has 

been criticized for solely focusing on dollar usage and overlooking other crucial factors for 

inventory classification. Since then, many multi-criteria classification methods have been 

developed. One of the more popular techniques adopted in inventory classification is the analytic 

hierarchy process (AHP). The AHP methodology was proposed for spare parts classification from 

a number of authors (Cebi, Kahraman, & Bolat, 2010;Gajpal, Ganesh, & Rajendran, 1994; F. Y. 

Partovi & Hopton, 1994). The AHP is a decision making tool for analyzing complex problems 

which involve multiple criteria. The theory of tree structured AHP technique is formulated as 

pairwise comparisons to facilitate the decision-support procedure, which starts by calculating the 

relative weight of each criterion at each layer of the hierarchy and assessing the overall evaluation 

of all alternatives at the base level of the hierarchy.  

The AHP techniques of ABC classification have been widely used. The main difference among 

those AHP techniques is the adoption of diverse criteria in the evaluation process. For example, F. 

Y. Partovi & Burton (1993) used four attributes of spare parts, which are unit cost, procurement 

cost, demand range and lead time, to classify inventory. Gajpal Ganesh & Rajendran (1994) 

proposed a scheme with three criteria, status of availability, type of spares and lead time, to estimate 

the criticality of spare parts by using the AHP technique.  

One of the advantages of the AHP methodology is its adaptability in combining with other 

advanced techniques such as Artificial Neural Networks (ANNs), fuzzy logic and Data 

Envelopment Analysis (DEA) (Hadi-Vencheh & Mohamadghasemi, 2011; Kabir & Hasin, 2013; 

Shamsaddini et al., 2015). This characteristic allows users to obtain benefits from other methods 

and achieve a better solution; however, the AHP technique requires personal knowledge to assign 
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the weight of criteria. This assumption may bring about the inconsistency of inventory 

classification. 

2.2.2 Data envelopment analysis 

Another dynamic technique is Data Envelopment Analysis (DEA), which was originally developed 

by Charnes, Cooper, and Rhodes (1978). The principle of the DEA is to measure the relative 

performance of each Decision Making Unit (DMU) with multiple inputs and outputs. Initially it 

was used to evaluate the efficiency of non-profit and public organizations. Since then, many 

researchers have extended the DEA models and have successfully applied the models to many 

fields, such as financial efficiency and environment performance and classification (Liu, Lu, Lu, 

& Lin, 2013). One of these useful applications is inventory classification. 

Ramanathan (2006) developed a DEA-like model combined with weighted linear programming for 

inventory classification. The model transfers all criteria into scalar scores and yields optimal scores 

for each inventory item by using weighted linear optimization, and then classifies items into classes 

based on the score value of items. This method may take a very long time when encountering 

thousands of inventory items, which is very common in industries. Ng (2007) improved the 

formulation with an alternative weight linear programming to solve the time cost problem, but the 

step for ranking criteria completely depends on users’ expertise and experience. This situation may 

lead to human bias and an inconsistency in inventory classification. 

Most recently, researchers have proposed hybrid methods of DEA with other techniques, such as 

neural networks, fuzzy AHP and discriminant analysis (Hadi-Vencheh & Mohamadghasemi, 2011; 

Pendharkar, 2010; Tavassoli et al., 2014). The main difference among them is the way of 

calculating weights of the criteria of inventory items. Torabi, Hatefi, & Saleck Pay (2012) argued 

that most existing DEA models can only handle quantitative criteria. They developed a modified 

DEA-like model that takes both quantitative and qualitative criteria into consideration. The 

principle of the DEA-like model is that it applies concepts from an imprecise DEA (IDEA) model 

to ABC inventory classification.  
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2.3 Machine learning classification 

With the development of computer science and artificial intelligence, machine learning techniques 

have been widely studied in many fields. One of the more common applications in machine 

learning is inventory classification.  

2.3.1 Artificial neural networks 

Artificial Neural Networks (ANN) is one of most popular techniques in machine learning. For 

instance, Partovi and Anandarajan (2002) introduced an Artificial Neural Networks (ANN) 

technique combining backpropagation and genetic algorithms into two learning methods for 

inventory classification purposes. The results are compared between the two learning methods and 

nonlinear relations among the criteria are discovered. But the meta-heuristics approach may be too 

difficult for inventory managers to understand and may result in less applicability in industry 

practices.  

Simunovic, Simunovic, & Saric (2009) presented a model of neural networks to classify inventory 

items. They developed feed-forward neural networks trained by backpropagation and used 

minimum root mean square error for evaluating the performance. The final results show that the 

neural networks technique has better performance compared to the AHP method. Kabir & Hasin 

(2013) proposed an integration model of fuzzy AHP and neural networks for multi-criteria 

inventory classification. They adopted fuzzy AHP method to measure the weights of criteria of 

inventory items and similarly applied backpropagation to train the feed-forward neural networks. 

The performance of the model is assessed by the minimum mean absolute percentage of error 

between computed and predicted values.  

2.3.2 Support vector machines 

The support vector machine (SVM) is a supervised learning algorithm introduced by Vapnik 

(1995).  The SVM classification method is based on the structural risk minimization principle (Yu, 

2011). SVM approaches have been established as a popular machine learning tool in classification 

and aggression fields. Many applications of SVMs have been studied, including faults diagnosis, 

text classification, image detection, etc. (Guosheng & Guohong, 2008). Su, Zhou, & Mo, (2010) 

proposed a new classification scheme which is based on SVM to categorize the spare parts 
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inventory class. They employed the risk level as the indicator of inventory class according to the 

attributes of spare parts, such as importance, standardization level and replicability. 

A comparison work was done between artificial-intelligence (AI)-based classification techniques 

and traditional multiple discriminant analysis (MDA) by Yu (2011). The AI-based techniques 

include support vector machines (SVMs), backpropagation neural networks (BPNs), and the k-

nearest neighbour (k-NN). The results show the AI-based classification techniques have superiority 

over MDA. 

2.3.3 K-nearest neighbours 

The k-Nearest-Neighbours (k-NN) is another popular non-parametric classification and pattern 

recognition technique. The method is simple but effective in many cases (Gongde, Hui, Bell, 

Yaxin, & Greer, 2003). The principle of k-NN is to assign a new instance to the same class by 

determining the classification of instances that is closest to the new one. Selecting the k value is 

essential for a k-NN technique. An improved k-NN classification algorithm is proposed by Gong 

& Liu (2011). They developed a model that can dynamically get the value of k. 

The k-NN classifier is an instance-based learning technique that requires computing the distance 

and ranking all training instances at each prediction, which is computationally expensive when 

classifying a lot of new instances or instances with many attributes. Another limitation is that the 

k-NN algorithm cannot learn anything from the training process and is not robust enough for noisy 

data (Bramer, 2013). To overcome the disadvantages, several researchers proposed modified 

models integrating other techniques. For example, Kalaivani & Shunmuganathan (2014) developed 

a k-NN classifier using a genetic algorithm to increase the capability by choosing appropriate 

attributes and achieving lower computational cost.  Mejdoub & Ben Amar (2013) presented a 

scheme of k-NN algorithm to reduce attribute space by using the hierarchical classification 

technique. 

2.3.4 Naïve Bayes 

The Naïve Bayes (NB) model is a simple probabilistic classifier that is based on Bayes’ theorem 

with the assumption of independence among any feature (Agarwal, Jain, & Dholay, 2015). The NB 

algorithm incorporates the prior probability and conditional probabilities into one formula for 



9 
 

 

 

estimating the probability of every possible classification (Bramer, 2013). The limitation of NB is 

the independence assumptions between attributes. As reviewed by Jiang, Wang, Cai, & Yan (2007), 

many researchers have tried to overcome the limitation. For example, Ratanamahatana & 

Gunopulos (2003) proposed a combining decision tree NB algorithm that can choose the most 

relevant attributes of the training set to improve the classification accuracy. Webb, Boughton, & 

Wang (2005) presented an approach to relax the attribute independence assumption by averaging 

all of a constrained class of classifiers (called one-dependence classifiers).  
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CHAPTER 3 METHODOLOGY 

3.1 Introduction 

In general, data mining or machine learning provides data-driven analysis methods to extract useful 

knowledge or patterns from datasets. Data mining or machine learning is often divided into two 

main categories: supervised learning (predictive) and unsupervised learning (descriptive) methods. 

Supervised learning is to predict outputs for unseen observations by learning a set of input-output 

pairs, such as classification and regression, etc. Unsupervised learning is to find human-

interpretable patterns by only given inputs, such as clustering and deep learning (Murphy, 2012). 

Classification is to build a model for predicting the class of unknown observations as accurately as 

possible by providing a set of labelled datasets, which establishes the purpose of our study. A large 

number of studies on classification try to solve two-class (binary) problems where a classifier is 

built to discriminate new observations from two classes. But in many situations,  more than two 

classes are involved in classification problems, such as inventory classification (Hadi-Vencheh & 

Mohamadghasemi, 2011; Shamsaddini et al., 2015), image recognition (Foody & Mathur, 2004; 

Joshi, Porikli, & Papanikolopoulos, 2012), cancer classification (Rifkin et al., 2003; Rui, 

Anagnostopoulos, & Wunsch, 2007; Zainuddin & Ong, 2011), handwritten interpretation (F. 

Chang, Chou, Lin, & Chen, 2004; Ou, Murphey, & Lee, 2004; Srihari, 2000), text categorization 

(Lewis, Yang, Rose, & Li, 2004; Weizhu, Jun, Benyu, Zheng, & Qiang, 2007) and speech 

recognition (Nakamura et al., 2006; Wang, Wang, Lin, Jian, & Kuok, 2006; Yang et al., 2012). 

The two most common used approaches for multiclass classification are One-Versus-All (OVA) 

(or One-vs-Rest) and One-Versus-One (OVO) (also called all-pairs or All-vs-All) schemes. The 

main idea is to decompose the multiclass problems into multiple two-class problems. Given an N-

class dataset, the OVA method is used to build N different binary classifiers by using one of the 

techniques, such as LAD, SVM or NB, etc. For the ith classifier, let the positive observations be 

all the points in class i, and let the negative observations be all the points not in class i. Let if  be 

the ith classifier. The new observation x is classified by 

( )
i

argmax ( )if x f x=  
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The OVO method is to build N (N-1) / 2 classifiers, one classifier to distinguish each pair of classes 

i and j. Let ijf be the classifier where class i are positive observations and class j are negative. 

Please note = −ji ijf f . So the new observation x  is classified by 

( )
i

argmax( ( ))ij
j

f x f x= ∑  

Both OVA and OVO schemes are very simple and they were invented independently by many 

researchers. The choice between OVA and OVO methods is largely computational. It is more 

important to tune proper regularization classifiers as the underlying binary classifiers than to 

choose between OVA and OVO. For an overview study on OVA and OVO schemes, please refer 

to the article by Galar, Fernandez, Barrenechea, Bustince, & Herrera (2011). A good comparison 

between OVA and OVO schemes can be found in the article Duan, Rajapakse, & Nguyen (2007). 

In this thesis, we adopt the OVA scheme to build LAD classifiers to solve multiclass classification 

problems; specifically, inventory classification. 

3.2 Logical analysis of data 

The Logical Analysis of Data (LAD) is a relatively new technique that intends to detect structural 

information and extract favorable knowledge in the style of interpretable patterns from datasets 

(Boros et al., 2000). This pattern-based supervised learning approach was initially presented by 

Crama, Hammer, & Ibaraki (1988). The Peter L. Hammer team plays a vital role in theoretical and 

applied developments of LAD. One of their successful applications of LAD was implemented in 

the medical field. 

Recently the LAD technique has been studied with diverse applications, such as classification, 

feature selection, decision support, etc. (Boros et al., 2000). The advantage of LAD has enabled 

this technique to achieve plenty of applications in medical diagnosis, politics, economics, etc. A 

good review of LAD is presented by Alexe et al. (2007). A number of applications of LAD have 

been presented (S. Alexe et al., 2003; Dupuis, Gamache, & Pagé, 2012; P. L. Hammer & Bonates, 

2006; Lejeune & Margot, 2011). The Yacout team was the first to apply the LAD technique to 

solve engineering problems, where most applications are in condition-based maintenance fields 

(Salamanca, 2007), such as equipment useful life prediction (Ragab, Ouali, Yacout, & Osman, 
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2014), rogue components detection (Mortada, Carroll Iii, Yacout, & Lakis, 2012), and fault 

diagnosis (Mortada, Yacout, & Lakis, 2013). 

The LAD algorithm combines the theories of optimization, combinatorics and Boolean functions. 

Patterns, the essence of LAD technique’s decision rules, are needed to define discriminant function 

to separate observations between positive and negative in a dataset. Several studies of multiclass 

LAD approaches are proposed (Avila-Herrera & Subasi, 2015; Moreira, 2000; Mortada et al., 

2013). Mortada et al. (2013) presented an OVO style multiclass LAD algorithm using mixed 

integer linear programming (MILP) approach to pattern generation, which is inspired by Moreira 

(2000) and Ryoo & Jang (2009). Avila-Herrera & Subasi (2015) proposed an OVA style multiclass 

LAD algorithm which also uses the MILP approach for pattern generation. The OVA style 

multiclass LAD model is adopted in our multi-criteria inventory classification study. 

The implementation of the LAD algorithm is divided into three steps: data binarization, pattern 

generation and theory formation, test and classification. 

3.2.1 Data binarization 

Before conducting an analysis, data must be binarized so that it can be readable by computers. Each 

observation is considered a vector of m attributes that usually are shown as the non-binary format. 

The binarization process is used to transform attributes into Boolean variable vectors of n binary 

attributes. The non-binary attributes can be sorted into two categories: nominal indicators (e.g. 

color and critical level) and numerical indicators (e.g. price). The binarization of such nominal 

attributes is accomplished in an easy way by transforming each value vs of the attribute x into a 

Boolean variable b(x,vs) such that we obtain the formula below. 

𝑏𝑏(𝑥𝑥, 𝑣𝑣𝑠𝑠) = �1, 𝑥𝑥 = 𝑣𝑣𝑠𝑠  
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

As for numerical attributes, a practical binarization technique is to arrange attributes into a value-

order style. Then a “cut-point”, which is a level variable (or interval variable) to indicate the 

attribute belong to certain level, is introduced. It means that for each attribute x and cut-point t (or 

cut-points t′, t″) a Boolean variable b(x, t) (or b(x, t′, t″)) shall be introduced as the following: 
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 𝑏𝑏(𝑥𝑥, 𝑜𝑜)  = �0, 𝑥𝑥 < 𝑜𝑜
1, 𝑥𝑥 ≥ 𝑜𝑜 

or 𝑏𝑏(𝑥𝑥, 𝑜𝑜′, 𝑜𝑜″) = �1, 𝑜𝑜′ < 𝑥𝑥 < 𝑜𝑜″
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

The cut-point t is the average value of vn and vn-1 (vn<vn-1) such that vn marks as one (1) and vn-1 

marks as zero (0) or vice versa. The interval cut-point is formed by every two cut-points. 

One example binarization procedure is presented. Suppose we have a sample dataset shown in 

Table 3.1, where the first and third attributes are numerical, while the second one is nominal.  

Table 3.1: Sample of dataset 

Label Obs. x1 x2 x3 

D+ 
1 1038 critical 7 
2 855 critical 3 
3 594 important 6 

D- 
4 455 important 4 
5 268 regular 7 
6 703 important 4 

First we arrange numerical attributes from small to large so that we can calculate cut-points. 

Interval cut-points are also formed based on cut-points. So we easily obtain level and interval 

variables shown in Table 3.2 and Table 3.3. Once we have level and interval variables, the attributes 

can be transformed to the Boolean form shown in Table 3.4. Thus, the binarization of the dataset 

is done. 

Table 3.2: Level variables of attributes 

b1 b2 b3 b4 b5 b6 b7 b8 b9 
x1≥524.5 x1≥648.5 x1≥779 x2=critical x2=important x2=regular x3≥3.5 x3≥5 x3≥6.5 

Table 3.3: Interval variables of attributes 

b10 b11 b12 b13 b14 b15 
524.5≤x1<648.5 524.5≤x1<779 648.5.5≤x1<779 3.5≤x3<5 3.5≤x3<6.5 5≤x3<6.5 
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Table 3.4: Binary of attributes 

Obs. b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 
1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 
2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 
4 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 
5 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
6 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 

3.2.2 Pattern generation and theory formation 

Patterns play a vital role in LAD algorithm due to offering straightforward interpretation of 

datasets. The form of the patterns is the combination of attributes to formalize rules that can define 

homogenous subsets in the dataset. Once attributes are binarized, a pattern can be represented as a 

Boolean term of a conjunction of literals: 

{ }; 1,2, ,i p n

i Kp
P Kx ⊆

∈
= Λ



 

Where n is the number of attributes in datasets, Kp is the set of attributes in pattern P. Xi is a binary 

variable and iX  is its negation. The number of literals is called the degree of a pattern. A pure 

positive (negative) pattern is defined as its attributes covering at least one positive (negative) 

observation but not any negative (positive) observation. One of the most common ways of pattern 

generation is the combinatorial enumeration technique, such as a top-down or a bottom-up 

approach. The top-down approach starts by regarding all uncovered observations as patterns and 

removes literals one by one for those patterns until achieving a prime pattern. The bottom-up 

approach begins with a term of degree one which covers some positive observations. If the term 

only covers positive observations but not any negative ones, it is a pattern. Otherwise, literals are 

added to the term one by one until reaching a pattern. The details of this approach can be found in 

the article by Boros et al. (2000). The enumerative technique to pattern generation is a time-

consuming task. For terms of degree d with n Boolean variables, the number of candidate patterns 

can grow to ( )2d
n

d
. A number of studies on types of patterns and pattern generation methods have 
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been proposed for thrifty patterns (G. Alexe et al., 2007; G. Alexe & Hammer, 2006; Boros et al., 

2000; Peter L. Hammer, Kogan, Simeone, & Szedmak, 2004; Ryoo & Jang, 2009).  

In our study we adopt the MILP approach to generate patterns (Avila-Herrera & Subasi, 2015; 

Mortada et al., 2013; Ryoo & Jang, 2009). Given an N-class binary dataset   with m observations 

and n attributes, in such way we have Ci (i =1, 2, ···, N) standing for the corresponding classes. Let 

Pcp be a pattern covering some observations (coverage denoted as Cov(Pcp)) from class Cp and 

none of observations from class Ck, (k ≠ p).  

The variables involved in the pattern generation algorithm are the pattern degree d, the Boolean 

pattern vector y defining the composition of the pattern found, and the coverage vector w. 

Constraints should be satisfied to generate a pattern Pcp for the objective function: 

(1) The Boolean vector y= (y1, y2, ···, y2n) ∈｛0, 1｝2n has such elements of binarized training 

dataset that if yj = 1 for some j = 1,2, ···, n, then the literal jx  (associated with the j-th 

attribute in the dataset  ) is included in pattern Pcp. Similarly, if yn+j = 1 then literal jx  

(complementary element of jx ) is included in pattern Pcp. So, each binarized attribute yj in 

the training dataset can be expressed by a literal jx  or its complement jx  in a pattern. 

Because a pattern cannot include both the literal jx  and jx , and the degree d of a pattern is 

associated with the number of literals, we have the constraints below: 

                                                                                                    

=

+ ≤ =                                                          

= ≤ ≤

+

∑
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1, 1,2, , . (3.1)
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n

j

j
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j n

d d n

y y

y                         (3.2)
 

(2) A binary vector w= (w1, w2, ···, wm) (wi∈｛0, 1｝, 1≤ i ≤ m) is defined so that its elements 

are associated with the coverage of pattern Pci. The elements wi of vector w are the variables 

to minimize in the set covering problem so that for 1≤ i ≤ m, wi equals to one if observation 

oi from class Cp is not covered by pattern Pcp, otherwise equals to zero. 

(3) Build an augmented matrix Μ =   |  , where    is acquired from   by switching zero 

elements to one and one elements to zero. Let vector u = My. The generated pattern must 

be able to cover at lease one observation Oi from class Cp ∈ )( pio C , however it is not 
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required to cover all the observations in class Cp. Hence generating a pure pattern Pcp with 

degree d has the constraints: 

                                                                                                                          + ≥ ∈ ;, (3.3)i i pu nw d i I  

A pattern for class k should not cover any observations from class p (k≠p). So the dot 

product of vector iu  (i ∈ Ik) must be less than the degree d of p: 

                                                                       = ≠     ≤ − ∈ , 1, , ; ;1, (3.4)k k pi k Ku d i I  

The formation of the pattern can be inferred from vector y, and its coverage vector w. Therefore, 

a pure pattern Pcp connected with class Cp , (1 ≤ p ≤ K) is determined by solving the optimal 

solution of the MILP problem below (Avila-Herrera & Subasi, 2015). 

(3.5)

.. (3.1),(3.2),(3.3),(3.4)  

p

i

i I

Minimize d w

st
∈

                    

      +                                                                             

     

∑  

A pattern P is a strong pattern if and only if there is no pattern P′ such that Cov(P′) ⊃ Cov(P). A 

pattern is a prime pattern if removal of any of its literals makes it a non-pattern. Avila-Herrera & 

Subasi (2015) proved that an optimal solution (u, y, w, d) of problem (3.5) can be formed a pattern 

with maximum coverage and minimum degree, which produces a strong prime pattern. The strong 

prime pattern 
p

Pc has the following form. 

{ } { }; 1 11 , 2 , 1,2, , .: :
1 2

j jp j n jS S j nj j
s s

y yPc x x = + == = == Λ Λ


 

3.2.3 Test and classification 

Suppose we have an N-class dataset   =  1∪ 2∪…∪ N for training and testing where k is 

the set of observations from class k (k = 1, 2, …,N).The corresponding multi-class LAD models 

are denoted as   =1∪2∪…∪N, ( i∩ j =φ ; i,j = 1, 2, …,N and i≠j ). For each new observation 

( Ο ∉  ), a score is calculated based on generated patterns which cover this new observation. The 

judgement task is solved by a discriminant function that produces a score for each class based on 

patterns covered that new observation. The class along with the highest score is the estimation class 
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for this new observation. The discriminant function for classification of new observation ( Ο ∉  ) 

is formulated as below. 

  
∈

ΟΟ =∆ = ∑ ( )( ) 1, ,,argmax
p p

p
C C

C Sn

n N
n

w P  

Patterns pCP ∉ n (n=1, 2,…,N) in a support set have weights pCw  associated coverage which is the 

ratio of the number of covered observations and all observations in that class PC . 

  
 
  

   =    ≤  ≤
∈

 ∈ = ⊂∑ ,1:( ),
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p

p
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The class of observation Ο is estimated by the highest-class value of the discriminant function 

∆ Ο( )calculated. Test accuracy is evaluated by the most commonly used method of cross-

validation. The testing stage is for examination of the multi-class process and inconsistency in the 

dataset. The process of data analysis based on the LAD test result is presented in next Chapter. 

Once the test accuracy reaches an acceptable level (normally above 90%), the multi-class LAD 

model is ready to make classification for new (unseen) observations by using the discriminant 

function. 
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CHAPTER 4 THE PROCESS OF DATA ANALYSIS 

In this chapter, we introduce our data analysis process when applying the Logical Analysis of Data 

(LAD) machine learning technique. The process contains two steps, namely a classification 

analysis of LAD and Root Cause Analysis (RCA) for misclassified items. We run both steps 

reiteratively until all inconsistent items are corrected and an acceptable test accuracy is received. 

4.1 Tools 

The random partition of the training datasets and the testing datasets is done by using Matlab. The 

implementation of LAD analysis is done by cbmLAD software which is written in C++ 

Programming language at École Polytechnique de Montréal. Several articles use cbmLAD as 

analysis tool to implement the LAD technique (Bennane & Yacout, 2012; Mortada et al., 2012; 

Mortada & Yacout, 2011). 

4.2 LAD classification analysis procedure 

The procedure of LAD classification analysis is to explore the dataset and to detect any problems 

with the dataset. 

1. Suppose we have an inventory dataset  =  A ∪  B ∪  C with three classes A, B and 

C. Firstly, we split the dataset   into two disjoint datasets called training dataset TR
 and 

testing dataset TS
 . So that we have the equations: 

  = TR
 ∪ TS

 ; TR
 ∩ TS

  = ∅. 

The observations in dataset   are set randomly into the training dataset TR
 and the 

testing dataset TS
 , such as the proportions of the three classes in those subsets are the 

same as in the original dataset.  

2. We execute cbmLAD on the training datasets and obtain the multi-class LAD classification 

and the corresponding patterns. Here we use 80% of dataset as the training dataset and the 

rest of the dataset as the testing dataset. 
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3. We execute cbmLAD on the testing datasets and calculate the test accuracy. The 

classification procedure by LAD is repeated on different training and testing sets either 

twenty or ten times. The number of repetition is chosen arbitrarily to ensure more persistent 

test results. 

The test of twenty times is adopted in the first numerical example and ten times is for the second 

numerical example. The training datasets and testing datasets are randomly partitioned each 

time. Once the twenty (for first numerical example) or ten (for second numerical example) tests 

are finished, an average test accuracy is obtained by averaging the twenty tests’ accuracies. 

Those twenty or ten tests are defined as one round of analysis. 

4.3 Root cause analysis for misclassification 

One of the most important advantages of LAD is the transparency, which means the generated 

patterns can be easily interpreted. We make use of this characteristic of LAD to investigate 

misclassifications. In order to understand misclassifications, we examine the attributes of 

observations and find out the reason for a misclassification by using a procedure called Root Cause 

Analysis (RCA).  

RCA begins by checking for any contradictions or repetitions. Contradictions in this thesis refer to 

two or more observations with exactly same attributes’ values but labelled as different classes. 

Since the basic assumption is that the attributes are enough to discriminate observations of different 

classes, all contradictory observations will be eliminated. Repetitions mean two or more 

observations are exactly the same. Since our objective in the training phase is to find patterns and 

the removal of repeated observation does not affect the pattern generation, under the condition of 

repetition, observations are considered as only one observation and other(s) are removed from 

dataset. The cbmLAD software is capable of detecting any contradictions or repetitions during the 

training and test phase.  

Secondly, we take advantage of the logical interpretation of patterns by LAD. Patterns are 

generated during the training stage to reveal the characteristics of each class. Each pattern 

illustrates its coverage and shows corresponding weight of each pattern in the same class. The 

weight is the ratio of the number of covered observations by that pattern and all observations in the 

same class. The more observations covered by the pattern, the more weight the pattern has. In other 
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words, the patterns refer back to attributes that can explain why the items are misclassified. 

Inconsistent items can be found from the analysis of patterns.  

4.3.1 Working mechanism of RCA procedure 

In this section, we will briefly demonstrate how the RCA is applied to identify misclassified items. 

More details will be explained further in the Chapter 5 of numerical examples. 

We use part of the first round result of LAD classification on AHP method dataset to illustrate the 

RCA procedure. Table 4.1 shows a sample of misclassified observations in testing. The unit price 

is US dollars and lead time is measured by days. ‘Number of test’ refers to how many times of an 

observation is tested during the 20 or 10 tests (one round of analysis). 

Table 4.1: Misclassified observations of test (sample) 

Test 
No. 

Obs. 
No. Part No. Usage 

Rate 
Unit 
Price 

Lead 
Time 

Orig. 
Class 

Classes of 
Patterns 
Found 

Class 
Classified by 
LAD 

No. of 
Tests 

5 

13 601R75
100-209 0.3 1601.58 281 B 

A, B A 

5 
10 A, B A 
13 A, B A 
17 A, B A 
18 A, B A 
9 

19 601R31
7094-1 0.05 113.74 260 B 

zero unclassified 
3 

15 A A 

The two misclassified items are originally from Class B. We start with No. 13 observation. The 

patterns, which are created during the training stage of No. 5 test, are shown in Table 4.2. The 

attributes of No. 13 observation are usage rate 0.3, unit price US$1,602 and lead time 281 days, 

which conform to both Pattern 1 of Class A and Pattern 2 of Class B. Next we examine the weight 

of each pattern and use the weight to decide the class of observation. Since the Pattern 1 of Class 

A has a larger weight (1) than Pattern 2 of Class B’s weight (0.4444), the observation is classified 

as Class A by LAD. Afterward, the No. 13 observation is tested 5 times over 20 tests and it is 

classified as Class A in all 5 tests by LAD, even though the original class is Class B. So the class 

of No. 13 observation changes from B to A. 

No. 19 observation has the two problems of being misclassified as Class A and ‘Zero’. Here ‘Zero’ 

means that LAD cannot find any patterns matched for this observation or there is an equal weight 
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of matched patterns of different classes, which is considered as unclassified. The data from the 

item does not provide enough information for LAD to determine its class. The No. 19 observation 

has been tested 3 times over 20 tests (Test No. 7, 9 and 15, respectively) which has the outcome of 

2 misclassifications and 1 correct classification. The patterns found in the No. 7 Test are shown in 

Table 4.3. The attributes of the No. 19 observation are usage rate 0.05, unit price US$113.74 and 

lead time 260 days, which match the pattern 2 of Class B. The No. 19 observation is originally 

labelled Class B. So it is classified correctly in the No. 7 Test. 

Table 4.2: Patterns created in the No. 5 Test 

Class Pattern Weight 

A 1 
Unit Price Greater Than 270.265 

1 
Lead Time Greater Than 207.5 

B 
1 

Unit Price Less Than 270.265 
0.5556 

Lead Time Greater Than 139.5 

2 
Usage Rate Greater Than 0.065 

0.4444 
Lead Time Greater Than 139.5 

C 1 Lead Time Less Than 139.5 1 

The patterns found in the No. 9 Test are shown in Table 4.3. The attributes of No. 19 observation 

cannot match any patterns from Table 4.4. So the observation is considered as unclassified. The 

patterns found in the No. 15 Test are shown in Table 4.5. We can see that the No. 19 observation 

matches the pattern 1 of Class A. So it is misclassified in the No. 15 Test. Three tests receive three 

different results and show no consistent trend in the LAD tests, therefore, we keep this observation 

class unchanged. 

Table 4.3: Patterns created in the No. 7 Test 

Class Pattern Weight 

A 1 
Usage Rate Less Than 0.065 

1 Unit Price Greater Than 259.92 
Lead Time Greater Than 207.5 

B 
1 

Usage Rate Greater Than 0.065 
0.625 

Lead Time Greater Than 125.5 
2 Lead Time Greater Than 239 0.375 

C 1 Lead Time Less Than 125.5 1 
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Table 4.4: Patterns created in the No. 9 Test 

Class Pattern Weight 

A 1 
Usage Rate Less Than 0.065 

1 Unit Price Greater Than 259.92 
Lead Time Greater Than 207.5 

B 1 
Usage Rate Greater Than 0.065 

1 
Lead Time Greater Than 125.5 

C 1 Lead Time Less Than 125.5 1 

Table 4.5: Patterns created in the No. 15 Test 

Class Pattern Weight 

A 
1 

Usage Rate Less Than 0.065 
1 Lead Time Greater Than 207.5 

B 1 
Usage Rate Greater Than 0.065 

1 
Lead Time Greater Than 125.5 

C 1 Lead Time Less Than 125.5 1 

By following the procedure of RCA, the explanations are found for misclassification. 

1. More than one pattern matched, but the pattern weight in another class is bigger than the 

patterns of the original class. In other words, the item shares more common attributes with 

the other class than with the original class.  

2. Patterns are found in only other classes. There is inconsistency in the original class. 

3. No pattern is matched in the existing class. The item does not give enough information for 

any of the classes. 

The interpretable patterns make the explanation of misclassifications straightforward and easy to 

understand.  In order to make sure that the change of class is not arbitrary and the inconsistency is 

corrected, the observation class is changed when it satisfies the following situation after an RCA 

procedure: 

1. It is always misclassified in the one different class; 

2. If there is no situation 1 found and test accuracy is less than 90%, we will need a special 

investigation for the misclassification. (See 5.1.4). 
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For instance, we see the No. 13 observation of Class B from Table 4.1, which is classified as Class 

A in all 5 tests, so the class of observation is changed from B to A.  The RCA result is shown in 

Table 4.6. 

Table 4.6: RCA result of misclassified observations 

Obs. 
No. 

Usage 
Rate 

Unit 
Price 

Lead 
Time 

Orig. 
Class 

Classes of 
Pattern 
Found 

Class Classified 
by LAD 

No. of 
Tests 

Corrected 
Class 

13 0.3 1601.58 281 B A, B A 5 A 

19 0.05 113.74 260 B 
zero unclassified 

3 no change 
A A 

After inconsistent observations are corrected, the dataset is run through another round of training 

and tests. Misclassified observations are checked by the RCA procedure again to detect 

inconsistencies. The process of LAD classification and RCA is repeated until no more inconsistent 

observations are found. The RCA procedure is shown in Figure 4.1. 

 

Figure 4.1: Root cause analysis procedure for inconsistency detection 
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CHAPTER 5 LAD CLASSIFICATION: NUMERICAL EXAMPLES 

In this chapter, we use two sets of numerical examples to study the LAD classification applicability, 

capability and its effectiveness of detecting inconsistencies by combining it with the Root Cause 

Analysis (RCA) procedure. First, we examine the feasibility of LAD classification on spare parts 

inventory and then analyze the erroneous items of classification by applying the RCA procedure. 

Based on the results of RCA analysis, corresponding corrections will be made. Next, both the LAD 

classification and the RCA procedure will be run reiteratively until all inconsistency is corrected 

and an acceptable test accuracy (above 90%) is received. The second numerical example study is 

based on medical equipment inventory. Each numerical example includes one dataset of different 

ABC classification methods, namely AHP, DEA, DEA-like weighted linear optimization and 

scaled DEA-like weighted linear optimization. 

5.1 Numerical example of spare parts inventory 

5.1.1 Introduction 

The dataset of LAD classification on inventory is adopted from the article by Rad, Shanmugarajan, 

and Wahab (2011). The dataset is a set of spare parts inventory from airlines. We are able to access 

part of the data containing 20 observations with three results of classification methods (see Table 

5.1), namely Analytic Hierarchy Process (AHP), Data Envelopment Analysis (DEA) with Constant 

Return to Scale (CRS) and Variable Return to Scale (VRS).  

As described in Chapter 4, we classify datasets with the LAD technique and then analyze the 

erroneous observations of classifications by applying the procedure of Root Cause Analysis (RCA). 

After making corrections, both the LAD classification and the RCA procedure will be run 

reiteratively until all inconsistencies are corrected and an acceptable test accuracy (above 90%) is 

received. 

The dataset contains 20 observations with five attributes: Part Number, Usage Rate, Unit Price, 

Lead Time and Class. The attribute Class has three results for each of the three classification 

methods (AHP, VRS and CRS). The attribute Part Number has no effect on the classification and 

is only used for the purpose of identification. To make things easier, we use the observation number 

as the identification of an individual inventory item.  
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Table 5.1: Dataset organized by three ABC classification methods 

Observation Part No. Usage 
Rate 

Unit 
Price 

Lead 
Time 

ABC Classification 
CRS VRS AHP 

1 350689-7 0.05 4.16 98 A A C 
2 J221P014 0.36 8.64 30 A A C 
3 AS3582-038 0.21 2.42 197 A A B 
4 AS3582-232 0.36 9.28 29 A A C 
5 9452K71 0.05 0.8 50 A A C 
6 M39029/58-363 0.03 4.48 98 A A C 
7 AS3209-014 0.13 10.72 176 B A B 
8 M39029/22-191 0.05 5.6 98 B B C 
9 350690-7 0.08 7.04 24 B A C 
10 NSA551607ND 0.05 28.16 98 B B C 
11 CC670-38730-3 0.49 706.47 188 C A B 
12 3E3291-1 0.15 1152.48 148 C C B 
13 601R75100-209 0.3 1601.58 281 C A B 
14 AS3582-228 0.26 9.12 50 C A C 
15 SL618-3CM 0.03 6.9 260 C A B 
16 601R31719-5 0.05 426.79 218 C C A 
17 BA670-45691-25 0.03 19.79 39 C C C 
18 49001-243 0.26 93.05 103 C C C 
19 601R317094-1 0.05 113.74 260 C B B 
20 601R40508-35 0.08 49.75 260 C A B 

For the AHP classification method, the total of 20 observations consist of 1 observation of Class 

A, 8 observations of Class B and 11 observations of Class C. On VRS classification method, the 

dataset consists of 13 observations of Class A, 3 observations of Class B and 4 observations of 

Class C. On CRS classification method, the dataset consists of 6 observations of Class A, 4 

observations of Class B and 10 observations of Class C. 

The DEA methodology was presented initially by Charnes, Cooper and Rhodes (1978). The key 

ingredient is efficiency, which is defined as a ratio of weighted sum of outputs to a weighted sum 

of inputs, where the weight structure is calculated by means of mathematical programming, and 

constant returns to scale (CRS) are assumed. In 1984, Banker, Charnes and Cooper developed a 

model with variable returns to scale (VRS). Descriptions on AHP and DEA can be found in the 

Chapter 2 literature review. 
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5.1.2 LAD Classification on dataset 

We use 80% of the dataset as a training subset and 20% as a testing subset. The partitions of training 

and testing subsets are random. One general rule is that we keep the proportions of the three classes 

in those subsets the same as in the original dataset, so we can achieve a more efficient analysis of 

the dataset. 

The process of conducting LAD classification analysis follows the instructions described in Section 

4.2 ‘LAD classification analysis procedure’ in the previous chapter. After running twenty tests with 

randomly selecting training datasets and testing datasets, we calculate the average test accuracy. 

We consider these twenty tests as one round analysis of LAD classification. The confusion matrix 

presents the overall accuracy of the first round LAD analysis (shown in Table 5.2).  

Table 5.2: The average test accuracy of the first round LAD analysis 

Classification Class/Predicted A B C Unclassified Total Average Test Accuracy  

AHP 
A NA NA NA NA NA 

(30+40)/(40+40) = 
87.5% B 8 30  0 2 40 

C 0 0 40 0 40 

VRS 
A 53 3 1 3 60 

(53+10+8)/(60+20+20) 
=71% B 3 10 6 1 20 

C 5 5 8 2 20 

CRS 
A 16 0 2 2 20 

(16+5+25)/(20+20+40) 
=57.5% B 5 5 8 2 20 

C 5 7 25 3 40 

The numbers in Table 5.2 stand for how many observations are being tested during one round of 

analysis. If an observation is tested twice, it will count as 2, and so on. The ‘NA’ (Not Applicable) 

in Table 5.2 refers to the AHP dataset that has only one observation in Class A, so we are not able 

to test the Class A pattern at this time. This may be part of the reason that the LAD classification 

on AHP dataset reaches the best average test accuracy of 87.50%, followed by 71% for VRS dataset 

and 57.50% for CRS dataset. Next, we conduct the RCA procedure to detect any inconsistencies 

and to achieve better test accuracy (as described in section, 5.1.3.). 
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5.1.3 Misclassification analysis 

The first round of analysis of the LAD classification has averages of 12.5%, 29% and 42.5% of 

misclassification on AHP, VRS and CRS datasets, respectively. The misclassified observations on 

AHP, VRS and CRS datasets are listed in Table 5.3, Table 5.4 and Table 5.5, respectively. The 

column ‘Ratio of Misclassification’ shows the detail of misclassification. ‘5/5’ means 5 

misclassifications out of a total of 5 test runs in this round of analysis, and so on. The same is true 

for other tables below.  

Table 5.3: Misclassified observations from 1st round analysis of the AHP dataset 

Table 5.4: Misclassified observations from 1st round analysis of the VRS dataset 

 

 

Observation 
from table 5.1 

Original 
Class 

Classes of Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

13 B A, B A 5/5 

15 B zero unclassified 1/4 
A A 1/4 

19 B zero unclassified 1/3 
A A 1/3 

4 B A, B A 1/7 

Observation from 
table 5.1 

Original 
Class 

Classes of 
Pattern Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

3 A A, C C 1/8 
8 B A A 3/3 

9 A A, B B 1/5 
zero unclassified 1/5 

12 C A A 1/8 
13 A zero unclassified 1/3 

15 A B B 1/2 
zero unclassified 1/2 

16 C B B 3/4 

17 C 
B B 2/5 

zero unclassified 2/5 
A A 1/5 

18 C A A 3/3 

19 B 
zero unclassified 1/7 

C C 4/7 
A, C C 2/7 

20 A B B 1/3 
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Table 5.5: Misclassified observations from 1st round analysis of the CRS dataset 

Observation 
from table 5.1 Original Class Classes of 

Pattern Found Class Classified by LAD Ratio of 
Misclassification 

3 A zero unclassified 1/3 

4 A C C 2/3 
zero unclassified 1/3 

7 B C C 5/7 
zero unclassified 2/7 

8 B A A 4/4 
9 B A A 1/2 
10 B C C 3/7 
12 C B B 2/5 
14 C A A 5/5 
15 C zero unclassified 3/3 
17 C B B 5/5 

Next, we conduct the procedure of RCA for misclassified observations by checking for any 

contradictions or repetitions of observations. 

In the AHP classification dataset, there is no contradiction or repetition found in the training subsets 

or testing subsets. Next, we examine for any possibility of inconsistency items in the dataset. Three 

observations are misclassified or unclassified in the first run analysis. The column of ‘Ratio of 

Misclassification’ in the above Tables shows the detail of misclassification. For example, the No. 13 

observation in Table 5.3 is marked as ‘5/5’, which means 5 misclassifications out of a total of 5 

test runs in the first run analysis, and so on. We also know that the No. 13 observation is 

misclassified as Class A by LAD, which originally belonged to Class B in all five tests.  

Table 5.6: RCA result of 1st round analysis of the AHP dataset 

The No. 15 observation is misclassified as Class A once (1/4), unclassified once (1/4) by LAD, 

which originally belonged to Class B and classified twice (2/4) correctly in four tests. The No. 19 

observation is misclassified as Class A once (1/3), unclassified once (1/3) by LAD that originally 

belonged to Class B and classified once (1/3) correctly in three tests. Based on the rule of RCA, 

Observation from 
table 5.1 

Original 
Class 

Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

13 B A, B A 5/5 A 

15 B zero unclassified 1/4 no change A A 1/4 

19 B zero unclassified 1/3 no change A A 1/3 
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the class of No. 13 observation is changed from Class B to A, while the class of No. 15 and 19 

observations are kept unchanged. The RCA result is shown in Table 5.6. 

The same process is applied to an analysis of the first round of misclassifications by LAD on a 

VRS and CRS dataset. The RCA results are presented in Table 5.7 and Table 5.8, respectively. 

Table 5.7: RCA results of 1st round analysis of the VRS dataset 

Table 5.8: RCA result of 1st round analysis of the CRS dataset 

After conducting the procedure of RCA and making corrections on inconsistent observations, we 

run the LAD classification again on the ‘new’ dataset, which is considered as the start of the second 

Observation from 
table 5.1 

Original 
Class 

Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

3 A A, C C 1/8 no change 
8 B A A 3/3 A 

9 A A, B B 1/5 no change zero unclassified 1/5 
12 C A A 1/8 no change 
13 A zero unclassified 1/3 no change 

15 A B B 1/2 no change zero unclassified 1/2 
16 C B B 3/4 no change 

17 C 
B B 2/5 

no change zero unclassified 2/5 
A A 1/5 

18 C A A 3/3 A 

19 B 
zero unclassified 1/7 

no change C C 4/7 
A, C C 2/7 

20 A B B 1/3 no change 

Observation 
from table 5.1 

Original 
Class 

Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

3 A zero unclassified 1/3 no change 

4 A C C 2/3 no change zero unclassified 1/3 

7 B C C 5/7 no change zero unclassified 2/7 
8 B A A 4/4 A 
9 B A A 1/2 no change 

10 B C C 3/7 no change 
12 C B B 2/5 no change 
14 C A A 5/5 A 
15 C zero unclassified 3/3 no change 
17 C B B 5/5 B 
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round of data analysis. The process of data analysis is repeated until no more inconsistency items 

are found. On the AHP classification dataset, the process is repeated until a fifth round of analysis.  

5.1.4 Special investigation for misclassification 

During the third-round analysis, only unclassified observations are found in the testing, which 

means the RCA procedure cannot provide more information on inconsistencies. The test accuracy 

reaches 88.75% after a third round of analysis that is still below the normal expectations of more 

than 90%. Therefore, we intend to explore this further to find other possibilities. 

The No. 3 observation is unclassified twice and classified correctly four times over six tests during 

the third-round analysis, while the No. 11 observation is unclassified seven times over seven tests.  

Firstly, we use the leave-one-out cross validation to test the observation again.  The results show 

that the No. 3 observation is classified correctly and the No. 11 observation is unclassified. We will 

not change the class of the No. 3 observation. So further analysis is needed on the No. 11 

observation.  

Next we use a MATLAB 3D visualization to help us make a decision. As shown in Figure 5.1, the 

No. 3 observation is closest to Class B, which conforms to our judgement. The No. 11 observation 

is not very far from Class A and B observations, but it cannot be Class B based on the results of 

the LAD analysis. It cannot be Class C either from the data visualisation. In the real industrial 

world, inventory items should be in certain classes. So we change the No. 11 observation from 

Class B to A. Even if the change is wrong, the LAD technique and RCA procedure can still correct 

it in the latter round of analysis. 

To diminish the human factor as much as possible, a special investigation is initiated only when 

the situation satisfies all the following criteria at the same time. 

1) Unclassified observations are found in the tests  

2) The tests of observation are all unclassified; 

3) The average test accuracy is below expectations (normally above 90%). 

Please note that in our experiments, the special investigation is implemented only once. This special 

investigation is an isolated incident and unnecessary for the misclassification analysis.  
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Figure 5.1: Visualisation of observations on the AHP dataset 

5.1.5 Analysis results 

We conduct six rounds of LAD classification and RCA procedures for correcting the inconsistent 

observations. The final average test accuracy on AHP dataset reaches 95.00%. The results of data 

analysis by LAD classification on AHP dataset are shown in the Table 5.9.  

The same process is applied to VRS dataset to identify inconsistent observations and to make 

corrections by combining with the RCA procedure. The data analysis has been implemented in 

seven rounds for VRS dataset. The corresponding results of LAD classification on VRS dataset are 

displayed in Table 5.10 and 5.11.  

After making corrections on inconsistency in datasets, average test accuracy has been improved 

from 87.50% to 91.25% in five rounds analysis for the AHP dataset, from 71% to 100% in seven 

rounds analysis for the VRS dataset.  
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Table 5.9: Results of LAD analysis with RCA of the AHP dataset 

Round Obs. from 
table 5.1 

Orig. 
Class 

Pattern 
Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Average 
Accuracy 

2nd 

16 A B B 11/11 B 

81.25% 11 B Zero Unclassified 3/3 no change 

19 B Zero Unclassified 1/2 no change B B 1/2 

3rd 3 B Zero Unclassified 2/6 no change 88.75% 11 B Zero Unclassified 7/7 A 

4th 
11 A Zero Unclassified 9/9 no change 

75.00% 13 A Zero Unclassified 7/11 no change 
12 B A, B A 4/4 A 

5th 

11 A Zero Unclassified 3/3 no change 

91.25% 3 B Zero Unclassified 3/3 no change 
7 B Zero Unclassified 3/3 no change 
16 B A, B A 2/3 no change 

Table 5.10: Results of LAD analysis with RCA of the VRS dataset 

 

Round 
Obs. from 
table 5.1 

Orig. 
Class 

Class of 
Pattern 
Found 

Class 
Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Average 
Accuracy 

2nd 

13 A zero unclassified 1/4 no 
change 

54.00% 

B B 2/4 
18 A A, B B 3/3 B 
10 B A, C C 9/9 C 

19 B 
zero unclassified 7/11 no 

change C C 2/11 
A A 1/11 

12 C A A 8/8 A 

16 C B B 5/7 no 
change A A 2/7 

17 C B B 5/5 B 

3rd 

10 C A, B B 3/10 no 
change 

60.00% 

A A 7/10 

11 A zero unclassified 2/5 no 
change 

13 A C C 4/4 C 

16 C zero unclassified 3/10 no 
change B B 1/10 

17 B C C 1/8 no 
change A A 7/8 

18 B A, C C 3/6 no 
change A A 3/6 

19 B C C 6/6 C 
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Table 5.11:Results of LAD analysis with RCA of the VRS dataset 

For the CRS dataset, we follow the same process to identify inconsistent observations and to make 

corrections by combining with the RCA procedure. The data analysis has been carried out four 

rounds for the CRS dataset. The corresponding results of LAD classification on CRS dataset is 

displayed in Table 5.12.  

After making corrections on inconsistency in CRS dataset, average test accuracy has been 

improved from 57.50%，72%，86% to 92.00% in four rounds analysis for the CRS dataset. 

In summary, inconsistencies in three datasets have been corrected by the LAD technique along 

with the RCA procedure. The test accuracy of each dataset has been improved greatly, specifically 

from 87.5% to 91.25%, from 71% to 100%, and from 57.5% to 92% for the AHP, VRS and CRS 

datasets, respectively. 

Round Obs. 
from 

table 5.1 

Orig. 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Average 
Accuracy 

4th 

10 C zero unclassified 2/5 no change 

63.00% 

A A 3/5 
11 A zero unclassified 2/6 no change 
12 A C C 3/3 C 

13 C zero unclassified 1/4 no change A A 3/4 

17 B C C 8/10 no change A A 2/10 
18 B A A 10/10 A 

20 A zero unclassified 1/5 no change C C 2/5 

5th 

6 A A, B B 3/3 B 

72.50% 

10 C A A 4/4 A 
11 A C C 3/3 C 
12 C A A 1/5 no change 
13 C zero unclassified 4/4 no change 
15 A A, B B 3/3 B 
18 A A, C C 1/4 no change 

20 A A, C C 2/3 no change zero unclassified 1/3 

6th 

8 A zero unclassified 1/4 no change 

90.00% 18 A C C 3/4 no change 
20 A zero unclassified 1/3 no change 
19 C A A 3/3 A 

7th no misclassified 100% 
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Table 5.12: Results of LAD analysis with RCA of the CRS dataset 

5.2 Numerical example of medical equipment inventory 

5.2.1 Introduction 

To further investigate the effectiveness of LAD classification and the RCA procedure for 

improving the consistency of classification and test accuracy, the second set numerical example is 

introduced. The dataset of the example is used by many researchers and considered one of most 

common used datasets to demonstrate classification techniques in an inventory classification 

problem (Hadi-Vencheh, 2010; Ng, 2007; Ramanathan, 2006; Yu, 2011). The dataset is a spare 

parts inventory of medical equipment with 47 SKUs. The datasets are classified by three 

classification techniques, namely Analytic Hierarchy Process (AHP), DEA-like weighted linear 

optimization and scaled DEA-like weighted linear optimization. Those classification techniques 

are proposed by Flores, Olson, & Dorai (1992), Ramanathan (2006) and Ng (2007) respectively.  

First, we apply the LAD machine learning technique to classify the dataset, to list misclassified 

observations and to compute the test accuracy. Then, the RCA procedure is implemented to detect 

Round 
Obs. from 
table 5.1 

Orig. 
Class 

Class of 
Pattern 
Found 

Class 
Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Average 
Accuracy 

2nd 

2 A zero unclassified 1/7 no change 

72.00% 

3 A zero unclassified 1/6 no change 
C C 3/6 no change 

4 A zero unclassified 1/4 no change 

7  B  A, C A 4/5 no change C C 1/5 
9 B A A 5/5 A 
12 C B B 4/6 no change 
15 C A A 3/3 A 

18 C zero unclassified 2/4 no change B B 1/4 
20 C B B 2/3 no change 

3rd 

7 B A A 6/6 A 

86.00% 
12 C B B 2/6 no change 
18 C B, C B 2/6 no change 

20 C B B 1/4 no change zero unclassified 3/4 

4th 10 B zero unclassified 5/5 no change 92.00% 20 C zero unclassified 3/3 no change 
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inconsistencies. According to the results of the RCA analysis, the corrections are made. After that, 

the LAD classification process is executed again as well as the RCA procedure until inconsistent 

observations are fixed and the test accuracy is acceptable. 

5.2.2 AHP dataset 

The Analytic Hierarchy Process (AHP) classification of this dataset is proposed by Flores, Olson, 

& Dorai (1992). They use average unit cost, annual dollar usage, criticality and lead time as 

attributes to analyse contributions of the observations. Criticality has three values, which are 1 for 

a very critical item, 0.50 for a moderately critical item and 0.01 for a relatively less critical item. 

Lead time varies from 1 to 7 weeks.  

In the next stage, we implement the LAD classification on this AHP dataset by randomly 

partitioning 80% and 20% of the dataset as the training subset and testing subset. After 10 tests, 

the average test accuracy is 69%. The misclassified observations are shown in Table 5.13. 

Table 5.13: The misclassified items of 1st round analysis of the AHP dataset 

SKU Original Class Classes of Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

3 C A A 3/3 
5 B C C 3/3 

11 B 
C C 3/4 
A A 1/4 

12 B C C 1/2 
14 B A, B A 1/4 
16 C B, C B 2/2 

17 B 
C C 1/3 

Zero Unclassified 1/3 
18 A B B 3/3 
21 A B, C B 2/2 
28 C B B 1/2 

29 B 
C C 1/2 

Zero Unclassified 1/2 
38 C B, C B 2/2 
40 C Zero Unclassified 1/2 
45 B C C 2/2 
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The RCA procedure is implemented based on the test results and the following change is made. 

The No. 3 SKU is changed from Class C to A, the No. 5 and 45 SKUs from Class B to C, the No. 

16 and 38 SKUs from Class C to Class B, the No. 18 and 21 SKUs from Class A to Class B. The 

analysis decision of the RAC procedure is shown in Table 5.14. 

Table 5.14: RCA results of 1st round analysis of the AHP dataset 

SKU Original 
Class 

Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

3 C A A 3/3 A 
5 B C C 3/3 C 

11 B 
C C 3/4 

No change 
A A 1/4 

12 B C C 1/2 No change 
14 B A, B A 1/4 No change 
16 C B, C B 2/2 B 

17 B 
C C 1/3 

No change 
Zero Unclassified 1/3 

18 A B B 3/3 B 
21 A B, C B 2/2 B 
28 C B B 1/2 No change 

29 B 
C C 1/2 

No change 
Zero Unclassified 1/2 

38 C B, C B 2/2 B 
40 C Zero Unclassified 1/2 No change 
45 B C C 2/2 C 

Next, we start the next rounds of LAD classification and RCA procedure on the ‘new’ dataset until 

no inconsistency is found. The process is implemented in four rounds and the final test accuracy 

reaches 94%. The results of each round of analysis are shown in Table 5.15 and the change in test 

accuracy is presented in Figure 5.2. 
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Table 5.15: Results of LAD Classification with RCA of the AHP dataset 

Round SKU Orig. 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

2nd 

3 A Zero Unclassified 3/3 No change 

77% 

11 B A A 2/3 No change 
14 B Zero Unclassified 1/2 No change 
10 B Zero Unclassified 1/1 No change 
15 A A, B B 1/2 No change 
21 B A, B A 3/3 A 
24 A B B 2/3 No change 
26 C Zero Unclassified 2/4 No change 
29 B C C 3/3 C 
31 B Zero Unclassified 3/3 No change 
32 B A, B A 1/2 No change 
36 B A, B A 1/2 No change 

3rd 

1 A Zero Unclassified 1/1 No change 

85% 

4 C Zero Unclassified 3/3 No change 
11 B A A 2/2 A 
12 B B, C C 1/2 No change 
17 B B, C C 1/2 No change 
18 B Zero Unclassified 1/2 No change 
31 B Zero Unclassified 1/3 No change 

32 B 
A, B A 2/4 

No change 
Zero Unclassified 1/4 

36 B A, B A 2/4 No change 

4th 

24 A Zero Unclassified 1/1 No change 

94% 
10 B Zero Unclassified 2/2 No change 

32 B 
Zero Unclassified 1/2 

No change 
A A 1/2 

36 B A A 1/2 No change 
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Figure 5.2: The change of test accuracy on the AHP dataset 

5.2.3 Optimal dataset 

Ramanathan (2006) proposed a multi-criteria weighted linear optimization model to classify 

inventory. They formulated a DEA-like linear optimization function to determine optimal scores 

for all inventory items. We call the result of classification the ‘Optimal’ dataset. The detail of the 

proposed model can be found in the article (Ramanathan, 2006). 

In the next step, we conduct the LAD classification on this Optimal dataset by randomly 

partitioning 80% and 20% of the dataset as the training subset and testing subset. After 10 tests, 

the average test accuracy is 47%. The misclassifications are shown in Table 5.16. 

The RCA procedure is implemented based on the LAD test results and the following change is 

made. The No. 6 SKU is changed from Class A to C, the No. 33 SKU from Class A to B, the No. 

4, 5, 14 and 18 SKUs from Class A to Class B, the No. 23, 30, 36, 39 and 41 SKUs from Class C 

to Class B, the No. 7 and 10 SKUs from Class C to A, the No. 27 and 40 SKUs from Class C to 

Class B. The change decision of the RAC procedure is shown in Table 5.17.  
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Table 5.16: Misclassified observations from 1st round analysis of the Optimal dataset 

SKU Original 
Class 

Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

2 A Zero Unclassified 3/3 
4 B A A 2/2 
5 B A A 1/1 
6 A C C 2/2 
7 C A A 2/2 
8 B C C 1/2 
9 B A A 2/4 
10 C A A 1/1 
13 A B B 1/2 
14 B A A 2/2 
15 C B B 1/2 
18 B A A 3/3 
20 C B B 1/4 
22 C B B 1/2 
23 B C C 2/2 
25 C B B 1/3 
27 C B B 2/2 

29 A B B 1/3 
Zero Unclassified 1/3 

30 B C C 3/3 
32 C B B 1/2 
33 A B B 2/2 
34 A Zero Unclassified 1/1 
35 C Zero Unclassified 1/2 
36 B C C 2/2 

38 C Zero Unclassified 1/2 
  B B 1/2 

39 B C C 1/1 
40 C B B 1/1 
41 B C C 1/1 

45 B A A 2/3 
C C 1/3 

47 C Zero Unclassified 2/3 

Next we start a second round of LAD classification and RCA procedure on the ‘new’ dataset. The 

misclassified observations and RCA results are shown in Table 5.18. The test accuracy has 

improved slightly to 58%. 

 

 

 



40 
 

 

 

Table 5.17: RCA results of 1st round analysis of the Optimal dataset 

SKU Original 
Class 

Class of Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

Corrected 
Class 

4 B A A 2/2 A 
5 B A A 2/2 A 
6 A C C 1/1 C 
7 C A A 3/3 A 
10 C A A 1/1 A 
14 B A A 1/1 A 
18 B A A 2/2 A 
23 B C C 1/1 C 
27 C B B 2/2 B 
30 B C C 3/3 C 
33 A B B 2/2 B 
36 B C C 3/3 C 
39 B C C 2/2 C 
40 C B B 1/1 B 
41 B C C 1/1 C 

Table 5.18: Misclassification and RCA results of 2nd round analysis on Optimal dataset 

SKU Original 
Class 

Class of Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

Corrected 
Class 

1 A Zero Unclassified 1/2 No change 
4 A Zero Unclassified 3/3 No change 
5 A C C 2/2 C 
6 C A A 2/2 A 
7 A C C 3/3 C 
8 B A, C A 1/1 A 
9 B A, B A 1/2 No change Zero Unclassified 1/2 

10 A Zero Unclassified 2/3 No change 
11 C A A 1/2 No change 
12 A Zero Unclassified 1/2 No change 
13 A B B 2/2 B 
15 C B B 2/2 B 
17 C A, C A 2/2 A 
18 A B B 2/4 No change 
23 C B B 1/3 No change Zero Unclassified 2/3 
27 B C C 1/1 C 
28 B A A 1/5 No change 
29 A B B 2/2 B 
33 B C C 1/3 No change 
34 A B B 1/1 B 
39 C B B 3/3 B 
40 B C C 1/4 No change Zero Unclassified 1/4 

45 B A A 2/3 No change Zero Unclassified 1/3 
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The process is implemented in eight rounds on the Optimal dataset until no inconsistency is found. 

The final test accuracy reaches 91%. The detail of the third to eighth round analysis results are 

presented in Table 5.19-5.24 and Figure 5.3 shows the change of test accuracy during the 

inconsistency correction process. 

Table 5.19: Misclassification and RCA results of 3rd round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

2 A Zero Unclassified 1/3 No change 

73.33% 

4 A Zero Unclassified 1/2 No change 
5 C A A 1/1 A 
6 A C C 2/2 C 
7 C A A 2/3 No change 
9 B A A 2/2 A 

13 B A A 1/1 A 
14 A A, B B 2/2 B 
15 B C C 1/1 C 
18 A B B 1/1 B 
23 C Zero Unclassified 1/4 No change 
28 B Zero Unclassified 1/3 No change 
33 B C C 1/1 C 
34 B Zero Unclassified 3/3 No change 
37 C B, C B 1/3 No change 
39 B Zero Unclassified 1/2 No change 
45 B Zero Unclassified 3/4 No change 

Table 5.20: Misclassification and RCA results of 4th round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

4 A Zero Unclassified 1/2 No change 

77.78% 

5 A C C 2/2 C 
8 A A, C C 1/2 No change 

10 A C C 1/2 No change 
14 B A A 3/3 A 
17 A C C 1/2 No change 
18 B A A 3/3 A 

19 A C C 1/2 No change B B 1/2 
23 C Zero Unclassified 1/1 No change 
33 C B, C B 2/2 B 
34 B Zero Unclassified 1/2 No change 
37 C B, C B 1/3 No change 
43 C B, C B 1/3 No change 
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Table 5.21: Misclassification and RCA results of 5th round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

1 A C C 1/3 No change 

80.00% 

Zero Unclassified 1/3 

4 A C C 1/3 No change Zero Unclassified 2/3 
5 C A, C A 1/1 A 

15 C A, C A 1/3 No change 
28 B Zero Unclassified 4/4 No change 
29 B Zero Unclassified 1/3 No change 
31 B Zero Unclassified 1/1 No change 
37 C B, C B 1/2 No change 
45 B Zero Unclassified 3/3 No change 
47 C Zero Unclassified 2/2 No change 

Table 5.22: Misclassification and RCA results of 6th round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

4 A Zero Unclassified 1/2 No change 

83.00% 

5 A C C 3/3 C 
23 C Zero Unclassified 1/2 No change 
28 B Zero Unclassified 2/3 No change 
34 B Zero Unclassified 2/2 No change 
37 C B, C B 3/3 B 
39 B Zero Unclassified 2/3 No change 
45 B Zero Unclassified 3/4 No change 

Table 5.23: Misclassification and RCA results of 7th round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified by 

LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

1 A 
C C 1/2 

No change 

84.00% 

Zero Unclassified 1/2 
4 A Zero Unclassified 2/2 No change 
28 B Zero Unclassified 3/3 No change 
34 B Zero Unclassified 2/4 No change 
43 C B B 3/3 B 
45 B Zero Unclassified 2/2 No change 
47 C B B 2/2 B 
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Table 5.24: Misclassification and RCA results of 8th round analysis on Optimal dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified 
by LAD 

Ratio of 
Misclassificatio

n 

Corrected 
Class 

Test 
Accuracy 

1 A Zero Unclassified 1/2 No change 

91.00% 

4 A Zero Unclassified 1/1 No change 
8 A C C 1/2 No change 

11 C Zero Unclassified 1/2 No change 
17 A C C 1/3 No change 
19 A Zero Unclassified 1/3 No change 
28 B Zero Unclassified 3/3 No change 

 

Figure 5.3: The change of test accuracy on the Optimal dataset 

5.2.4 Scaled dataset 

Ng (2007) presented a scaled DEA-like weighted linear optimization which is similar to the 

classification scheme proposed by Ramanathan (2006). The main difference is that Ng (2007) 

converted all measurements into a 0-1 scale before formulating the linear model. In addition, the 

attribute of a critical factor is not used due to its nominal data and being discontinuous. The dataset 

used is same as Flores, Olson, & Dorai (1992) and Ramanathan (2006). We call it a ‘Scaled’ 

dataset. The detail of this method can be found in the article (Ng, 2007). 
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Next step, we implement the LAD classification on this Scaled dataset by randomly partitioning 

the 80% and 20% of the dataset as the training subset and testing subset. After 10 tests, the average 

test accuracy is 55%. The misclassified observations are shown in Table 5.25. Following the 

procedure of RCA, we make the correction of each observations’ class, and only those observations 

with changes are shown in Table 5.26. 

Table 5.25: Misclassified observations of 1st round analysis on the Scaled dataset 

SKU Original Class Classes of 
Pattern Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

6 A B B 1/1 
7 B A A 1/1 
8 B A A 4/4 

9 A 
B B 1/3 

Zero Unclassified 1/3 
11 C B B 1/1 
12 B C C 2/2 

14 B 
A A 1/4 

Zero Unclassified 3/4 
15 C Zero Unclassified 2/4 
16 C Zero Unclassified 1/1 
18 C B B 1/2 
19 B C C 1/1 

23 B 
A A 1/2 

Zero Unclassified 1/2 
27 C B B 1/1 
29 A B B 1/1 

31 B 
C C 2/3 

Zero Unclassified 1/3 
32 C B B 1/2 
33 B C C 2/2 
34 B C C 3/3 
35 C B B 1/2 
39 B C C 2/2 

40 B 
C C 2/3 

Zero Unclassified 1/3 
44 C Zero Unclassified 2/2 
45 B C C 3/3 
46 C Zero Unclassified 1/1 
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Table 5.26: RCA results of the 1st round analysis on the Scaled dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

Corrected 
Class 

6 A B B 1/1 B 
7 B A A 1/1 A 
8 B A A 4/4 A 

11 C B B 1/1 B 
12 B C C 2/2 C 
19 B C C 1/1 C 
27 C B B 1/1 B 
29 A B B 1/1 B 
33 B C C 2/2 C 
34 B C C 3/3 C 
39 B C C 2/2 C 
45 B C C 3/3 C 

Next, we start a second round of LAD classification and RCA procedure on the ‘new’ Scaled 

dataset. The misclassified observations and RCA results are shown in Table 5.27. The accuracy of 

the test has improved to 72.22%. 

Table 5.27: Misclassification and RCA result of 2nd round analysis on the Scaled dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class Classified by 
LAD 

Ratio of 
Misclassification 

Corrected 
Class 

1 A Zero Unclassified 1/1 No change 
3 A Zero Unclassified 2/2 No change 

6 B A A 1/2 No change Zero Unclassified 1/2 

7 A Zero Unclassified 1/3 No change B B 2/3 
8 A Zero Unclassified 1/3 No change 

11 B A A 1/3 No change C C 2/3 
12 C A A 1/1 A 
13 A B B 2/2 B 

14 B A A 1/2 No change Zero Unclassified 1/2 
15 C B B 2/2 B 
23 B Zero Unclassified 2/4 No change 
31 B C C 2/2 C 
40 B C C 2/2 C 

The LAD classification and RCA process is implemented for a total of four rounds on the Scaled 

dataset until no inconsistency is found. The final test accuracy reaches 93.33%. The results of the 
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third and fourth round of analysis are shown in Table 5.28 and 5.29. The change of test accuracy 

is presented in Figure 5.4. 

Table 5.28: Misclassification and RCA result of 3rd round analysis on the Scaled dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class 
Classified 
by LAD 

Ratio of 
Misclassification Corrected Class Test 

Accuracy  

1 A Zero Unclassified 1/1 No change 

83.33% 

6 B A A 3/3 A 
7 A A, B B 1/2 No change 
9 A A, B B 1/2 No change 

11 B A A 1/1 A 
12 A B B 1/1 B 
15 B Zero Unclassified 1/1 No change 
16 C B B 1/1 B 
27 B Zero Unclassified 1/3 No change 
29 B Zero Unclassified 2/3 No change 
31 C B B 2/2 B 

Table 5.29: Misclassification and RCA result of 4th round analysis on the Scaled dataset 

SKU Original 
Class 

Class of 
Pattern 
Found 

Class Classified 
by LAD 

Ratio of 
Misclassification 

Corrected 
Class 

Test 
Accuracy 

12 B Zero Unclassified 2/2 No change 

93.33% 
16 B Zero Unclassified 2/2 No change 
31 B Zero Unclassified 1/3 No change 
17 C B B 1/1 No change 

 

Figure 5.4: The change of test accuracy on the Scaled dataset 
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5.3 Summary 

In this chapter, we examine the characteristics of the LAD technique, including the applicability of 

inventory classification and the capability of detecting inconsistencies in classification. The tests 

on two numerical examples have demonstrated that LAD is not only capable of classifying 

inventory, but also of detecting and correcting inconsistent observations when combined with the 

RCA procedure. 
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CHAPTER 6 COMPARISON WITH BENCHMARK TECHNIQUES 

To illustrate the capability of the LAD technique for classification and its effectiveness in 

correcting inconsistencies in datasets, we compare the LAD classification results with other 

intelligence-based benchmark techniques, namely artificial neural network, support vector 

machines, k-nearest neighbour and Naïve Bayes. The four benchmark machine learning techniques 

have already been introduced in Chapter 2, Literature Review. The datasets used are the same as 

the two numerical examples in Chapter 5, LAD Classification on Numerical Examples. The 

classification results of the four machine learning classification techniques are compared with the 

LAD classification results in order to study the applicability and effectiveness of the LAD 

technique. 

6.1 Introduction 

This comparison includes two facets. One is a comparison between the original dataset and our 

new dataset of the same machine learning technique. Our new dataset here refers to the dataset 

after being corrected via LAD classification and the RCA procedure. Another aspect is a 

comparison among the five machine learning techniques for the same dataset. 

6.1.1 Performance metrics 

Supervised machine learning techniques have been widely used in classification problems. The 

performance of machine learning techniques is one of the most important aspects for selecting a 

classification algorithm. Although there is no empirical evaluation of supervised machine learning 

techniques, test accuracy (also known as predictive accuracy) is considered as a popular metric to 

evaluate the classification performance. In our study, we use test accuracy to make a comparison 

among the classification techniques. Test accuracy simply evaluates how often the classification 

algorithm makes the correct prediction. It is the ratio between the number of correct predictions 

and the total number of test observations. The formula is shown below. 

Test accuracy = No. of correct predictions/ Total No. of test observations 
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6.1.2 Tools and configuration 

There are four benchmark machine learning techniques, namely, the artificial neural network, 

support vector machines, k-nearest neighbour and Naïve Bayes. They are implemented by the 

software Weka which was developed by the Machine Learning Group at the University of Waikato, 

New Zealand (Hall et al., 2009). Weka, an open source software, is a collection of machine learning 

techniques and algorithms. Artificial neural network, k-nearest neighbour and Naïve Bayes are 

integrated in the software, and the package of support vector machines is installed from a third-

party wrapper called ‘LIBSVM’. 

In our study, the Gaussian Radial Basis Function (RBF) kernel is used for SVM. The RBF kernel 

has the following form: 

K (x, x’) = exp (−γ ||x- x’||2)  

C is the regularization parameter and γ is the interval (width) of the RBF function. The best (C, γ) 

parameters can be determined by a grid search within all grid points of (C, γ) with the highest cross 

validation accuracy. Then the best parameters are applied to train the training data and the classifier 

model is generated (C.-C. Chang & Lin, 2011).  

The Naive Bayes classifier provides a simple and efficient way to solve a classification problem 

by using an estimator for classes in supervised tasks. The Naive Bayes traditionally has the 

assumption that numeric attributes conform to a Gaussian distribution. But this is not always the 

case in the real world. John & Langley (1995) suggested that kernel estimation is a useful tool for 

building Bayesian models. In our study, we use two estimators to classify observations and choose 

the best cross validation accuracy for the final results. 

K-Nearest Neighbours (KNN) is a non-parametric classification technique. The principle of KNN 

is to compute the distance or similarity measure between neighbor observations. We use Euclidean 

distance as a measure of distance or a similarity, which is one of the most popular measures. The 

selection of the K value is essential for applying KNN. By choosing the parameter of K from 1 to 

5 in our study, as recommended by Malhotra, Sharma, & Nair (1999), we get the best cross 

validation accuracy for the final results. 

The Gaussian Radial Basis Function (RBF) is used as an activation function to train the hidden 

layer of the networks. The loss function is determined by the penalised squared error along with a 
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quadratic penalty on the non-bias weights in the output layer, and the parameters of the network 

can be solved through the loss function (Frank, 2014). 

6.2 Comparison of spare parts inventory 

The spare parts inventory presents three datasets (CRS, VRS and AHP), used as numerical 

examples from Chapter 5. Each dataset evolves into a new dataset after the LAD classification and 

the RCA procedure. The new datasets are marked CRS-N, VRS-N and AHP-N. 

Artificial neural network (RBF-Classifier), SVM, KNN and Naïve Bayes are implemented by 

WEKA. The LAD training and testing is implemented by cbmLAD. The test accuracy of the 

classification result is compared between the original and new datasets. The ten-fold cross 

validation is applied to each machine learning technique and test accuracy is measured by the 

percentage of correctly classified observations.  

6.2.1 Comparison between original and new datasets 

We get the test accuracy of original datasets and new datasets after a ten-fold cross validation. The 

result shows that new datasets have a higher test accuracy in each machine learning technique than 

we expected. The detail of the test accuracy is shown in Table 6.1. The numbers in red represent 

the best test accuracy among machine learning techniques on same dataset. 

Table 6.1: Test accuracy on original and new datasets 

Machine learning 
techniques 

Datasets 
CRS CRS-N VRS VRS-N AHP AHP-N 

SVM 55% 70% 65% 85% 85% 100% 
Naïve Bayes 55% 100% 65% 100% 85% 90% 
KNN 65% 75% 60% 75% 85% 95% 
RBF-Classifier 45% 75% 60% 85% 90% 95% 
LAD 60% 85% 45% 100% 85% 90% 

The comparison of test accuracy for the original datasets and new datasets over five classification 

techniques is shown in Figure 6.1. 
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Figure 6.1: Comparison of test accuracy between original datasets and new datasets 

It can be observed that test accuracy on ‘VRS-N’ has the best improvement, 55%, by LAD. The most 

improvement on ‘CRS-N’ is 45%, by Naïve Bayes. The counterpart on ‘AHP-N’ is 15% by SVM. 

Table 6.2 shows details about the improvement in test accuracy on new datasets. The numbers in 

red represent the most improvement in test accuracy among machine learning techniques on the 

same dataset. 

Table 6.2: Test accuracy improvement on new datasets 

Machine learning 
techniques 

Improvement on new datasets 

CRS-N  VRS-N AHP-N 
SVM 15% 20% 15% 
Naïve Bayes 45% 35% 5% 
KNN 10% 15% 10% 
RBF-Classifier 30% 25% 5% 
LAD 25% 55% 5% 
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6.2.2 Comparison among classification of machine learning techniques 

As for different classification techniques over all of the original datasets, KNN has the best average 

accuracy, with 70%. SVM and Naïve Bayes techniques share second place, with 68% test accuracy. 

RBF-Classifier and the LAD technique rank third with 65% and fourth with 63%, respectively.  

For new datasets, we find that the average accuracy of all learning techniques improves 

considerably. The Naïve Bayes technique reaches the best average test accuracy with 97%. The 

LAD technique ranks second with 92%. The KNN technique has a relatively small improvement 

in average accuracy, from 70% to 82%. SVM and RBF-Classifier gain improvements to 85%.  

The details of test accuracy of classification of machine learning techniques on both original 

datasets and new datasets are shown in Table 6.3.  The numbers in red represent the best test 

accuracy among machine learning techniques on the same dataset. The comparisons of test 

accuracy of each machine learning technique for both original datasets and new datasets are shown 

in Figure 6.2. 

Table 6.3: Test accuracy by machine learning techniques 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
CRS 55% 55% 65% 45% 60% 
VRS 65% 65% 60% 60% 45% 
AHP 85% 85% 85% 90% 85% 

Average 68% 68% 70% 65% 63% 
CRS-N 70% 100% 75% 75% 85% 
VRS-N 85% 100% 75% 85% 100% 
AHP-N 100% 90% 95% 95% 90% 
Average 85% 97% 82% 85% 92% 
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Figure 6.2: Comparison on test accuracy improvement of machine learning techniques 

LAD has the most improvement, 55% on ‘VRS-N’ and Naïve Bayes receives the best 

improvement, 45% on ‘CRS-N’. SVM has the highest increase, 15% on the ‘AHP-N’. Table 6.4 

shows the detail of improvement in test accuracy on new datasets in five machine learning 

techniques. The numbers in red represent the most improvement of test accuracy among machine 

learning techniques on the same dataset. 

Table 6.4: Test accuracy improvement by machine learning techniques 

Datasets 
Test accuracy improvement by machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
CRS-N 15% 45% 10% 30% 25% 
VRS-N 20% 35% 15% 25% 55% 
AHP-N 15% 5% 10% 5% 5% 

6.3 Comparison of medical equipment inventory 

Medical equipment spare parts inventory has been used by a number of researchers for the 

demonstration of classification techniques (Hadi-Vencheh, 2010; Ng, 2007; Soylu & Akyol, 2014; 

Yu, 2011). The inventory presents three datasets: AHP, Optimal, and Scaled three datasets. More 

information on this inventory can be found in Chapter 5. The three datasets evolve into new datasets 
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after the LAD classification and the RCA procedure. The new datasets are marked AHP-N, 

Optimal-N and Scaled-N. Artificial neural network (RBF-Classifier), SVM, KNN and Naïve Bayes 

are implemented by WEKA and LAD learning and testing is implemented by cbmLAD. 

6.3.1 Comparison between original and new datasets 

We achieve test accuracy by using ten-fold cross validation. Test accuracy is measured by the 

percentage of correctly classified observations. In the original datasets, the best accuracy is 83% 

on ‘Scaled’ by KNN technique. In the new datasets, the best accuracy is 95.74% on ‘Scaled-N’ and 

‘Optimal-N’ both by LAD. Table 6.5 shows the detail of test accuracy on the original and new 

datasets. The numbers in red represent the best test accuracy among machine learning techniques 

on the same dataset. 

Table 6.5: Test accuracy on original and new datasets 

Machine learning 
techniques 

Datasets 

Scaled Scaled-N Optimal Optimal-N AHP AHP-N 
SVM 61.70% 85.11% 48.94% 80.85% 57.45% 80.85% 

Naïve Bayes 61.70% 89.36% 59.57% 89.36% 59.57% 85.11% 
KNN 83.00% 93.62% 42.55% 85.12% 63.83% 72.34% 

RBF-Classifier 76.60% 93.62% 57.45% 93.62% 72.34% 93.62% 
LAD 70.21% 95.74% 42.55% 95.74% 70.21% 85.11% 

The comparisons of test accuracy between original datasets and new datasets over five machine 

learning techniques are shown in Figure 6.3. 

Table 6.6: Test accuracy improvement on new datasets 

Machine learning 
techniques 

Improvement on new datasets 
Scaled-N Optimal-N AHP-N 

SVM 23% 32% 23% 
Naïve Bayes 28% 30% 26% 
KNN 11% 43% 9% 
RBF-Classifier 17% 36% 21% 
LAD 26% 53% 15% 
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Figure 6.3: Comparison of test accuracy between original datasets and new datasets 

We can see that test accuracy on ‘Optimal-N’ receives the best improvement, 53%, by LAD. The 

most improvement on ‘Scaled-N’ is 28%, by Naïve Bayes. The counterpart on ‘AHP-N’ is 26% by 

Naïve Bayes as well. Table 6.6 show the detail of test accuracy improvement on new datasets. The 

numbers in red represent the most improvement of test accuracy among machine learning 

techniques on the same dataset. 

6.3.2 Comparison among classification of machine learning techniques 

As for classification of machine learning techniques in all of the original datasets, RBF-Classifier 

reaches the best average accuracy, with 69%. KNN takes second place with 63% accuracy. The 

LAD technique ranks third with 61%. Naïve Bayes and SVM techniques have 60% and 56% 

accuracy, respectively. The difference in test accuracy among these classification techniques is not 
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profound. The detail of test accuracy by classification techniques on both original and new datasets 

is shown in Table 6.7. 

On new datasets, we notice that the average test accuracy of all machine learning techniques is 

improving. RBF-Classifier technique reaches the best average test accuracy with 94%. The LAD 

technique ranks second with 92%. Naïve Bayes takes third place with 88%. KNN and SVM 

techniques receive 84% and 82%, respectively. Figure 6.4 shows the detail in test accuracy of each 

machine learning technique. The numbers in red represent the best test accuracy among machine 

learning techniques on the same dataset. 

Table 6.7: Test accuracy by machine learning technique 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Scaled 61.70% 61.70% 83.00% 76.60% 70.21% 

Optimal 48.94% 59.57% 42.55% 57.45% 42.55% 
AHP 57.45% 59.57% 63.83% 72.34% 70.21% 

Average 56% 60% 63% 69% 61% 
Scaled-N 85.11% 89.36% 93.62% 93.62% 95.74% 

Optimal-N 80.85% 89.36% 85.12% 93.62% 95.74% 
AHP-N 80.85% 85.11% 72.34% 93.62% 85.11% 
Average 82% 88% 84% 94% 92% 

 

Figure 6.4: Comparison of test accuracy improvement of machine learning techniques 
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LAD enjoys the most improvement, 53% on ‘Optimal-N’ and Naïve Bayes receives the best 

improvement, 28% on ‘Scaled-N’ and 26% on ‘AHP-N’. The best average accuracy improvement is 

31% by LAD. Table 6.8 shows the detail of improvement in test accuracy on the new datasets 

through five machine learning techniques. 

Table 6.8: Test accuracy improvement by machine learning technique 

Datasets 
Test accuracy improvement by learning technique 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Scaled-N 23% 28% 11% 17% 26% 

Optimal-N 32% 30% 43% 36% 53% 
AHP-N 23% 26% 9% 21% 15% 

6.4 Statistical analysis 

In previous sections, we have compared test accuracy on the original and new datasets regardless 

of machine learning technique. We also studied the test accuracy of five machine learning 

classification techniques. The figures in Section 6.2 and 6.3 illustrate the improvement in new 

datasets and machine learning techniques. In this section, we implement a statistical analysis to 

evaluate the differences between original and new datasets and the differences among five machine 

learning techniques.  

6.4.1 Statistical analysis between the original and new datasets 

In previous sections, the comparisons of spare parts inventory and medical equipment inventory 

have revealed the improvement in test accuracy after LAD classification and the RCA procedure. 

Each dataset evolves into a new dataset after the LAD classification and the RCA procedure. In 

order to study the difference in test accuracy between the original and new datasets, a paired T-test 

is carried out to investigate the hypotheses in statistical perspective. 

6.4.1.1 Paired T-test for datasets of spare parts inventory  

The spare parts inventory datasets include three original datasets marked as CRS, VRS and AHP, 

respectively. The new datasets are marked as CRS-N, VRS-N and AHP-N after the correction of 

inconsistencies. The test accuracy on the original and new datasets through five machine learning 

classification techniques is displayed in Table 6.9. The symbol of ‘↑’ stands for the improvement 
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in test accuracy. The numbers in red represent the best test accuracy among the machine learning 

techniques on the same dataset. 

Table 6.9: Test accuracy on original and new datasets 

Machine learning 
techniques 

Datasets 
CRS CRS-N ↑ VRS VRS-N ↑ AHP AHP-N ↑ 

SVM 55% 70% 15% 65% 85% 20% 85% 100% 15% 
Naïve Bayes 55% 100% 45% 65% 100% 35% 85% 90% 5% 
KNN 65% 75% 10% 60% 75% 15% 85% 95% 10% 
RBF-Classifier 45% 75% 30% 60% 85% 25% 90% 95% 5% 
LAD 60% 85% 25% 45% 100% 55% 85% 90% 5% 

We use Microsoft Excel to perform the paired t-Tests. The significance level α = 0.01 and one-

tailed tests are chosen for the hypothesis tests. We expect that new datasets have better performance 

in test accuracy regardless of machine learning technique. The paired t-Tests are implemented 

between ‘CRS’ and ‘CRS-N’, between ‘VRS’ and ‘VRS-N’ and between ‘AHP’ and ‘AHP-N’. 

The results are shown in Table 6.10-6.12.  

The relevant one-tailed hypotheses for the examination would be: 

H1: Mean differences are greater than zero, µdiff >0 

H0: Mean differences are zero, µdiff = 0 

Table 6.10: Paired t-Test for CRS and CRS-N 

t-Test: Paired Two Sample for Means (α = 0.01) CRS CRS-N 
Mean 0.56 0.81 
Observations 5 
Pearson Correlation 0.056478249 
H0: Null hypothesis            µdiff = 0 
H1: Alternative hypothesis  µdiff > 0 
df 4 
t Stat -4.082482905 
P(T<=t) one-tail 0.007533849 
t Critical one-tail 3.746947388 
Decision Reject H0 and accept H1 
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Table 6.11: Paired t-Test for VRS and VRS-N 

t-Test: Paired Two Sample for Means (α = 0.01) VRS VRS-N 
Mean 0.59 0.89 
Observations 5 
Pearson Correlation -0.364932499 

H0: Null hypothesis            µdiff = 0 

H1: Alternative hypothesis  µdiff > 0 
df 4 
t Stat -4.242640687 
P(T<=t) one-tail 0.0066178 
t Critical one-tail 3.746947388 
Decision Reject H0 and accept H1 

Table 6.12: Paired t-Test for AHP and AHP-N 

t-Test: Paired Two Sample for Means (α = 0.01) AHP AHP-N 
Mean 0.86 0.94 
Observations 5 
Pearson Correlation 0.133630621 

H0: Null hypothesis            µdiff = 0 

H1: Alternative hypothesis  µdiff > 0 
df 4 
t Stat -4 
P(T<=t) one-tail 0.008065 
t Critical one-tail 3.7469474 
Decision Reject H0 and accept H1 

We find that all p-values are less than α (0.01); meanwhile, all t Stats (absolute value) are larger 

than the values of t Critical one-tail. Both p-value and t -statistic methods reject the null hypothesis 

H0 and accept the alternate hypothesis H1. Thus, we can say that there is statistical significance at 

level of α (0.01). In other words, the new datasets have better performance of test accuracy at a 

confidence level of 99%, regardless of which machine learning techniques are used. 

6.4.1.2 Paired T-test for datasets of medical equipment inventory  

The medical equipment inventory datasets, classified by three classification methods, are marked 

as Scaled, Optimal and AHP. The new datasets are correspondingly marked as Scaled-N, Optimal-
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N and AHP-N after the correction of inconsistencies. Test accuracy of the five machine learning 

classification techniques is displayed in Table 6.13. The numbers in red represent the best test 

accuracy among machine learning techniques on the same dataset. 

Table 6.13: Test accuracy on original and new datasets 

Machine learning 
techniques 

Datasets 
Scaled Scaled-N Optimal Optimal-N AHP AHP-N 

SVM 61.70% 85.11% 48.94% 80.85% 57.45% 80.85% 
Naïve Bayes 61.70% 89.36% 59.57% 89.36% 59.57% 85.11% 

KNN 83.00% 93.62% 42.55% 85.12% 63.83% 72.34% 
RBF-Classifier 76.60% 93.62% 57.45% 93.62% 72.34% 93.62% 

LAD 70.21% 95.74% 42.55% 95.74% 70.21% 85.11% 

Microsoft Excel is used to perform the paired t-Tests. The improvement in test accuracy appears 

to be more obvious here compared to spare parts inventory. So, we choose the significance level α 

= 0.005 and one-tailed tests for the hypothesis tests. We presume that new datasets have better 

performance in test accuracy regardless of machine learning technique. The paired t-Tests are 

implemented between Scaled and Scaled-N datasets, between Optimal and Optimal-N datasets and 

between AHP and AHP-N datasets. The results are shown in Table 6.14-6.16.  

The relevant one-tailed hypotheses for the examination would be: 

H1: Mean differences are greater than zero, µdiff >0 

H0: Mean differences are zero, µdiff = 0 

Table 6.14: Paired t-Test for Scaled and Scaled-N 

t-Test: Paired Two Sample for Means (α = 0.005) Scaled Scaled-N 
Mean 0.70642 0.9149 
Observations 5 
Pearson Correlation 0.71340308 
H0: Null hypothesis            µdiff = 0 

H1: Alternative hypothesis  µdiff > 0 

df 4 
t Stat -6.691236177 
P(T<=t) one-tail 0.001297316 
t Critical one-tail 4.604094871 
Decision Reject H0 and accept H1 
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Table 6.15: Paired t-Test for Optimal and Optimal-N 

t-Test: Paired Two Sample for Means (α = 0.005) Optimal Optimal-N 
Mean 0.50212 0.88938 
Observations 5 
Pearson Correlation 0.128874332 
H0: Null hypothesis            µdiff = 0 

H1: Alternative hypothesis  µdiff > 0 

df 4 
t Stat -9.168302943 
P(T<=t) one-tail 0.000392901 
t Critical one-tail 4.604094871 
Decision Reject H0 and accept H1 

Table 6.16: Paired t-Test for AHP and AHP-N 

t-Test: Paired Two Sample for Means (α = 0.005) AHP AHP-N 
Mean 0.6468 0.83406 
Observations 5 
Pearson Correlation 0.53247924 
H0: Null hypothesis            µdiff = 0 

H1: Alternative hypothesis  µdiff > 0 

df 4 
t Stat -6.015584643 
P(T<=t) one-tail 0.001922895 
t Critical one-tail 4.604094871 
Decision Reject H0 and accept H1 

Not only do we find that all p-values are less than α (0.005), but also all t Stats (absolute value) are 

larger than the values of t Critical one-tail. Both p-value and t -statistic methods reject the null 

hypothesis H0 and accept the alternate hypothesis H1. So there is statistical significance at the level 

of α (0.005). In other words, the new datasets have better performance in test accuracy regardless 

of which machine learning technique is applied at a confidence level of 99.5%. 

6.4.2 Statistical analysis between datasets and learning techniques 

In a previous section, we used a statistical analysis of paired t-Test to demonstrate the significant 

improvement in test accuracy on datasets after the correction of inconsistences by the LAD 
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technique and RCA procedure. We are also interested in the performance difference among 

learning techniques. To find out what learning techniques have better performance, the Friedman 

test is carried out.  The procedure for the Friedman test consists of the following steps: 

1. Collect data in the form of a matrix which has n rows (blocks) and k columns (treatments).   

Here, blocks are datasets and treatments are learning techniques. 

2. Rank the data entry within each dataset from smallest to largest and transform the value to 

1 (smallest) to k (biggest); if there are tied values, assign to each tied value with the average 

of the ranks (see example of Figure 6.5); 

3. Define the null hypothesis H0 and the alternative hypothesis H1; 

4. Calculate the Friedman test statistic 212
3 ( 1)

( 1)
R R n k

nk k
F = − ++ ∑ , n is the blocks of raters, 

k is the number of treatments and R is the sum of ranks for each treatment; 

5. Select the significance level α and find the Chi-Squared value in terms of α and degrees of 

freedom k-1; 

6. State the decision: Reject H0 if 2
RF αχ> ；otherwise, do not reject H0. 

 

Figure 6.5: Example of ranking data 

CRS rank
(with ties)

rank

SVM Naïve Bayes KNN RBF-Classifier LAD 45.00% 1 1
CRS 55.00% 55.00% 65.00% 45.00% 60.00% 55.00% 2 2.5
VRS 65.00% 65.00% 60.00% 60.00% 45.00% 55.00% 3 2.5
AHP 85.00% 85.00% 85.00% 90.00% 85.00% 60.00% 4 4

65.00% 5 5

AHP
rank
(with ties)

rank VRS
rank
(with ties)

rank

85.00% 1 2.5 45.00% 1 1
85.00% 2 2.5 60.00% 2 2.5
85.00% 3 2.5 60.00% 3 2.5
85.00% 4 2.5 65.00% 4 4.5
90.00% 5 5 65.00% 5 4.5

SVM Rank Naïve Bayes Rank KNN Rank RBF-Classifier Rank LAD Rank
CRS 55.00% 2.5 55.00% 2.5 65.00% 5 45.00% 1 60.00% 4
VRS 65.00% 4.5 65.00% 4.5 60.00% 2.5 60.00% 2.5 45.00% 1
AHP 85.00% 2.5 85.00% 2.5 85.00% 2.5 90.00% 5 85.00% 2.5

1: Numbers are arranged in ascending order for each block.

2: If there are tied values, assign to each tied value with the 
average of the ranks

datasets 
(blocks)

Machine learning techniques (treatments)

datasets 
(blocks)

Machine learning techniques (treatments)
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6.4.2.1 Friedman Test: Nonparametric analysis for machine learning techniques 

We investigate the performance difference among five machine learning techniques. The test 

accuracy results regarding machine learning techniques with ranks are shown in Table 6.17 and 

6.18 for spare parts inventory (1st inventory) and Table 6.19 and 6.20 for medical equipment 

inventory (2nd inventory), respectively. In the next step, we conduct the Friedman test by following 

the procedure described above. The hypotheses would be as follows: 

H0: The machine learning techniques have identical test accuracy; 

H1: Not all machine learning techniques have identical test accuracy. 
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Table 6.17: Test accuracy of machine learning techniques on original datasets (1st inventory) 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank 

CRS 55.00% 2.5 55.00% 2.5 65.00% 5 45.00% 1 60.00% 4 
VRS 65.00% 4.5 65.00% 4.5 60.00% 2.5 60.00% 2.5 45.00% 1 
AHP 85.00% 2.5 85.00% 2.5 85.00% 2.5 90.00% 5 85.00% 2.5 

Rank Total(R)   9.5   9.5   10   8.5   7.5 

Table 6.18: Test accuracy of machine learning techniques on new datasets (1st inventory) 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank 

CRS-N 70.00% 1 100.00% 5 75.00% 2.5 75.00% 2.5 85.00% 4 
VRS-N 85.00% 2.5 100.00% 4.5 75.00% 1 85.00% 2.5 100.00% 4.5 
AHP-N 100.00% 5 90.00% 1.5 95.00% 3.5 95.00% 3.5 90.00% 1.5 

Rank Total(R)   8.5   11   7   8.5   10 
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Table 6.19: Test accuracy of machine learning techniques on original datasets (2nd inventory) 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank 

Scaled 61.70% 1.5 61.70% 1.5 83.00% 5 76.60% 4 70.21% 3 
Optimal 48.94% 3 59.57% 5 42.55% 1.5 57.45% 4 42.55% 1.5 

AHP 57.45% 1 59.57% 2 63.83% 3 72.34% 5 70.21% 4 
Rank Total(R)   5.5   8.5   9.5   13   8.5 

Table 6.20: Test accuracy of machine learning techniques on new datasets (2nd inventory) 

Datasets 
Machine learning techniques 

SVM Naïve Bayes KNN RBF-Classifier LAD 
Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank Test Accuracy Rank 

Scaled-N 85.11% 1 89.36% 2 93.62% 3.5 93.62% 3.5 95.74% 5 
Optimal-N 80.85% 1 89.36% 3 85.12% 2 93.62% 4 95.74% 5 

AHP-N 80.85% 2 85.11% 3.5 72.34% 1 93.62% 5 85.11% 3.5 
Rank Total(R)   4   8.5   6.5   12.5   13.5 

The results of the Friedman test are shown in Table 6.21. 
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Table 6.21: The results of the Friedman test for machine learning techniques 

Source Table 6.17 Table 6.18 Table 6.19 Table 6.20 
n 3 3 3 3 
k 5 5 5 5 

2R∑  409 414.5 434 469 
α 0.05 0.05 0.05 0.05 
2
αχ  9.488 9.488 9.488 9.488 

Friedman test statistic RF  0.5333 1.2667 3.8667 8.5333 
p value 0.9702 0.8670 0.4243 0.0739 

Decision Accept H0 Accept H0 Accept H0 Accept H0 

From Table 6.21, we find that that the values of the Friedman test statistic RF  are less than 2
αχ

on original and new datasets of both inventories, which means we accept H0. The conclusion is 

that there is insufficient evidence to support the significant difference in test accuracy among the 

five machine learning techniques.  

6.5 Summary 

In this chapter, we have employed five machine learning techniques, namely artificial neural 

network (RBF-Classifier), SVM, KNN, Naïve Bayes and LAD, to classify the original and new 

datasets of both spare parts inventory and medical equipment inventory. The test accuracy with 

ten-fold cross validation is evaluated for each classification technique and each dataset.  

We compare the results in test accuracy of the original and new datasets in two ways. First, the test 

accuracy of the original and new datasets is examined. The new datasets have better performance 

on all machine learning techniques. We also conduct the Paired t-Test to prove the significant 

difference between the original and new datasets of both inventories. Secondly, the test accuracy 

performance on datasets and machine learning techniques is investigated. The results of the 

Friedman Test show that there is insufficient evidence to support the significant difference in test 

accuracy of five machine learning techniques either in the original or the new datasets of both 

inventories.  
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The overall objective of this research is to study the applicability of inventory classification and 

the capability for correcting classification inconsistencies through the LAD technique. Inventory 

classification has attracted attention from many researchers. Techniques of inventory classification 

are well studied, from traditional ABC analysis (single criterion) to multi-criteria classification and 

from mathematical formulation to machine learning algorithms. Although the traditional ABC 

analysis has a reputation for ease of use, it cannot meet the classification requirements of 

sophisticated products. Mathematical models and methods would raise complexity and computing 

costs increase dramatically when many criteria are taken into account for classification. Machine 

learning techniques are more suitable for multi-criteria classification and provide more accurate 

classification. The LAD technique, as a machine learning approach, provides a new ability for 

inventory classification.  

Moreover, the LAD technique is interpretable and transparent for classification. Patterns are 

generated in the training stage and they can be used to explain the results of classification. 

Benefiting from the characteristics of the LAD technique and RCA procedure, we are able to find 

and fix inconsistent observations. 

We use two examples to demonstrate LAD’s capacities for inventory classification and 

inconsistency corrections. The results show that the test accuracy improved significantly for new 

datasets by both LAD and other machine learning classification techniques. The statistical analysis 

is applied to confirm the significant difference between the original and new (corrected) datasets. 

Among five machine learning techniques, namely artificial neural network, support vector 

machines, AHP, k-nearest neighbour, Naïve Bayes and LAD, the statistical analysis shows that 

there is insufficient evidence to support the significant difference of test accuracy either on the 

original datasets or in the new datasets.  

In summary, we have reached three main conclusions: 

1. We have demonstrated the LAD technique for making multi-criteria classifications for spare 

parts inventory;  
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2. We have investigated the LAD techniques that are capable of detecting and correcting 

inconsistencies along with RCA procedures and improved test accuracy; 

3. We have provided evidence that LAD is a competitive technique for classification by 

comparing other machine learning classification techniques. 

7.2 Future work 

The capability of the LAD technique is very encouraging for inventory classification. The LAD 

classification relies on criteria that we collect, also known as attributes. The accuracy of attributes 

greatly impacts the classification results. For instance, the attribute ‘cost’ has a more accurate 

meaning in accounting than the attribute ‘price’ for classification. In the numerical examples, we 

simply use price as the cost of individual inventory. This is not the case of cost in the real world. 

The cost of inventory is not only affected by price, but also by currency exchange rates, expedited 

service fees, etc.  

Another possible improvement practice for classification would be to introduce more attributes, 

such as demand forecasting. A multiple dimension product is determined by many characteristics. 

Machine learning techniques make it possible to classify inventory based on many different factors. 

So far, we have studied the inventory classification in a supervised learning style. If we had a 

completely new dataset without classes, the unsupervised learning classification would be one way 

to classify the inventory. An investigation of the LAD technique’s capabilities in unsupervised 

learning would also be a good subject to study. 
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