2,550,067 research outputs found

    Cooper-pair qubit and Cooper-pair electrometer in one device

    Full text link
    An all-superconductor charge qubit enabling a radio-frequency readout of its quantum state is described. The core element of the setup is a superconducting loop which includes the single-Cooper-pair (Bloch) transistor. This circuit has two functions: First, it operates as a charge qubit with magnetic control of Josephson coupling and electrostatic control of the charge on the transistor island. Secondly, it acts as the transducer of the rf electrometer, which probes the qubit state by measuring the Josephson inductance of the transistor. The evaluation of the basic parameters of this device shows its superiority over the rf-SET-based qubit setup.Comment: 4 pages incl. 3 figues; the SQUID'2001 paper, to be published in Physica

    Higgs Boson pair production merged to one jet

    Get PDF
    We develop a Monte Carlo event generator for Higgs Boson pair production merged to exact one-jet matrix elements. The matrix elements are generated with OpenLoops and event generation is performed with the HERWIG++ general-purpose event generator. This allows us to simulate fully-exclusive hadronic final states with accurate description of the kinematics of the leading jet in conjunction with a parton shower. We use the implementation to examine in detail the systematic uncertainties which result from the merging procedure. We assess the magnitude of the impact of the merging on experimental searches of Standard Model di-Higgs production that aim to constrain the Higgs boson self-coupling. We find that the use of a merged sample can reduce theoretical systematic uncertainties in the efficiencies of cuts on certain observables. This constitutes the most accurate simulation of the process available to date. The Monte Carlo event generator developed for this project is available as an add-on to the HERWIG++ event generator at http://www.itp.uzh.ch/~andreasp/hhComment: 19 pages, 10 figures, updated UR

    Soft two-meson-exchange nucleon-nucleon potentials. II. One-pair and two-pair diagrams

    Full text link
    Two-meson-exchange nucleon-nucleon potentials are derived where either one or both nucleons contains a pair vertex. Physically, the meson-pair vertices are meant to describe in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. {}From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. The various possibilities for meson pairs coupling to the nucleon are inspired by the chiral-invariant phenomenological Lagrangians that have appeared in the literature. The coupling constants are fixed using the linear σ\sigma model. We show that the inclusion of these two-meson exchanges gives a significant improvement over a potential model including only the standard one-boson exchanges.Comment: 21 pages RevTeX, 7 postscript figures; revised version as to appear in Phys. Rev.

    One-dimensional pair cascade emission in gamma-ray binaries

    Full text link
    In gamma-ray binaries such as LS 5039 a large number of electron-positron pairs are created by the annihilation of primary very high energy (VHE) gamma-rays with photons from the massive star. The radiation from these particles contributes to the total high energy gamma-ray flux and can initiate a cascade, decreasing the effective gamma-ray opacity in the system. The aim of this paper is to model the cascade emission and investigate if it can account for the VHE gamma-ray flux detected by HESS from LS 5039 at superior conjunction, where the primary gamma-rays are expected to be fully absorbed. A one-dimensional cascade develops along the line-of-sight if the deflections of pairs induced by the surrounding magnetic field can be neglected. A semi-analytical approach can then be adopted, including the effects of the anisotropic seed radiation field from the companion star. Cascade equations are numerically solved, yielding the density of pairs and photons. In LS 5039, the cascade contribution to the total flux is large and anti-correlated with the orbital modulation of the primary VHE gamma-rays. The cascade emission dominates close to superior conjunction but is too strong to be compatible with HESS measurements. Positron annihilation does not produce detectable 511 keV emission. This study provides an upper limit to cascade emission in gamma-ray binaries at orbital phases where absorption is strong. The pairs are likely to be deflected or isotropized by the ambient magnetic field, which will reduce the resulting emission seen by the observer. Cascade emission remains a viable explanation for the detected gamma-rays at superior conjunction in LS 5039.Comment: 8 pages, 7 figures, 1 table, accepted for publication in Astronomy and Astrophysic

    Pair correlation functions in one-dimensional correlated-hopping models

    Full text link
    We investigate ground-state properties of two correlated-hopping electron models, the Hirsch and the Bariev model. Both models are of recent interest in the context of hole superconductivity. Applying the Lanczos technique to small clusters, we numerically determine the binding energy, the spin gaps, correlation functions, and other properties for various values of the bond-charge interaction parameter. Our results for small systems indicate that pairing is favoured in a certain parameter range. However, in contrast to the Bariev model, superconducting correlations are suppressed in the Hirsch model, for a bond-charge repulsion larger than a critical value.Comment: 7 pages (LaTeX) + 6 postcript figures in a separate uuencoded fil

    Enhancement of pair correlation in a one-dimensional hybridization model

    Get PDF
    We propose an integrable model of one-dimensional (1D) interacting electrons coupled with the local orbitals arrayed periodically in the chain. Since the local orbitals are introduced in a way that double occupation is forbidden, the model keeps the main feature of the periodic Anderson model with an interacting host. For the attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions with small momenta, which are induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur

    Relic density at one-loop with gauge boson pair production

    Full text link
    We have computed the full one-loop corrections (electroweak as well as QCD) to processes contributing to the relic density of dark matter in the MSSM where the LSP is the lightest neutralino. We cover scenarios where the most important channels are those with gauge boson pair production. This includes the case of a bino with some wino admixture, a higgsino and a wino. In this paper we specialise to the case of light dark matter much below the TeV scale. The corrections can have a non-negligible impact on the predictions and should be taken into account in view of the present and forthcoming increasing precision on the relic density measurements. Our calculations are made with the help of \SloopS, an automatic tool for the calculation of one-loop processes in the MSSM. The renormalisation scheme dependence of the results as concerns \tgb is studied.Comment: 25 pages, 10 figures, Citations adde
    corecore