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Enhancement of pair correlation in a one-dimensional hybridization model
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We propose an integrable model of one-dimensional interacting electrons coupled with the local orbitals
arranged periodically in the chain. Since the local orbitals are introduced in a way that double occupation is
forbidden, the model keeps the main features of the periodic Anderson model with an interacting host. For an
attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like
singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this
case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions
with small momenta, which are induced by the hybridization between the extended states and the local orbitals.
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I. INTRODUCTION

Metallic compounds containing elements with partia
filled d shells orf shells belong to the category of strong
correlated electrons. Two typical examples are the highTc

superconductors and the heavy fermion compounds in w
spin fluctuations may play a central role.1,2 The normal state
properties of heavy fermion compounds are characterize
a large Pauli susceptibility and specific heat as compare
conventional metals. Such phenomena are attributed to
large effective mass of the electrons near the Fermi surf
These anomalies are generally believed to be due to the
mation of resonant states at the Fermi level, which is indu
by the admixture of localf orbitals and the conduction elec
trons, and therefore the systems are usually modeled by
periodic Anderson model or the Kondo lattice model in so
limiting cases. One of the major mysteries of the heavy f
mions is how superconductivity could be supported in a s
tem with strong local moments.2 It is generally accepted tha
magnetic impurities in BCS superconductors break the t
reversal symmetry and are unfavorable to the formation
Cooper pairs. Such a pair-breaking effect directly causes
reduction of the energy gap of the superconducting state
the transition temperature.3 However, the situation may b
different in some strongly correlated electron systems, wh
the electrons from the same source could be responsible
both the superconductivity and the magnetism.1 How mag-
netism and superconductivity reconcile each other is sti
hot topic in modern condensed matter physics and rem
an open problem.
PRB 590163-1829/99/59~11!/7393~8!/$15.00
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Based on the development of the strongly correlated e
tron systems and low-dimensional systems, many effo
have been made in recent years to understand how the m
netic impurities behave in a one-dimensional~1D! correlated
host.4 Several integrable models were proposed5–7 to account
for this problem and some novel features were found. I
recent paper,8 Schlottmann studied the attractive Hubba
model with a finite concentration of magnetic impurities. H
found that the impurities generally weaken the binding e
ergy of the singlet pairs and the spin gap could be clo
above a critical concentration of impurities.

The quantum inverse scattering method~QISM! provides
a powerful tool to construct integrable models in o
dimension.9 In a lattice model, a local operatorLn,t(l) can
be defined, which satisfies the following Yang-Baxt
relation:10

Rt,t8~l,m!Ln,t~l!Ln,t8~m!5Ln,t8~m!Ln,t~l!Rt,t8~l,m!,
~1!

whereLn,t(l) acts on the auxiliary spaceVt and the quan-
tum spaceVn , respectively,l andm are the spectral param
eters, andRt,t8(l,m)5Lt,t8(l2m) is a c-number matrix.
Define the transition matrixTt(l) as

Tt~l!5L1,t~l!•••LN,t~l!, ~2!

whereN is the site number of the lattice. From Eq.~1! we
can easily show that

Rt,t8~l2m!Tt~l!Tt8~m!5Tt8~m!Tt~l!Rt,t8~l2m!.
~3!
7393 ©1999 The American Physical Society
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7394 PRB 59WANG, DAI, PU, AND ECKERN
Tracingt andt8 in the above equation we have

@ trtTt~l!,trtTt~m!#50. ~4!

Supposet(l)[trtTt(l) allows the following expansion:

t~l!5t01
t1

l
1

t2

l2
1•••. ~5!

Since l and m are arbitrary parameters, from Eq.~4! we
obtain

@ tm ,tn#50, m,n50,1,2, . . . . ~6!

Choosing one of thetn as the Hamiltonian of the system
from Eq. ~6! we know that alltm are conserved quantities
Therefore, we can establish the common eigenstates of t
quantities. Generally, the generating operators of th
eigenstates are chosen from the off-diagonal elements o
matrix Tt(l). For the impurity models, the impurities ar
added by including some inhomogeneous vertex operato
the transition matrix,7 which satisfy the same Yang-Baxte
relation as that of the host.

In this paper, we consider a model of 1D interacting el
trons coupled to the local orbitals arranged periodically
the chain. Maximumly, only one electron can occupy
single local state. Therefore, the model preserves the m
feature of a 1D periodic Anderson model in the limitU
→`. The structure of the present paper is the followin
In the subsequent section, the model Hamiltonian and
Bethe ansatz solution will be constructed based on
QISM. In Sec. III, we discuss the attractive interaction ca
It is shown that the effective mass of the Cooper-pair-l
singlets as well as the pair correlation in the ground state
on
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enhanced by the local orbitals. In Sec. IV, we study the
pulsive interaction case. Section V gives our concluding
marks.

II. THE MODEL AND ITS BETHE ANSATZ

In this paper, we construct an integrable model, wh
describes interacting conduction electrons in a continu
medium hybridizing with local orbitals. The atoms with loc
orbitals are arrayed periodically in the chain and the lo
states are described by the Hubbard operatorsXa,b

n

[uan&^bnu (an ,bn50,↑,↓), with the constraintX↑↑
n 1X↓↓

n

1X00
n 51, which means double occupation of the same

bital is forbidden. Let us start with the following segme
transition matrix:

]xTn11~lux,na!5:L~l,x!Tn11~lux,na!: ~7!

wherexP@na,(n11)a); :: denotes the normal order of th
fermions,a is the space between two nearest local orbita
and theL operator is defined as

L~l,x!5S i

2
l 0 iAgc↑~x!

0
i

2
l iAgc↓~x!

2 iAgc↑
†~x! 2 iAgc↓

†~x! 2
i

2
l

D ,

with cs
†(x) @cs(x)# the creation~annihilation! operator of the

conduction electrons. Here, we take the boundary condi
of Tn11(lux,na) as
Tn11~luna,na![Ln~l!5S a8~l!2b8~l!X↑,↑
n 2b8~l!X↓,↑

n b8~l!X0,↑
n

2b8~l!X↑,↓
n a8~l!2b8~l!X↓,↓

n b8~l!X0,↓
n

b8~l!X0,↑
n b8~l!X0,↓

n a8~l!1b8~l!X0,0
n
D ,
es,

-
B

wherea8(l)5a(l1 ig/2), b8(l)5b(l1 ig/2), and

a~l!5
l

l2 ig
, b~l!5

2 ig

l2 ig
. ~8!

We remark that with a unit boundary condition, the transiti
matrix is just that of thed-potential Fermi gas model11 in-
troduced by Yang.10 The nonunit boundary condition is ver
similar to the inhomogeneousL operator in the lattice
model.7 It is easy to show that the following Yang-Baxte
relations hold:

R~l2m!L~l,x! ^ sL~m,x!5L~m,x! ^ sL~l,x!R~l2m!,
~9!

R~l2m!Ln~l! ^ sLn~m!5Ln~m! ^ sLn~l!R~l2m!,
~10!
where

R~l!5a~l!P1b~l!, ~11!

andP is the fermion-fermion-boson~FFB! graded exchange
operator acting on the direct product of the auxiliary spac
Pa2b2

a1b15da1b2
da2b1

(21)eb1
eb2; e↑,↓51, e050 ~for conve-

nience, we put the subscripts↑,↓ and 0 as 1, 2, and 3, re
spectively!; ^ s denotes the direct product with FF
grading12,11

~F ^ sG!cd
ab5FabGcd~21!ec~ea1eb!. ~12!

From Eqs.~9! and ~10! we easily derive

R~l2m!Tn~l! ^ sTn~m!5Tn~m! ^ sTn~l!R~l2m!,
~13!
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with Tn(l)[Tn(luna,na2a). Furthermore, the global tran
sition matrix

T~l![TN~l!TN21~l!•••T1~l! ~14!

satisfies the same Yang-Baxter equation as the segment
Tn(l),

R~l2m!T~l! ^ sT~m!5T~m! ^ sT~l!R~l2m!, ~15!

whereN is the number of atoms with local orbital. Introduc
the notation

T~l!5S A11~l! A12~l! B1~l!

A21~l! A22~l! B2~l!

C1~l! C2~l! D~l!
D .

From Eq.~15! we have the following commutation relation

Aab~l!Cc~m!5~21!eaep
r ~l2m!pb

dc

a~l2m!
Cp~m!Aad~l!

1
b~l2m!

a~l2m!
Cb~l!Aac~m!, ~16!

D~l!Cc~m!5
1

a~m2l!
Cc~m!D~l!

2
b~m2l!

a~m2l!
Cc~l!D~m!, ~17!
o

nes

Ca1
~l1!Ca2

~l2!5r ~l12l2!b2a1

b1a1Cb2
~l2!Cb1

~l1!,

~18!

@t~l!,t~m!#50, ~19!

where

t~l!5strT~l![2A11~l!2A22~l!1D~l! ~20!

and

r ~l!cd
ab52b~l!dabdcd2a~l!daddbc . ~21!

It can be shown thatr (l) satisfies the following Yang-
Baxter relation:

r ~l2m!a3c3

a2c2r ~l!c2d2

a1b1r ~m!c3b3

d2b2

5r ~m!a2c2

a1c1r ~l!a3b3

c2d2r ~l2m!d2b2

c1b1. ~22!

From Eq.~19! we see thatt(l) can be considered as a ge
erator of an infinite number of conserved quantities. Cho
ing the vacuum state as

cs~x!u0&5X0,s
n u0&50, ~23!

we have
T~l!u0&5S ei ~l/2!LaNS l1 i
g

2D 0 0

0 ei ~l/2!LaNS l1 i
g

2D 0

C1~l! C2~l! e2 i ~l/2!L

D u0&.
Therefore,Ca(l) can be treated as the creation operators
the eigenstates oft(l)

uk1 , . . . ,knuF&5Ca1
~k1!Ca2

~k2!•••Can
~kn!u0&Fan•••a1,

~24!

where the indicesaj run over the values 1, 2, andFan•••a1 is
a function of the spectral parameterskj . From the commu-
tation relations~16! and~17! we have~n is the electron num-
ber!

D~l!uk1 , . . . ,knuF&

5e2 i ~l/2!L)
j 51

n
1

a~kj2l!
uk1 , . . . ,knuF&

1(
l 51

n

~L̄ l !a1•••an

b1•••bnCbl
~l!)

j Þ l

n

Cbj
~kj !u0&Fan•••a1, ~25!
f@A11~l!1A22~l!#uk1 , . . . ,knuF&

52ei ~l/2!LaNS l1 i
g

2D )
j 51

n
1

a~l2kj !
)
l 51

n

Cbl
~l l !u0&

3@t~1!~l!#a1•••an

b1•••bnFan•••a11(
l 51

n

~L l !a1•••an

b1•••bnCbl
~l!

3)
j Þ l

n

Cbj
~kj !u0&Fan•••a1, ~26!

where

t~1!~l!5str@Tn
~1!~l!#5str@Ln

~1!~l2kn!•••L1
~1!~l2k1!#,

~27!

and
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Lk
~1!~l!5b~l!P~1!1a~l!, ~28!

which fulfill the Yang-Baxter relation

r ~l2m!Lk
~1!~l! ^ sLk

~1!~m!5Lk
~1!~m! ^ sLk

~1!~l!r ~l2m!,
~29!

with (P(1))cd
ab52daddbc the 434 permutation matrix, and

~L lF !b1•••bn5
b~l2kl !

a~l2kl !
)
iÞ l

n
1

a~kl2ki !
aNS kl1 i

g

2D
3ei ~kl /2!LFan•••albl 21•••b1~21! l 11

3Ln
~1!~kl2kn!bnan

bldn21

3Ln21
~1! ~kl2kn21!bn21an21

dn22dn23
•••

3Ll 11~kl2kl 11!bl 11al 11

dlal , ~30!

~L̄ lF !b1•••bn5S~kl !a1•••al

b1•••blFbn•••bl 11al•••a1

3F2
b~kl2l!

a~kl2l!Ge2 i ~kl /2!L)
iÞ l

n
1

a~ki2kl !
,

~31!

where

S~kl !a1•••al

b1•••bl5r ~kl 212kl !cl 21al 21

bl 21al
•••r ~k12kl !bla1

b1c2.

~32!

To obtain the Bethe ansatz equations~BAE! and the eigen-
values oft(l), we solve first the following eigenvalue prob
lem:

t~1!~l!F5e~l!F. ~33!

From Eq.~29! we know

r ~l2m!Tn
~1!~l! ^ sTn

~1!~m!5Tn
~1!~m! ^ sTn

~1!~l!r ~l2m!.
~34!

Introduce the notation

Tn
~1!~l!5S A~1!~l! B~1!~l!

C~1!~l! D ~1!~l!
D ;

then we find from Eq.~34!

D ~1!~l!C~1!~m!5
1

a~l2m!
C~1!~m!D ~1!~l!

1
b~m2l!

a~m2l!
C~1!~l!D ~1!~m!, ~35!

A~1!~l!C~1!~m!5
1

a~m2l!
C~1!~m!A~1!~l!

1
b~l2m!

a~l2m!
C~1!~l!A~1!~m!, ~36!
C~1!~l!C~1!~m!5C~1!~m!C~1!~l!,

@t~1!~l!,t~1!~m!#50. ~37!

Define the pseudovacuumu0& (1) as B(1)(l)u0& (1)50. The
eigenstates oft (1)(l) can be written as

um1 , . . . ,mM&5 )
a51

M

C~1!~ma!u0&~1!. ~38!

Applying t (1)(l)52A(1)(l)2D (1)(l) on Eq. ~38!, we
have

e~l!52F )
a51

M
1

a~l2ma! )j 51

n
a~l2kj !

a~kj2l!

1 )
a51

M
1

a~ma2l! )j 51

n

a~l2kj !G , ~39!

and the cancellation of the unwanted terms gives the Be
ansatz equation

)
i 51

n

a~ki2ma!5 )
aÞb

M
a~mb2ma!

a~ma2mb!
. ~40!

To ensure Eq.~24! to be an eigenstate oft(l), the unwanted
terms in Eqs.~25! and ~26! must cancel, i.e.,

F2~L l !a1•••an

b1•••bn1~L̄ l !a1•••an

b1•••bn GFan•••a150. ~41!

This gives

aNS kl1 i
g

2DeiklL5 )
a51

M

a~kl2ma!. ~42!

@For the detailed derivation of Eqs.~30!, ~31!, and~42!, we
refer the readers to the Appendix B of Ref. 12, since
algebraic structure of the present model is almost the sam
theirs.# The eigenvalue oft(l) reads

n~l,$kj%,$ma%!5aNS l1 i
g

2Dei ~l/2!L)
j 51

n
1

a~l2kj !
e~l!

1e2 i ~l/2!L)
j 51

n
1

a~kj2l!
, ~43!

whereM is the number of electrons with down spin. Puttin
ma5la2 ig/2, the Bethe ansatz Eqs.~40! and ~42! are re-
duced to

eik jNaS kj1
i

2
g

kj2
i

2
g
D N

5 )
a51

M kj2la1
i

2
g

kj2la2
i

2
g

, ~44!
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)
j 51

n la2kj2
i

2
g

la2kj1
i

2
g

52 )
b51

M
la2lb2 ig

la2lb1 ig
, ~45!

and the eigenvalue oft(l) can be written clearly as

n~l,$kj%,$la%!5e2 i ~l/2!L)
j 51

n S 11
ig

l2kj
D

2ei ~l/2!LS l1 i
g

2

l2 i
g

2

D N

3H )
a51

M l2la2 i
g

2

l2la1 i
g

2

)
j 51

n S 11
ig

l2kj
D

1 )
a51

M S 11
ig

l2la1 i
g

2
D J . ~46!

Now we turn to the construction of the model Hamiltonia
For l→` in the upper-half complex plane, we have t
following asymptotic expansion:

ln@t~l!ei ~l/2!L#511 igH C1

l
1

C2

l2
1

C3

l3
1•••J . ~47!

From the commutation relation~19! we know

@Cm ,Cn#50, m,n51,2,3, . . . . ~48!

In principle, we have freedom to choose a Hamiltonian fro
the conserved quantities$Cn%. In this paper, we define th
Hamiltonian as

H5C31 igC22
1

2
g2C1 . ~49!

For unit boundary conditionTn11(na,na)51, Eq.~49! leads
via Neumann expansion to11

H05(
s

E ]cs
†~x!

]x

]cs~x!

]x

12gE c↑
†~x!c↓

†~x!c↓~x!c↑~x!dx, ~50!

which is nothing but the Hamiltonian of a 1D electron g
with d-potential interactions. With the local orbitals, Eq.~49!
reads

H5H01HI , ~51!

where HI is very complicated, containing a hybridiza
tion term (n,kVn,kcs

†(k)X0,s
n 1H.c., a correlation term

(n,s,s8Us,s8cs
†(na)cs(na)Xs8,s8

n , and other irrelevant
.

terms that often appear in integrable impurity models.7 Com-
paring Eqs.~47! and ~46!, we easily obtain the spectrum o
the Hamiltonian to be given by

E5(
j 51

n

kj
2 . ~52!

III. ATTRACTIVE INTERACTION

We discuss first the attractive interaction, i.e.,g,0 case.
Without the local orbitals, the ground state is a Fermi s
filled by Cooper-pair-like bound pairs. Now from Eqs.~44!
and ~45!, we can show how the local levels behave in t
ground state. Carefully checking the Bethe ansatz equat
we find that the Cooper-pair states described by

ka
65la6

i

2
g ~53!

are still possible solutions in the thermodynamic limitL
→`, despite the existence of the local orbitals, wherela are
real. To study the stability of these pair states, we consid
reference state, i.e., all then electrons formn/2 pairs. In this
case, the Bethe ansatz equations are reduced to

e2ilaNaS la2 i ugu
la1 i ugu D

N

5 )
b51

n/2
la2lb2 i ugu
la2lb1 i ugu

, ~54!

and the energy of this state is given by

E5 (
a51

n/2

2la
22

ng2

4
. ~55!

Taking the logarithm of Eq.~54! we obtain

2la1
1

a
u~la!5

2pI a

L
1 (

b51

n/2

u~la2lb!, ~56!

whereu(x)52tan21(x/ugu) and I a are integers or half inte-
gers depending on the parity ofN2n/2. Notice that eachI a
corresponds to a pair state, and they must be different f
each other due to the exclusion principle. The minimum st
~with lowest energy! is thus described by a sequence
$I a%5$2(n/221)/2, . . . ,(n/221)/2%. In the thermody-
namic limit ~n /L finite!, the distribution ofla can be de-
scribed by a density function

r~la!5 lim
L→`

1

~la112la!L
, ~57!

which satisfies

r~l!5
1

p
1

1

a
f ~l!2E

2lF

lF
f ~l2l8!r~l8!dl8 ~58!

where the cutofflF is given by

E
2lF

lF
r~l!dl5

n

2L
, ~59!

and f (l)5ugu/p(l21g2). Without the local orbitals, the
density distribution ofl in the ground state takes the form
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r0~l!5
1

p
2E

2lF
0

lF
0

f ~l2l8!r0~l8!dl8, ~60!

E
2lF

0

lF
0

r0~l!dl5
n

2L
. ~61!

Comparing Eqs.~58! and ~60! we can readily read offlF

,lF
0 . That means the effective Fermi energy is reduced

the hybridization relative to that of the homogeneous syst
a typical heavy fermion behavior.2 Now we consider the den
sity of states at the Fermi surface. The energy density of
minimum state~relative to the chemical potential! can be
written as

E/L5E
2lF

lF S 2l22
g2

2
22m D r~l!dl, ~62!

wherem is the chemical potential. Substituting Eq.~58! into
Eq. ~62!, we obtain

E/L5E
2lF

lF F 1

p
1

1

a
f ~l!Ge~l!dl, ~63!

wheree(l) is the dressed energy13 of the Cooper pairs,

e~l!52l22
g2

2
22m2E

2lF

lF
f ~l2l8!e~l8!dl8.

~64!

Consider then a particle-hole excitation relative to the m
mum state. The density of the hole and that of the exc
particle can be expressed as

rh~l!5
1

L
d~l2lh!, rp~l!5

1

L
d~l2lp!, ~65!

wherelh andlp are the centers of the hole and the partic
respectively. In addition, such an excitation induces the b
flow of the Fermi sea, i.e.,dr(l). From the BAE we have

r~l!1dr~l!5
1

p
1

1

a
f ~l!1rh~l!2rp~l!2E f ~l2l8!

3@r~l8!1dr~l8!1rp~l8!2rh~l8!#dl8.

~66!

With Eq. ~58! we find

dr~l!5rh~l!2rp~l!1
1

L
@ f ~l2lp!2 f ~l2lh!#

2E
2lF

lF
f ~l2l8!dr~l8!dl8. ~67!

The excitation energy reads

dE5LE
2lF

lF
2l2dr~l!dl22lh

212lp
2 . ~68!

Substituting Eq.~67! into Eq. ~68! we readily obtain

dE5e~lp!2e~lh!. ~69!
y
,

e

-
d

,
k

Therefore,e(l) can be treated as the quasiparticle energy
the elementary excitations. The excitation of breaking a C
per pair can be treated in a similar manner. Such an exc
tion can be described by al hole in the Fermi sea and tw
real k modesk1 , k2 above the Fermi level. In this case, th
excitation energy is

dE52e~lh!22m1k1
21k2

21
g2

2
. ~70!

Notice that the dressed energy has the propertiese(6lF)
50, e(l),0 for ulu,lF and e(l).0 for ulu.lF . Con-
cerning the excitation near the Fermi surface, i.e.,lh→lF ,
k1

2 ,k2
2→m, from Eq. ~70! we readily obtain that there is

finite gapg2/2 to break a Cooper pair at the Fermi surfac
The energy gap seems not to be changed by the local o
als. The minimum state we introduced is thus the abso
ground state of the system for a givenn. From the BAE~56!
we see that the ‘‘quasiparticle’’~Cooper pair! momenta can
be defined asp(la)52pI a /L; then in our casep8(l)
52pr(l). The density of states at the Fermi surface is th

N~lF!5
1

p

dp~l!

de~l!
U

l5lF

5
2r~lF!

e8~lF!
[

1

pv
, ~71!

where v is the sound velocity.9,13,14 Since r(lF).r0(lF
0)

ande8(lF) is an increasing function oflF , as can be shown
from Eq. ~64!, we deduce that the density of states is e
larged by the local orbitals. This is not very strange beca
the Fermi sphere is compressed.

At present, we see that the local orbitals cannot dest
the Cooper-pair state completely. However, it is still n
clear whether the local orbitals weaken the pair correlation
enhance it. To answer this question, let us consider the s
ness constantK, which measures the nonuniversal expone
of a variety of correlation functions in one dimension.14 For
the integrable systems,K5Z2(l), and the dressed charg
function Z(l) ~Ref. 13! in our case satisfies

Z~l!512E
2lF

lF
f ~l2l8!Z~l8!dl8. ~72!

Notice that the local orbitals do not change the form ofZ(l)
but the value of the cutofflF . Easily we can show
dZ(l)/dlF,0, which meansZ(l) is a monotonically de-
creasing function oflF . The stiffness constantK is therefore
also monotonically decreasing withlF . As stated in earlier
publications,15 the gapless 1D quantum system is confo
mally invariant at zero temperature and the nonuniversal
ponents of the correlation functions can be derived from
finite-size corrections of the energy spectrum:16,13 dE
52pvxn /L, wherexn is the scaling dimension~one-half the
critical exponent! of the relevant operator. In our case, th
spin excitations have a finite gap while the charge excitati
are gapless. Therefore, the charge sector is conformally
variant at zero temperature and the asymptotic long-dista
superconducting correlators can be derived from the fin
size correction of the ground-state energy.13,14,16Notice the
pair operatorc↓

†(x)c↑
†(x) induces a pair-number change b
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one. The energy change induced by this operator can be
culated by following the standard method introduced in R
13 as

dE5En/211
g 2En/2

g 22m54
]m

]n
5

pv
2KL

, ~73!

whereEm
g is the ground-state energy withm Cooper pairs.

Hence, the pair correlator reads

^c↑~x!c↓~x!c↓
†~0!c↑

†~0!&;x2u,

u5 1/2K . ~74!

Sinceu,u0 ~whereu0 is the corresponding exponent of th
homogeneous system!, we conclude that the local orbital
enhance the superconducting correlations. To see
clearly, let us consider the tunneling of the Cooper pa
through an impurity. The leading tunneling current throu
the impurity is

J~x,y!;2 i @c↓
†~x!c↑

†~x!c↑~y!c↓~y!2H.c.#,

x;02, y;01, ~75!

where we have put the impurity at the origin. From t
boundary conformal field theory17 we have the time cor-
relator ofJ,

^@J~ t !,J~0!#&;t24u. ~76!

The tunneling conductance can be derived from the Kub
formula17 as

s~T!;T2K2122. ~77!

That means the local orbitals enhance the low-tempera
tunneling conductance, which provides another evidence
the enhancement of the superconducting correlation at
temperatures. The Drude weightD, which measures the per
sistent current in one dimension,18 can also be derived ex
actly for the present model:D5Kv. Thus we can deduce
that D is reduced by the local orbitals. That means the lo
orbitals suppress the persistent current.

IV. REPULSIVE INTERACTION

Now we turn to the repulsive case (g.0) where the
Hamiltonian defined in Eq.~49! is non-Hermitian. We re-
mark the study on non-Hermitian systems has drawn con
erable attention recently for the applications in a variety
physical situations such as delocalization in disorde
systems,19 quantum chaos,20 population biology in random
media with convection,21 and metal-insulator transition
driven by an imaginary vector potential.22 The spectrum of a
non-Hermitian Hamiltonian generally falls in the comple
plane.23 In our case, from the Bethe ansatz Eq.~44! we can
see that the solutions ofkj are classified into two types
~i! uf(kj )u51; ~ii ! uf(kj )uÞ1, where

f~k!5eika

k1
i

2
g

k2
i

2
g

. ~78!
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For the Hermitian Hamiltonian, case~i! represents the rea
modes and case~ii ! denotes the string solutions~Cooper
pairs in the present model!. Both of these two types of mode
lead to real eigenvalues of the Hamiltonian. Wheng.0 in
our case, the Hamiltonian contains a non-Hermitian hybr
ization term and a Hermitian term, which is nothing but t
Hamiltonian of the repulsived-potential Fermi gas.11 Even
for uf(k)u51, the Bethe ansatz equations have complex
lutions. A typical solution is the imaginary modek5 ik with
ka5 ln@uk1g/2u/uk2g/2u in the thermodynamic limit. An in-
teresting feature is that the Bethe ansatz equations a
Cooper-pair solutions. Foruf(kj )u.1, the left-hand side of
Eq. ~44! is divergent in the thermodynamic limit, while fo
uf(kj )u,1 it tends to zero. Therefore, the pair solutions~53!
are allowed. However, there is a constraint for the real p
of the pair solutions. The conditionuf(k)uÞ1 hints to

e2~g/2!aU11
ig

l U.1, ~79!

which gives the critical value of the real part of the pa
solutions as

lc5
g

Aega21
. ~80!

The Cooper pair solution can exist only in the region2lc
,l,lc . For the complex solutions in case~i!, uImku
.ugu/2 whenuReku,lc . Hence the ground state consists
these modes and there is no Cooper pair in the ground s
Even so, we can see the local orbitals do cause some
tuation towards the formation of Cooper pairs, since witho
these orbitals, the system does not have any bound sta
electrons.

V. CONCLUSION

In conclusion, we propose an integrable hybridizati
model for a 1D correlated electron system. We rema
though the local orbitals are introduced periodically, t
problem is still at the level of a single impurity since there
no correlation among the local states. In fact, the Bethe
satz Eqs.~44! and ~45! do not depend on the distribution o
the local orbitals in real space. This remains a shortcom
of integrable models with many impurities, since the imp
rities introduced in such a way are completely transparen
the host electrons; only the forward scattering is includ
Even so, a finite concentration of impurities enhances
superconducting correlation in our model. It seems that
result contradicts that of Ref. 8. The difference comes fr
~i! in our model, the binding energy is independent of t
momenta of the pairs while in the attractive Hubbard mod
it depends on the pair momenta (L in Ref. 8!; ~ii ! there is no
Eimp in the formal expression of the eigenenergy~52!, even
though the local orbitals change the distribution of$kj%; ~iii !
in our model, the density of electrons is not changed by
local orbitals. This corresponds to the hybridization config
rations of f 0
 f 1 for the local orbitals with a configuration
f 0 in the atomic limit. We remark that impurities with highe
spin and finite momenta can also be introduced in our mo
by a similar procedure. In this case, the spin momenta
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split into two classes. One associated with the pair states~53!
and the other representing the dynamics of the remain
spin degrees of freedom of the local orbitals. The latter
citations are always gapless as in the spin chains, and
spin excitations breaking a pair still have a finite gap.
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