58,135 research outputs found

    Improving Floating Search Feature Selection using Genetic Algorithm

    Get PDF
    Classification, a process for predicting the class of a given input data, is one of the most fundamental tasks in data mining. Classification performance is negatively affected by noisy data and therefore selecting features relevant to the problem is a critical step in classification, especially when applied to large datasets. In this article, a novel filter-based floating search technique for feature selection to select an optimal set of features for classification purposes is proposed. A genetic algorithm is employed to improve the quality of the features selected by the floating search method in each iteration. A criterion function is applied to select relevant and high-quality features that can improve classification accuracy. The proposed method was evaluated using 20 standard machine learning datasets of various size and complexity. The results show that the proposed method is effective in general across different classifiers and performs well in comparison with recently reported techniques. In addition, the application of the proposed method with support vector machine provides the best performance among the classifiers studied and outperformed previous researches with the majority of data sets

    Markov blanket: efficient strategy for feature subset selection method for high dimensionality microarray cancer datasets

    Get PDF
    Currently, feature subset selection methods are very important, especially in areas of application for which datasets with tens or hundreds of thousands of variables (genes) are available. Feature subset selection methods help us select a small number of variables out of thousands of genes in microarray datasets for a more accurate and balanced classification. Efficient gene selection can be considered as an easy computational hold of the subsequent classification task, and can give subset of gene set without the loss of classification performance. In classifying microarray data, the main objective of gene selection is to search for the genes while keeping the maximum amount of relevant information about the class and minimize classification errors. In this paper, explain the importance of feature subset selection methods in machine learning and data mining fields. Consequently, the analysis of microarray expression was used to check whether global biological differences underlie common pathological features in different types of cancer datasets and identify genes that might anticipate the clinical behavior of this disease. Using the feature subset selection model for gene expression contains large amounts of raw data that needs analyzing to obtain useful information for specific biological and medical applications. One way of finding relevant (and removing redundant ) genes is by using the Bayesian network based on the Markov blanket [1]. We present and compare the performance of the different approaches to feature (genes) subset selection methods based on Wrapper and Markov Blanket models for the five-microarray cancer datasets. The first way depends on the Memetic algorithms (MAs) used for the feature selection method. The second way uses MRMR (Minimum Redundant Maximum Relevant) for feature subset selection hybridized by genetic search optimization techniques and afterwards compares the Markov blanket model’s performance with the most common classical classification algorithms for the selected set of features. For the memetic algorithm, we present a comparison between two embedded approaches for feature subset selection which are the wrapper filter for feature selection algorithm (WFFSA) and Markov Blanket Embedded Genetic Algorithm (MBEGA). The memetic algorithm depends on genetic operators (crossover, mutation) and the dedicated local search procedure. For comparisons, we depend on two evaluations techniques for learning and testing data which are 10-Kfold cross validation and 30-Bootstraping. The results of the memetic algorithm clearly show MBEGA often outperforms WFFSA methods by yielding more significant differentiation among different microarray cancer datasets. In the second part of this paper, we focus mainly on MRMR for feature subset selection methods and the Bayesian network based on Markov blanket (MB) model that are useful for building a good predictor and defying the curse of dimensionality to improve prediction performance. These methods cover a wide range of concerns: providing a better definition of the objective function, feature construction, feature ranking, efficient search methods, and feature validity assessment methods as well as defining the relationships among attributes to make predictions. We present performance measures for some common (or classical) learning classification algorithms (Naive Bayes, Support vector machine [LiBSVM], K-nearest neighbor, and AdBoostM Ensampling) before and after using the MRMR method. We compare the Bayesian network classification algorithm based on the Markov Blanket model’s performance measure with the performance of these common classification algorithms. The result of performance measures for classification algorithm based on the Bayesian network of the Markov blanket model get higher accuracy rates than other types of classical classification algorithms for the cancer Microarray datasets. Bayesian networks clearly depend on relationships among attributes to make predictions. The Bayesian network based on the Markov blanket (MB) classification method of classifying variables provides all necessary information for predicting its value. In this paper, we recommend the Bayesian network based on the Markov blanket for learning and classification processing, which is highly effective and efficient on feature subset selection measures.Master of Science (MSc) in Computational Science

    New Multi-Label Correlation-Based Feature Selection Methods for Multi-Label Classification and Application in Bioinformatics

    Get PDF
    The very large dimensionality of real world datasets is a challenging problem for classification algorithms, since often many features are redundant or irrelevant for classification. In addition, a very large number of features leads to a high computational time for classification algorithms. Feature selection methods are used to deal with the large dimensionality of data by selecting a relevant feature subset according to an evaluation criterion. The vast majority of research on feature selection involves conventional single-label classification problems, where each instance is assigned a single class label; but there has been growing research on more complex multi-label classification problems, where each instance can be assigned multiple class labels. This thesis proposes three types of new Multi-Label Correlation-based Feature Selection (ML-CFS) methods, namely: (a) methods based on hill-climbing search, (b) methods that exploit biological knowledge (still using hill-climbing search), and (c) methods based on genetic algorithms as the search method. Firstly, we proposed three versions of ML-CFS methods based on hill climbing search. In essence, these ML-CFS versions extend the original CFS method by extending the merit function (which evaluates candidate feature subsets) to the multi-label classification scenario, as well as modifying the merit function in other ways. A conventional search strategy, hill-climbing, was used to explore the space of candidate solutions (candidate feature subsets) for those three versions of ML-CFS. These ML-CFS versions are described in detail in Chapter 4. \ud Secondly, in order to try to improve the performance of ML-CFS in cancer-related microarray gene expression datasets, we proposed three versions of the ML-CFS method that exploit biological knowledge. These ML-CFS versions are also based on hill-climbing search, but the merit function was modified in a way that favours the selection of genes (features) involved in pre-defined cancer-related pathways, as discussed in detail in Chapter 5. Lastly, we proposed two more sophisticated versions of ML-CFS based on Genetic Algorithms (rather than hill-climbing) as the search method. The first version of GA-based ML-CFS is based on a conventional single-objective GA, where there is only one objective to be optimized; while the second version of GA-based ML-CFS performs lexicographic multi-objective optimization, where there are two objectives to be optimized, as discussed in detail in Chapter 6. In this thesis, all proposed ML-CFS methods for multi-label classification problems were evaluated by measuring the predictive accuracies obtained by two well-known multi-label classification algorithms when using the selected features? namely: the Multi-Label K-Nearest neighbours (ML-kNN) algorithm and the Multi-Label Back Propagation Multi-Label Learning Neural Network (BPMLL) algorithm. In general, the results obtained by the best version of the proposed ML-CFS methods, namely a GA-based ML-CFS method, were competitive with the results of other multi-label feature selection methods and baseline approaches. More precisely, one of our GA-based methods achieved the second best predictive accuracy out of all methods being compared (both with ML-kNN and BPMLL used as classifiers), but there was no statistically significant difference between that GA-based ML-CFS and the best method in terms of predictive accuracy. In addition, in the experiment with ML-kNN (the most accurate) method selects about twice as many features as our GA-based ML-CFS; whilst in the experiments with BPMLL the most accurate method was a baseline method that does not perform any feature selection, and runs the classifier once (with all original features) for each of the many class labels, which is a very computationally expensive baseline approach. In summary, one of the proposed GA-based ML-CFS methods managed to achieve substantial data reduction, (selecting a smaller subset of relevant features) without a significant decrease in predictive accuracy with respect to the most accurate method

    A lexicographic multi-objective genetic algorithm for multi-label correlation-based feature selection

    Get PDF
    This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Multi-Label Correlation-based Feature Selection (LexGA-ML-CFS), which is an extension of the previous single-objective Genetic Algorithm for Multi-label Correlation-based Feature Selection (GA-ML-CFS). This extension uses a LexGA as a global search method for generating candidate feature subsets. In our experiments, we compare the results obtained by LexGA-ML-CFS with the results obtained by the original hill climbing-based ML-CFS, the single-objective GA-ML-CFS and a baseline Binary Relevance method, using ML-kNN as the multi-label classifier. The results from our experiments show that LexGA-ML-CFS improved predictive accuracy, by comparison with other methods, in some cases, but in general there was no statistically significant different between the results of LexGA-ML-CFS and other methods

    A new genetic algorithm for multi-label correlation-based feature selection.

    Get PDF
    This paper proposes a new Genetic Algorithm for Multi-Label Correlation-Based Feature Selection (GA-ML-CFS). This GA performs a global search in the space of candidate feature subset, in order to select a high-quality feature subset is used by a multi-label classification algorithm - in this work, the Multi-Label k-NN algorithm. We compare the results of GA-ML-CFS with the results of the previously proposed Hill-Climbing for Multi-Label Correlation-Based Feature Selection (HC-ML-CFS), across 10 multi-label datasets

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved
    • …
    corecore