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Abstract  

Currently, feature subset selection methods are very important, especially in areas of application for which 

datasets with tens or hundreds of thousands of variables (genes) are available. Feature subset selection 

methods help us select a small number of variables out of thousands of genes in microarray datasets for a 

more accurate and balanced classification.  

Efficient gene selection can be considered as an easy computational hold of the subsequent classification 

task, and can give subset of gene set without the loss of classification performance. In classifying 

microarray data, the main objective of gene selection is to search for the genes while keeping the maximum 

amount of relevant information about the class and minimize classification errors. In this paper, explain the 

importance of feature subset selection methods in machine learning and data mining fields. Consequently, 

the analysis of microarray expression was used to check whether global biological differences underlie 

common pathological features in different types of cancer datasets and identify genes that might anticipate 

the clinical behavior of this disease. Using the feature subset selection model for gene expression contains 

large amounts of raw data that needs analyzing to obtain useful information for specific biological and 

medical applications. One way of finding relevant (and removing redundant ) genes is by using the 

Bayesian network based on the Markov blanket [1].  We present and compare the performance of the 

different approaches to feature (genes) subset selection methods based on Wrapper and Markov Blanket 

models for the five-microarray cancer datasets. The first way depends on the Memetic algorithms (MAs) 

used for the feature selection method. The second way uses MRMR (Minimum Redundant Maximum 

Relevant) for feature subset selection hybridized by genetic search optimization techniques and afterwards 

compares the Markov blanket model’s performance with the most common classical classification 

algorithms for the selected set of features.  
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For the memetic algorithm, we present a comparison between two embedded approaches for feature subset 

selection which are the wrapper filter for feature selection algorithm (WFFSA) and Markov Blanket 

Embedded Genetic Algorithm (MBEGA). The memetic algorithm depends on genetic operators (crossover, 

mutation) and the dedicated local search procedure. For comparisons, we depend on two evaluations 

techniques for learning and testing data which are 10-Kfold cross validation and 30-Bootstraping.  The 

results of the memetic algorithm clearly show MBEGA often outperforms WFFSA methods by yielding 

more significant differentiation among different microarray cancer datasets. 

In the second part of this paper, we focus mainly on MRMR for feature subset selection methods and the 

Bayesian network based on Markov blanket (MB) model that are useful for building a good predictor and 

defying the curse of dimensionality to improve prediction performance. These methods cover a wide range 

of concerns: providing a better definition of the objective function, feature construction, feature ranking, 

efficient search methods, and feature validity assessment methods as well as defining the relationships 

among attributes to make predictions. 

We present performance measures for some common (or classical) learning classification algorithms (Naive 

Bayes, Support vector machine [LiBSVM], K-nearest neighbor, and AdBoostM Ensampling) before and 

after using the MRMR method. We compare the Bayesian network classification algorithm based on the 

Markov Blanket model’s performance measure with the performance of these common classification 

algorithms.  The result of performance measures for classification algorithm based on the Bayesian network 

of the Markov blanket model get higher accuracy rates than other types of classical classification algorithms 

for the cancer Microarray datasets. 

Bayesian networks clearly depend on relationships among attributes to make predictions.  The Bayesian 

network based on the Markov blanket (MB) classification method of classifying variables provides all 

necessary information for predicting its value. In this paper, we recommend the Bayesian network based on 
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the Markov blanket for learning and classification processing, which is highly effective and efficient on 

feature subset selection measures. 

 

Keywords 

Microarray datasets, feature selection methods, genetic algorithms, memetic algorithms, overfitting 

problem, fitness function, crossover, mutation, Markov Blanket, minimum redundancy-maximum relevant, 
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Chapter 1 

Introduction 

1.1 Introduction to machine learning  

Machine learning is a branch of artificial intelligence using a set of algorithms to build analytical 

models, help computers “learn,” and find patterns in data. It can be applied to high 

dimensionality data to create exciting new applications and more accurately predict outcomes 

without being explicitly programmed. Moreover, machine learning is said to allow learning 

whether performance on a defined task (or tasks) will improve with experience. More 

specifically, machine learning can modify algorithms and subsequently do the same task (or 

tasks) more efficiently [2, 3].  

In many cases, to improve the performance of learning algorithms in a supervised learning 

machine, feature subset selection is considered an underlying obstacle to defining the perfect 

model. Feature subset selection techniques help reduce noisy or irrelevant genes before applying 

the classification algorithm. Also, it improves the performance measure of learning classification 

algorithms[2]. 

1.2 Gene Expressions and Microarrays 

DNA microarray technology is a powerful new research tool capable of an expression level of one 

thousand to ten thousand genes, each representing a different gene in an organism. Microarrays are used 

to analyze the gene expression levels in two different populations of cells (e.g., to look at gene expression 

in plants grown under different conditions, to look at gene expression in normal cells vs. cancer cells). 

This is done by labeling cDNAs from two different groups of cells with two different dyes and 
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hybridizing them to the microarrays. Genes are “differentially regulated,” meaning all cells in an 

organism contain the same genes, but different genes are expressed (transcribed) in different tissues under 

different conditions. This gives different tissues their different phenotypes, or appearance and function. 

DNA microarray can measure gene sequencing expression, DNA transcription, and hybridization 

to analyze and identify thousands of genes simultaneously. Gene expression microarrays can be 

used to select which genes increase or decrease activities, also referred to as transcriptional 

profiles or gene expression “signatures” that have since established distinct tumor types. They 

also allow us to determine which genes are active in different cell states. Furthermore, studying 

and analyzing gene expression in normal and tumor tissues will help researchers identify genes 

or groups of genes expressed to understand gene regulation, genetic mechanisms of disease, and 

function as well as response to drug treatment [4]. We can obtain gene expression data by using 

high-throughput technologies such as microarray and oligonucleotide chips in different tissues. 

Raw microarray data are images which must be transformed into gene expression matrices (or 

tables) where the rows represent genes’ expression patterns, the columns represent various 

sample types such as tissues or experimental conditions, and each cell characterizes the particular 

gene’s measured expression level in a sample [5, 6]. When we have gene expression data, 

annotation can be added either to the gene or to the sample. For example, the gene’s function or 

additional details on the biology of the sample can be provided, such as “cancer state” or 

“normal state” [7]. There are two straightforward methods used to study the gene expression 

matrix: 

1. comparing gene expression profiles by comparing rows in the expression matrix; 

2. comparing sample expression profiles by comparing columns in the matrix. 

Additionally, by studying the gene expression matrix (data) we can look for similarities and 

differences between genes (or samples). If the two genes are similar, we can emphasize clues that 
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they are co-regulated and possibly functionally related. By comparing samples, we can find 

which genes are differentially expressed in different situations [8]. 

Moreover, due to the high dimensionality (curse dimensionality) of microarray datasets, they 

often contain many irrelevant and redundant features which increase the complexity of 

classification and influence the performance of most learning algorithms [9]. The main 

difficulties in DNA microarray classification are the availability of a very small number of 

instances (samples) in comparison with the number of genes (or attributes) in the sample and the 

experimental variation in measured gene expression levels[10]. The feature subset selection 

methods used on DNA microarray datasets are particularly interesting approaches since they 

allow removing irrelevant and redundant features (genes) from microarray datasets, which is the 

key problem addressed by feature subset selection methods [11]. Thus, the computational cost is 

reduced while the level of performance measures such as prediction accuracy is increased 

through using effective feature subset selection. Therefore, the task of removing  redundant / 

irrelevant features is a one of the most important aspects of machine learning and data mining 

techniques[2]. 

Existing feature selection methods mainly fall into two main categories, those individual (single) 

feature evaluation and subset feature evaluation methods, based on whether they evaluate the 

goodness of features individually or through feature subsets.  Methods of individual evaluation 

feature usually depend on some statistical measures are calculated for each feature, then a ranked 

feature list is provided in a predefined order of the statistic. The statistics used for individual 

feature selection include information gain, correlation coefficient, t-statistic, χ2-statistic and 

others. Based on those statistical measures, the rank features according to their importance in 

differentiating instances of different classes can be calculated and after that can only remove 

irrelevant features as redundant features likely have similar rankings. Methods of subset feature 
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evaluation methods search through candidate minimum subset of features that satisfies some 

goodness measure of each subset and can remove irrelevant features as well as redundant ones. 

For example, a correlation coefficient can be used to estimate the goodness of feature subsets 

based on the hypothesis that a good feature subset is one that contains features highly correlated 

to the class, yet uncorrelated to each other[11-13]. 

In machine learning field, the feature subset selection methods typically fall into two broad 

categories which are wrapper and filter methods. The wrapper methods use an inductive learning 

algorithm as the evaluation function while the filter method is used essentially as a data pre-

processing or data filtering method [9, 14, 15]. Many classification algorithms such as neural 

networks, support vector machines, ensample, and others have been used to perform 

classification and predictions of gene subset selection. Unfortunately, these classification 

techniques offer little insight into probabilistic reasoning[11].  

 

1.3 Motivation 

 

The limitations of existing research clearly inspired us to look for various methods of feature 

selection that allow efficient analysis and solve problems associated with high-dimensional data. 

The Bayesian network method provides an approach based on probabilistic reasoning which is 

used to measure the relationship among features making up the prediction and classification 

learning model [16]. The Bayesian network method based on the Markov blanket can be used as 

a tool to select features based on statistical information (probabilistic reasoning) and graphical 

model (DAG) [16, 17] . As a result, artificial intelligence and machine learning are concerning 

with Bayesian network which used in solving the problems of uncertainty in prediction and 

classification fields [18]. 



 
5 

 

Although several researchers have recommended to use a Markov blanket model as primary type 

for feature subset selection method to get a high-performance level of learning classification 

model [1, 9, 14, 15]. The research studies in this area are considered scarce and more research 

work is needed. For example, high dimensional data (i.e., data sets with hundreds or thousands of 

features) can contain high degree of irrelevant and redundant information which may greatly 

degrade the performance of learning algorithms. Therefore, feature selection becomes very 

necessary for machine learning tasks when facing high dimensional data nowadays. 

Consequently, using the Markov blanket model with other types of feature subset selection 

methods can prove and confirm its efficiency in reducing irrelevant and redundant features. 

Thus, the main purpose of this paper is presenting this innovative comparison.  

 This work contributes to the science literature by demonstrating the importance of the Bayesian 

network and Markov Blanket for feature subset selection and learning classification models. In 

addition to the Markov blanket model, we describe how maximum relevance minimum 

redundancy (MRMR) can be used as a feature subset selection method hybridized with a genetic 

algorithm as a search optimization tool to build high quality and effective learning classification 

algorithms; the search for optimal features is considered another key problem of feature subset 

selection methods [11]. Feature subset selection based on MRMR methods use feature ranking 

and correlation coefficients as a principal selection mechanism because it is very simple and 

significant features are accessible [19]. The main reasons we are concerned about feature subset 

selection methods are listed briefly as follows: 

1. It is cheaper to measure only a set of variables instead of all features. 

2. The prediction accuracy level might be improved through exclusion of irrelevant 

variables. 
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3. The predictor to be built is usually simpler and potentially faster when less input 

variables are used. 

4. Identifying relevant and removing irrelevant features can help us understand the nature of 

the prediction problem at hand [20]. 

1.4 Organization 

The thesis is organized as follows. In Chapter 2, we present a literature review, including 

previous research on microarray classification algorithms and feature subset selection methods. 

In Chapter 3, we focus on the Bayesian network approach and Markov Blanket model. In 

Chapter 4, we present the methodology and experimental results of our approach on five DNA 

Cancer microarray datasets and compare them with existing methods covered in Chapter 3. In 

Chapter 5, we show the datasets and evaluation learning models. In Chapter 6, we present and 

discuss the results, followed by the conclusion and references. 
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Chapter 2 

Literature Review 

Supervised learning is a machine learning process based on a classification task (data analysis) 

which takes a known input data (the training set) and known response of the data (output), where 

a model (classifier) learns or is built to predict and assign the class (categorical or discrete, e.g., 

normal or tumor tissue in cancer datasets) label to an unknown observation or sample. So each 

classification technique depends on a learning algorithm to detect a model that can be considered 

a best fit for the relationship between the subset features and class label of the input data [2, 21, 

22]. In contrast, for the unsupervised learning problem, the class label information is not known 

and we observe only the features and have no measurements of the outcome [22, 23].  In 

unsupervised learning, a machine must decide which features should be grouped together as one 

class based on specific criteria. Clustering, or cluster analysis, is the process of grouping a set of 

data cases into groups by which the cases in each group are very similar to each other and 

different from the cases in other groups [22] . This study is concerned with a supervised learning 

machine and in the following sections we explain some of the most common classification 

algorithms.  

2.1 The Naïve Bayes Classifier 

Naive Bayes is a simple statistical classifier but it is considered a powerful algorithm for 

predictive modeling [22]. It assigns each observation, also known as a tuble, to the most likely 

class based on its predictor values. The Naive Bayes classifier is obtained by using the Bayes 

rule and assuming features (variables) that are independent of each other given its class. This 
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assumption is called class-conditional independence. The following equation shows the naive 

Bayes rule which assumes feature values are statistically independent within each class. 

   𝐏(𝐂 |𝐗)  =    
𝑷(𝑿|𝐂)  𝐏(𝐂)

𝑷(𝑿)
 

 P(c|x) is the posterior probability of a class (c, target) given a predictor (x, attributes). 

 P(c) is the prior probability of class. 

 P(x|c) is the likelihood, which is the probability of a predictor given its class. 

 P(x) is the prior probability of a predictor. 

From the previous equation, we can see the Naïve Bayes classifier deals with different types of 

probabilities:  

- Class probabilities, and  

- Conditional probabilities.  

Conditional probability means for each distinct parent node values, we need to specify the 

probability that the child will take each of its values. 

The Naïve Bayes rule’s core task is finding the probability of the previously unseen instance 

belonging to each class, then simply pick the most probable class. The Naïve Bayes classifier has 

been shown to perform well when classifying many real data sets in the machine learning field 

[2, 22]. 
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2.2 Support Vector Machine (SVM) 

A support vector machine (SVM) is another type of learning system which is a relatively 

promising classification method [24]. It is a margin classifier that draws an optimal hyperplane 

in the feature vector space; this defines a boundary that maximizes the margin between data 

samples in two classes, therefore leading to good generalization properties. A key factor in the 

SVM is using kernels to construct a nonlinear decision boundary (i.e. separating the tuples of one 

class from another) [22]. In this paper, we will use a linear kernels SVM.  

 

2.2.1 SVM Notations and terminology:  

In general, an SVM is a linear learning system that builds two-class classifiers. Let the set of 

training examples D be {(x1, y1), (x2, y2), …, (xn, yn)}, where the xi = (xi1, xi2, …, xir) is a r-

dimensional input vector in a real-valued space X 
r
, and yi is its class label (output value) 

and yi {1, -1}z. Where 1 denotes the positive class and -1 denotes the negative class. 

Similarly, each data instance is called an input vector and denoted by a bold face letter. In the 
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following, we use bold face letters for all vectors. To build a classifier, a SVM finds a linear 

function of the form 

        f(x) = w .x+ b                                     (1) 

so, an input vector xi is assigned to the positive class if f(xi) ≥ 0, and to the negative class 

otherwise, i.e. 

 

𝐟(𝐱) = {
−1   if  (𝐖. 𝐗𝐢) + 𝐛 < 0
1   if  (𝐖. 𝐗𝐢) + 𝐛 ≥ 0

                     ( 2) 

 

Hence, f(x) is a real-valued function f :  X 
r
.   w = (w1, w2, …, wr) 

r
 is called the 

weight vector. The b  is called the bias. (w.x ) is the dot product of w and x (or Euclidean 

inner product). We can easily extend the equation (1) to the r-dimensional setting as follows: 

f(x1, x2, …, xr) = w1 . x1+ w2 . x2 + … + wr . xr + b     (3) 

Substantially, an SVM is a discriminative classifier that works as follows. It uses nonlinear 

mapping to transform the original training data into a higher dimension. Within this new 

dimension, it searches for the linear optimal separating hyperplane (i.e., a “decision boundary” 

or “decision surface“ separating the tuples of one class from another and is used to make 

classification decisions on test instances) [21, 22, 25]. 
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2.2.2 Define the optimal hyperplane  

 

In an SVM, there are an infinite number of lines (decision boundaries) that offer a classification 

of the problem (see figure2). How can we choose the best one? We can depend on a criterion to 

estimate the best lines. A line is bad if it passes too close to the points because it will be noise 

sensitive and it will not generalize correctly. Therefore, an SVM’s goal should be binding the 

line (hyperplane) passing as far as possible from all points, which maximizes the margin between 

positive and negative data points, as seen in Figure 1 [22, 25].  

2.2.3 Linear Separable of SVM:  
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An SVM algorithm attempts to maximize the margin between positive and negative data points, 

let us find the margin. Let d+ (respectively d) be the shortest distance from the separating 

hyperplane ((w . x) + b = 0) to the closest positive (negative) data point. The margin of the 

separating hyperplane is (d+ (+) d-). An SVM looks for the separating hyperplane with the 

largest margin, which is also called the maximal margin hyperplane (also known as the maximal 

margin hyperplane), as the final decision boundary. The reason for choosing this hyperplane to 

be the decision boundary is theoretical results from structural risk minimization in computational 

learning theory show that maximizing the margin minimizes the upper boundary of classification 

errors. 

Note: Observations that lie directly on the margin, or on the wrong side of the margin for their 

class, are known as support vectors. These observations do affect the support vector classifier. 

The optimal hyperplane can be represented in an infinite number of different ways by 

scaling w and b. As a matter of convention, among all the possible representations of the two 

parallel hyperplanes (they are chosen parallel to the (w. x) + b = 0) 

( w . x )  

( w . x) -1  

From linear algebra, let us compute the distance between the two margin hyperplanes (d+ (+) d-). 

Depending on the Euclidean distance from a point xi (w . x) + b = 0 is 

|(𝑤. 𝑋𝑖)  + 𝑏 |

||w||
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where ||w|| is the Euclidean norm of w, so the ||w ||=√(𝐰. 𝐰). 

Next, we use the result of geometry that gives the distance between a point +(or d+) and a 

hyperplane (w. x) + b = 0 (for example xs to  w x+)+ b = 1 ): 

d+= 
|(w.xs) +b −1|

||w||
     =  

1

||w||
 

Likewise, we can compute the distance from xs to (< w. x > + b = -1)to obtain ( d- = 1/ ||w||). 

Thus, the decision boundary (( w. x ) + b = 0) lies half-way between  (( w. x )> + b = +1 ) and (( 

w. x  ) + b = -1). Therefore, we can denote the margin distance as ℳ  , is twice the distance to the 

closest examples.  

ℳ = d+  +  d-    = 
𝟐

||𝐰||
 

Because an SVM looks for the separating hyperplane that maximizes the margin, this gives us an 

optimization problem since maximizing the margin is the same as minimizing ||w||
2
/2 = (w.w)/2. 

Definition (Linear SVM: Separable Case): Given a set of linearly separable training examples, 

D = {(x1, y1), (x2, y2), …, (xn, yn)}, the learning process is used to solve the following 

constrained minimization problem: 

Minimize :   <w.w>/2 

Subject to : yi ((w .  xi)  + b)i n 
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Note that the constraint (yi ( (w . xi  )+b) i n  )  summarizes as :  

((w . xi)  

( ( w . i ) -1              for yi = -1. 

Since the objective function is quadratic and convex and the constraints are linear in the 

parameters w and b, we can use the standard Lagrange multiplier method to solve it. 

Instead of optimizing only the objective function, which is called unconstrained optimization, we 

need to optimize the Lagrangian of the problem, which considers the constraints at the same 

time. The need to consider constraints is obvious because they restrict the feasible solutions. 

Since our inequality constraints are expressed using “ 

constraints multiplied by positive Lagrange multipliers and subtracted from the objective 

function, i.e. 

Lp= 
𝟏

𝟐
  <w.w>  - ∑ 𝜶𝒊 (𝒚𝒊  ( < 𝒘. 𝑿𝒊 >  +𝒃 ) − 𝟏 )𝒏

𝒊=𝟏  

Where αi are the Lagrange multipliers. 

The yi represents each of the labels from the training examples. This is a problem of Lagrangian 

optimization that can be solved using Lagrange multipliers to obtain the weight vector w and 

bias b of the optimal hyperplane. Based on optimization theory that says an optimal solution to 

(Lp) must satisfy certain conditions, called Kuhn–Tucker conditions, which play a central role in 

constrained optimization. Only data points on the margin hyperplanes can have 𝜶𝒊  > 0 since for 

them yi(<w. xi>  – 1 = 0. These data points are called support vectors; all the other data 

points have  In general, Kuhn–Tucker conditions are necessary for an optimal solution, but 
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not sufficient. However, for our minimization problem with a convex objective function and a set 

of linear constraints, the Kuhn–Tucker conditions are both necessary and sufficient for an 

optimal solution. Solving the optimization problem is still a difficult task due to the inequality 

constraints. However, the Lagrangian treatment of the convex optimization problem leads to an 

alternative dual formulation of the problem, which is easier to solve than the original problem, 

also called the primal problem (LP is called the primal Lagrangian). The concept of duality is 

widely used in the optimization literature. The aim is to provide an alternative formulation of the 

problem which is more convenient to solve computationally and/or has some theoretical 

significance. 

In the context of an SVM, the dual problem is not only easy to solve computationally, but also 

crucial for using kernel functions to deal with nonlinear decision boundaries as we do not need to 

compute w explicitly. Transforming from the primal to its corresponding dual can be done by 

setting to zero the partial derivatives of the Lagrangian (Lp= 
1

2
  <w.w>  - ∑ 𝛼𝑖 (𝑦𝑖  ((𝑤. 𝑋𝑖)  +𝑛

𝑖=1

𝑏 ) − 1 ) ) with respect to the primal variables (i.e. w and b), and substituting the resulting 

relations back into the Lagrangian into the original Lagrangian equation to eliminate the primal 

variables, which gives us the dual objective function (denoted by LD) 

LD = ∑ 𝜶𝒊 𝒏
𝒊=𝟏  -  

𝟏

𝟐
   ∑ 𝒚𝒊 𝒚𝒋 𝜶𝒊 𝜶𝒋𝒏

𝒊,𝒋=𝟏   K(xi.xj )  ; 

Subject to:   ∑ 𝒚𝒊 𝜶𝒊 = 𝟎𝒏
𝒊=𝟏    ,   𝜶𝒊 >=0 

For our convex objective function and linear constraints of the primal, it has the property that the 

i’s at the maximum of LD gives w and b occurring at the minimum of LP (the primal). In the 

above formula K(xi, xj) is the kernel function. Although and SVM can handle nonlinear 
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boundaries with the kernel tricks, studies show that a linear kernel suits the text categorization 

problem well, and that polynomial and RBF kernels do not improve the performance 

significantly. Therefore, we stick to the simple linear kernel K(xi, xj) = xi・xj in this study[2, 

21]. 

2.3 K-Nearest Neighbor Learning 

In the K-nearest neighbor method (k-NN), no learning model occurs from training data. Learning 

only occurs when a test model (example) needs to be classified. A k-NN classification algorithm 

is one of the simplest classification methods [21, 26]; it assigns a class label according to 

similarity (proximity) or distance. The basic idea of this classification method is as follows: the 

closest point (feature or neighbor) of the training test instance (feature vector of gene expression 

levels) in the training dataset determines class membership of this test instance [21, 22]. In cases 

where the k-NN classification method depends on a similarity measure on gene expression 

levels, then we depend on Pearson correlation coefficients as a metric measure of similarity 

between genes. The Pearson’s correlation coefficient has been proven effective and is widely 

used as a similarity measure for gene expression level [11].  

 

Let us simplify the person correlation coefficient (1 - R-correlation coefficient). So, the R-

coefficient is (see Figure 4). To explain this equation, we have a set of n instances (𝑥i , 𝑦i ),  

R(i ) =    ∑  (𝒏
𝒌=𝟏  xk,i - x ̅)2  * ( yk -  ȳ  )2            .

  
    

 

                √ (  ∑  𝒏
𝒌=𝟏  (xk,i - x̅ )

2
)   √  ( ∑  𝒏

𝒌=𝟏  (yk- ȳ )
2  ) 

Figure 4: R-correlation coefficient   
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where (i = 1,..n) and we have m inputs (known) 𝑥𝑘,𝑖 (i = 1,..m) and one output (unknown class 

label) 𝑦𝑐 attribute. Attribute ranking for the Pearson’s correlation coefficient makes use of a 

scoring function R(i) computed from the values 𝑥𝑘,𝑖 and 𝑦𝑘, (k = 1,..m). Based on these ranking 

scores, the k-NN classifier let them weighted voting on the correct class for the test point, where 

weights reflect priors and cost [2, 22].  Moreover, using the correlation coefficient method as an 

attribute weighting criterion enforces a weighting according to goodness of linear fit of 

individual attributes. Then, each attribute is tested individually, and its value is calculated by 

computing with the class attribute. 

The k-NN classification algorithm, when given an unknown instance (tuple or record), is looking 

for the most common class among its k-nearest neighbors. Moreover, a k-NN classifier searches 

in the pattern space for the k training examples that are nearest to the unknown example. These k 

training tuples are the k “nearest neighbors” of the unknown example. Sometimes the term 

“closeness” is defined in terms of a distance metric, for example, Euclidean distance. The 

Euclidean distance between two points or tuples is D(X,Y)=√ ∑ (𝒙𝒊 − 𝒚𝒊)𝒌
𝒊=𝟏  

2
   . Sometimes, we 

need to normalize the values of each attribute before using the Euclidean distance (D(X,Y)) 

equation to prevent attributes with initially large values from outweighing attributes with initially 

smaller values (e.g., binary attributes).  For example, min-max normalization can be used to 

transform a value v of a numeric attribute A to V`  in the range [0, 1] by computing 

V`=
𝑉− 𝑀𝑖𝑛 (𝐴)

𝑀𝑎𝑥(𝐴)−𝑀𝑖𝑛(𝐴)
  where Min(A) and Max(A) are the minimum and maximum values of 

attribute A. The min-max normalization (encoding) schemes are applied to obtain a reduced or 

“compressed” representation of the original data. The cost of having this bounded range is we 

will end up with smaller standard deviations, which can suppress the effect of outliers. 
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Moreover, the data should be normalized or standardized to help avoid dependence on the choice 

of measurement units. Normalizing the data attempts to give all attributes an equal weight. 

Normalization is particularly useful for classification algorithms involving neural networks or 

distance measurements such as nearest-neighbor classification and clustering. Normalizing the 

input values for each attribute measured in the training tuples will help speed the learning phase. 

For distance-based methods, normalization helps prevent attributes with initially large ranges 

(e.g., income) from outweighing attributes with initially smaller ranges (e.g., binary attributes). It 

is also useful when given no prior knowledge of the data [22]. 

The k-NN can be used to predict a numeric value, meaning it can return a real-valued prediction 

for a given unknown tuple. In this case, the k-NN classifier will return the average value of the 

real-valued labels (classes) associated with the k-NN of the unknown tuple [22]. As stated 

previously, the k-NN classification method calculates the distance (many types of distance) between the 

attributes of new and previous examples to determine the class. Therefore, the term “distance” can be 

used based on the entire data. But how we can define the distance for those attributes that are not numeric 

values (categorical) such as tumor tissue or normal tissue in cancer datasets?  Consequently, different 

types of data require different methods for finding out the distance. For example, nominal (categorical) 

attributes only differ regarding whether they are identical or not (=, ≠). For ordinal attributes with ordered 

values, we cannot compute the distance between them (e.g.,  tall, medium, and short for an individual's 

height) and the difference cannot give an exact number, so we can only apply >,<,=,≠ to them [22, 27].  

However, the Euclidean distance is the most popular distance measure function; we have different types 

of distance functions that are used to get a good learning system.  



 
19 

 

2.3.1 Distance function  

We can mention some of the most common distance functions for the two inputs of x and y 

tuples, and n is the number of attributes [22, 27]:   

- Manhattan (or city block) distance is defined as  

 D(X,Y)= ∑  𝒏
𝒊=𝟏 | Xi -Yi|  

- Minkowski h-distance is a generalization of the Euclidean and Manhattan distances) is 

defined as 

D(X,Y)= √∑  𝒏
𝒊=𝟏 (𝐗𝐢 − 𝐘𝐢)𝒉

 
h
 , where h is a real number such that h =1 (which is the 

Manhattan distance) or h=2 (which is the Euclidean distance). The larger value of h has 

the effect of giving greater weight to the attributes on which the objects differ most. 

- weighted Euclidean distance (if each attribute is assigned a weight based on its 

importance) is defined as  

D(X,Y)= √∑ 𝑾𝒊 |𝑿𝒊 − 𝒀𝒊|𝒏
𝒊=𝟏

2
      

- chi-square distance function is defined as 

D(X,Y)=∑
𝟏

𝒔𝒖𝒎(𝒊)

𝒏
𝒊=𝟏  (  

𝑿𝒊

𝒔𝒊𝒛𝒆(𝑿)
   - 

𝒀𝒊

𝒔𝒊𝒛𝒆(𝒀)
  )

2
     

- Cosine Similarity (Sim(X,Y)), is defined as :  

Sim(X,Y)= 
𝑿.𝒀

||𝑿|| .  ||𝒀||
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2.3.2 The k and overfitting problem  

The k-NN rule is usually used, and it assigns an instance to the class which is represented mostly 

by its k neighbors using a pre-determined distance function. The k can be any number of its 

neighbors, k= 1, 2, 3, 4,…,n, where n is the number of cases. The results of the K-NN algorithm 

depend on what values are used in its computation. The value k is the number of neighbors that 

will decide the class of the element in the classification process. 

The next question to ask is how to choose the value number of k in the k-NN classifier method to 

avoid an overfitting problem. The problem of overfitting is considered a fundamental problem in 

supervised machine learning, which means the classification method learns from the training 

examples ‘too well’ (over-trained classifier) so it does not perform as well when it is used with 

data unlike the examples. In the case of a bioinformatics domain, the goal is to induce the 

relationship between the symptoms and their corresponding diagnosis. It is an error to put the 

patient ID number as a variable selection in DNA microarray cancer datasets, so if by mistake 

this happens, then the classification and prediction process may conclude the illness is 

determined by the ID number [21]. However, we use k for a test set to estimate the error rate of 

the classifier. So k can be determined by experiments because it is a hyperparameter of a k-NN 

classifier that allows us to balance between overfitting (small value of k) and underfitting (large 

value of k). For example, using k=1 when beginning the classification process and then 

determining the error rate. This process can be repeated each time by incrementing k to allow for 

one more neighbor. The k value returning the lowest error rate may be selected. In  general, if we 

have a larger number of training instances, then we need a larger value of k (so using 

different k values are likely to produce different classification results) [22]. 
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2.4 Ensemble of Classifiers 

Ensemble methods have been increasingly applied to bioinformatics problems in dealing with 

small sample size, high-dimensionality, and complexity in data structures [28]. We can build 

many classifiers by combining them to produce a better classifier, so many classifiers are built 

and the final classification decision for each test instance is made based on some forms of voting 

of the committee of classifiers. Therefore, ensemble learning methods are used for training 

example classifiers on different datasets by using a resampling process for a common training set 

such as bagging and boosting methods[21]. 

The boosting ensemble (AdaBoost - Adaptive Boosting) classification method manipulates 

training examples and produces multiple classifiers to improve classification accuracy [28, 29]. 

The AdaBoosting method constructs a good classifier by using repeated calls of weak learning 

procedures. It was initially developed as a method for constructing good classifiers by repeated 

calls to “weak” learning procedures [21, 29].  In general, the idea of a boosting classifier depends 

on a rule (classifier or base learner). AdaBoosting apply this base learner algorithm with a 

different distribution(threshold) and assign equal weight to each observation. Each time base 

learning algorithm is applied, it generates a new weak prediction rule. This is an iterative 

process. After many iterations, the boosting algorithm combines these weak rules into a single 

strong prediction rule (with smallest error) [26, 29]. 

 Initially, the AdaBoost ensemble learning method constructs new training examples and gives 

them a weight. Then AdaBoost classifier invokes the base learner (rule) on the re-weighting 

training dataset and obtains a new classifier (for example ft). Afterwards the process of re-

weighting is iterated. Thus, the algorithm builds a sequence of k classifiers and the k is usually 

defined by the user. The following is a popular pseudo code for an AdaBoosting algorithm [30]. 
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function adaboost(dataset d, lable y, base learner :decision stump , k) 
begin  
%initialize the weights 
initialize d1(wi)=1/n for all i ; 
for t=1 to k do 
% build a new classifier ft 
ft=base learner(Dt); 
% now compute the error of ft 
et=∑ 𝐷𝑡(𝑤𝑖) 

𝑖:𝑓(𝐷𝑡(𝑋𝑖))<>𝑌𝑖  ; 

if et>0.5       % the error is too large 
%remove the iteration and exit 
k=k-1 ; 
exit loop; 
else 
βt=et/(1-et) ; 
%update the weights 

Dt+1(wi)=  Dt(wi) * {
𝛽𝑡        𝑖𝑓 𝑓𝑡(𝐷𝑡(𝑋𝑖)) = 𝑌𝑖 

1              𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒              
 

% now normalize the weight 

Dt+1(wi)=
Dt+1 (wi ) 

∑ 𝐷𝑡+1 (𝑤𝑖)𝑛
𝑖=1

 

End if 
End for 

Ffinal (x)=argmax yϵY    ∑ log
1

𝛽𝑡

 
𝑡:𝑓𝑡(𝑥)=𝑦  

End  

 

From the previous algorithm, we can divide this algorithm into a training and testing phase. In 

the training phase, each classifier is dependent on the previous one and focuses on the previous 

one’s errors. Training examples that are incorrectly classified by the previous classifiers are 

given higher weights. Each iteration builds a new classifier ft . The error of ft is calculated (et). If 

et it is too large (greater than 50%), delete the iteration and exit. Then we use the updated and 

normalized weights for building the next classifier (AdaBoost assigns a weight to each training 

example). Testing each stage, each classifier is combined to determine the final class of the test 

case (Ffinal (x) ). Therefore, the AdaBoost ensemble method can be considered a meta-algorithm 
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which can be used in combination with many other learning algorithms to improve their 

performance [30]. 

2.5 Bayesian Network (BN)  

The Bayesian Network plays an increasingly important role in designing models and data 

analysis in the machine learning field because it is used to solve a problem of uncertainty and 

complexity in learning models [31]. BN is a graphical model based on probability (joint 

probability) and graph theory (directed acyclic graph [DAG]) which differs from the naïve 

Bayesian classifier by allowing the representation of dependencies (conditional 

independencies) among subsets of and attribute [22]. The idea of a BNs graph model (DAG) is 

used to show the collection of events and their influence on each other (graphical representation 

of [or conditional] independence relationships in a joint distribution). Each node in the DAG 

represents a random variable, where each arc represents a probabilistic dependence. However, 

probability theory is used to provide a way for a learning model to inference the new data by 

giving a description of how the variables are related to each other[22, 32]. 

 In this context, this leads to techniques for learning causal relationships from data, for example, 

suppose there is an arc from node A to node B ( A  ⇒   B), indicating A (or a hidden variable) 

causes  B, which means a causal relationships between  A and B , and this helps the feature 

subset selection methods solve a prediction problem based on training data [32]. In the Figure (5) 

example, the arrows correspond with causal links between variables (i.e. smoking status or 

family history – causes Leukemia cancer). So, Bayesian networks are particularly fit for 

representing domains where there are causal relationships to predicate a consequence of giving 

actions. It is useful to think of causal relationships when we try to build a Bayesian network that 
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represent a problem. However, in causal structure learning, we are interested in graphically 

representing conditional dependencies found in the data.    

 

2.5.1 Joint probability and conditional independence 

A BN uses a conditional independence table for each random variable. Suppose A and B are 

conditionally independent given a set of random variables C, denoted as A ⊥ B| C, if P(A,B| C) = 

P(A| C)P(B| C), for all assignments of values to A, B, and C. If C is the empty set, then A and B 

are independent, denoted as A ⊥ B   [23].  We can say the simplest conditional independence 

relationship is used in a BN, which can be stated as follows:  
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Based on DAG in Figure 6, any node is considered independent of its ancestors given its parents, 

where the ancestor/parent relationship is with respect to some fixed topological ordering of the 

nodes. Therefore, the joint probability (chain rule of probability) of all the nodes in the graph is 

P(A, B, C, D) = P(A) * P(B|A) * P(C|A,B) * P(D|A,B,C) 

We can write this equation in its general form as  

P(X1,….,Xn) =∏ 𝒑(𝒙𝒊𝒏
𝒊=𝟏 | 𝐩𝐚𝐫𝐞𝐧𝐭𝐬(𝐗𝐢), This form is called general factorization. 

By using conditional independence relationships, we can rewrite this as 

P(A,B,C,D) = P(A)* P(B|A) * P(C| A) * P(D|B,C)  

To simplify conditional independence, let us take part of the probabilistic graphical models from 

Figure 6-(A, B,C) and assume the hypothesis of independence H : B ⫫ C|A is true, and it means  

variable B has a conditional independence with C given A. Then the conditional independencies 

for this part of the graph model is  
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P(B,C |A) = P(B|A) P(C|A) 

We can see that the conditional independence relationships allow us to represent the joint 

probability more compactly. The BN depends on the graphical model to define the probabilistic 

independence relationship (casual induce) among the variables and represents the joint 

probability distribution factorized in terms of the graph model [31, 33]. 

2.5.2 V-structure  

The most important concept in DAGs is the V-structure, which denotes a variable having 

two parents which are not connected by an edge. In Figure 3, for example, nodes B, C, and D 

implement the V-structure.  

2.5.3 D-separation  

In a DAG, independence is encoded by the relation d-separation, and we can define it as  

A ⊥ B | C  ⇔  A d-separated from B by C  

D-separation means that knowing the value of A is d-separated from B by C if all the paths 

between sets A and B are blocked by elements of C, and vice versa [34, 35].  

 A C B 
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Chapter 3 

Feature selection methods  

3.1 Goals of feature selection 

Machine learning and data mining techniques deal with extremely massive datasets. These data 

can suffer from high dimensionality (many features and instances), which affects the 

performance (usually the accuracy) of classification due to noisy irrelevant and redundant 

features. In this case, when the dataset is very large, many learning algorithms are simply 

intractable and time consuming. Moreover, this causes the classification algorithm to overfit the 

training dataset which confuses the learning process. Consequently, the demand of an efficient 

algorithm for feature subset selection techniques is increased to get the optimal (minimal) 

features subset selection. These optimal features selections can be fed into the classifier to help 

reduce the induction time, thereby increasing predicative accuracy and reducing the learning 

process’ complexity [1, 11]. Furthermore, feature subset selection methods can be used as data 

understanding to identify factors relevant to the target [32]. 

3.2 Feature selection categories  

Feature subset selection methods typically fall into two approaches, feature ranking and subset 

evaluation method. Feature ranking is a method of ranking all features depending on their 

importance in a set of different samples of different class labels. Features which do not get an 

adequate score and have similar rankings can be removed and considered irrelevant and 

redundant features. Specifically, this approach depends on selecting the most relevant features 

where usually relevance does not imply optimality[11, 15, 31]. The method of subset evaluation 
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method is performed by searching in the space of possible feature subsets for an optimal subset 

based on some criterion (objective function) and goodness measure. This method can remove 

irrelevant features as well as redundant ones[19, 31].  

Essentially, Feature subset selection methods can be classified into two methods based on 

whether the feature subset selection method is using learning algorithm or not (based on some 

statistical measurements). So we can  divided the feature subset selection method into filters and 

wrappers methods[11, 32].:  

Filter method: this method does not have an induction algorithm, which means feature selection 

is done independently of the learning algorithm (filters work independent of the chosen 

classifier).  Filter method use statistical properties to define the scores of feature relevance, and 

those of high-scoring features are selected as inputs to the classifier after removing low-scoring 

ones. This method can be used as a preprocessing step, and is considered computationally more 

efficient to scale a high-dimensional dataset. However, the drawbacks of this method is an 

optimal subset of variables will be dependent on the learning algorithm’s representational biases 

used to build the classifier. This means it contributes less information and estimates each feature’s 

relevance independently (separately) from others, which may lead to a lower classification 

performance when compared to other types of feature selection techniques [11, 14, 17]. 

Wrapper method: this method uses an induction(classification) algorithm to evaluate the score of 

a possible features subset regarding to their predictive power. This method evaluates each subset 

feature through a specific classification learner algorithm to measure the goodness of feature 

subset in determining an optimal one. In general, the wrapper method consists in using the 

prediction performance of a given learning machine to evaluate the relative goodness of subsets of 

features. The evaluation process in wrapper method is obtained by training and testing a specific 

classification model. Therefore, the wrapper method evaluates and selects subset of features based 
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on accuracy level which are estimated by the target classification algorithm. Using a certain 

classification algorithm, wrapper method basically searches the feature space by omitting some 

subset of features and testing the impact of subset of feature omission on the classification 

algorithm performance. The subset of features that make significant difference in learning process 

implies it does matter and should be considered as good subset features. So, in the search space, 

the search algorithm is defined to be “wrapped” around the classification model [14, 15, 17, 36]. 

Many studies have found that the wrapper method provides a better solution than the filter 

method because it uses a classification algorithm for evaluation in the subset feature selection 

process.  As a result of wrapper method can be more computationally intensive because training 

model and cross-validation must be repeated over each feature subset, and the outcome is 

assessed to a particular model. Accordingly, sometimes become so costly as to be impractical 

without pre-reduction of the search space with a filter method[37].  

The wrapper method depends on different types of search techniques like a greedy search for 

forward feature selection (or backward feature elimination) or stochastic search like genetic 

algorithms (GA). In the forward feature selection example, it is an iterative method in which we 

start with an empty feature subset in the model and in each iteration, we keep adding the feature 

which best improves our model until an addition of a new variable does not improve the 

performance of the model. However, in the backward elimination example, we start with all the 

features and remove the least significant feature at each iteration which improves the model’s 

performance. We repeat this until no improvement is observed after each removal of features. 

The wrapper method involves high computational overhead to define and select a candidate 

feature, but in most cases, provides better results than filter methods [14, 15, 17]. In this method, 

we can use genetic algorithms (GA) as search optimization tools to offer and effective approach 
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for solving large scale problems. GA can be used by feature selection methods as an optimization 

tool to find an optimal feature subset as we will see in Section 3.7 [38].  

3.3 Feature relevance and redundancy 

 Fundamentally, the problem is finding the feature subset of a minimum subset that preserves the 

information contained in the whole set of features with respect to target class. We can solve this 

problem by finding the relevant features and discarding redundant (or irrelevant) features [1]. In 

this context, many strategies and algorithms can be defined to solve these problems. Filtering 

algorithms concentrate on removing irrelevant variables. Another strategy can be used by the 

ranking method, where the concentration is defining and obtaining the relative relevance of 

features for all input features with respect to the target one. Therefore, we might be interested in 

a compact, effective model, where the goal is to identify the smallest subset of independent 

features with the most predictive power, although a few alternative groups might be 

reasonable[38, 39]. In this part, we depend on Koller and Sahami, 1996 [1] and Kohavi and 

John, 1997 [15] to review the different definitions of relevance and redundancy found in the 

literature. 

3.3.1 Feature relevance 

In 1997, Kohavi and John [15], showed the classification of input variables F with respect to 

their relevance to the target C in terms of conditional independence. They used a probabilistic 

framework to define three levels of relevance: strongly relevant, weakly relevant, and irrelevant 

features. Let F be a full set of features, Fi a feature, and Si =F-(Fi). Then, these categories of 

relevance can be formalized as follows: 

 Definition 1 - Strong relevance:  A variable Fi is strongly relevant to the target C if  
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P(C|Fi,Si) ≠ P(C|Si) 

 Definition 2 – Weak relevance: A variable Fi is weakly relevant to the 

target C if it is not strongly relevant  

P(C | Fi, Si) = P(C | Si), and  

P( Fi = fi, Śi = śi) > 0 , and  ∃ Śi ⸦Si , such that  , P(C | Fi, Śi) ≠ P(C | Śi),  

 Corollary 1 (Irrelevance): A feature Fi  is irrelevant if 

∀ Śi ⸦Si,  P(C | Fi, Śi) = P(C | Śi), 

A feature is considered irrelevant if it provides no information on the target class at all. 

From previous definitions, the strongly relevant features provide unique information about C, 

which means they cannot be replaced (or removed) by other features without affecting the 

original conditional class distribution. Weakly relevant features provide information about C, 

but they can be replaced by other features without losing information about C. Irrelevant 

features do not provide information about C, and they can be discarded without losing 

information. The disadvantages of the probabilistic approach are that for each feature subset we 

need to test conditional independence and define the probability density functions [11, 17, 34]. 

We can use a framework of mutual information and entropy to solve  these drawbacks in the 

probabilistic approach to feature subsets as we will see in the next section [15, 17] .   

3.3.2 Feature redundancy  

It is clear from definitions of feature relevance that an optimal subset should return all strongly 

relevant features and a subset of weakly relevant features. However, it is not given in the 
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definitions which weakly relevant features should be selected and which should be removed. 

Therefore, it is necessary to define feature redundancy among relevant features [11]. 

In the next section, we explain our goal of feature subset redundancy elimination which is 

focusing on important cases with redundant features and obtain at least one of Markov blanket 

(MB) in weakly relevant features. Koller and Sahami in 1996 [1] and Lei Yu and Huan Liu in 

2004 [11] described the solution to feature subset selection by obtaining a minimal Markov 

blanket to identify and eliminate redundant features. However, the MB is not a unique method to 

deal with redundant features, sometimes the redundant features can be defined in terms of 

features correlation [11, 39]. 

3.4 Introduction to Markov Blanket 

Unfortunately, BN learning is extremely computationally expensive. This is because the network 

structure must have prior knowledge of each node (variable). Furthermore, Bayesian networks 

tend to perform poorly on highly dimensional data, which leads to finding the optimal subset of 

features intractable. Finally, Bayesian network models can be hard to interpret, and require 

separating effects between different parts of the network [11, 34]. From this point, we can use 

the Markov blanket for feature subset selection to avoid a lot of computations by selecting the 

most minimal set of relevant subset features, which lead to a strong performance of the 

classification measure[1, 34]. 

From a theoretical and practical perspective, many feature selection methods are heuristic 

(forward selection or backward elimination) in nature because they are working without knowing 

what consists an optimal feature selection solution independently of the class of models fitted, 

and under which conditions an algorithm will output such an optimal solution. So we can use the 
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Markov blanket(MB) to detect a minimum size subset of features that might be considered a 

feature selection solution and use them to maximize predictive (classification) performance [40]. 

Let us define a set of features. F =(F1,….,Fn) ,f is a set of values f=(f1,…,fn), and asset of class 

labels C =(c1….,cr ) . We can use the probability distribution for each value f to F as P(C|F=f). 

Let G a subset of F, for example F=(A, B,C,D) and G=(A).  A feature vector f=(a,b,c,d), so 

f(A)=a. The conditional probability distribution can be denoted as  P(C|F=f). In the reduced 

feature space, the same instance induces the P(C|G=FG). 

We can depend on probabilistic reasoning[41] to define the set of features that cause a small 

increase in Δ as those that give us the least additional information beyond what we would obtain 

from other features in G. We use the definition of Markov blanket  as mentioned in the work of 

Koller and Sahami [1] and Yu and Liu [11] as the following. Initially, we define a form of 

probabilistic reasoning. We have a set of conditionally independent variables A, B, and X if for 

any assignment of values a,b and x respectively  P(A=a| X=x, B=b) = P(A=a| X=x). This 

means B gives no information about A beyond what is already in X.  Specifically, if we remove 

a feature Fi that is conditionally independent of class label C without effect on a distance from 

the desired distribution. While it is also impractical to find conditional independencies for all 

remaining features. We can utilize from Markov blanket concepts within a set of features which 

is consider stronger than conditional independencies to remove unnecessary features [1]. So, at 

any phase, if we find a Markov blanket for Fi within the current G, Fi is removed from G [11].   
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One of the most common methods to a model and induce causal relations is by causal structure. 

Learning Bayesian networks which aims to build a directed acyclic graph (DAG) showing direct 

causal relationships among the variables of interest of a given system. Based on Bayesian 

network, Markov blanket and DAG, it is possible to determine and explore causal relationships 

which is the central in probabilistic reasoning and decision making. The goal of determining 
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causal relationships is predicting the consequences of given actions or manipulations. The goal 

of causal discovery and feature selection is specifically to uncover causal relationships between 

variables for one of several purposes (understanding data) [32]. A Bayesian network and Markov 

blanket can be considered an essential graph, where the directed edges in the graph represent the 

causal relations on which all equivalent networks agree upon their directionality and all the 

remaining edges are undirected. The range of datasets typical algorithms can deal with is 

restricted, meaning, no probability distribution can be faithfully represented by a DAG. 

Faithfulness of the distribution is a well-defined condition: it guarantees the existence of a DAG, 

called a perfect map, where there is a one-to-one mapping between the graphical criterion of d-

separation and conditional independence in the data [34]. 

In Figure 7, we can see the relationship between causal structure and predictivity in faithful 

distributions. The X variable is a member of Markov blanket M. They are depicted inside the 

black dotted circle (i.e. variables with have and undirected path to target X and are predictive of 

X given the remaining variables which makes them strongly relevant). Markov blanket variables 

include direct causes of T (H,W), direct effects (Y,Z), and “spouses” of X (i.e. direct causes of the 

direct effects of X) (m,t). The variables outside the dotted circle are non-members of Markov 

blanket of X that have an undirected path to X. They are not predictive of X given the remaining 

variables, but they are predictive given a subset of the remaining variables (which makes them 

weakly relevant). The Cyan variables are variables without an undirected path to X. They are not 

predictive of X given any subset of the remaining variables, thus they are irrelevant. 

Based on the definition of feature subset selection and causal structure learning, we can identify 

common concepts for those terms. The Markov blanket of a variable X is the smallest set Mb(X) 

containing all variables carrying information about X that cannot be obtained from any other 
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variable (see Figure 7). Based on the perspective feature subset selection, this leads to selecting 

the set of strongly relevant features carrying information about the target feature that cannot be 

obtained from any other feature. However, based on the causal graph, this approach leads to 

defining the set of all parents, children, and spouses of X. Both tasks of feature subset selection 

and causal graph construction can be specified to some extent as Markov blanket identification 

tasks [34]. We believe analysis of observational data using the Markov blanket for feature 

selection can help guide obtaining more accurate results and designing proper experiments. 

Definition 3:  Let M be some set of features where Fi does not belong to M; we can say that M 

is a Markov blanket for Fi if Fi is conditionally independent of F-M-{Fi} given M (see figure 

7). We say a set of features M that does not contain Fi is a Markov blanket for Fi if Fi is 

conditionally independent of everything not in M, given M. We also can say the class C is 

conditionally independent of the feature Fi given M [11] .  

P( F-Mi – { Fi  },C | Fi,Mi) = P( F-Mi  - { Fi }, C | Mi) 

From the previous paragraph, we can explain the reasons for using a Markov blanket in feature 

subset selection techniques. The class C becomes conditionally independent of Fi given M; this 

means Fi gives no additional information about the class when M is known, and we can remove 

it. On the other hand, it can be also proved that removing a feature cannot render previously 

removed features relevant again. 

Definition 4- redundant feature: let G be the current set of features; a feature is redundant and 

hence should be removed from G if it is weakly relevant and has a Markov blanket Mi within G. 

Therefore, in this paper, we focus on how to eliminate the redundant (or irrelevant) features by 

defining the Markov blanket based on the Bayesian Network. In the field of machine learning, 
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the problems are defining the Markov blanket exactly and identifying how we can measure 

feature relevance, which is considered a difficult process due to a limited sample size, high time 

complexity, and noise in the data [41]. Therefore, we will use the Markov blanket criterion that 

helps us remove unnecessary features (namely, irrelevant and redundant features) to obtain 

optimal classification [32]. For a Markov blanket example, see Figure 7. More formally, the MB 

of X (target) insists of all nodes that makes X conditionally independent of all other nodes in the 

model (Parent [H,W], children [Z,Y], and spouse [m,t]). Each feature in the Markov blanket 

measures the coverage of its blanket (scores), then the feature with the lowest score (highest 

coverage) will be considered redundant and then removed from the dataset. This procedure will 

be iterated until criterion stopping occurs (no longer possible create Markov blanket) [11]. 

Moreover, we can demonstrate that the classification-level when using the Markov blanket of a 

target variable in a Bayesian network has significant properties. We can obtain a statistically 

efficient prediction result of a feature’s probability distribution from the smallest subset of 

features selection containing all the information about the target feature. We can obtain a greater 

accuracy level through avoiding overfitting due to redundant variables, and it provides a 

classifier of the target variable from a reduced set of predictors [11, 16]. 

Definition 5- (Faithfulness) A Bayesian network with a DAG S and a joint distribution P with a 

set of vertex V are faithful to one another if there are no conditional independence relations in P 

other than those entailed by satisfying the Markov condition for S. Given the faithfulness 

assumption, the set of distributions represented by S is the set of distributions satisfying the 

Markov condition for S. If p is faithful to the graph S, then given a Bayesian Network (S, p), 

there is a unique Markov Blanket for Y consisting of the set of parents (Y), the set of children 

(Y), and the set of parents of children (Y )[42].  



 
38 

 

 

 

From the example in Figure 8, consider the two DAGs in Figure 8.1 and 8.2, above. The 

factorization of P entailed by the Bayesian Network (S, P) is 

P(Y,X1, ...,X6) = P(Y |X1) ·P(X4|X2, Y ) · P(X5|X3,X4, Y )· P(X2|X1) · P(X3|X1) · P(X6|X4) · p(X1)  

The factorization of the conditional probability P(Y |X1, ...,X6) entailed by the Markov Blanket 

for Y corresponds to the product of those (local) factors in the previous equation containing the 

term Y . 

P(Y |X1, ...,X6) = C’ · P(Y |X1) · P(X4|X2, Y ) · P(X5|X3,X4, Y ) ; 
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where C’ is a normalizing constant independent of the value of Y[43]. 

More formally, the Bayesian network with DAG S has to be faithful, if all dependencies (or 

conditional dependencies) are represented and independencies entailed by the distribution, such a 

graph is called a perfect map of the distribution if there is a one-to-one mapping between the 

conditional-independence relationship defined by variables and the d-separation criterion 

defined by the graphical nodes [34]. 

3.5 A Correlation Based Method 

Feature selection based on a correlational method can be used to evaluate the usefulness of 

individual features and the goodness of feature subsets through using a heuristic searching 

algorithm for predicting the class label based on intercorrelation between those subset features. 

Based on the definition of a Markov blanket, we can deal with folk-theorem (some features with 

direct influence are stronger than indirect influence [conditional independencies]) to measure the 

influences between the Markov blanket (Mi) and asset of features (Fi). Therefore, those 

influences can be measured by using a correlational method [1]. 

3.6 Using entropy and mutual information  

Entropy is used to measure the uncertainty of a random variable, while uncertainty is a measure 

of the probability occurrence of an event. the entropy of a discrete random variable x, with mass 

probability 

P(x(i)) = P{x = x(i)}, x(i) ϵ x is defined as: 

⸦(x)=  ̶ ∑ 𝑷(𝒙𝒊)𝒏
𝒊=𝟏  𝐥𝐨𝐠𝟐(𝑷(𝒙𝒊))  ; needed to identify 
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The expected information (⸦(x)) is needed to classify the class label of a tuple in x. (⸦(x)) is 

also known as the entropy of x. Now let x and y be two random discrete variables. The joint 

entropy of x and y, with joint probability P(x(i), y(j)), is the sum of the uncertainty contained by 

the two variables. 

⸦(x,y)=  ̶ ∑ ∑  𝒏
𝒋=𝟏 𝑷(𝒙(𝒊), 𝒚(𝒋))𝒏

𝒊=𝟏   𝐥𝐨𝐠𝟐(𝑷(𝒙(𝒊), 𝒚(𝒋))) 

The maximum value of ẟ(x,y) happened when the x and y is completely independent. The 

minimum value of ẟ(x,y) happened when the x and y is completely dependent (equal to zero). 

Conditional entropy measures the remaining uncertainty of the random variable x when the value 

of the random variable y is known. Formally, conditional entropy is: 

⸦(x|y)=∑ 𝑷(𝒚(𝒋)).𝒏
𝒋=𝟏   ⸦(x|y=y(j)) ,  where  0 < ⸦(x|y)< ⸦(x) . 

Mutual information (MI) is a measure of the amount of information that one random variable has 

about another variable. In the information theory field, it is widely used to measure the mutual 

independency of two subset features. Intuitively, it measures how much information a random 

feature tells about the other [22]. Mutual information(MI) can be given by  

MI(X,Y)=∑  𝒏
𝒊=𝟏 ∑ 𝑷(𝒙(𝒊), 𝒚(𝒋)).𝒏 

𝒋=𝟏  𝐥𝐨𝐠(  
𝑷(𝒙(𝒊),𝒚(𝒋))

𝑷(𝒙(𝒊)).  𝑷(𝒚(𝒋))
 ) 

From this definition, it detects the relevance of a feature subset with respect to the response 

vector C [11, 17, 41]. The amount by which the entropy of X minimized the information needed 

about X provided by Y and is called information gain (IG) [11]. 

IG(X|Y)= ⸦(x) - ⸦(x,y)  
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3.7 Evolutionary and Memetic Algorithm for feature selection 

Evolutionary algorithms are stochastic optimization methods that attempt to mimic in some way 

the inner workings of evolution, as we understand it. One component common to all these 

algorithms is the generation of random perturbations, or mutations, and the presence of a fitness 

function used to assess the quality of a given point and filter out mutations that are not useful. In 

this sense, random descent methods and even simulated annealing can be viewed as special cases 

of evolutionary algorithms. One of the broadest subclasses of evolutionary algorithms is genetic 

algorithms (GA) [9]. GA can be used as an attractive approach for feature subset selection 

depending on some criterion optimization function (e.g., accuracy of classification or number of 

selected features) because it is very effective when used for global searching and solving large-

scale problems [14, 20].  

GA often takes a long time to locate the local optimum in a region of convergence. Convergence 

is a phenomenon lead to restart the population, which happens when all individuals of a 

population are very similar to each other. In this case, the GA will expand most of the time to do 

the resampling process with a limited region of the search space, with subsequent waste of 

computational efforts. Consequently, to find a solution to a convergence problem and find the 

local optimum, we can use hybridized GA with some local search approaches which is called a 

memetic algorithm (MA) [9, 33].  

Memetic algorithms (MA) utilize knowledge available (exploitation) about the NP optimization 

problem and try to find an approximate solution. Therefore, we can consider MA a search 

strategy which is a population-based metaheuristic composed of a Genetic Algorithm (wrapper 

method) and a set of local search algorithms (filter method) which are activated within the 

generation cycle of the external framework [44, 45]. We can say MA is synergistic with two 
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different types of incorporated search algorithm approaches (population search, local search) to 

solve a NP hard optimization problem. Therefore, MA has the ability to run different types of 

search operators in a search space and make a collection of candidate solutions (chromosomes) 

to improve the solution of a NP hard optimization problem more precisely and efficiently [9, 20].  

Pablo Moscato gave an early definition of MA[45]. MAs were a modification of Genetic 

Algorithms (GAs) also employing a local search operator for solving the Min Euclidean 

Traveling Salesman problem. While the role of optimization is employing a hybrid genetic 

algorithm (GAs) and simulated annealing (SA) [45]. In the previous definitions, it is clear that 

MA is a developing process of GA and gives rise to the notions of neighborhood-based local 

search and population-based search. The GA (or MA) process depends on fitness function and 

some operators to evaluate the candidate subset of feature by its ability to obtain a good 

classification. To get the fitness of an individual, we use a KNN classifier is trained with this 

representation and its classification accuracy is estimated by 10-fold cross validation and 30- 

Bootstrapping methods that allows assigning measures of accuracy. After that, the  GA will be 

repeated many times until get a satisfactory solution to the problem is found or some other 

termination criteria are met (number of generations reaches maximum generation) [38]. 

Practically, we can show the MA’s goal is effectively utilizing useful information from different 

feature selection methods to select a better subset feature with a smaller size and a better 

classification performance than the individual feature selection algorithms. Moreover, MA helps 

find feature subsets which are considered the most appropriate for a target learning algorithm. 

The framework is applied to several types of gene selection examples. The experiments applied 

to different types of cancer microarray data show the proposed MA feature selection method is 

capable of achieving the highest goal [10, 38]. 
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3.7.1 GA history and definition 

Genetic algorithms (GA) were introduced by Holland, and mimic nature’s evolutionary method 

of adapting to a changing environment. He introduced the population search algorithm based on 

crossover, and mutation operators was a major innovation [46]. The adaptive idea or natural 

selection (based on crossover and mutation operators) was inspired by many science fields (e.g., 

biological, engineering, artificial intelligence) to develop high quality solutions for solving 

complex problems and use these solutions in the face of a changing environment [33, 46]. The 

parameters and operators of Genetic algorithms (GA) can be modified to get suitable data and 

obtain the best performance or the best search results. This heuristic search is routinely used to 

generate useful solutions to optimization and search problems by using a genetic algorithm [47]. 

GAs use a fitness function to evaluate the candidate solutions and find an optimal or high-

quality solution among these candidate solutions.  Many authors have used GAs as optimization 

tools which depend on population heuristic search techniques to utilize in a feature subset of  

selection methods [15, 38]. Therefore, using the GAs to evaluate a weight for each feature and 

getting a population of candidate solutions which are combined by using crossover, and varying 

solutions by mutation operators will increase the performance of classification algorithms [38]. 

3.7.2 GA operators  

The simplest form of genetic algorithm involves three types of operators: selection, crossover 

(single point), and mutation [46].  

 Selection This operator selects chromosomes in the population for reproduction. The 

fitter the chromosome, the more times it is likely to be selected to reproduce. 
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 Crossover (binary recombination) exchanges information contained in two parents (or 

more), then combines the two chromosomes to create two offspring. For example, the 

strings 10000100 and 11111111 could be crossed over after the third locus in each to 

produce two offspring: 10011111 and 11100100. The crossover operator roughly mimics 

biological recombination between two single-chromosome (haploid) organisms.  We can 

distinguish three types of crossover which are single point crossover, double point 

crossover, and multi point cross over.  

 Mutation This operator randomly flips some of the bits in a chromosome. For example, 

the string 00000100 might be mutated in its second position to yield 01000100. Mutation 

can occur at each bit position in a string but usually with individual that has small 

probability. 

 Local offspring enhancement: The goal of local modification is obtaining another 

offspring solution depending on a local neighborhood search. Candidate solutions 

undergo refinement which corresponds with the life-time learning of the individuals in 

the original metaphor of MAs. This is a very powerful metaphor that increase the 

performance of fitness land space by obtaining a local optimum and is considered a 

guiding function value which is better than value of all it neighbors. 

 Update of the population: a new solution is added to the population where the existing 

old solution in the population should be replaced. Often, these decisions are made 

according to criteria related to both quality and diversity. The goal of diversity in the 

population of solution is avoiding premature convergence in the locality search (i.e. 

convergence that is too rapid towards a suboptimal region of the search space), and to 

help the algorithm continuously discover new promising search areas. 
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Chapter 4  

 Methodology 

In this work, our methodology shows two approaches. The first one depends on MA, while the 

second one depends on MRMR for the feature subset selection method. Both approaches depend 

on hybridized GA with different types of local search operators. In both approaches, we compare 

the performance of each with a Bayesian network based Markov blanket for the feature selection 

method. 

4.1 Memetic algorithm (MA) representation and operators  

We depend on the MAFS (memetic algorithm for feature selection) software program to 

compare two types of hybridized GA with a local search [45]. The first approach of MA depends 

on the wrapper method called wrapper filter feature for selection algorithm (WFFSA) and the 

second MA approach is the Markov Blanket embedded genetic algorithm (MBEGA). We use 

different types of microarray cancer datasets [48, 49] and the MAFS software runs memetic 

algorithms to remove redundant (or irrelevant) features or add relevant features. Then, the 

performance between these two approaches is compared. 

In this study, we depend on the algorithm used in [38] to outline the steps of how the MA process 

works. The MA for feature subset selection pseudo code can be implemented in algorithm 1. At 

the beginning, we randomly initialize the population (P) solution of gene selection. Each solution 

is considered a candidate chromosome in gene subset selection. Depending on fitness function, it 

selects the best individual from population (P).  At each generation, a new population is replaced 
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with a previous one depending on some MA operators (crossover, local search, and mutation). 

This process is iterated until the maximum number of generations is reached. 

 

Algorithm1 : Pseudo code for a memetic algorithm procedure 

 

Procedure MA 
begin 
generate random population of P solutions (chromosomes); 
for each individual i∈P: calculate fitness(i); 
for j=1 to #generations 
for each individual i∈P: do i=Local-Search(i); 
for crossover 
select two parents ia, ib∈P randomly; 
generate offspring ic=Crossover(ia, ib); 
ic=Local-Search(ic); 
add individual ic to P; 
end for 
for mutation 
select an individual i∈P randomly; 
generate offspring ic=Mutate(i); 
ic=Local-Search(ic); 
add individual ic to P; 
end for 
P=select(P); 
j=j+1; 
end for 
end  

 

4.1.1Parameter Settings 

Our experiments used the following parameter settings. Population size: 200,  number of 

generations: 200, minimum number of attributes: 1, maximum number of attributes: 50, 
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crossover type: a uniform crossover, probability of crossover: 0.6, and probability of mutation: 

0.03. 

4.1.2 Objective Function and Fitness evaluation:  

In this study, we use a k-nearest-neighbor (KNN) classifier to train the example and define the 

classification accuracy that is estimated by 10-fold cross validation and 30-runs Bootstrap 

validation tests. KNN was chosen because of its flexibility metric, simplicity, and competitive 

performance, compared with another classification algorithm [22]. We use K=3 to define the 

number of neighbors. The fitness function can be written as     

Fitness( MA )   =  Js (k-NN classifier, define the accuracy ) 

where Js denotes the fitness function used to obtain the gene subset selection, provides a measure 

on the k-NN classification error for the given gene subset s. For a given subset the evaluation is 

done by the feature selection criterion function Js. In this paper, Js is specified as the accuracy 

rate for the selected feature subset. 

 4.1.3 Local improvement offspring function 

The goal of using a local search operator is improving the quality of an offspring gene selection 

(chromosome) as much as possible. Therefore, the local search procedure takes the current 

solution’s selected offspring and then iteratively replaces this current solution by another better 

solution taken from a given neighborhood. This process is used to get the local optimum. For 

this, we use two types of local search methods. The first one is WFFSA and the second one is 

MBEGA. Algorithm 2 shows the pseudo code for a local search procedure. The local 

improvement of offspring used to improve the performance of classification during feature 
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subset selection. The move operator, which defines the neighbor, is called (add/remove) operator 

which defines the relevance of genes for classification. This is typically denoted by s1=s0 ⊕ mv 

[9].  

Algorithm 2: Pseudo code for a local search procedure 

Procedure local search engine(current)  

Begin  

Repeat  

Input : an new individual (current )  

Output : new improvement (current)   

If (output is better than input)  

Input =mv ⊕ output  

End if  

Until (stop criterion )  

Return  input as output result  

 

To simplify these algorithms (1,2) to get optimal solutions for different types of feature subset 

selection methods, we can show the flowchart for the proposed algorithms as in figure 9 . 
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By using the above procedures, we can get optimal solutions in terms of the maximum accuracy 

rate with a predefined number of selected features, and the selection of features is determined by 

the MA. 

 

4.2 Minimum redundancy-maximum relevance (MRMR) feature selection 

We use a minimum redundancy-maximum relevance (MRMR) feature subset selection 

framework. We depend on Weka for the machine learning software product to implement this 
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type of feature subset selection method[50]. When we run MRMR for feature subset selection, 

the MRMR method ranks features according to their maximum relevance to the class sample. 

Therefore, MRMR feature subset selection can be used to get an optimal features set based on 

the importance of ranked features. This method is used to maximize the joint dependency of top 

ranking variables on the target variable, the redundancy among them must be reduced. So, we 

select maximally relevant variables and avoiding the redundant ones. First, mutual information 

(MI) between the candidate variable and the target variable is calculated (relevance term). Then 

average MI between the candidate variable and the variables that are already selected is 

computed (redundancy term). The entropy-based MRMR score is obtained by subtracting the 

redundancy from relevance [51, 52]. 

 

 

 

One of this paper’s main goals is highlighting the importance of using MRMR feature subset 

selection in the machine learning field. One innovative point we used based on MRMR is to 

reduce redundancy in feature selection by using different classification algorithms. We use four 

common classical classification algorithms, which are (Lazy-nearest neighbor, linear support 

D = 1/(|𝑆|) ∑
𝑋𝑖𝜖𝑆

 𝐼(𝑋𝑖, 𝑌) 

 

R= 1/(|𝑆|)
2  

∑
𝑋𝑗, 𝑋𝑖𝜖𝑆   𝐼(𝑋𝑖, 𝑋𝑗) 

 

MRMR =MAX  {𝐷 − 𝑅 ) } 
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vector machine, Naïve bays, and AdaBoost ensemble). All these learning algorithms run under a 

feature subset selection method as an attribute evaluator.  For the search methods in MRMR for 

feature subset selection, we use GA for this search strategy to select a candidate (ranked) feature. 

In our experiment, we show that features selected in this way lead to higher accuracy than 

features selected through traditional approaches [19]. We use features obtained from the MRMR 

method and run classical learning classification algorithms, and then compare performance 

accuracy with a Bayesian Network based Markov blanket.  
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Chapter 5 

Datasets and Evaluation Process 

In the previous section, we discussed several approaches for classification and feature selection 

techniques. In this section, we examine their performance on experimental data sets. 

5.1 Datasets:  

To validate the performance of our gene selection methods, the experiments are conducted on 

several real-world datasets. These datasets are used to demonstrate the feature selection 

methods’ classification power. The datasets consist of small samples with high dimensionality, 

such as colon, prostate, brain tumor, diffuse large b-cell lymphomas (DLBCL), and leukemia.  

The Colon cancer diagnosis data set is introduced in [48]. The other microarray cancer datasets 

are presented in the gene expression model selector [49]. These cancer datasets are described in 

Table 1.  

Table 1: Description of experimental datasets 

Data set # samples   # features  #classes 

Colon  62 2000 2 

Brain tumor2 50 10367 4 

Leukemia 47 2000 2 

Lymphomas 77 5470 2 

Prostate 102 1500 2 
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5.2 Estimating prediction errors 

The following subsection reviews some of the methods used to evaluate the learning classifiers’ 

performance. 

5.2.1 Cross validation 

In k-fold cross-validation, usually called k-fold CV, the training set is split into k smaller sets. 

The k-fold cross validation uses part of the available data to fit the model, and a different part to 

test it. The following procedure is followed for each of the k “folds”: 

 A model is trained using k-1 of the folds as training data; 

 the resulting model is validated on the remaining part of the data (i.e. it is used as a test set 

to compute a performance measure such as accuracy). 

The cross-validation process’ performance measure is then repeated k times (the folds), with 

each of the k subsamples used exactly once as the validation data. The k results from the folds 

then can be averaged to produce a single estimation [26, 53].  

5.2.2 Bootstrap 

The bootstrap is usually called 0.632 bootstrap and is used as a powerful tool in several contexts, 

most commonly used is to provide a measure of accuracy of a parameter estimator with a given 

statistical learning method to analyze and quantify the uncertainty for learning algorithm. So, we 
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can state that the goal of bootstrap method is to assess sampling variation and use the 

measurement to assess population[53]. The bootstrap generates new random samples with size N 

by drawing instances from the training data with replacements and calculate the estimating   

prediction errors for each sample. Estimating the prediction errors depends on a partitioning or 

resampling the observed data to implement the learning model and test set. There are different 

types of bootstrap evaluation methods, but the most common one is 0.632 bootstrap. The 0.632 

bootstrap works as follows. Suppose we have a dataset of d tuples. The dataset is resampled d 

times with replacement, the bootstrap finds the predication error of training set of d samples. The 

data tuples that was not used during the training phase, at end forms the test set. This process is 

repeated several times. As it turns out, an average of the original data tuples ends up in the 

bootstrap, and the remaining 36.8% forms the test set. The overall accuracy of the model is then 

estimated. At the end of iteration, there are a set of predication rules will be existing, so the 

voting strategies are used to get the predictions for a given unknown tuple[2, 22]. 

5.3 Evaluated methods 

For classification, especially for two-class problems, a variety of measures has been proposed. 

Let us define the first important measure which is a confusion matrix; it is used for evaluating 

the classifiers according to their performance. There are four possible cases, as shown in Table 2. 

Table 2: Confusion Matrix  

 

Predicted class 

True class 

Positive Negative Total 

Positive True positive (tp) False positive(fp) P 

Negative False negative (fn) True Negative(tn) n 

Total P' 

 

n' N 
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A confusion matrix presents information regarding predicted and actual classifications performed 

following a classification system. There are four possible outcomes of a classifier to predict 

instances for class labels: 

 If the instance is positive and it is classified as positive, then this is a true positive. 

 If the instance is positive and it is classified as negative, then this is a false negative. 

 If the instance is negative and it is classified as positive, then this is a false positive. 

 If the instance is negative and it is classified as negative, then this is a true negative. 

From the confusion matrix, we can derive several characteristics of classification performance. 

We can summarize some performance measures depending on Table 3 as follows.  

Table 3: Performance measures based on confusion matrix (Table2) 

Name Formula 

Error rate  

 

Accuracy  

(fp+fn)/N  

 

(tp+tn)/N  ((or)  1- Error-rate ) 

tp-rate 

 

tn-rate  

tp/p' 

 

tn/n' 

Precision (or positive predictive value) 

 

Recall =tp-rate  

tp/ P 

 

tp/p' 

Sensitivity = tp-rate 

 

Specificity   

tp/p'  

 

tn/n' ( or   ( 1- fp-rate) 
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Chapter 6 

Results and Discussion 

6.1 Results 

In this paper, the results are divided into two parts. In the first part, the output depends on memetic 

algorithm (MAFS software product) for five microarray cancer datasets that we mentioned 

previously. Table 4 shows the results. The local learning takes a long time for computation to 

obtain a high performance for MAs. To be more accurate, we used two types of learning 

classification predictions (10-kfold cross validation and 30-run Bootstrap). In the second part, the 

output depends on the result of MRMR for feature selection methods. We measure the selected 

features by using a set of classical classification algorithms and the Bayesian network based on 

Markov blanket for the five microarray cancer datasets. Tables 5 and 6 show the results. 

6.2 Discussion  

In this paper, we describe two different approaches to feature subset selection depending on a 

hybridized genetic algorithm. As we have seen, the difference between these approaches depends 

on how we use the GA for search mechanism. We can see from previous results that the feature 

subset selection methods achieved satisfactory results in reducing the number of features in five 

microarray cancer datasets. 
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Table 4: MAFS-output (memetic algorithm for feature selection) 

Memetic Methods 

 

 

Microarrays  

MB(10-CV) Wrapper 

 (10-CV) 

MB (30 Bootstrap) Wrapper  

(30 Bootstrap) 

1-Colon cancer data set         

Average -selected genes 14.5 10.2 9.6 9.4 

Running time  1109165 1078326 4006795 4391285 

Average test error  13% 19% 16% 18% 

2-Prostate cancer data set         

Average -selected genes 13.3 19.9 13 16.3 

Running time  2835186 3725789 10493308 11987329 

Average test error  21% 17% 17% 20% 

3-Leukemia cancer data set     

Average -selected genes 3.3 5.6 3.2 3.8 

Running time  1002343 1054632 3300494 3713434 

Average test error  14% 10% 9% 12% 

4-Lymphomas cancer data 

set 

    

Average -selected genes 4 8 5 7.9 

Running time  1330868 1586993 5046821 8956452 

Average test error  16% 19% 11% 12% 

  5- Brain Tumor 2 cancer 

data set 

    

Average -selected genes 19.3 18.7 14.4 18.7 

Running time 1318257 1271379 4216340 1271379 

Average test error  44% 40% 33% 40% 
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Table 5: Classification based on accuracy for classical classification algorithms and Markov 

Blanket(MB) for all microarray cancer datasets (without using MRMR for feature subset selection 

method) 

Classifier 

 

Microarrays  

Naïve Bayes   

10- CV 

SVM 

10-CV 

IBK3( 10-

CV) 

Ada-BoostM1 

(10-CV) 

MB(10-CV) 

1-Colon  cancer data set         

%correctly Classified  53% 82% 75% 74% 75.8% 

2-Prostate cancer data 

 set     
 

%correctly Classified  63% 86% 79% 70% 74.5% 

3-Leukemia cancer 

 data set     
 

%correctly Classified  95.7% 80.8% 87% 89% 97.8% 

4-Lymphomas cancer 

 data set     
 

%correctly Classified 83% 75% 91% 84% 85.7 

5- Brain Tumor cancer 

 data set
     

%correctly Classified 70 % 72% 70% 74% 76% 
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Table 6 : Classification  after using MRMR for feature subset selection. The comparison based on 

accuracy for classical classification algorithms and Markov Blanket(MB) ,  

Classifier 

Microarrays 

datasets 

Naïve 

Bayes   

10- CV 

MB(10-

CV) 

SVM 

(10-

CV) 

MB(10-

CV) 

IBK_3( 

10-CV) 

MB(10-

CV) 

AdaBoostM1 

(10-CV) 

MB(10-

CV) 

1-Colon Cancer          

No. of selected 

genes 
42 42 36 36 37 37 25 25 

%Correctly 

Classified  87% 90% 80% 90% 84% 89% 80% 88% 

2-Prostate Cancer  
 

 
 

 
 

 
 

 

No. of selected 

genes 
31 31 28 28 44 44 43 43 

%Correctly 

Classified  82% 83% 82% 83% 81% 82% 77% 81% 

3-Leukemia 

Cancer   
 

 
 

 
 

 
 

No. of selected 

genes 
11 11 7 7 18 18 7 7 

%Correctly 

Classified  97.8% 97.8% 93.6 97.8 98% 100% 95.7% 100% 

4-Lymphomas  
 

 
 

 
 

 
 

 

No. of selected 

genes 
27 27 25 25 28 28 22 22 

%Correctly 

Classified 93.5% 96% 92% 93.5% 92% 93.5% 91% 95% 

5- Brain Tumor 2         

No. of selected 

genes 
40 40 31 31 47 47 29 29 

%correctly 

Classified 84% 86% 76% 88% 90% 86% 76% 82% 
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In the results of feature subset selection in Table 4, we compared two methods of memetic 

algorithms, which are the MA-based wrapper method (WFFSA) and the MA based on the 

Markov Blanket method (MBEGA). The tabulated result in Table 4 showed that in the bootstrap 

(30 runs using the 0.632 bootstrap) learning model, the Markov blanket is better than the 

Wrapper method for average testing errors in all five microarray cancer datasets. This implies 

that the Markov blanket has improved classification accuracy more than the wrapper method. For 

the average number of selected subset features (genes) and running-time space available for the 

bootstrap learning model, we observe that both Markov blanket and wrapper methods 

outperform each other on five cancer datasets. However, 10-kfold cross-validation learning 

model’s (10-K-fold-CV) results showed that WFFSA and MBEGA are competitive with each 

other regarding classification accuracy (average testing error), average number of selected 

features, and running time space available (seen in Table 2 in bold font). 

The results in Table 5 presents the performance accuracy of different learning classification 

algorithms for all microarray cancer datasets (without using MRMR for feature selection 

methods). The different learning classification algorithms’ accuracy results are competitive. The 

Bayesian Net based on Markov blanket gets the highest accuracy level in two cancer datasets 

(leukemia and brain tumor datasets), while the linear support vector machine is most accurate in 

the other two cancer datasets (colon and prostate datasets). The Lazy-IBK3 classifier gets the 

highest accuracy level in only one cancer dataset (Lymphomas datasets).  

The results displayed in Table 6 reveal accuracy measures improved after using MRMR for 

feature subset selection methods in all microarray cancer datasets for all learning classification 

algorithms without exception. In this table, we show the comparison of the performance measure 

for the classical classification algorithms and the Bayesian network based on Markov blanket 
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depending on the 10 K-fold-cross-validation learning model. Also, Table 6 shows that knowing 

Bayesian network based on the Markov blanket classification algorithm has the highest accuracy 

level in almost all five-cancer feature subsets selected by MRMR methods. The exception of this 

performance measure is on the brain tumor feature subset selection where the IBK3 classification 

algorithm gets a higher accuracy (90%) than the Bayesian Network based on Markov blanket 

(86%). 
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Chapter 7 

 Conclusions 

In this paper, we discussed different methods of feature (gene) subset selection methods. These 

methods aim to reduce the number of features especially in high dimensionality datasets. 

Additionally, it improves the classification performance and efficiency of microarray cancer 

datasets. We attempted to identify the importance of a memetic algorithm in the feature subset 

selection field and how a memetic algorithm uses several types of search methods (GA for 

population search hybridized with a local search engine) to solve a NP hard optimization 

problem. Consequently, we compared two types of memetic algorithms which are MBEGA and 

WFFSA. We observed that MBEGA is often better than WFFSA in classification accuracy for 

some cases of microarray cancer datasets.   

Regarding the minimum redundancy-maximum relevance (MRMR) feature selection method, we 

noticed how it helped reduce the features in microarray datasets and improved classification 

accuracy performance after using the MRMR method. We attempted to make comparisons 

regarding classification accuracy for several types of classical classification algorithms after 

using the MRMR feature subset selection method. We can see its accuracy outperformed the 

Bayesian network based on Markov blanket classification algorithm and produced higher 

classification accuracy with a small number of feature subsets for five microarray cancer 

datasets. 
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