63 research outputs found

    Onboard Integrated Battery Charger for EVs Using an Asymmetrical Nine-Phase Machine

    Get PDF
    This paper considers an integrated onboard charger for electric vehicles that incorporates an asymmetrical nine-phase machine and an inverter into the charging process. The charging is from three-phase mains, and it employs exclusively the power electronic components that already exist on board the vehicle and that are mandatory for the propulsion. No new elements are introduced. Moreover, the charging is achieved without any hardware reconfiguration since the existing elements and their connections are not altered during the transfer from propulsion to the charging mode. Instead, the operating principle is based on additional degrees of freedom that exist in nine-phase machines. These degrees of freedom are employed to avoid electromagnetic torque production in the machine during the charging process, although currents flow through its stator windings. The configuration operates with a unity power factor and is capable of vehicle to grid (V2G) operation as well. A detailed theoretical analysis is given, and the control for the charging/V2G and propulsion modes is discussed. Theoretical analysis is validated by experiments for charging, V2G, and propulsion operating regimes

    An Integrated On-Board Battery Charger with a Nine-Phase PM Machine

    Get PDF
    A fully integrated on-board battery charger for electrical vehicles (EVs) has been developed recently using a nine-phase machine. All the components used for propulsion are employed in the charging process, no additional components are required, and there is no need for hardware reconfiguration between charging and propulsion modes of operation. The proposed solution can be connected directly to single-phase or three-phase grid to perform charging, so that the expensive off-board charger infrastructure is not needed. The only requirement is to use a nine-phase machine in combination with a nine-phase inverter in the powertrain of the EV. This however inevitably brings in further advantages in the propulsion mode, such as increased fault tolerance and the current subdivision into more phases. The benefits of the topology, originally developed for an induction machine, make it interesting for further investigation. Therefore, the performance of the charger is examined here using a permanent magnet synchronous machine (PMSM). The results show that the charger topology is applicable to other types of synchronous machines and is, even more importantly, independent of the angular spatial shift between the individual three-phase windings of the nine-phase machine’s stator. The results are comparable with those obtained using an induction machine and confirm the viability of the solution in conjunction with the PMSM as a propulsion motor

    Integrated on-board EV battery chargers: New perspectives and challenges for safety improvement

    Get PDF
    Thanks to the heavy reduction of cost and volume, integrated On-Board Chargers (OBCs) represent an effective solution to provide a versatile and powerful charging system on board of electric and plug-in electric vehicles, combining the charging function with the traction drivetrain. Such integration foresees the use of the traction motor windings as reactive elements and the traction inverter as AC/DC converter. However, this integration brings several challenges on the table. At first, shaft torque production must be avoided to reduce the losses and mechanical stress. A second challenge is to improve the filtering capability of the motor windings in order to meet the grid standards in terms of current distortion and power factor correction. At last, the most critical issue is to meet the safety standards in terms of leakage current, since it represents a risk to human operators and could also hamper the smooth operation of the charger. Therefore, this paper aims at giving a comprehensive review of the challenges in designing integrated chargers. After reviewing the architectures available in literature, an exemplifying structure of integrated OBC will be analysed in terms of leakage current generation and compliance with the relevant standards, along with an introduction to those solutions which use the machine as isolation transformer. Conclusions are given on the prospect for making integrated on-board chargers safer and more reliable

    Investigation of six-phase surface permanent magnet machine with typical slot/pole combinations for integrated onboard chargers through methodical design optimization

    Get PDF
    This article presents an analytical magnetic equivalent circuit (MEC) modeling approach for a six-phase surface-mounted permanent magnet (SPM) machine equipped with fractional slot concentrated winding (FSCW) for integrated onboard chargers. For the sake of comparison, the selected asymmetrical six-phase slot/pole combinations with the same design specifications and constraints are first designed based on the parametric MEC model and then optimized using a multiobjective genetic algorithm (MOGA). The commercial BMW i3 design specifications are adopted in this article. The main focus of this study is to achieve optimal design of the SPM machine considering both the propulsion and charging performances. Thus, a comparative study of the optimization cost functions, including the peak-to-peak torque ripple and core losses under both motoring and charging modes and electromagnetic forces (EMFs) under charging, is conducted. In addition, the demagnetization capability in the charging mode and the overall cost of the employed machines are optimized. Since the average propulsion torque is crucial in electric vehicle (EV) applications, it is maintained through the design optimization process. Furthermore, finite element (FE) simulations have been carried out to verify the results obtained from the analytical MEC model. Eventually, the effectiveness of the proposed design optimization process is corroborated by experimental tests on a 2-kW prototype system

    DESIGNING METHOD FOR INTEGRATED BATTERY CHARGERS IN ELECTRICAL VEHICLES

    Get PDF
    Electrical vehicles often make use of multi-phase induction motors. At the same time, the vehicles have an on-board charger, the power electronics device that converts the ac power from the mains and charges the traction battery. The traction inverter can be integrated with the charger, reducing in this way the component count, weight and cost, while the windings of the ac motor can be used as the inductors required to complete the charger topology, thus saving on passive components, iron and copper. The integrated charger performances depend on the configuration of the stator windings as well as on the topology of the power converter. The objective in charging mode is reaching a high efficiency while keeping the charging-mode electromagnetic torque at zero. In traction mode, the goals include the efficiency and the torque-per-Amps ratio. In order to compare and distinguish between the available topologies and configurations, the paper starts with the analysis of the magnetic field in the air-gap of the electric machine in both charging and traction modes. Based upon that, a novel algorithm is proposed which determines the space-time distribution of the air-gap field, eventually deriving all the relevant pulsating and revolving component of the magnetic field, thus providing the grounds for studying the losses, efficiency and torque pulsations in both charging and traction modes

    Efficiency Evaluation of Fully Integrated On-board EV Battery Chargers with Nine-Phase Machines

    Get PDF
    A fully integrated on-board battery charger for future electric vehicles (EVs) has been recently introduced. It re-utilizes all the propulsion components of an EV in charging/vehicle-to-grid (V2G) modes, it does not require any additional components or hardware reconfiguration, and charging/V2G modes are realized with zero electromagnetic torque production. Both fast (three-phase) and slow (single-phase) charging are possible, with unity power factor operation at the grid side. The solution is based on the use of a triple three-phase machine and a nine-phase inverter/rectifier. This paper reports on the results of efficiency evaluation for the said system. Testing is performed using both a nine-phase induction machine and a nine-phase permanent magnet (PM) machine for a range of operating conditions in charging/V2G modes, with both three-phase and single-phase grid connection. Additionally, the impact of converter interleaving on the losses and efficiency is also studied. Losses are separated for different subsystems, thus providing an insight into the importance of optimization of different EV power train components from the efficiency point of view. Promising efficiencies, in the order of 90%, are achieved although none of the system components have been optimized

    Propulsion-Machine-Integrated Universal Onboard Chargers for Electric Vehicles

    Get PDF
    Onboard level-1 and level-2 battery chargers are widely utilized in electric vehicles (EVs) for home overnight or office daytime charging. However, onboard level-1 and level-2 chargers suffer from power limitations and long charging time. On the other hand, high-power off-board chargers are utilized for fast charging, but they are bulky, expensive and require comprehensive evolution of charging infrastructures. Onboard chargers integrated with the propulsion systems of EVs provide a promising solution for fast charging of EV battery packs without contributing to additional weight and burden on the vehicle. This dissertation presents integrated charging systems, using the propulsion machine and its inverter for onboard battery charging. The proposed integrated onboard chargers do not need any modification of the propulsion systems to implement onboard battery charging. The integrated charging approaches are highly practical and applicable for commercial EVs in market. Initially, a single-phase propulsion-machine-integrated onboard charger is introduced and developed, which is capable of power factor correction (PFC) and battery voltage/current regulation without any bulky add-on passive components. The machine windings are utilized as mutually coupled inductors for PFC, and the inverter along with the machine windings constructs a two-channel interleaved boost converter. The input current ripple cancellation effect of the interleaved circuit is analyzed in detail, and the operation principles of the charging systems are presented. The feasibility of the single-phase integrated charger is proved by experimental results. Then, two approaches for three-phase propulsion-machine-integrated onboard charging are introduced and investigated. In the first approach, the charger topology is composed of a three-phase six-switch power electronics interface and the propulsion system. The proposed interface, mainly consisting of semiconductors, has small size and high power density, enabling onboard installment. The detailed operation modes of the topology are presented. In addition, the control-oriented modeling of the charging system is conducted, and a control system is designed to enable both the unity PFC and the battery voltage/current regulation. A 3.3kW prototype is designed, developed and tested for the validation of the proposed concept. The second approach is based on a three-phase three-switch power electronics interface, which is intended to be an even smaller interface. The power density of the three-switch interface increases by 40% in comparison to the first approach. The modeling and control strategy of the charging system are investigated and presented. A 5kW prototype is designed and built to validate the charging system and its control strategy

    A review on integrated battery chargers for electric vehicles

    Get PDF
    Electric vehicles (EVs) contain two main power electronics systems, namely, the traction system and the battery charging system, which are not used simultaneously since traction occurs when the EV is travelling and battery charging when the EV is parked. By taking advantage of this interchangeability, a single set of power converters that can perform the functions of both traction and battery charging can be assembled, classified in the literature as integrated battery chargers (IBCs). Several IBC topologies have been proposed in the literature, and the aim of this paper is to present a literature review of IBCs for EVs. In order to better organize the information presented in this paper, the analyzed topologies are divided into classical IBCs, IBCs for switched reluctance machines (SRMs), IBCs with galvanic isolation, IBCs based on multiple traction converters and IBCs based on multiphase machines. A comparison between all these IBCs is subsequently presented, based on both requirements and possible functionalities.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. T.J.C.S. is supported by the FCT scholarships SFRH/BD/134353/2017 and COVID/BD/151993/2021

    Non-Integrated and Integrated On-Board Battery Chargers (iOBCs) for Electric Vehicles (EVs) : A Critical Review

    Get PDF
    The rising Greenhouse Gas (GHG) emissions stemming from the extensive use of automobiles across the globe represent a critical environmental challenge, contributing significantly to phenomena such as global warming and the deterioration of air quality. To address these challenges, there is a critical need for research and development in electric vehicles (EVs) and their associated charging infrastructure, including off-board and on-board chargers (OBCs). This paper aims to bridge the gaps in existing review literature by offering a comprehensive review of both integrated and non-integrated OBCs for EVs, based on the authors’ knowledge at the time of writing. The paper begins by outlining trends in the EV market, including voltage levels, power ratings, and relevant standards. It then provides a detailed analysis of two-level and multi-level power converter topologies, covering AC-DC power factor correction (PFC) and isolated DC-DC topologies. Subsequently, it discusses single-stage and two-stage non-integrated OBC solutions. Additionally, various categories of integrated OBCs (iOBCs) are explored, accompanied by relevant examples. The paper also includes comparison tables containing technical specifications and key characteristics for reference and analysis

    Electric Vehicle Powertrain Integrated Charging

    Get PDF
    Batterieelektrische Fahrzeuge benötigen ein im Fahrzeug eingebautes Ladegerät, um die Energie aus dem Wechselstromnetz für die Gleichstrom- Batterie aufzubereiten. Integriertes Laden ist eine Methode der Integration von Ladefunktionalität in die Antriebsstrangkomponenten, welche während des Parkens außer Betrieb sind, mit dem Ziel, Kosten, Gewicht und Volumen des Ladegerät zu sparen. Das Laden ohne die Sicherheitsmaßnahme einer galvanischen Trennung im Ladegerät ist möglich mit zusätzlichen Maßnahmen gegen elektrischen Schlag, z.B. mit einer Fehlerstromerkennung und entsprechenden Trenneinrichtung. Im Stand der Technik wurden 33 integrierte Ladekonzepte gefunden und bezüglich Antriebsstrangnutzung, benötigte Komponenten, Drehmoment der elektrischen Maschine und Wirkungsgrad verglichen. Im Rahmen dieser Arbeit wird ein neues galvanisch getrenntes integriertes Ladekonzept beschrieben, mit dem Ziel, die Effizienz zu verbessern und gleichzeitig auftretendes Drehmoment in der Maschine zu vermeiden. Der Antriebsstrang wird als DC/DC-Wandler mit der elektrischen Maschine als Transformator im Stillstand genutzt. Berechnungen zeigen eine maximale Effizienz von 88%. Ansätze zur Verbesserung des Wirkungsgrads und zur Integration des Energieflusses im Bordnetz werden in dieser Arbeit vorgeschlagen und diskutiert. Allerdings muss der Rotorkäfig geöffnet werden, um ein Drehmoment während des Laden zu vermeiden. Dies stellt einen ähnlichen Aufwand dar wie die Darstellung eines separaten Ladegeräts. Somit ist dieses Konzept aus heutiger Sicht wegen niedriger Effizienz und hoher Kosten gegenüber einem separaten Ladegerät nicht konkurrenzfähig. Zwei Ladekonzepte ohne galvanische Trennung, die eine sechsphasige elektrische Maschine als in Serie geschaltete Hoch- und Tiefsetzsteller nutzen, werden im Rahmen der Arbeit vorgestellt und bezüglich der benötigten Komponenten, der Effizienz und des Drehmoments des Maschine ausgearbeitet. Die Antriebsstrangverluste werden für die Ladebedingungen mit Gleichströmen analysiert, basierend auf neuen Materialcharakterisierungen für die angewendete Belastung. Es wurden Wirkungsgrade bis zu 93% demonstriert und auch in theoretischen Berechnungen mit einer maximalen Abweichung von ±1% zum experimentellen Befund bestätigt. Zum Schutz gegen elektrischen Schlag bei nicht isolierten Ladekonzepten werden drei Konzepte für eine Fehlerstrommessung präsentiert und anhand von Messergebnissen analysiert. Siliziumkarbid-Inverter-Technologien zeigen in Kombination mit diesen Ladekonzepten Wirkungsgrade, die vergleichbar zu herkömmlichen separaten Ladegeräten sind, und weisen dabei deutlich geringere Kosten auf
    corecore