1,235 research outputs found

    The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence

    Get PDF
    Intelligent systems based on first-order logic on the one hand, and on artificial neural networks (also called connectionist systems) on the other, differ substantially. It would be very desirable to combine the robust neural networking machinery with symbolic knowledge representation and reasoning paradigms like logic programming in such a way that the strengths of either paradigm will be retained. Current state-of-the-art research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to be overcome we perceive the question how symbolic knowledge can be encoded by means of connectionist systems: Satisfactory answers to this will naturally lead the way to knowledge extraction algorithms and to integrated neural-symbolic systems.Comment: In Proceedings of INFORMATION'2004, Tokyo, Japan, to appear. 12 page

    Generative learning for nonlinear dynamics

    Full text link
    Modern generative machine learning models demonstrate surprising ability to create realistic outputs far beyond their training data, such as photorealistic artwork, accurate protein structures, or conversational text. These successes suggest that generative models learn to effectively parametrize and sample arbitrarily complex distributions. Beginning half a century ago, foundational works in nonlinear dynamics used tools from information theory to infer properties of chaotic attractors from time series, motivating the development of algorithms for parametrizing chaos in real datasets. In this perspective, we aim to connect these classical works to emerging themes in large-scale generative statistical learning. We first consider classical attractor reconstruction, which mirrors constraints on latent representations learned by state space models of time series. We next revisit early efforts to use symbolic approximations to compare minimal discrete generators underlying complex processes, a problem relevant to modern efforts to distill and interpret black-box statistical models. Emerging interdisciplinary works bridge nonlinear dynamics and learning theory, such as operator-theoretic methods for complex fluid flows, or detection of broken detailed balance in biological datasets. We anticipate that future machine learning techniques may revisit other classical concepts from nonlinear dynamics, such as transinformation decay and complexity-entropy tradeoffs.Comment: 23 pages, 4 figure

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    Building Internal Maps of a Mobile Robot

    Get PDF

    Mixed transfer function neural networks for knowledge acquistition

    Full text link
    Modeling helps to understand and predict the outcome of complex systems. Inductive modeling methodologies are beneficial for modeling the systems where the uncertainties involved in the system do not permit to obtain an accurate physical model. However inductive models, like artificial neural networks (ANNs), may suffer from a few drawbacks involving over-fitting and the difficulty to easily understand the model itself. This can result in user reluctance to accept the model or even complete rejection of the modeling results. Thus, it becomes highly desirable to make such inductive models more comprehensible and to automatically determine the model complexity to avoid over-fitting. In this paper, we propose a novel type of ANN, a mixed transfer function artificial neural network (MTFANN), which aims to improve the complexity fitting and comprehensibility of the most popular type of ANN (MLP - a Multilayer Perceptron).<br /

    Theory and Practice of Computing with Excitable Dynamics

    Get PDF
    Reservoir computing (RC) is a promising paradigm for time series processing. In this paradigm, the desired output is computed by combining measurements of an excitable system that responds to time-dependent exogenous stimuli. The excitable system is called a reservoir and measurements of its state are combined using a readout layer to produce a target output. The power of RC is attributed to an emergent short-term memory in dynamical systems and has been analyzed mathematically for both linear and nonlinear dynamical systems. The theory of RC treats only the macroscopic properties of the reservoir, without reference to the underlying medium it is made of. As a result, RC is particularly attractive for building computational devices using emerging technologies whose structure is not exactly controllable, such as self-assembled nanoscale circuits. RC has lacked a formal framework for performance analysis and prediction that goes beyond memory properties. To provide such a framework, here a mathematical theory of memory and information processing in ordered and disordered linear dynamical systems is developed. This theory analyzes the optimal readout layer for a given task. The focus of the theory is a standard model of RC, the echo state network (ESN). An ESN consists of a fixed recurrent neural network that is driven by an external signal. The dynamics of the network is then combined linearly with readout weights to produce the desired output. The readout weights are calculated using linear regression. Using an analysis of regression equations, the readout weights can be calculated using only the statistical properties of the reservoir dynamics, the input signal, and the desired output. The readout layer weights can be calculated from a priori knowledge of the desired function to be computed and the weight matrix of the reservoir. This formulation explicitly depends on the input weights, the reservoir weights, and the statistics of the target function. This formulation is used to bound the expected error of the system for a given target function. The effects of input-output correlation and complex network structure in the reservoir on the computational performance of the system have been mathematically characterized. Far from the chaotic regime, ordered linear networks exhibit a homogeneous decay of memory in different dimensions, which keeps the input history coherent. As disorder is introduced in the structure of the network, memory decay becomes inhomogeneous along different dimensions causing decoherence in the input history, and degradation in task-solving performance. Close to the chaotic regime, the ordered systems show loss of temporal information in the input history, and therefore inability to solve tasks. However, by introducing disorder and therefore heterogeneous decay of memory the temporal information of input history is preserved and the task-solving performance is recovered. Thus for systems at the edge of chaos, disordered structure may enhance temporal information processing. Although the current framework only applies to linear systems, in principle it can be used to describe the properties of physical reservoir computing, e.g., photonic RC using short coherence-length light

    Theory and applications of artificial neural networks

    Get PDF
    In this thesis some fundamental theoretical problems about artificial neural networks and their application in communication and control systems are discussed. We consider the convergence properties of the Back-Propagation algorithm which is widely used for training of artificial neural networks, and two stepsize variation techniques are proposed to accelerate convergence. Simulation results demonstrate significant improvement over conventional Back-Propagation algorithms. We also discuss the relationship between generalization performance of artificial neural networks and their structure and representation strategy. It is shown that the structure of the network which represent a priori knowledge of the environment has a strong influence on generalization performance. A Theorem about the number of hidden units and the capacity of self-association MLP (Multi-Layer Perceptron) type network is also given in the thesis. In the application part of the thesis, we discuss the feasibility of using artificial neural networks for nonlinear system identification. Some advantages and disadvantages of this approach are analyzed. The thesis continues with a study of artificial neural networks applied to communication channel equalization and the problem of call access control in broadband ATM (Asynchronous Transfer Mode) communication networks. A final chapter provides overall conclusions and suggestions for further work
    • …
    corecore