
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

25

Building Internal Maps of a Mobile Robot

Branko Šter and Andrej Dobnikar
University of Ljubljana

Slovenia

1. Introduction

Classical approaches to environment modelling of mobile robots consist of geometrical
space reconstruction using measurements from robot sensors. This approach could be error-
prone due to noise and inaccuracy of the sensors. However, in order to perform path-
planning, a mobile robot still requires some kind of representation or world-model, as
pointed out in (Tani, 1996) and (Mataric, 1992).
The alternative approach consists of topological modelling of the environment. It leads to a
simpler description of the environment, but still preserving essential information. Provided
that a type of low-level behaviour is provided, a topological map of the space suffices to the
robot to distinguish among qualitative distinct behaviours. A model of the world may be
built therefore on top of the reactive behavior. This corresponds to topological navigation. A
topological map of the space is usually in the form of a graph or a finite state machine
(FSM). The states are typically distinctive places in the space, also called landmarks. At each
node, there is a decision to be made as to where to proceed.
It was argued (Brooks, 1991) that for truly intelligent agents the type of representation must
not be a designer's choice, because the abstraction is the key part of the intelligence. Human
designers tend to decompose the problem to the blocks-world, i.e., they do all the
abstraction and leave a supposedly intelligent agent merely to search in this simplified
world. Behavior-based robotics (Brooks, 1991) consequently emerged as a paradigm,
emphasizing direct embodiment of a robot in a surrounding environment, taking as the
basic level a direct state-action mapping or reactive behavior that enables the robot to
perform basic tasks in the real world. Further levels are to be built incrementally upon the
basic level, but always having in mind strong coupling between the robot and the
environment. In (Mahadevan & Connell, 1992), one of the first successful applications of
reinforcement learning to a behavior-based robot is described.
Basic skills of a robot include obstacle avoidance and approaching a goal. While the obstacle
avoidance skill is a reactive-type behaviour, i.e., it requires no memory, approaching a goal
usually requires some knowledge about the environment. Unless the goal is observed at a
given moment, the robot must have a model of the space.
The symbolic approach is simple, but also has a major drawback, namely, input symbols to
the finite state machine may occasionally be overlooked or even illegal. Whenever an error
occurs (due to sensor noise, for example), this symbolical representation can consequently
break down.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

504

(Tani, 1996) applied recurrent neural networks to model the environment. A robot with
range sensors advances reactively according to the maximum of the smoothed range profile.
When multiple maxima appear, it decides where to proceed (this is a graph node). This
approach avoids a serious drawback of the methods that require localization and the
position of the robot in global coordinates. The robot does not have to perform localization,
since the position is implicitly contained within the current state information in the
recurrent neural network (RNN). (Tani, 1996) showed that the robot, whenever it is lost, gets
“situated” again, i.e., it eventually restores the correct state information (context). On the
other hand, a RNN tolerates a certain amount of errors, thus overcoming the FSM approach.
The approach to handle independently low-level or reactive behavior and higher-level or
planning behavior has become common in mobile robotics. The key difference between the
two is the usage of memory and different granularity. Reactive behavior (Mahadevan &
Connell, 1992, Krose & van Dam, 1992a, Krose & van Dam, 1992b) is responsible for reacting
to current sensory information with appropriate action or motor-control. It requires no
memory, therefore a purely feed-forward scheme can be applied. The first concern is always
to avoid collisions with obstacles and thereby to prevent the damage on the robot. Other
goals typically include approaching objects, maximizing the length of the path, etc.
The higher-level or planning behavior (Tani & Nolfi, 1999) may be therefore manipulated
either by a FSM or using a model such as RNN, capable of modeling FSMs. The
environment as experienced by a moving robot is treated as a dynamical system. Simple
types of reactive behavior are supplemented with eventual decisions to switch among them.
Switching criteria in fact define states of the FSM. Since it is embedded in the environment
and dependent on the sensory flow of the robot, the notion of Embedded flow state machine
(EFSM) has been introduced (Ster & Dobnikar, 2006). It is a FSM-like model, embedded in
the environment and symbolically representing the sensory flow experienced by the robot
when acting according to a certain type of reactive behavior and making decisions in those
situations that satisfy certain pre-specified conditions or switching criteria.
An EFSM can be implemented with a RNN which is trained on a sequence of sensory
contents and actions and subsequently used for planning. The EFSM is applicable to multi-
step prediction of sensory information and the travelled distances between decision points,
given a sequence of decisions at decision points. One of the main virtues of this approach is
that no explicit localization is required, since the recurrent neural network holds the state
implicitly. An important issue regards the ability of this approach to reliably predict the
sensors and the traversed distance enough steps ahead.
This chapter is basically divided into two parts. The first considers learning of appropriate
reactive or low-level behavior. This does not mean that a low-level behavior cannot be
deterministically programmed, however, but learning is potentially more flexible, due to
possible changes in the environment. The second part considers the planning behavior by
building an implicit model of the environment using RNNs.

2. Learning Reactive Behaviour of a Mobile Robot

We describe an application of the reinforcement learning paradigm to learning reactive
behaviour of a simulated mobile robot, equipped with proximity sensors and video color
information. The value function is approximated using radial-basis functions, which are
adaptively allocated in the input space. The presented approach combines multiple goals in
reinforcement learning using modularity.

www.intechopen.com

Building Internal Maps of a Mobile Robot

505

2.1 Q-learning in continuous space

Q-learning (Watkins & Dayan, 1992) is a variant of reinforcement learning which is
appropriate for systems with unknown dynamics. A model of the system is built implicitly
during learning. Q-learning is proved to converge only for discrete systems. For continuous
systems it usually works by choosing an appropriate approximation architecture, which
may be task-dependent. The update equation is

 () () () ()⎥⎦
⎤

⎢⎣
⎡ −+=∆ +++

+
tttt

a
tttttt asQassasgasQ

t

,,min,,, 111
1

γη (1)

where s is state, a is action, η is learning step, and γ is discount factor. In our case the state
space is continuous, while the action space is discrete and consists of three actions: turn left,
forward and turn right. It must be emphasized, that our system is actually not a Markov
decision process, since the sensors do not provide the complete state information.
As a function approximator, the radial-basis function (RBF) neural network is used. As a
local-basis function, the Gaussian is taken. Its activation on input xt ∈ Rn is

 ()
() 2

2

1
iti cxM

ti ex
−−

=Φ (2)

where n is the joint dimension of the sensory space, ci ∈ Rn is the center and Mi is the scaling
matrix of the Gaussian. The basis functions are normalized as

 ()
∑Φ

Φ
=

j

j

i
ti xb

 (3)

which causes the approximator to be a kind of look-up table with soft transitions. The Q-
values are represented as

 () ()∑ ==
i

tiitj jxbwxQ .3,2,1, (4)

(Samejima & Omori, 1999) proposed adaptive state space construction method, arguing that
methods using look-up tables suffer from the curse of dimensionality, while when using
global-basis functions the convergence can suffer. Their adaptive basis division algorithm
reportedly solved the collision avoidance problem using a smaller number of basis
functions.
A similar method called Adaptive basis addition with fixed size basis (ABA-F) (Samejima &
Omori, 1999, Anderson, 1993) is applied. It incrementally allocates basis functions in the
observation space. A new basis function is allocated when the TD error exceeds a threshold
value, εTD > θe, and there is no basis function near the present location in the observation
space, φi(xt) < θa, i = 1, …, n. Otherwise, the output weights are updated:

 () () ()[] () ,,...,1,,,min 1
'

1 nixbaxQaxQxgw titt
a

ttai =−+=∆ ++ γη (5)

where a is the selected action. During learning actions are selected randomly (exploration
phase), while later (exploitation phase) the action with the minimal Q value is chosen at any
given moment.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

506

2.2 Reactive behavior with modular reinforcement learning

Various modular approaches have been proposed (Karlsson, 1997, Uchibe et al., 1996,
Kalmar et al., 1998). In our work, two reactive or low-level modules were defined: the
collision-avoidance module (named module C) and the object-approach module (named
module A). For each module the activation is defined as a measure of how much a current
sensory information has to do with the module. In our case the activation of the module C is
1 everywhere, where proximity sensors (ps) are activated, i.e., where obstacles are near the
robot, and 0.01 otherwise (in order to prevent the activations of both modules to be zero).
The module A is disactivated everywhere, where the red color (from “color sensors” cs –
this is not a video camera) is not sufficiently observed, ∑ =

<
NC

i ics1
1.0 . Otherwise, actA is

proportional to the above sum. To bring the robot nearer to biological organisms, a function
called weariness (wr) was defined.
We know that living beings are naturally interested in exploring the surrounding world.
They are especially drawn to “interesting” objects or phenomena, i.e., those with higher
levels of sensorial activation. The (colored) object approach module reflects this natural
curiosity. The reward the robot gets in the vicinity of a colored object, corresponds to the
pleasure of a person satisfying its curiosity. The weariness function models eventual
diminishing of curiosity, due to the so-called stimulus satiation. Ster (2004) describes these
phenomena using various theories of motivation from psychology.
The robot, therefore, while wandering around, approaches colored objects, but leaves them
after a certain period, since it gets weary. When its weariness reaches a certain plateau, its
activation (or motivation) decreases quite rapidly. Consequently, the collision avoidance
module overcomes and takes the robot away from the object. Of course, the weariness effect
requires memory, i.e., module A cannot remain purely reactive. The weariness is modeled as

 () ∑
=

+−←
NC

i

icswrwr
1

1 εε (6)

and the activation is a descending function of wr, e.g.

⎪⎩

⎪
⎨
⎧

>
−

−
≤

=
1

12

2

1

,

,1

Pwr
PP

wrP

Pwr

acta
 (7)

We chose ε = 0.1, P1 = 2, and P2 = 3. These values depend on particular activations. How to
define them, is probably not an easy issue.
The two modules are combined in the following manner

 () () ()asQactasQactasQ aAcC ,,, += (8)

During exploration each module learns independently its action-value function Q. The
activations are not used at this stage. In the exploitation phase greedy actions are chosen
w.r.t. Q, the joint Q-values. However, a modular architecture is not meant to be capable in
principle of achieving better solutions than a monolithic one. The actual reason for
modularity is merely to facilitate learning. Simpler networks escape local minima easier
than larger monolithic networks. The drawback is that a modular architecture may yield
sub-optimal solutions, when modules are not chosen appropriately.

www.intechopen.com

Building Internal Maps of a Mobile Robot

507

0 400
0

300

... ..
.............

.............
.............

.............
............

.............
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

.......
.......
.......
.......
.......
...
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.....
.......
.......
.............

..
...

.........
.........

.........
.........

.........
..........

.........
........

.........
..........

.........
.........

..........
.........

.........
..........

.........
.........

.........
.........

..
......
.......
........
......
......
.......
......
.......
.......
.......
.....
.......
.......
.......
......
.......
......
...

...........................
..........................

...........................
..........................

...........................
.........................

...............
..............
.......
............

...............
................

..............
..............

...............
..............

..............
...............

..............
...............

...............
...............

..
.........

..........
.........

.........
.........

.........
.........

..........
.........

.........
..........

.........
.........

........
..........

.........
.........

..........
.........

.........
..........

.........
.........

..........
........

.........
...........
.........
........
.......
...

/

0100

200

300

400

500

Figure 1. A test path in the environment E1, 500 steps long. The numbers indicate time

2.3 Experiments

The method was tested in two environments, E1 (Fig. 1) and E2 (Fig. 2). The learning
(exploration) period lasted 5500 time steps. There was no attempt to minimize this number.
In the learning period the robot selected random actions between three available actions:
turn left by 0.5 rad (≈ 28.6°), forward by five units, and turn left by 0.5 rad. The actions
correspond to the motor commands for the left and the right wheel: left (dl = -5, dr = 5),
forward (dl = 5, dr = 5), and right (dl = 5, dr = -5). Since the radius of the robot was 10 units,
angle=arc/radius=5/10 = 0.5 rad. The testing period was 500 steps long.

0 400
0

300

..

..

..
..............................

.............................
..............................

................
......
.....
.......
......
......
.......
.......
......
......
.......
.......
......
.....
.......
.......
......
......
.......
.......
......
......
.......
.......
......
.....
.......
.......
......
......
.........
........

...............
..

..........
.........
......
.......
.......
.......
.......
.......
.......
.......
.....
.......
......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.........
.............................
...........
...

........
........

........
.........

.......
........

........
........

........
........

.......
.........

.......
........

........
........

.......
........

........
.........

........
........

.......
........

........
........

...........
..............

............
..............

..............
.............

..............
..............

...
........
........
........
.........
......
......
......
.......
.......
.....
......
.......
......
.......
.......
.......
......
.......
.......
......
......
.......
.......
.....
.......
.......
.........
......
.......
..

..
...............................

.........
............
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

/

0

100
200

300

400

500

Figure 2. A test path in the environment E2, 500 steps long. Red objects are shaded, others
(“pure” obstacles) are empty

The robot is assumed to have eight proximity sensors at angles 90, 45, 0, 0, -45, -90, -180, and
-180, similar to the well-known miniature robot Khepera (Mondada et al., 1993). The
nonlinear function of the sensors were approximated by a piecewise linear function

 ()
⎪
⎩

⎪
⎨

⎧

>

≤≤

<

= −

50,0

5010,

10,1

40
50

d

d

d

dps d (9)

where ps is the proximity sensor activation and d is the distance.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

508

The color information was extracted from 24 range sensors covering a 160° arc in front of the
robot, yielding the “intersensorial” angle of about 7°. Each range sensor returns a color,
specified in the environment file. In the presented environments a color was either default
(grey) or red. This information was compressed into 8 values, each one covering three
adjacent range sensors in the following manner: ∑ =

=
3

1

1

3

25
i

id
cs

.

Parameters of the ABA-F method were: σ = 0.5, θe = 0.02, θa = 0.1. The discount factor γ was
0.85. Each collision was penalized by g = 1 and each turn action by g = 0.1. Seeing the red
color was rewarded by a negative penalty ()∑ =

−−−=
8

1
4/1

i i iicsg , where <.> denotes the

mean operator. The second term (in brackets) was added in order to reward the side color
sensors less than the frontal color sensors.
We show here merely the results of the test run on E2 (for E1 see Ster (2003)), which show Q-
values on 200 (out of 500) steps (Qc in Fig. 3, Qa in Fig. 4, and Q in Fig. 5). The actions are
labeled as 0 for left, 1 for forward, and 2 for right. It can be seen that the Q-function of the
two turn actions is at least 0.1 (mostly about 0.1), because the “turn penalty” was 0.1. The Q-
values for forward action, Q(s,1), can be lower in an open space, but reach high values in the
vicinity of obstacles (note that the colored object is also an obstacle besides being an object of
interest), see steps around 90 and 200. At the same points a reward (g < 0) was delivered
because of the colored object.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200

Qc0

Qc1

Qc2

Figure 3. The Q-values of module C over 200 testing steps in E2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

50 100 150 200

Qa0

Qa1

Qa2

Figure 4. The Q-values of module A over 200 testing steps in E2

www.intechopen.com

Building Internal Maps of a Mobile Robot

509

-0.6

-0.4

-0.2

0

0.2

0.4

50 100 150 200

Q0

Q1

Q2

Figure 5. The joint Q-values over 200 testing steps in E2

3. Navigation of a Mobile Robot with Recurrent Neural Networks

When the robot moves according to a specified reactive behavior, a graph node may be
implied according to fulfillment of a specified condition, based on sensory contents. This
means that a topological graph may be defined implicitly by given switching criteria. In the
exploratory or training phase, a random binary action is chosen at such branching point. In
our case, one type of action will always be connected with the wall (action 0: follow the wall
or return to the wall), and the other will be connected to colored objects in the environment
(action 1: approach the object or look for another object). In case of different reactive
behavior, of course, actions should be defined appropriately.
The Embedded flow state machine (EFSM) describes the dynamics of this process more
accurately. The purpose of the EFSM is to represent a higher-level model of the sensory flow of a
moving robot in an environment. The Embedded flow state machine may be formally defined as

 { }21,,,,,, λλδDACSEFSM = (10)

where S is a vector space [0,1]Ns of the preprocessed sensory information, C is the context
vector space [0,1]Nc, A is a finite non-empty set of possible decisions, and D is the unit
interval [0,1], representing normalized distance travelled from the previous to the current
decision point. Ns is dimensionality of the preprocessed sensory information and Nc is
dimensionality of the context space (number of context units, as will be seen later).
Functions δ, λ1 and λ2 provide the context, the sensors, and the travelled distance at the next
decision point. From the context vector ct ∈ C, the sensory vector st ∈ S, the distance dt-1,t ∈
D, and the decision at ∈ A, all at time t, the next values are predicted:

()
()

()ttttttt

tttttt

tttttt

add

ad

ad

,,,

,,,

,,,

,121,

,111

,11

−+

−+

−+

=

=

=

sc

scs

scc

λ

λ

δ
 (11)

Of course, the equalities strictly hold only in the case of perfect prediction. The distance is
metric information in this otherwise topological approach. It enables optimization of the
predicted path in the planning phase. The preprocessed sensory information st stems, in our
case, solely from a video camera.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

510

3.1 Recurrent Neural Networks

It was shown that finite-state automata can be represented by recurrent neural networks.
There has been a lot of effort to induce FSMs for regular languages with RNNs on the basis
of shown examples (Cleeremans et al., 1989, Gabrijel & Dobnikar, 2003).
One of the classic algorithms for training recurrent neural networks (RNN) (Haykin, 1994) is
described in (Williams & Zipser, 1989). The algorithm is gradient following and is applicable
for fully connected RNNs, i.e., each unit (neuron) has a feedback connection to each unit in
the network, see Fig. 6. The outputs of certain units represent outputs of the network, while
the other units are called context-units, because they provide information relevant to
sequence-processing problems.

Figure 6. Fully connected recurrent neural network (left) and recurrent neural network with
a hidden layer (right)

Inputs to the network are fed to each unit. Thus RNN can be trained to simulate any
dynamical system, at least conceptually. The batch variant of the algorithm requires a
sequence of input vectors x(t) and output vectors y(t) for t = 1, ..., N, where N is the length of
the sequence. RNN is trained to produce the sequence of the desired outputs, if fed with the
input sequence. A caution must be exercised while training the network; namely, when
RNN is trained to produce desired outputs at each cycle, the functional ability of the
network is restricted to a single perceptron layer, that is a linear transformation plus
sigmoid activation function. To increase the functional ability of the network, inputs and
outputs may change after two or more cycles of the network processing. Another possibility
is, however, to apply a recurrent neural network with a hidden layer, which increases the
functional ability of the network (Fig. 6 right). It is known that the 2-layer perceptron is a
universal approximator (Hornik et al., 1989). The modified gradient-based algorithm is
described in (Ster & Dobnikar, 2006).

3.2 Building an Internal Map of the Environment

The miniature robot Khepera (Mondada et al., 1993), see Fig. 7, with an additional video
color camera was applied. Sensory information consists of infrared proximity sensors,
wheel-encoders and processed image from a video camera. The task was considerably
simplified using the camera solely for detection of colored objects (red, green and blue in
this case). The robot is equipped with eight proximity sensors with a nonlinear activation

www.intechopen.com

Building Internal Maps of a Mobile Robot

511

function, which can be approximated by a piecewise-linear one, as shown in Fig. 8. The
robot is able to perform three distinct actions: turn left, move forward, and turn right (by a
small angle).
A video image was thresholded to extract the intensities of red, green and blue colour,
which subsequently form the sensory vector. Two images at resolution 80x60, seen by the
robot before the thresholding operation, are shown in Fig. 9. They correspond to branching
points or EFSM states with the sensory outputs "Green reached" and "Red observed",
respectively.

Figure 7. Mobile robot Khepera with an on-board video camera

0

1
2 3

4

5

67

distance [cm]

 sensor
activation

1 5

1

wheelwheel

Figure 8. Proximity sensors of mobile robot Khepera

It should be mentioned here that these labels do not actually represent states, but rather the
outputs of a finite-state machine, which describes the environmental dynamics. Actual states
are really not directly accessible via sensors. For example, the same object may be perceived
from different viewpoints and thus the state is different, despite identical or very similar
sensorial outputs. Another possibility would be the existence of two identical or very similar
objects at different spots in the environment. The corresponding states are different, too.
The low-level or reactive behaviour of the robot consists of following the right wall using
information from proximity sensors. The low-level behaviour is deterministic and rather
short to program manually, but a little longer to find experimentally. It turned out that the
following portion of the low-level program (written in C language) leads to very efficient
right-wall following:

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

512

Figure 9. Left: sensory output "Green reached" close to the green object, as seen by the robot.
Right: sensory output "Red observed", where the red object is observed, as seen by the robot
(resolution 80x60)

The h represents the speed and proxSen[0..7] is the vector of proximity sensors. Another
possibility is to learn a reactive behavior by applying reinforcement learning, as described in
the previous section.

0

1

0

1

Decision point:
object observed

Decision point:
object reached

Figure 10. Decision or branching points.

The robot advances following the wall until it observes a colored object. There is a certain,
experimentally determined threshold for each colour to signify the observation of an object
(about 100 pixels), as well as vicinity of the object (about 600 pixels). When the robot
observes a colored object, it has to decide whether to still follow the wall or to approach the
object. This situation is called branching point. In the vicinity of a colored object, the decision
is to approach another colored object or to find the wall (Fig. 10).
Looking for another object, the robot turns left until another object is observed with a specified
threshold. It subsequently approaches the object. Looking for the wall, the robot turns right for
approximately 90 degrees, and from then on follows Breitenberg's algorithm for low-level

www.intechopen.com

Building Internal Maps of a Mobile Robot

513

behaviour, which is basically forward-motion, avoiding obstacles. The wheels' velocities are
linear functions of the proximity sensors plus an offset term (Breitenberg, 1984).
In this way the whole environment can be represented as an EFSM. EFSMs corresponding to
typical indoor environments are usually relatively simple (not many branching points).
Therefore, in practical cases RNNs should not have problems learning the corresponding
EFSMs. Of course, a complex maze would also produce a complex EFSM.

3.3 Experiments

During training the robot traveled around using random decisions at branching points. The
whole path included 101 branching points. An automatic preprocessing, which dealt with
situations, where the robot observed the same object again after a short period of time, was
done. Thus the path with 87 branching points remained. A small part of the path is shown in
Fig. 11. At the first branching point from the start the robot observes object 1 (red).
Therefore, the starting sensory output is "Red observed", while the state of the EFSM might
be referred to as “1 observed from the west” or O1w (Fig. 12). The training trajectory can be
represented as a motor-program describing the action sequence. The vectors, extracted from
images, represent the outputs of the EFSM. The outputs do not exactly correspond to the
states, so there is not a one-to-one mapping from the states to the outputs. Images at distinct
places may look the same, so there is an obvious need to have internal states, i.e., memory.

Figure 11. The path of the robot during training

RNN was trained off-line on the sensory-motor sequence for 5000 iterations (RNNs typically
require large number of iterations). At each iteration the weights were updated following
the gradient of the mean-squared error (MSE) on the whole training set ("batch" variant).
The input vector consists of the current sensory vector (red, green and blue intensities), the
distance from the previous to the current branching point, and the current decision (action).
Given an input vector, a trained RNN predicts the next sensory vector and distance to the
next branching point, which can be used in turn as the input at the next branching point,
and so on. Given a motor sequence, RNN can thus predict the sensory flow of the EFSM.
We were interested how many steps ahead RNN was able to predict the sensory flow good
enough in a closed-loop (multistep prediction). Prediction of the RNN was tested applying
all possible motor programs five steps (branching points) ahead, i.e., 25 = 32 programs:
00000, 00001, 00010, ..., 11111. Prediction error on the testing set showed that the first four
predictions are very accurate, while the fifth is a little less reliable. MSE amounted on

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

514

average from 0.01 to 0.02 on the training set and from 0.01 to 0.25 (RMSE from 0.1 to 0.5) on
the testing set. However, a few steps correspond to the whole environment, and besides,
there was no effort to optimize training of the RNN.
The sense of forward-modeling of the environment is applying it in "mental" planning. The
term "navigation" stands for finding the (shortest) path to a specified point. For example, we
would like to find the shortest path from beginning to the green object. It is obvious from Fig.
13, that using the program 1-1-1 is the best way to do it. This corresponds to decisions:
‘Approach red’, ‘Find another’ (blue), ‘Find another’ (green). We need to perform a closed-loop
simulation of all the motor programs, searching for the matching object, specified as the goal,
and finding the least costly path to it. One possibility is proposed also in Tani (1996).

4. Conclusion

The first part of this chapter shows that using reinforcement learning with a modular
architecture a mobile robot can learn to wander "sensibly", merely by applying known
psychological concepts as sources of reinforcement. It is motivated by distinguishing objects
in the environment, unmotivated by weariness, while at the same time avoiding collisions
with obstacles and trying to maintain its course. Another possibility is to design
reinforcement signals according to specific requirements.

RED

 1

BLUE

 3

GREEN

 2

O1w

R w1

R1n

O3e

R3e

R3s

R3w

R2e

R2n

O2n

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

R1w

R2n

Figure 12. The EFSM, embedded in its environment. There are three landmark objects: 1
(red), 2 (green) and 3 (blue). EFSM states are denoted by circles and labelled as Oi (for 'object
i observed') and Ri (for 'object i reached') with additional subscript letters signifying
directions, e.g. state R2e signifies 'object 2 reached from the East'

The second part of the chapter shows how recurrent neural networks can be applied to build
the internal map of the environment in a simple robot navigation task. The robot is able to
induce the EFSM of a simple environment in the form of RNN and to use it for further
planning. Because of the simplicity of the environment in the given task, the robot has to
predict sensory flow for very short motor-programs, and it does it successfully. Further
work should reveal how this behaviour scales up to larger problems and more realistic
sensors, i.e., where a lower level of abstraction of sensory information is provided. Also

www.intechopen.com

Building Internal Maps of a Mobile Robot

515

more reliable and possibly on-line training is required. The ultimate goal would be no
human-designed representation, which seems to be still a very complex task.
There is a question whether a RNN is able to induce a finite-state automaton only on the
basis of a limited number of training examples. It is obvious that the network can be trained
(fitted) to a particular sequence, but it is not clear whether the complete structure of an
automaton can be induced. This is not a question of functional ability, since a RNN can
simulate any FSM, in principle.
There are two possible types of overtraining or overfitting here. Firstly, due to too many
hidden neurons (standard overfitting in static neural networks), and secondly, due to too
many context neurons. The latter might be called "dynamic overfitting", namely, the RNN
uses its context units to "invent" a kind of context to lower the prediction error on the
particular training sequence, especially when the latter is short. This problem would
possibly be avoided with an on-line training, long enough to resolve uncertainties. For
example, when turning to the left near the red object and looking for another object, the
robot may overlook the blue object. The cause would be probably the video camera. In the
training sequence there were four occurences of the red object followed by the action "1", i.e.,
looking for another object (after turning to the left.) Three times the robot observed blue and
once green. In the latter case it overlooked blue, unfortunately. In case of larger sensor errors
a training sequence should be much longer in order to reliably "collect statistics".

1

1

1

1

0

0

0

0

1

Ro R

B

Bo

Go
G

0G

Go

G

R

Bo

0.06

0.15
0.36

0.38

0.31

0.53

0.43

0.09
0.12

0.12

0.32

0.44

0.09

0.02 0.51

0.14

Bo 1

0

0.34

Go

0.45

G1

0.06

0.34

0.08

B0.13

1

0.02

0

0.60

0.16

E

E

E

E

E

E

E

E

E

0.29

0.43
E

0.09
0

G

Go

R

Figure 13. A half of the tree, representing motor programs of the length five. Only the programs,
beginning with 1, are shown. At each arc the motor command (0 or 1) and the distance are
written. Unclear predictions are labeled with E. Sensory outputs are Ro: red observed, R: red
reached, Go: green observed, G: green reached, Bo: blue observed, B: blue reached

5. References

Anderson, C.W. (1993). Q-learning with hidden-unit restarting. Advances in Neural
Information Processing Systems 5, San Mateo, CA: Morgan Kaufmann, 81-88.

Arleo, A.; del R. Millan, J. & Floreano, D. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, Vol. 3, No. 1, 9-44.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

516

Breitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, MA.
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, Vol. 47, 139-159.
Cleeremans, A.; Servan-Schreiber, D. & McClelland, J. (1989). Finite State Automata and

Simple Recurrent Networks, Neural Computation, Vol. 1, No. 3, 372-381.
Gabrijel, I. & Dobnikar, A. (2003). On-line Identification and Reconstruction of Finite

Automata with Generalized Recurrent Neural Networks, Neural Networks, Vol. 16,
No. 1, 101-120.

Haykin, S. (1994). Neural Networks, Macmillan College Publishing Company.
Hornik, K.; Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are

universal approximators, Neural Networks, Vol. 2, 359-366.
Kalmar, Z.; Szepesvari, C. & Lorincz, A. (1998). Module Based Reinforcement Learning for a Real

Robot, In: Proceedings of the 6th European Workshop on Learning Robots, Lecture Notes in AI.
Karlsson, J. (1997). Learning to Solve Multiple Goals. PhD Thesis. University of Rochester.

Rochester, New York, USA. TR 646.
Krose, B.J.A. & van Dam, J.W.M. (1992)a. Learning to avoid collisions: a reinforcement learning

paradigm for mobile robot navigation, Proceedings of the 1992 IFAC/IFIP/IMACS
Symposium on Artificial Intelligence in Real-Time control, IFAC, pp. 295-301, Delft.

Krose, B.J.A. & van Dam, J.W.M. (1992)b. Adaptive state space quantisation for
reinforcement learning of collision-free navigation, Proceedings of the 1992 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1327-1332. IEEE,
Piscataway, NJ, Raleigh, NC.

Mahadevan, S. & Connell, J. (1992). Automatic Programming of Behavior-based Robots
using Reinforcement Learning. Artificial Intelligence, Vol. 55, 311-365.

Mataric, M. J. (1992). Integration of representation Into Goal-Driven Behavior-Based Robots.
IEEE Transactions on Robotics and Automation,Vol. 8, No. 3, 304-312.

Mondada, F.; Franzi, E. & Ienne, P. (1993). Mobile robot miniaturisation: a tool for investigation
in control algorithms, Proceedings of the Third International Symposium on Experimental
Robotics, Yoshikawa, T. and Miyazaki, F. (eds.) Kyoto, Japan, October 1993.

Samejima, K. & Omori, T. (1999). Adaptive internal state space construction method for
reinforcement learning of a real-world agent. Neural Networks, Vol.12.

Ster, B. (2004). An integrated learning approach to environment modelling in mobile robot
navigation, Neurocomputing, No. 57, 215-238.

Ster, B. & Dobnikar, A. (2006). Modelling the Environment of a Mobile Robot with the
Embedded Flow State Machine. Journal of Intelligent and Robotic Systems, Vol. 46,
No. 2, 181-199.

Tani, J. (1996). Model-Based Learning for Mobile Robot Navigation from the Dynamical
Systems Perspective. IEEE Transactions on Systems, Man, and Cybernetics - Part
B:Cybernetics, Vol. 26, No. 3, 421-436.

Tani, J. & Nolfi, S. (1999). Learning to perceive world as articulated: an approach for
hierarchical learning in sensory-motor systems. Neural Networks, Vol. 12, 1131-1141.

Uchibe, E.; Asada, M. & Hosoda, K. (1996). Behavior Coordination for a Mobile Robot Using
Modular Reinforcement Learning, Proceedings of the 1996 International Conference on
Intelligent Robots and Systems (IROS), IEEE Press.

Watkins, J.C.H. & Dayan, P. (1992) Technical Note: Q-learning. Machine Learning, Vol. 8, 55-68.
Williams, R. J. & Zipser, D. (1989). A Learning Algorithm for Continually Running Fully

Recurrent Neural Networks. Neural Computation, Vol. 1, 270-280.

www.intechopen.com

Motion Planning

Edited by Xing-Jian Jing

ISBN 978-953-7619-01-5

Hard cover, 598 pages

Publisher InTech

Published online 01, June, 2008

Published in print edition June, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In this book, new results or developments from different research backgrounds and application fields are put

together to provide a wide and useful viewpoint on these headed research problems mentioned above,

focused on the motion planning problem of mobile ro-bots. These results cover a large range of the problems

that are frequently encountered in the motion planning of mobile robots both in theoretical methods and

practical applications including obstacle avoidance methods, navigation and localization techniques,

environmental modelling or map building methods, and vision signal processing etc. Different methods such as

potential fields, reactive behaviours, neural-fuzzy based methods, motion control methods and so on are

studied. Through this book and its references, the reader will definitely be able to get a thorough overview on

the current research results for this specific topic in robotics. The book is intended for the readers who are

interested and active in the field of robotics and especially for those who want to study and develop their own

methods in motion/path planning or control for an intelligent robotic system.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Branko Ster and Andrej Dobnikar (2008). Building Internal Maps of a Mobile Robot, Motion Planning, Xing-Jian

Jing (Ed.), ISBN: 978-953-7619-01-5, InTech, Available from:

http://www.intechopen.com/books/motion_planning/building_internal_maps_of_a_mobile_robot

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

