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Building Internal Maps of a Mobile Robot 

Branko Šter and Andrej Dobnikar 
University of Ljubljana 

Slovenia 

1. Introduction 

Classical approaches to environment modelling of mobile robots consist of geometrical 
space reconstruction using measurements from robot sensors. This approach could be error-
prone due to noise and inaccuracy of the sensors. However, in order to perform path-
planning, a mobile robot still requires some kind of representation or world-model, as 
pointed out in (Tani, 1996) and (Mataric, 1992). 
The alternative approach consists of topological modelling of the environment. It leads to a 
simpler description of the environment, but still preserving essential information. Provided 
that a type of low-level behaviour is provided, a topological map of the space suffices to the 
robot to distinguish among qualitative distinct behaviours. A model of the world may be 
built therefore on top of the reactive behavior. This corresponds to topological navigation. A 
topological map of the space is usually in the form of a graph or a finite state machine 
(FSM). The states are typically distinctive places in the space, also called landmarks. At each 
node, there is a decision to be made as to where to proceed.  
It was argued (Brooks, 1991) that for truly intelligent agents the type of representation must 
not be a designer's choice, because the abstraction is the key part of the intelligence. Human 
designers tend to decompose the problem to the blocks-world, i.e., they do all the 
abstraction and leave a supposedly intelligent agent merely to search in this simplified 
world. Behavior-based robotics (Brooks, 1991) consequently emerged as a paradigm, 
emphasizing direct embodiment of a robot in a surrounding environment, taking as the 
basic level a direct state-action mapping or reactive behavior that enables the robot to 
perform basic tasks in the real world. Further levels are to be built incrementally upon the 
basic level, but always having in mind strong coupling between the robot and the 
environment. In (Mahadevan & Connell, 1992), one of the first successful applications of 
reinforcement learning to a behavior-based robot is described. 
Basic skills of a robot include obstacle avoidance and approaching a goal. While the obstacle 
avoidance skill is a reactive-type behaviour, i.e., it requires no memory, approaching a goal 
usually requires some knowledge about the environment. Unless the goal is observed at a 
given moment, the robot must have a model of the space.  
The symbolic approach is simple, but also has a major drawback, namely, input symbols to 
the finite state machine may occasionally be overlooked or even illegal. Whenever an error 
occurs (due to sensor noise, for example), this symbolical representation can consequently 
break down. 
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(Tani, 1996) applied recurrent neural networks to model the environment. A robot with 
range sensors advances reactively according to the maximum of the smoothed range profile. 
When multiple maxima appear, it decides where to proceed (this is a graph node). This 
approach avoids a serious drawback of the methods that require localization and the 
position of the robot in global coordinates. The robot does not have to perform localization, 
since the position is implicitly contained within the current state information in the 
recurrent neural network (RNN). (Tani, 1996) showed that the robot, whenever it is lost, gets 
“situated” again, i.e., it eventually restores the correct state information (context). On the 
other hand, a RNN tolerates a certain amount of errors, thus overcoming the FSM approach. 
The approach to handle independently low-level or reactive behavior and higher-level or 
planning behavior has become common in mobile robotics. The key difference between the 
two is the usage of memory and different granularity. Reactive behavior (Mahadevan & 
Connell, 1992, Krose & van Dam, 1992a, Krose & van Dam, 1992b) is responsible for reacting 
to current sensory information with appropriate action or motor-control. It requires no 
memory, therefore a purely feed-forward scheme can be applied. The first concern is always 
to avoid collisions with obstacles and thereby to prevent the damage on the robot. Other 
goals typically include approaching objects, maximizing the length of the path, etc.  
The higher-level or planning behavior (Tani & Nolfi, 1999) may be therefore manipulated 
either by a FSM or using a model such as RNN, capable of modeling FSMs. The 
environment as experienced by a moving robot is treated as a dynamical system. Simple 
types of reactive behavior are supplemented with eventual decisions to switch among them. 
Switching criteria in fact define states of the FSM. Since it is embedded in the environment 
and dependent on the sensory flow of the robot, the notion of Embedded flow state machine 
(EFSM) has been introduced (Ster & Dobnikar, 2006). It is a FSM-like model, embedded in 
the environment and symbolically representing the sensory flow experienced by the robot 
when acting according to a certain type of reactive behavior and making decisions in those 
situations that satisfy certain pre-specified conditions or switching criteria. 
An EFSM can be implemented with a RNN which is trained on a sequence of sensory 
contents and actions and subsequently used for planning. The EFSM is applicable to multi-
step prediction of sensory information and the travelled distances between decision points, 
given a sequence of decisions at decision points. One of the main virtues of this approach is 
that no explicit localization is required, since the recurrent neural network holds the state 
implicitly. An important issue regards the ability of this approach to reliably predict the 
sensors and the traversed distance enough steps ahead. 
This chapter is basically divided into two parts. The first considers learning of appropriate 
reactive or low-level behavior. This does not mean that a low-level behavior cannot be 
deterministically programmed, however, but learning is potentially more flexible, due to 
possible changes in the environment. The second part considers the planning behavior by 
building an implicit model of the environment using RNNs. 

2. Learning Reactive Behaviour of a Mobile Robot 

We describe an application of the reinforcement learning paradigm to learning reactive 
behaviour of a simulated mobile robot, equipped with proximity sensors and video color 
information.  The value function is approximated using radial-basis functions, which are 
adaptively allocated in the input space. The presented approach combines multiple goals in 
reinforcement learning using modularity.  
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2.1 Q-learning in continuous space 

Q-learning (Watkins & Dayan, 1992) is a variant of reinforcement learning which is 
appropriate for systems with unknown dynamics. A model of the system is built implicitly 
during learning. Q-learning is proved to converge only for discrete systems. For continuous 
systems it usually works by choosing an appropriate approximation architecture, which 
may be task-dependent. The update equation is 

 ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −+=∆ +++

+
tttt

a
tttttt asQassasgasQ

t
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where s is state, a is action, η is learning step, and γ is discount factor. In our case the state 
space is continuous, while the action space is discrete and consists of three actions: turn left, 
forward and turn right. It must be emphasized, that our system is actually not a Markov 
decision process, since the sensors do not provide the complete state information. 
As a function approximator, the radial-basis function (RBF) neural network is used. As a 
local-basis function, the Gaussian is taken. Its activation on input xt ∈ Rn is 
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2

1
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where n is the joint dimension of the sensory space, ci ∈ Rn is the center and Mi is the scaling 
matrix of the Gaussian. The basis functions are normalized as 
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which causes the approximator to be a kind of look-up table with soft transitions. The Q-
values are represented as 

 ( ) ( )∑ ==
i

tiitj jxbwxQ .3,2,1,  (4) 

(Samejima & Omori, 1999) proposed adaptive state space construction method, arguing that 
methods using look-up tables suffer from the curse of dimensionality, while when using 
global-basis functions the convergence can suffer. Their adaptive basis division algorithm 
reportedly solved the collision avoidance problem using a smaller number of basis 
functions. 
A similar method called Adaptive basis addition with fixed size basis (ABA-F) (Samejima & 
Omori, 1999, Anderson, 1993) is applied. It incrementally allocates basis functions in the 
observation space. A new basis function is allocated when the TD error exceeds a threshold 
value, εTD > θe, and there is no basis function near the present location in the observation 
space, φi(xt) < θa, i = 1, …, n. Otherwise, the output weights are updated: 

 ( ) ( ) ( )[ ] ( ) ,,...,1,,,min 1
'

1 nixbaxQaxQxgw titt
a

ttai =−+=∆ ++ γη  (5) 

where a is the selected action. During learning actions are selected randomly (exploration 
phase), while later (exploitation phase) the action with the minimal Q value is chosen at any 
given moment. 
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2.2 Reactive behavior with modular reinforcement learning 

Various modular approaches have been proposed (Karlsson, 1997, Uchibe et al., 1996, 
Kalmar et al., 1998). In our work, two reactive or low-level modules were defined: the 
collision-avoidance module (named module C) and the object-approach module (named 
module A). For each module the activation is defined as a measure of how much a current 
sensory information has to do with the module. In our case the activation of the module C is 
1 everywhere, where proximity sensors (ps) are activated, i.e., where obstacles are near the 
robot, and 0.01 otherwise (in order to prevent the activations of both modules to be zero). 
The module A is disactivated everywhere, where the red color (from “color sensors” cs – 
this is not a video camera) is not sufficiently observed, ∑ =

<
NC

i ics1
1.0 . Otherwise, actA is 

proportional to the above sum. To bring the robot nearer to biological organisms, a function 
called weariness (wr) was defined. 
We know that living beings are naturally interested in exploring the surrounding world. 
They are especially drawn to “interesting” objects or phenomena, i.e., those with higher 
levels of sensorial activation. The (colored) object approach module reflects this natural 
curiosity. The reward the robot gets in the vicinity of a colored object, corresponds to the 
pleasure of a person satisfying its curiosity. The weariness function models eventual 
diminishing of curiosity, due to the so-called stimulus satiation. Ster (2004) describes these 
phenomena using various theories of motivation from psychology. 
The robot, therefore, while wandering around, approaches colored objects, but leaves them 
after a certain period, since it gets weary. When its weariness reaches a certain plateau, its 
activation (or motivation) decreases quite rapidly. Consequently, the collision avoidance 
module overcomes and takes the robot away from the object. Of course, the weariness effect 
requires memory, i.e., module A cannot remain purely reactive. The weariness is modeled as 

 ( ) ∑
=

+−←
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i

icswrwr
1

1 εε  (6) 

and the activation is a descending function of wr, e.g. 
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We chose ε = 0.1, P1 = 2, and P2 = 3. These values depend on particular activations. How to 
define them, is probably not an easy issue. 
The two modules are combined in the following manner 

 ( ) ( ) ( )asQactasQactasQ aAcC ,,, +=  (8) 

During exploration each module learns independently its action-value function Q. The 
activations are not used at this stage. In the exploitation phase greedy actions are chosen 
w.r.t. Q, the joint Q-values. However, a modular architecture is not meant to be capable in 
principle of achieving better solutions than a monolithic one. The actual reason for 
modularity is merely to facilitate learning. Simpler networks escape local minima easier 
than larger monolithic networks. The drawback is that a modular architecture may yield 
sub-optimal solutions, when modules are not chosen appropriately. 
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Figure 1. A test path in the environment E1, 500 steps long. The numbers indicate time 

2.3 Experiments 

The method was tested in two environments, E1 (Fig. 1) and E2 (Fig. 2). The learning 
(exploration) period lasted 5500 time steps. There was no attempt to minimize this number. 
In the learning period the robot selected random actions between three available actions: 
turn left by 0.5 rad (≈ 28.6°), forward by five units, and turn left by 0.5 rad. The actions 
correspond to the motor commands for the left and the right wheel: left (dl = -5, dr = 5), 
forward (dl = 5, dr = 5), and right (dl = 5, dr = -5). Since the radius of the robot was 10 units, 
angle=arc/radius=5/10 = 0.5 rad. The testing period was 500 steps long. 
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Figure 2. A test path in the environment E2, 500 steps long. Red objects are shaded, others 
(“pure” obstacles) are empty 

The robot is assumed to have eight proximity sensors at angles 90, 45, 0, 0, -45, -90, -180, and 
-180, similar to the well-known miniature robot Khepera (Mondada et al., 1993). The 
nonlinear function of the sensors were approximated by a piecewise linear function 
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where ps is the proximity sensor activation and d is the distance. 

www.intechopen.com



Mobile Robots Motion Planning, New Challenges 

 

508 

The color information was extracted from 24 range sensors covering a 160° arc in front of the 
robot, yielding the “intersensorial” angle of about 7°. Each range sensor returns a color, 
specified in the environment file. In the presented environments a color was either default 
(grey) or red. This information was compressed into 8 values, each one covering three 
adjacent range sensors in the following manner: ∑ =

=
3

1

1

3

25
i

id
cs

. 

Parameters of the ABA-F method were: σ = 0.5, θe = 0.02, θa = 0.1. The discount factor γ was 
0.85. Each collision was penalized by g = 1 and each turn action by g = 0.1. Seeing the red 
color was rewarded by a negative penalty ( )∑ =

−−−=
8

1
4/1

i i iicsg , where <.> denotes the 

mean operator. The second term (in brackets) was added in order to reward the side color 
sensors less than the frontal color sensors. 
We show here merely the results of the test run on E2 (for E1 see Ster (2003)), which show Q-
values on 200 (out of 500) steps (Qc in Fig. 3, Qa in Fig. 4, and Q in Fig. 5). The actions are 
labeled as 0 for left, 1 for forward, and 2 for right. It can be seen that the Q-function of the 
two turn actions is at least 0.1 (mostly about 0.1), because the “turn penalty” was 0.1. The Q-
values for forward action, Q(s,1), can be lower in an open space, but reach high values in the 
vicinity of obstacles (note that the colored object is also an obstacle besides being an object of 
interest), see steps around 90 and 200. At the same points a reward (g < 0) was delivered 
because of the colored object.  
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Figure 3. The Q-values of module C over 200 testing steps in E2 
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Figure 4. The Q-values of module A over 200 testing steps in E2 
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Figure 5. The joint Q-values over 200 testing steps in E2 

3. Navigation of a Mobile Robot with Recurrent Neural Networks 

When the robot moves according to a specified reactive behavior, a graph node may be 
implied according to fulfillment of a specified condition, based on sensory contents. This 
means that a topological graph may be defined implicitly by given switching criteria. In the 
exploratory or training phase, a random binary action is chosen at such branching point. In 
our case, one type of action will always be connected with the wall (action 0: follow the wall 
or return to the wall), and the other will be connected to colored objects in the environment 
(action 1: approach the object or look for another object). In case of different reactive 
behavior, of course, actions should be defined appropriately. 
The Embedded flow state machine (EFSM) describes the dynamics of this process more 
accurately. The purpose of the EFSM is to represent a higher-level model of the sensory flow of a 
moving robot in an environment. The Embedded flow state machine may be formally defined as 

 { }21,,,,,, λλδDACSEFSM =  (10) 

where S is a vector space [0,1]Ns of the preprocessed sensory information, C is the context 
vector space [0,1]Nc, A is a finite non-empty set of possible decisions, and D is the unit 
interval [0,1], representing normalized distance travelled from the previous to the current 
decision point. Ns is dimensionality of the preprocessed sensory information and Nc is 
dimensionality of the context space (number of context units, as will be seen later). 
Functions δ, λ1 and λ2 provide the context, the sensors, and the travelled distance at the next 
decision point. From the context vector ct ∈ C, the sensory vector st ∈ S, the distance dt-1,t ∈ 
D, and the decision at ∈ A, all at time t, the next values are predicted: 
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Of course, the equalities strictly hold only in the case of perfect prediction. The distance is 
metric information in this otherwise topological approach. It enables optimization of the 
predicted path in the planning phase. The preprocessed sensory information st stems, in our 
case, solely from a video camera. 
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3.1 Recurrent Neural Networks 

It was shown that finite-state automata can be represented by recurrent neural networks. 
There has been a lot of effort to induce FSMs for regular languages with RNNs on the basis 
of shown examples (Cleeremans et al., 1989, Gabrijel & Dobnikar, 2003).  
One of the classic algorithms for training recurrent neural networks (RNN) (Haykin, 1994) is 
described in (Williams & Zipser, 1989). The algorithm is gradient following and is applicable 
for fully connected RNNs, i.e., each unit (neuron) has a feedback connection to each unit in 
the network, see Fig. 6. The outputs of certain units represent outputs of the network, while 
the other units are called context-units, because they provide information relevant to 
sequence-processing problems. 

 
Figure 6. Fully connected recurrent neural network (left) and recurrent neural network with 
a hidden layer (right) 

Inputs to the network are fed to each unit. Thus RNN can be trained to simulate any 
dynamical system, at least conceptually. The batch variant of the algorithm requires a 
sequence of input vectors x(t) and output vectors y(t) for t = 1, ..., N, where N is the length of 
the sequence. RNN is trained to produce the sequence of the desired outputs, if fed with the 
input sequence. A caution must be exercised while training the network; namely, when 
RNN is trained to produce desired outputs at each cycle, the functional ability of the 
network is restricted to a single perceptron layer, that is a linear transformation plus 
sigmoid activation function. To increase the functional ability of the network, inputs and 
outputs may change after two or more cycles of the network processing. Another possibility 
is, however, to apply a recurrent neural network with a hidden layer, which increases the 
functional ability of the network (Fig. 6 right). It is known that the 2-layer perceptron is a 
universal approximator (Hornik et al., 1989). The modified gradient-based algorithm is 
described in (Ster & Dobnikar, 2006). 

3.2 Building an Internal Map of the Environment 

The miniature robot Khepera (Mondada et al., 1993), see Fig. 7, with an additional video 
color camera was applied. Sensory information consists of infrared proximity sensors, 
wheel-encoders and processed image from a video camera. The task was considerably 
simplified using the camera solely for detection of colored objects (red, green and blue in 
this case). The robot is equipped with eight proximity sensors with a nonlinear activation 
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function, which can be approximated by a piecewise-linear one, as shown in Fig. 8. The 
robot is able to perform three distinct actions: turn left, move forward, and turn right (by a 
small angle). 
A video image was thresholded to extract the intensities of red, green and blue colour, 
which subsequently form the sensory vector.  Two images at resolution 80x60, seen by the 
robot before the thresholding operation, are shown in Fig. 9. They correspond to branching 
points or EFSM states with the sensory outputs "Green reached" and "Red observed", 
respectively. 

 
Figure 7. Mobile robot Khepera with an on-board video camera 

0

1
2 3

4

5

67

distance [cm]

  sensor
activation

1 5

1

wheelwheel

 
Figure 8. Proximity sensors of mobile robot Khepera 

It should be mentioned here that these labels do not actually represent states, but rather the 
outputs of a finite-state machine, which describes the environmental dynamics. Actual states 
are really not directly accessible via sensors. For example, the same object may be perceived 
from different viewpoints and thus the state is different, despite identical or very similar 
sensorial outputs. Another possibility would be the existence of two identical or very similar 
objects at different spots in the environment. The corresponding states are different, too. 
The low-level or reactive behaviour of the robot consists of following the right wall using 
information from proximity sensors. The low-level behaviour is deterministic and rather 
short to program manually, but a little longer to find experimentally. It turned out that the 
following portion of the low-level program (written in C language) leads to very efficient 
right-wall following: 
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Figure 9. Left: sensory output "Green reached" close to the green object, as seen by the robot. 
Right: sensory output "Red observed", where the red object is observed, as seen by the robot 
(resolution 80x60) 

 
The h represents the speed and proxSen[0..7] is the vector of proximity sensors. Another 
possibility is to learn a reactive behavior by applying reinforcement learning, as described in 
the previous section.  
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Figure 10. Decision or branching points. 

The robot advances following the wall until it observes a colored object. There is a certain, 
experimentally determined threshold for each colour to signify the observation of an object 
(about 100 pixels), as well as vicinity of the object (about 600 pixels). When the robot 
observes a colored object, it has to decide whether to still follow the wall or to approach the 
object. This situation is called branching point. In the vicinity of a colored object, the decision 
is to approach another colored object or to find the wall (Fig. 10). 
Looking for another object, the robot turns left until another object is observed with a specified 
threshold. It subsequently approaches the object. Looking for the wall, the robot turns right for 
approximately 90 degrees, and from then on follows Breitenberg's algorithm for low-level 
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behaviour, which is basically forward-motion, avoiding obstacles. The wheels' velocities are 
linear functions of the proximity sensors plus an offset term (Breitenberg, 1984). 
In this way the whole environment can be represented as an EFSM. EFSMs corresponding to 
typical indoor environments are usually relatively simple (not many branching points). 
Therefore, in practical cases RNNs should not have problems learning the corresponding 
EFSMs. Of course, a complex maze would also produce a complex EFSM. 

3.3 Experiments 

During training the robot traveled around using random decisions at branching points. The 
whole path included 101 branching points. An automatic preprocessing, which dealt with 
situations, where the robot observed the same object again after a short period of time, was 
done. Thus the path with 87 branching points remained. A small part of the path is shown in 
Fig. 11. At the first branching point from the start the robot observes object 1 (red). 
Therefore, the starting sensory output is "Red observed", while the state of the EFSM might 
be referred to as “1 observed from the west” or O1w (Fig. 12). The training trajectory can be 
represented as a motor-program describing the action sequence. The vectors, extracted from 
images, represent the outputs of the EFSM. The outputs do not exactly correspond to the 
states, so there is not a one-to-one mapping from the states to the outputs. Images at distinct 
places may look the same, so there is an obvious need to have internal states, i.e., memory. 

 
Figure 11. The path of the robot during training 

RNN was trained off-line on the sensory-motor sequence for 5000 iterations (RNNs typically 
require large number of iterations). At each iteration the weights were updated following 
the gradient of the mean-squared error (MSE) on the whole training set ("batch" variant). 
The input vector consists of the current sensory vector (red, green and blue intensities), the 
distance from the previous to the current branching point, and the current decision (action). 
Given an input vector, a trained RNN predicts the next sensory vector and distance to the 
next branching point, which can be used in turn as the input at the next branching point, 
and so on. Given a motor sequence, RNN can thus predict the sensory flow of the EFSM. 
We were interested how many steps ahead RNN was able to predict the sensory flow good 
enough in a closed-loop (multistep prediction). Prediction of the RNN was tested applying 
all possible motor programs five steps (branching points) ahead, i.e., 25 = 32 programs: 
00000, 00001, 00010, ..., 11111. Prediction error on the testing set showed that the first four 
predictions are very accurate, while the fifth is a little less reliable. MSE amounted on 
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average from 0.01 to 0.02 on the training set and from 0.01 to 0.25 (RMSE from 0.1 to 0.5) on 
the testing set. However, a few steps correspond to the whole environment, and besides, 
there was no effort to optimize training of the RNN.  
The sense of forward-modeling of the environment is applying it in "mental" planning. The 
term "navigation" stands for finding the (shortest) path to a specified point. For example, we 
would like to find the shortest path from beginning to the green object. It is obvious from Fig. 
13, that using the program 1-1-1 is the best way to do it. This corresponds to decisions: 
‘Approach red’, ‘Find another’ (blue), ‘Find another’ (green). We need to perform a closed-loop 
simulation of all the motor programs, searching for the matching object, specified as the goal, 
and finding the least costly path to it. One possibility is proposed also in Tani (1996). 

4. Conclusion 

The first part of this chapter shows that using reinforcement learning with a modular 
architecture a mobile robot can learn to wander "sensibly", merely by applying known 
psychological concepts as sources of reinforcement. It is motivated by distinguishing objects 
in the environment, unmotivated by weariness, while at the same time avoiding collisions 
with obstacles and trying to maintain its course. Another possibility is to design 
reinforcement signals according to specific requirements. 
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Figure 12. The EFSM, embedded in its environment. There are three landmark objects: 1 
(red), 2 (green) and 3 (blue). EFSM states are denoted by circles and labelled as Oi (for 'object 
i observed') and Ri (for 'object i reached') with additional subscript letters signifying 
directions, e.g. state R2e signifies 'object 2 reached from the East' 

The second part of the chapter shows how recurrent neural networks can be applied to build 
the internal map of the environment in a simple robot navigation task. The robot is able to 
induce the EFSM of a simple environment in the form of RNN and to use it for further 
planning. Because of the simplicity of the environment in the given task, the robot has to 
predict sensory flow for very short motor-programs, and it does it successfully. Further 
work should reveal how this behaviour scales up to larger problems and more realistic 
sensors, i.e., where a lower level of abstraction of sensory information is provided. Also 
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more reliable and possibly on-line training is required. The ultimate goal would be no 
human-designed representation, which seems to be still a very complex task. 
There is a question whether a RNN is able to induce a finite-state automaton only on the 
basis of a limited number of training examples. It is obvious that the network can be trained 
(fitted) to a particular sequence, but it is not clear whether the complete structure of an 
automaton can be induced. This is not a question of functional ability, since a RNN can 
simulate any FSM, in principle. 
There are two possible types of overtraining or overfitting here. Firstly, due to too many 
hidden neurons (standard overfitting in static neural networks), and secondly, due to too 
many context neurons. The latter might be called "dynamic overfitting", namely, the RNN 
uses its context units to "invent" a kind of context to lower the prediction error on the 
particular training sequence, especially when the latter is short. This problem would 
possibly be avoided with an on-line training, long enough to resolve uncertainties. For 
example, when turning to the left near the red object and looking for another object, the 
robot may overlook the blue object. The cause would be probably the video camera. In the 
training sequence there were four occurences of the red object followed by the action "1", i.e., 
looking for another object (after turning to the left.) Three times the robot observed blue and 
once green. In the latter case it overlooked blue, unfortunately. In case of larger sensor errors 
a training sequence should be much longer in order to reliably "collect statistics". 
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Figure 13. A half of the tree, representing motor programs of the length five. Only the programs, 
beginning with 1, are shown. At each arc the motor command (0 or 1) and the distance are 
written. Unclear predictions are labeled with E. Sensory outputs are Ro: red observed, R: red 
reached, Go: green observed, G: green reached, Bo: blue observed, B: blue reached 
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