8,036 research outputs found

    On-line list colouring of random graphs

    Get PDF
    In this paper, the on-line list colouring of binomial random graphs G(n,p) is studied. We show that the on-line choice number of G(n,p) is asymptotically almost surely asymptotic to the chromatic number of G(n,p), provided that the average degree d=p(n-1) tends to infinity faster than (log log n)^1/3(log n)^2n^(2/3). For sparser graphs, we are slightly less successful; we show that if d>(log n)^(2+epsilon) for some epsilon>0, then the on-line choice number is larger than the chromatic number by at most a multiplicative factor of C, where C in [2,4], depending on the range of d. Also, for d=O(1), the on-line choice number is by at most a multiplicative constant factor larger than the chromatic number

    The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic

    Full text link
    We study the dynamics of a backtracking procedure capable of proving uncolourability of graphs, and calculate its average running time T for sparse random graphs, as a function of the average degree c and the number of vertices N. The analysis is carried out by mapping the history of the search process onto an out-of-equilibrium (multi-dimensional) surface growth problem. The growth exponent of the average running time is quantitatively predicted, in agreement with simulations.Comment: 5 figure

    Some colouring problems for Paley graphs

    Get PDF
    The Paley graph Pq, where q≡1(mod4) is a prime power, is the graph with vertices the elements of the finite field Fq and an edge between x and y if and only if x-y is a non-zero square in Fq. This paper gives new results on some colouring problems for Paley graphs and related discussion. © 2005 Elsevier B.V. All rights reserved

    Colouring Graphs with Sparse Neighbourhoods: Bounds and Applications

    Full text link
    Let GG be a graph with chromatic number χ\chi, maximum degree Δ\Delta and clique number ω\omega. Reed's conjecture states that χ≤⌈(1−ε)(Δ+1)+εω⌉\chi \leq \lceil (1-\varepsilon)(\Delta + 1) + \varepsilon\omega \rceil for all ε≤1/2\varepsilon \leq 1/2. It was shown by King and Reed that, provided Δ\Delta is large enough, the conjecture holds for ε≤1/130,000\varepsilon \leq 1/130,000. In this article, we show that the same statement holds for ε≤1/26\varepsilon \leq 1/26, thus making a significant step towards Reed's conjecture. We derive this result from a general technique to bound the chromatic number of a graph where no vertex has many edges in its neighbourhood. Our improvements to this method also lead to improved bounds on the strong chromatic index of general graphs. We prove that χs′(G)≤1.835Δ(G)2\chi'_s(G)\leq 1.835 \Delta(G)^2 provided Δ(G)\Delta(G) is large enough.Comment: Submitted for publication in July 201

    On the facial Thue choice index via entropy compression

    Full text link
    A sequence is nonrepetitive if it contains no identical consecutive subsequences. An edge colouring of a path is nonrepetitive if the sequence of colours of its consecutive edges is nonrepetitive. By the celebrated construction of Thue, it is possible to generate nonrepetitive edge colourings for arbitrarily long paths using only three colours. A recent generalization of this concept implies that we may obtain such colourings even if we are forced to choose edge colours from any sequence of lists of size 4 (while sufficiency of lists of size 3 remains an open problem). As an extension of these basic ideas, Havet, Jendrol', Sot\'ak and \v{S}krabul'\'akov\'a proved that for each plane graph, 8 colours are sufficient to provide an edge colouring so that every facial path is nonrepetitively coloured. In this paper we prove that the same is possible from lists, provided that these have size at least 12. We thus improve the previous bound of 291 (proved by means of the Lov\'asz Local Lemma). Our approach is based on the Moser-Tardos entropy-compression method and its recent extensions by Grytczuk, Kozik and Micek, and by Dujmovi\'c, Joret, Kozik and Wood
    • …
    corecore