7,185 research outputs found

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Low Power Digital Design using Asynchronous Logic

    Get PDF
    This thesis summarizes research undertaken at San José State University between January 2009 and May 2011, which introduces a new method of achieving low power by reducing the dependency of the clock signal in the design. A clock signal consumes power even when the circuit is idle, but asynchronous circuits by default move into the idle state and involve no transition in the circuit during that state. In addition, in an active system, only the subsystem that is in use dissipates power. This work mainly focused on obtaining low power by implementing asynchronous logic. The work also studied the measure of power consumption using asynchronous logic by designing a simple Display Controller. The Display Controller was designed using Verilog HDL and synthesized using Synopsys Design Compiler. The work also studied the trade–offs in power, area, and design complexity in asynchronous design. The power consumed by the synchronous and asynchronous display controllers was measured, and the asynchronous design consumed about 17% less power than its synchronous counterpart. The area of the asynchronous design was twice that of the synchronous one. Power can be reduced by reducing the dependency of the clock signal in the design by choosing asynchronous logic

    Petri nets based components within globally asynchronous locally synchronous systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThe main goal is to develop a solution for the interconnection of components constituent of a GALS - Globally Asynchronous, Locally Synchronous – system. The components are implemented in parallel obtained as a result of the partition of a model expressed a Petri net (PN), performed using the PNs editor SNOOPY-IOPT in conjunction with the Split tool and the tools to automatically generate the VHDL code from the representations of the PNML models resulting from the partition (these tools were developed under the project FORDESIGN and are available at http://www.uninova.pt/FORDESIGN). Typical solutions will be analyzed to ensure proper communication between components of the GALS system, as well as characterized and developed an appropriate solution for the interconnection of the components associated with the PN sub-models. The final goal (not attained with this thesis) would be to acquire a tool that allows generation of code for the interconnection solution from the associated components, considering a specific application. The solution proposed for componentes interconnection was coded in VHDL and the implementation platforms used for testing include the Xilinx FPGA Spartan-3 and Virtex-II

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    CA-BIST for asynchronous circuits: a case study on the RAPPID asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper presents a case study in low-cost noninvasive Built-In Self Test (BIST) for RAPPID, a largescale 120,000-transistor asynchronous version of the Pentium® Pro Instruction Length Decoder, which runs at 3.6 GHz. RAPPID uses a synchronous 0.25 micron CMOS library for static and domino logic, and has no Design-for-Test hooks other than some debug features. We explore the use of Cellular Automata (CA) for on-chip test pattern generation and response evaluation. More specifically, we look for fast ways to tune the CA-BIST to the RAPPID design, rather than using pseudo-random testing. The metric for tuning the CA-BIST pattern generation is based on an abstract hardware description model of the instruction length decoder, which is independent of implementation details, and hence also independent of the asynchronous circuit style. Our CA-BI ST solution uses a novel bootstrap procedure for generating the test patterns, which give complete coverage for this metric, and cover 94% of the testable stuck-at faults for the actual design at switch level. Analysis of the undetected and untestable faults shows that the same fault effects can be expected for a similar clocked circuit. This is encouraging evidence that testability is no excuse to avoid asynchronous design techniques in addition to high-performance synchronous solutions

    Current Sensing Completion Detection in Single-Rail Asynchronous Systems

    Get PDF
    In this article, an alternative approach to detecting the computation completion of combinatorial blocks in asynchronous digital systems is presented. The proposed methodology is based on well-known phenomenon that occurs in digital systems fabricated in CMOS technology. Such logic circuits exhibit significantly higher current consumption during the signal transitions than in the idle state. Duration of these current peaks correlates very well with the actual computation time of the combinatorial block. Hence, this fact can be exploited for separation of the computation activity from static state. The paper presents fundamental background of addressed alternative completion detection and its implementation in single-rail encoded asynchronous systems, the proposed current sensing circuitry, achieved simulation results as well as the comparison to the state-of-the-art methods of completion detection. The presented method promises the enhancement of the performance of an asynchronous circuit, and under certain circumstances it also reduces the silicon area requirements of the completion detection block

    CA-BIST for asynchronous circuits: a case study on the RAPPID asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper presents a case study in low-cost noninvasive Built-In Self Test (BIST) for RAPPID, a largescale 120,000-transistor asynchronous version of the Pentium® Pro Instruction Length Decoder, which runs at 3.6 GHz. RAPPID uses a synchronous 0.25 micron CMOS library for static and domino logic, and has no Design-for-Test hooks other than some debug features. We explore the use of Cellular Automata (CA) for on-chip test pattern generation and response evaluation. More specifically, we look for fast ways to tune the CA-BIST to the RAPPID design, rather than using pseudo-random testing. The metric for tuning the CA-BIST pattern generation is based on an abstract hardware description model of the instruction length decoder, which is independent of implementation details, and hence also independent of the asynchronous circuit style. Our CA-BI ST solution uses a novel bootstrap procedure for generating the test patterns, which give complete coverage for this metric, and cover 94% of the testable stuck-at faults for the actual design at switch level. Analysis of the undetected and untestable faults shows that the same fault effects can be expected for a similar clocked circuit. This is encouraging evidence that testability is no excuse to avoid asynchronous design techniques in addition to high-performance synchronous solutions
    • …
    corecore