
UNIVERSIDADE NOVA DE LISBOA 

FACULDADE DE CIÊNCIAS E TECNOLOGIAS 

DEPARTAMENTO DE ENGENHARIA 
ELECTROTÉCNICA 

 

 

Petri Nets Based Components  

Within  

 Globally Asynchronous Locally Synchronous systems  

Por 

 Henrique Afonso Ferreira  

 

Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade 

Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e 

Computadores 

 

Orientador: Prof. Doutor Luís Gomes 

Lisboa 

 2010 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

SUMÁRIO 

O objectivo principal do trabalho é o de desenvolver uma solução para a interligação 

de componentes constituintes de um sistema GALS – Globally Asynchronous, 

Locally Synchronous.  

Os componentes referidos são executados em paralelo obtidos como resultado da 

partição de um modelo expresso em redes de Petri (RdP), realizada utilizando o 

editor de RdP SNOOPY-IOPT em conjugação com a ferramenta SPLIT e com a 

ferramenta de geração automática de código VHDL a partir das representações 

PNML dos modelos RdP resultantes da partição (as ferramentas referidas foram 

desenvolvidas no âmbito do projecto FORDESIGN e encontram-se disponíveis 

em http://www.uninova.pt/FORDESIGN).  

Serão analisadas soluções típicas disponíveis para garantir a correcta comunicação 

entre componentes do sistema GALS, bem como caracterizada e desenvolvida uma 

solução adequada para a interligação dos componentes associados aos sub-

modelos RdP. O objectivo final (não atingido com esta dissertação) é o de obter uma 

ferramenta que permita gerar o código da solução de interligação partindo dos 

componentes associados considerando uma aplicação específica.  

A solução proposta para a interligação de componentes foi codificada em VHDL e as 

plataformas de implementação utilizadas para teste incluem as FPGAs da Xilinx das 

famílias Spartan-3 e Virtex-II. 

 

 

 



4 
 

ABSTRACT 

The main goal is to develop a solution for the interconnection of components 

constituent of a GALS - Globally Asynchronous, Locally Synchronous – system.  

The components are implemented in parallel obtained as a result of the partition of a 

model expressed a Petri net (PN), performed using the PNs editor SNOOPY-IOPT in 

conjunction with the Split tool and the tools to automatically generate the VHDL code 

from the representations of the PNML models resulting from the partition (these tools 

were developed under the project FORDESIGN and are available at 

http://www.uninova.pt/FORDESIGN).  

Typical solutions will be analyzed to ensure proper communication between 

components of the GALS system, as well as characterized and developed an 

appropriate solution for the interconnection of the components associated with the 

PN sub-models. The final goal (not attained with this thesis) would be to acquire a 

tool that allows generation of code for the interconnection solution from the 

associated components, considering a specific application.  

The solution proposed for componentes interconnection was coded in VHDL and the 

implementation platforms used for testing include the Xilinx FPGA Spartan-3 and 

Virtex-II. 

 

 

 

 



5 
 

ACRONYMS 

CAD - Computer Aided Design 

FIFO – First In First Out 

FPGA – Field Programmable Gate Array 

GALS - Globally Asynchronous, Locally Synchronous 

IOPT – Input Output Place Transition 

IP- Intellectual Propriety 

LC- Latch Controller 

LSI - Locally Synchronous Island 

PNML – Petri Net Markup Language 

PCC - Pausible Clock Controller 

SoC- System on Chip 

VDD - positive supply voltage 

VHDL – Very High Speed Integration Circuits Hardware Descriptive Language 

VLSI – Very Large Scale Integration 

 

 

 

 



6 
 

INDEX 

1. Introduction   ........................................................................................................................................... 10

1.1. Current situation on distributed digital control circuits   .............................................................. 10

1.2. Objectives   .................................................................................................................................... 11

1.3. Structure of the document   .......................................................................................................... 13

2. Theoretical fundaments   ....................................................................................................................... 14

2.1. Petri net based components   ...................................................................................................... 14

2.2. Circuit architecture   ...................................................................................................................... 18

2.2.1. Synchronous system   .......................................................................................................... 18

2.2.2. Asynchronous system   ........................................................................................................ 20

2.2.3. Synchronous-asynchronous interface   ............................................................................... 21

2.3. GALS  ............................................................................................................................................ 22

2.3.1. Basic GALS Components   .................................................................................................. 22

2.4. GALS designs types   ............................................................................................................... 28

2.5. Conclusion   ................................................................................................................................... 36

3. Assembling an asynchronous interface   .............................................................................................. 38

3.1. Introduction   .................................................................................................................................. 38

3.2. Components for assembling the Asynchronous Interface   ....................................................... 38

3.2.1. The synchronizer   ................................................................................................................ 38

3.2.2. The Muller C-element   ......................................................................................................... 40

3.2.3. FIFO BUFFER   .................................................................................................................... 41

3.3. Asynchronous interface   .............................................................................................................. 49

3.4. Conclusion   ................................................................................................................................... 50

4. A new asynchronous interface   ............................................................................................................ 52

4.1. Introduction   .................................................................................................................................. 52

4.1.1. Example 1   ........................................................................................................................... 53

4.2. The Signals Problem   .................................................................................................................. 56

4.3. THE PORTS   ................................................................................................................................ 57

4.3.1. The input port   ...................................................................................................................... 57

4.3.2. The output port   .................................................................................................................... 60

4.3.3. FIFO buffer   .......................................................................................................................... 61

4.4. Throughput   .................................................................................................................................. 63

5. Implementations   ................................................................................................................................... 65

5.1. Introduction   .................................................................................................................................. 65

5.2. Example 1: The 3 cars system   ................................................................................................... 65

5.2.1. The 3 cars system partition   ................................................................................................ 67



7 
 

5.2.2. 3 cars GALS system   ........................................................................................................... 69

5.2.3. Simulation   ............................................................................................................................ 71

5.2.4. Implementation   ................................................................................................................... 72

5.2.5. Power, Heat and Size evaluation   ...................................................................................... 74

5.3. Example 2: Manufacture Cells   ................................................................................................... 78

5.3.1. Manufacture Cell Partition   .................................................................................................. 81

5.3.2. Manufacture Cells GALS system   ....................................................................................... 83

5.3.3. Simulation   ............................................................................................................................ 85

5.3.4. Implementation   ................................................................................................................... 86

5.3.5. Power, Heat and Size Evaluation   ...................................................................................... 87

5.4. General platform comparison   ..................................................................................................... 91

6. Conclusion   ............................................................................................................................................ 92

7. Bibliography   .......................................................................................................................................... 94

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

LIST OF FIGURES  

Figure 1 – Development Flow and supporting Tools   ................................................................................ 15
Figure 2 – Splitting the original model in to sub-Models   ........................................................................... 17
Figure 3- Splitting the original model in to sub-Models with Wrappers  .................................................... 18
Figure 4 – Interaction between Asynchronous and Synchronous module. Retrieved from[10]   ............. 21
Figure 5 – An Asynchronous Wrapper basic scheme, [10]   ...................................................................... 23
Figure 6 – Data Port Controller scheme, retrieved from[14]   ..................................................................... 24
Figure 7 – Pausible clock generation scheme   ........................................................................................... 26
Figure 8 - Asynchronous Synchronizer scheme  ........................................................................................ 27
Figure 9 – Asynchronous Synchronizer timing diagram   ........................................................................... 27
Figure 10 – Taxonomy of GALS designs styles, retrieved from[18]   ........................................................ 29
Figure 11 – Pausible-Clock GALS design style Circuit: circuit (a) and timing diagram (b), retrieved 
from[18]   ........................................................................................................................................................ 30
Figure 12 – Asynchronous interface Gals design style: circuit (a) and timing diagram (b), retrieved 
from[18]   ........................................................................................................................................................ 33
Figure 13 – Loosely Synchronous Gals design style: circuit (a) and timing diagram (b), retrieved 
from[18]   ........................................................................................................................................................ 35
Figure 14 – Two-Flip-flop schematic design.   ............................................................................................. 39
Figure 15 – Simulation OF THE Two-Flip-flop  ........................................................................................... 39
Figure 16 – The Muller C-element: possible implementation, symbol and function definition, Retrieved 
From[27]   ....................................................................................................................................................... 40
Figure 17 - The asymmetric c-element: possible implementation, symbol.   ............................................ 41
Figure 18 - a) a bundled-data channel. B) A 4-phase bundled-DATA PROTOCOL. c) a 2-phase data 
protocol, retrieved from [9]   .......................................................................................................................... 43
Figure 19- A 4-Phase dual-rail protocol, retrieved from[9]  ........................................................................ 44
Figure 20 - Muller pipeline, retrieved from[9]   ............................................................................................. 44
Figure 21 – (a) A 4-Phase bundled-data pipeline, and (b) its implementation using simple latch 
controller and level sensitive latches. The FIFO fills every other latch, Retrieved from[9]   ..................... 46
Figure 22 - Semi-Decoupled Latch Controller (a) original Furber design(retrieved from [28]) , normally 
opaque (b) normally transparent   ................................................................................................................ 46
Figure 23 - wave simulation of Semi-decoupled latch controller Furber design   ..................................... 47
Figure 24 -wave simulation of the implemented Semi-Decoupled latch controller   ................................. 47
Figure 25 – General design of a semi-decoupled FIFO buffer   ......................................................... 48
Figure 26 - Asynchronous Interface, Retrieved from[18]   .......................................................................... 49
Figure 27 - Asynchronous Interface wave simulation   ............................................................................... 50
Figure 28 - New Asynchronous Interface   .................................................................................................. 52
Figure 29 – 3 cars example   ...................................................................................................................... 53
Figure 30 – 3 car system EXemple Petri NEt model of the controller   ..................................................... 54
Figure 31 – The 3 cars system split and SIGNALS INPUTS and outputs   ............................................... 55
Figure 32- FIFO buffer input and output signals  ........................................................................................ 57
Figure 33 – First input port   .......................................................................................................................... 58
Figure 34 – new input port   .......................................................................................................................... 59
Figure 35 – Simulation of the new input port   ............................................................................................. 60
Figure 36 – Output port   ............................................................................................................................... 61
Figure 37- Simulation of the Output port   .................................................................................................... 61
Figure 38- FIFO buffer with width 1 and depth 2.   ...................................................................................... 62
Figure 39 –a) Normally transparent Semi-Decoupled latch controller, B) cnminus, c) cplus   ..... 62
Figure 40 – Cnminus element. a) truth table, B) Karnaugh map, c) function   ............................... 63



9 
 

Figure 41- behavior of the new Asynchronous Interface   .......................................................................... 64
Figure 42 – Simulation of the 3 cars example   ........................................................................................... 66
Figure 43 –simulation of the 3 cars system fed by the same clock   ......................................................... 68
Figure 44 - Simulation of the 3 cars system fed by three different clocks, one for each car   ................. 68
Figure 45 – 3 cars gals system   ................................................................................................................... 69
Figure 46- event 1443 in detail   ................................................................................................................... 70
Figure 47 – Simulation of the 3 cars gals system   ..................................................................................... 71
Figure 48 – FPGA scheme, Retrieved from[31]   ........................................................................................ 72
Figure 49 – Virtex-II pro development system board photo[32]   ............................................................... 73
Figure 50 – Side by side Power comparison of the spartan-3 3 cars example.  LEFT - without GALS, 
Right - With GALS   ....................................................................................................................................... 74
Figure 51 – Side by side Heat comparison of the spartan-3 3 cars example.  LEFT - without GALS, 
Right - With GALS   ....................................................................................................................................... 75
Figure 52 - Device utilization Summary of the spartan-3 WITHOUT GALS(above) AND WITH 
GALS(below) for cars example   ................................................................................................................... 75
Figure 53- Side by side Power comparison of the Virtex-II Pro 3 cars example.  LEFT - without GALS, 
Right - With GALS   ....................................................................................................................................... 76
Figure 54 – Side by side Heat comparison of the virtex-II pro 3 cars example.  LEFT - without GALS, 
Right - With GALS   ....................................................................................................................................... 77
Figure 55 – Device utilization Summary of the Virtex-II pro without GALS(above) AND WITH 
GALS(below) for cars example   ................................................................................................................... 77
Figure 56 – 3 cells manufacture system, Retrieved From[33]   .................................................................. 78
Figure 57- 4 cells manufactures system Petri net model   .......................................................................... 78
Figure 58 – Manufacture Cell 4 modules with signals representation   ..................................................... 79
Figure 59- simulation of the 4 cells manufactures system   ........................................................................ 81
Figure 60 - Simulation of the 4 cells manufactures system fed with same clock   .................................... 82
Figure 61 - Simulation of the 4 cells manufactures system fed with different clocks   ............................. 83
Figure 62 – Manufacture CELLs GALS system signal exchange   ............................................................ 84
Figure 63- Simulation for manufacture Gals system   ................................................................................. 85
Figure 64 – Side by side Power comparison of the spartan-3 Manufacture cells example.  LEFT - 
without GALS, Right - With GALS   .............................................................................................................. 87
Figure 65 – Side by side Heat comparison of the spartan-3 Manufacture cells example.  LEFT - 
without GALS, Right - With GAlS   ............................................................................................................... 87
Figure 66 - Device utilization Summary of the spartan-3  without GALS(above) AND WITH 
GALS(below) for manufacture example   ..................................................................................................... 88
Figure 67 – Side by side Power comparison of the Virtex-II pro Manufacture cells example.  LEFT - 
without GALS, Right - With GALS   .............................................................................................................. 89
Figure 68 – Side by side Heat comparison of the virtex-II pro Manufacture cells example.  LEFT - 
without GALS, Right - With GAlS   ............................................................................................................... 89
Figure 69 – Device utilization Summary of the virtex-II PRO WITHOUT GALS(above) AND WITH 
GALS(below) for manufacture example   ..................................................................................................... 90
Figure 70 – General Comparison of both platforms for both examples   ................................................... 91
Figure 71 – Device Utilization for one wrapper   ......................................................................................... 93
 

 

 

 



10 
 

1. INTRODUCTION 

1.1. CURRENT SITUATION ON DISTRIBUTED DIGITAL CONTROL CIRCUITS  

Currently digital circuits development face several challenges. Improvements in semi-

conductor technology lead to continued decreases in size and increase the number 

of devices that can fit in a single die. It is more and more common that modern digital 

system is implemented as a System on a Chip (SoCs) or on a reconfigurable SoC 

(having FPGA and memories as supporting platform). Consequently the design of the 

chip is decomposed in blocks, often featuring multiple clock domains, and many 

times running at different frequencies.  

Practically, single-clocked digital systems are mostly outdated. 

These days the designer as to address three main conjectures. 

First, the constrain to implement a global-clock network that can control all the blocks 

in a chip introduces a greater, undesired,  power consumption and a very strong 

noise for the analog part of the circuit (if any). 

Second, to cope with market dispute, shorter times for design leads to the reusing of 

IP blocks. Such IP blocks are designed and optimized for different clock speeds by 

their design groups. 

Third, inherently each design, for the duty in which it is projected, requires a wide-

ranging of clock frequencies.  

 To deal with such constrains there is, in the industry today, an increasing popular 

solution which is the Globally Asynchronous Locally Synchronous (GALS) system.     



11 
 

GALS was first introduced by Chapiro in his doctoral dissertation [1] , in which he 

developed a solution based on pausible-clock circuit. Since then numerous solutions 

sprung, even thought the GALS design approach has not been widely adopted in the 

industry. The lack of verification techniques and testing methodologies for 

asynchronous design, as well the synchronic assumption in the digital circuit industry 

has proven to be cumbersome for the paradigm shift necessary for the broad 

acceptance of the GALS solution.  

On the other hand, GALS design offers an increased ease of use in functional block 

reuse, simplified timing closure, and power advantages due to heterogeneous 

clocking by providing wrapper circuits to handle interblock communication across the 

clock domain boundaries. Also GALS allows for a smooth transition between the 

synchronous to asynchronous paradigm due to the elasticity to integrate together in a 

system synchronous and asynchronous components without worrying with their 

internal structure. 

1.2. OBJECTIVES 

The main objective of this work is to study the existing GALS systems and find a 

viable solution for implementation of interconnections of components obtained 

through the partition of Petri nets models. At the same time, identify the advantages 

and disadvantages of each of the known solutions given a global overview of this 

type of solution. 

From the palette of solutions studied and after weighting the advantages and 

disadvantages of each, one particular solution is selected for implementation. 



12 
 

Because they are general solutions, tuning of a particular one will be implemented to 

best fit our needs and achieve the goal. 

As referred, the solution will be validated in the interconnection of Petri nets sub-

models using several application examples from the domain of automation systems 

(emphasizing the control part of the system).  

These examples will be created with the support of some design tools developed 

inside the FORDESIGN Project:  

• The SNOOPY-IOPT editor [2], which is a Graphical Petri net[3-5] Editor for 

the Input-Output Place-Transition (IOPT) class [6], supporting hierarchical 

and modular specifications. PNML representation is the preferred output 

format to assure interoperability among tools. 

• The Split tool [7] implements a net splitting operation able to decompose a 

Petri net model into Petri net sub-models using synchronous 

communication channels. The generated sub-models are associated with 

components to be executed concurrently, allowing a distributed execution 

of the initial model. 

• PNML2VHDL tool [8] automatic generates VHDL execution code from a 

IOPT Petri net model stored in a PNML-compliant file. 

With the support of these three tools it is possible to start with the Petri net model of 

the system and ending with the implementation code, allowing then distributed 

execution.  

So the main goal of the work developed within this dissertation is to be able to 

generate a solution allowing robust communication among the components in parallel 

execution, independently of the clock used by each component. 



13 
 

The validation of the results will be achieved through simulation as well as through 

the real implementation using FPGA devices. 

1.3. STRUCTURE OF THE DOCUMENT 

This document is organized in following way: 

Chapter 2 will present the theoretical foundations as well make an overview of the 

circuit architectures and basic components to assemble a GALS system. 

Chapter 3 will discuss the solution adopted in detail. 

Chapter 4 will present an adaption of the solution presented in chapter 3 to a solution 

that best fit our needs. The introduction of this chapter was with the objective to make 

a clear distinction from the general solution to the new one, which is adapted to 

interconnect Petri nets based components. 

Chapter 5 introduces application examples to be solved with our devised solution. 

Chapter 6 will unfold conclusions and present a closure for this Master Thesis.  

 

 

 

 

 

 



14 
 

2. THEORETICAL FUNDAMENTS  

This chapter will address two main issues of this dissertation, in other words 

everything needed to achieve the final solution. 

So, first we will address the tools developed in the scope of the FORDESIGN [6] 

project and how they will be integrated accordingly to the needs of this thesis.  

After that, an overview of the circuit’s architecture and of the basic components to 

assemble a GALS system will be discussed. This includes a discussion of the three 

main GALS designs.  

2.1. PETRI NET BASED COMPONENTS 

As referred, the objective of this thesis is to develop a solution for the interconnection 

of components constituent of a GALS.  

The components are executed in parallel obtained as a result of the partition of a 

model expressed as Petri nets (PN), performed using the PNs editor SNOOPY-IOPT 

in conjunction with the Split tool and the tools to automatically generate the VHDL 

code from the representations of the PNML models resulting from the partition. 

Figure 1 gives an overview of the work flow and the tools used to assemble the Petri 

net components. Not all of the FORDESIGN project tools are referred or used here. 

 



15 
 

 

FIGURE 1 – DEVELOPMENT FLOW AND SUPPORTING TOOLS 

The gray ovals from Figure 1 represent tools, the rectangles specify files and the 

arrows stand for information flow.  

The editor generates Petri Net models in PNML. Allowing structuring mechanisms 

like decomposition/composition and refinement/abstraction and the editing of the 

Input-Output Place-Transition (IOPT) Petri Net Class models, targeted for the 

modeling of automation systems and embedded systems, the Petri Net Markup 

Language representation is extensively used in conjunction with the FORDESIGN 

tools. 

After obtaining the PNML file the Split tool implements a net splitting operation able 

to decompose a Petri net model into Petri net sub-models using synchronous 



16 
 

communication channels. The generated sub-models are associated with 

components to be executed concurrently, allowing a distributed execution of the 

initial model. 

The net splitting operation is based on the definition of a valid cutting set and specific 

rules. To define the cutting set the user identifies a set of components to be executed 

concurrently. The initial model and the cutting set are represented using PNML 

notation. These can be produced using the graphical editor for Input-Ouput Place-

Transition Petri Net Class (SnoopyIOPT editor) or using the line command "split 

initialModel.pnml cuttingSet.pnml result.txt". 

After the validation of the cutting set there are three rules that allow the generation of 

components, interconnected through synchronous communication channels. At the 

implementation level, each component can be seen as an autonomous model, 

however having information about the state of adjacent components. 

Here, is the basis of this dissertation. Once the original model is split and each of the 

sub-models are executed separately, the only way for the model maintaining 

coherence (preserving execution semantics) is through the usage of synchronizing 

events. For example: if a place is marked by a token in a sub-model, and this place is 

common to another sub-model then and synchronization event signal has to be sent 

to that sub-model, from the sub-model where the place was firstly marked by a token.   

 



17 
 

 

FIGURE 2 – SPLITTING THE ORIGINAL MODEL IN TO SUB-MODELS 

Considering that each of the sub-models may run in different time domains then 

there is a need for each event to be timely synchronized between associated 

modules. Solving this step is the fundamental question for this work. The way it is 

going to be accomplished is by introducing wrappers between the events signals 

(sender and receiver) to achieve time domain synchronization. This will make the 

system as a whole GALS system. Figure 3 shows the introduction of the wrappers 

between the event signals. 

From the usage of the last FORDESIGN tool (the split tool) we get several PNML 

files, one per sub-model, allowing distributed execution of the initial model. The next 

step is to convert these file to VHDL. This is done by applying the PNML2VHDL tool. 

It automatically generates VHDL execution code from a IOPT Petri net model stored 

in a PNML-compliant file. The generated VHDL code can be directly deployed on 

programmable logic devices such as FPGAs, CPLDs, as well for System-on-Chip 

(SoC) solutions. 



18 
 

 

FIGURE 3- SPLITTING THE ORIGINAL MODEL IN TO SUB-MODELS WITH WRAPPERS 

Hence, we finally arrive to the bottom of the flow of the figure, where the GALS 

solution is merged with the synchronous sub-models, using Xilinx ISE, to allow 

synchronization between the different time domains of the sub-models. Obtaining, in 

this way, Petri net based components within a GALS system.  

2.2. CIRCUIT ARCHITECTURE 

The following sub-section present an overview of the circuit’s architecture and of the 

basic components to assemble a GALS system will be discussed. 

2.2.1. SYNCHRONOUS SYSTEM 

A synchronous circuit is a digital circuit where all of its parts are synchronized with a 

clock signal. A system without a global clock is called asynchronous, which will be 

discussed next. 



19 
 

The internal state changes only upon occurrence of a positive (or negative) rising 

edge of the clock. This leads that all operations in the system need to be carried and 

completed between two clock pulses. If this criterion is satisfied the system is 

considered reliable and all circuit behavior can be predicted with accuracy. Each 

logical operation introduces a delay in the system, which in practice constrains the 

maximum speed at which the synchronous system can run. 

This type of system incurs into two main disadvantages: 

• The clock signal as to be distributed to all circuit flip-flops simultaneously. The 

clock signal is a high frequency signal that potentially consumes great 

amounts of energy. Even if there is no flip-flops transition (the output remains 

the same); they still consume some energy, contributing for unnecessary 

energy expenses and heat accumulation with no apparent reason.    

• The maximum clock speed is limited to the longest path in the circuit. This 

means that both the more complex operation, as the more simple, has to be 

executed in one clock cycle. 

Coming back to the globally synchronous SoC constituted with several IP modules 

the problem at hand is that each of the modules is projected for determined clock 

speed, unrelated their reutilization with a multitude of other modules. Finding a clock 

mode that can feed globally each of the IP core reveals itself as daunting task. 

Another problem of this solution is the non guarantee of the same arrival time of the 

clock signal at all components in the circuit due to delays in wires. If in the past the 

limiting factor to circuits were the transistors, at present the delay in propagations 

consumes a larger part of the clock period. 



20 
 

On the other hand, this type of circuits are the most accepted in the industry, given 

the fact of being utterly studied and have a large support from CAD (Computer Aided 

Design) tools. 

2.2.2. ASYNCHRONOUS SYSTEM  

Asynchronous systems are not governed by a local or global clock signal. The 

circuits use handshaking signals between their components  in order to achieve the 

necessary synchronization [9].This difference gives advantages in each of these 

subjects: 

• Low power consumption, due to fine-grain clocking and zero standby power 

consumption. 

• High operation speed, has it depends in actual local latencies rather than 

global worst-case latency; 

• Less emission of electromagnetic noise. An asynchronous pipeline computes 

slightly out of phase with the previous one, thus uniformly spreading power 

consumption over time. 

• Robustness towards variations in supply voltage, temperature, and fabrication 

process parameters. 

• No clock distribution and clock skew problems.  

The major drawbacks this type of circuit faces are not so much intrinsic to the 

technology itself but due to an inertia for the community versed in the synchronous 

interface to shift to a new style.  Adding to this, also, comes a lack of developing and 

testing tools. 

 



21 
 

2.2.3. SYNCHRONOUS-ASYNCHRONOUS INTERFACE 

The basic problem between interactions of different synchronization domains arises 

from the fundamentally diverse signal transitions. In the asynchronous domain there 

is not a timing grid coupled to such an event, therefore metastable behavior in 

peripheral flip-flops of LS (locally Synchronous) modules is most likely to occur. In 

fact, it will ultimately occur unless some odd random events permits it to be 

impossible synchronized for a period of time considered to be nominal circuit running 

time. 

 

FIGURE 4 – INTERACTION BETWEEN ASYNCHRONOUS AND SYNCHRONOUS MODULE. RETRIEVED FROM[10] 

The conventional scheme to address such a problem is the extensive use of 

synchronizers. This includes the double-latching mechanism and some extension like 

pipeline synchronization [11]. 

Although reducing the probability of malfunctioning, this sort of methods, do not 

exclude it. Also they add undesired latency to each communication. This makes, as a 

whole, a system prone to failure and undesired to cope with the paradigm that is 

crossing the boundaries between synchronous and asynchronous.   



22 
 

2.3. GALS  

GALS proposals started to appear in 1980s with Chapiro[1], but due to the 

impracticability of the design at the time, only in mid-1990s and early 2000s started to 

emerge practical proposals, introducing pausible, or stretching, clocking. These early 

solutions focused to improve throughput, reduce area overhead and power 

consumption. Some test cases proved some benefits in operation speed, circuit area 

and power consumption, but on the overall the added overhead of asynchronous 

wrapper resulted in performance penalties [12]. 

More recent studies dwelled on facilitate system integration and reducing 

Electromagnetic Interference (EMI).   

In this section a summary of the components most used when assembling a GALS 

circuit is presented. On the second part we will do a survey on the GALS 

architectural techniques.  

2.3.1. BASIC GALS COMPONENTS 

2.3.1.1. ASYNCHRONOUS WRAPPER 

The concept for the asynchronous wrapper is to encapsulate the Locally 

Synchronous Island (LSI) with an external interface to turn it completely 

asynchronous [10]. Each of data vectors entering or leaving has to be accompanied 

by a request-acknowledge pair of handshakes signals (bundled data). 

In order to fulfill the synchronous circuit timing constrains, the wrapper has to provide 

a clock signal. A major advantage is that this local clock frequency can be defined to 



23 
 

fit the needs of the particular module and be stretched (or paused) as necessary. The 

general wrapper scheme can be depicted in the Figure 5: 

 

FIGURE 5 – AN ASYNCHRONOUS WRAPPER BASIC SCHEME, [10] 

2.3.1.2. DATA PORT CONTROLLERS 

A globally asynchronous circuit requires asynchronous communication between their 

locally synchronous islands. This asynchronous communication can use a two-phase 

or four-phase handshaking protocol. The ports can act in an active or passive 

manner [9]. 

There are two kinds of communication ports controllers for the GALS: the demand 

controller and the poll controller [13]. In the first, it is assumed that the demanded 

date is required immediately after the request. So the clock in Locally Synchronous 

(LS) circuit should be immediately stopped and reactivated when the communication 

is finished. On the former type, the LS clock is not stopped immediately upon 

request, permitting the circuit to finish its current operation or make other useful 

operation.  This type of controller aims for gain performance but depends [9] on the 

type of the circuit and the task at hand, so it cannot be used extensively. 

In the Figure 6 below a D-type (Demand-type) controller scheme is illustrated. 



24 
 

 

FIGURE 6 – DATA PORT CONTROLLER SCHEME, RETRIEVED FROM[14] 

A data transfers operation occurs in this fashion: 

The LS module toggles Den to indicate it is ready for a new data transfer. Upon 

receiving that event the D-port actives Ri+ (the plus and negative signal refers to 

when a given signal is at active or inactive, respectively) signal, requesting for a 

pause in the clock, which in turn receives acknowledgment with Ai+. From here the 

input and output ports have distinct behaviors: 

• The Output Port activates Rp+ to request a data transfer on the asynchronous 

channel. Once the other party is ready for the transfer it acknowledges it with 

Ap+. At the completion of the transfer procedure the output port inactivates Ri 

to cancel the clock pause request. The job is considered to be completed 

upon receiving Ai- and Ap-, which indicates respectively that the clock is 

resumed and the data has been successfully latched. 

• The Input Port waits to receive Rp+ and Ai+ to ensure that there is data on the 

channel and that the request to pause the clock has been successful. It 

acknowledges the sending party by activating Ap+ and latches the received 

data. The clock is resumed after the completion of the data transfer and the 

circuit returns to its initial state. 



25 
 

2.3.1.3. PAUSIBLE CLOCK  

The term pausible clock was first used by Chapiro[1] in his doctoral dissertation in 

1984. He proposed the use of pausible clocks to enable diverse clock domains to 

communicate avoiding metastability. Each locally synchronous block generates its 

own clock with a ring oscillator, set according to the requirements of the given block.  

The main advantages gained over such clock control are the avoidance of 

metastability altogether, stretching the clock’s sampling edge until the arrival of data 

from some other domain, which translates in robustness and power. The block 

awaiting communications does not dissipate dynamic power, has his clock is paused. 

Also its VDD can be lowered to reduce static power consumption. A feature, that can 

be, useful for power-critical designs. 

Chapiro’s assumptions at the time proved impractical in modern design, but provided 

the foundations for all posterior works.   

Later in 1996 Yun et al.[15] invented the pausible clocking control (PCC). The PCC 

comprises generation of stretchable clocks and processing external handshake. It 

requires at least two local clock cycles to transfer the data and at most one port per 

module can be active at the time. The increasing size of the blocks has the inputs 

and outputs channels raise, render the PPC to small system with circular data flow.  

Figure 4 shows a basic clock pausible clock generation scheme. 

The main idea of the circuit is to postpone the next positive rising edge of the clock 

signal until completion of input-output communication actions[16]. Upon receiving a 

request Ri+ from the port controller, the clock suspends the next clock pulse gets 

delay as long as Ri+ is active and acknowledges the requesting port controller by 



26 
 

activating Ai. The duration of clock pulses shall not be influenced, therefore only the 

low phase of the clock pulse shall be stretched upon request.  

 

FIGURE 7 – PAUSIBLE CLOCK GENERATION SCHEME 

Figure 7 shows an implementation that satisfies these requirements. The ring 

oscillator consists of an odd number of inverters that generates the clock signal. The 

Mutual Exclusion (ME) element [17] resolves between possible concurrent events 

Ri+ and rclk+. It allows only one of the two inputs to pass at a time. In the situation 

where two inputs arrive simultaneous it decides randomly which shall pass, but the 

outputs are guaranteed to remain mutually exclusive. 

To ensure the transition on Ri+ can stop the next rising of the clock the propagation 

delay from lclk to Ri+ has to be smaller than the low phase or rclk.  

2.3.1.4. ASYNCHRONOUS SYNCHRONIZER 

GALS modules can avoid clock arbitration employing a standard asynchronous 

synchronizer, as depicted in Figure 8. 



27 
 

Considering that a clock cycle is sufficient to ensure metastability resolution, no clock 

delay verification is assumed, but the data rate is affected drastically because it is 

simple not possible to transfer data every clock cycle.  

 

FIGURE 8 - ASYNCHRONOUS SYNCHRONIZER SCHEME 

Assuming mesochronous operation (the same clock frequencies between transmitter 

and receiver) the minimal data cycle time (the time between two Req+) takes seven 

cycles in worst case (Req+ happens immediately after Clk+ and the transmitter and 

receiver clocks are in phase) as shown in Figure 9. This data cycle can be reduce if 

the signals are out of phase (five clock cycles), or by employing a two phase protocol 

(three cycles). 

 

FIGURE 9 – ASYNCHRONOUS SYNCHRONIZER TIMING DIAGRAM  



28 
 

2.4. GALS DESIGNS TYPES 

In the work “A Survey and Taxonomy of GALS Design Styles” Teehan et al. came 

with a description that divided the GALS designs styles into three categories[18].  

The pausible-clock design style relies on locally generated clocks that can be 

stretched or paused to prevent metastability or avoid a transmitter or receiver from 

stalling due to full or empty transmission channel. 

The asynchronous design, where it is assumed that no timing relationship between 

the synchronous clocks occurs. Such design have maximum flexibility concerning to 

timing. 

The loosely synchronous is used for cases in which there is well know timing 

relationship between the local clocks. Due to the stability of these clocks one can 

achieve high efficiency while simultaneous provide tolerance for large amounts of 

skew inherent in global interconnects. Messerschimitt[19] proposed a taxonomy for 

these timing relationships:  

• Mesochronous. The sender and the receiver operate at exactly same 

frequency but with unknown yet stable phase difference. 

• Plesiochronous. The sender and receiver operate at the same nominal 

frequency but may have a slight frequency mismatch, such as a few parts per 

million, which leads to drifting phase. 

• Heterochronous. The sender and receiver operate at nominally different 

frequencies. If it happens that the receiver’s clock frequency is an exact 

rational multiple of the sender clock frequency, and both are derived from the 

same clock source, then there is a predictable periodic phase relationship 



29 
 

which is named Ratiochronous and is a subset of Heterochronous timing 

relationship. Figure 10 presents the associated taxonomy. 

 

 

FIGURE 10 – TAXONOMY OF GALS DESIGNS STYLES, RETRIEVED FROM[18] 

 

In the following sub-section each design style will be studied in detail. 

2.4.1. PAUSIBLE CLOCKS 

This is one of the earlier solutions, and has had many proposals in the past few 

years. The basic idea is to transfer data between the synchronous islands when both 

data transmitter and data receiver clocks are stopped. 

This type of system was first proposed in 2000 [10] and characterized by joining two 

previous studies into a complete design methodology for GALS. The Pausible Clock 

Control (PCC) circuits [15] to manage data transfers between independently clocked 

modules and the Asynchronous Wrapper [13] to provide data flow with greater 

flexibility and organization. 

A more up to date example for pausible clock is shown in Figure 11.  Each ring 

oscillator contains a NAND gate to control clock pausing.  The transmitter clock 

should be allowed to run if it is currently high, if the FIFO buffer can accept a new 



30 
 

value (ok_to_put is high), or if the transmitter is not attempting to send (ready_to_put 

is low). Likewise, the transmitter clock, should be allowed to run if currently high, if 

the FIFO buffer has data ready (ready_to_take is high), or if the receiver is not 

attempting to read new data (ready_to_take is low). 

 

FIGURE 11 – PAUSIBLE-CLOCK GALS DESIGN STYLE CIRCUIT: CIRCUIT (A) AND TIMING DIAGRAM (B), RETRIEVED 

FROM[18] 

The timing diagram Figure 11 b shows two consecutive data items being transferred. 

Assume that the FIFO buffer is initial empty and can hold only one datum. The 

receiver is ready (ready_to_take is high) but the clock is paused because the buffer 

is empty. The transmitter is ready, tx_data is ready and ready_to_put is high. While 

transmitter clock is low the latch is transparent but the AND gate keeps put at a low 

until the FIFO buffer is ready (ok_to_put is high), a rising edge of the clock will enable 



31 
 

put and the buffer will fill with the first datum (ok_to_put lowers). From here the 

transmitter clock pauses because its ready to transmit the second datum 

(ready_to_put high) but the buffer is full. At the receiver end the ok_to_take asserted 

resumes the clock and the data is latched, asserting take, which signal that the data 

has been removed from the FIFO buffer. Because the buffer is no longer full 

ok_to_put goes high, which restarts the transmitter’s clock and the process takes 

place all over again for the second datum transmission. 

About design issues, clock tree latency must be considered in GALS design [14]. If it 

happens to be longer than the latency from the clock distribution, invalid operation 

can occur after the clock was supposed to be stopped. 

Gurkaynak et al. in their study[20] came to the conclusion that designing ring 

oscillators for robustness and good performance was a major difficulty in their GALS 

research, concluding that pausible clocking “remains a niche technology at best”. The 

clock period can have high jitter, varying significantly from cycle to cycle as it restarts 

from pause.  

In conclusion, controlling the receiver’s clock, this interface ensures that the data 

arriving at receivers satisfies its timing requirements thus avoiding metastability. 

Once an interface wrapper has been verified it can be reused successfully for many 

local blocks without the need for further timing analysis. 

Another potential advantage is that variation in the clock period should track variation 

in logic-gate delays across a range of operation conditions. 

 

 



32 
 

2.4.2. ASYNCHRONOUS INTERFACES 

The asynchronous interface design style uses circuits known as synchronizers to 

transfer signals arriving from an outside timing domain to the local timing domain. An 

example scheme to this kind of interface can be observed in the Figure 12. 

The timing diagram shows the transfer of two data values from the transmitter to the 

receiver, assuming that FIFO the buffer is initial empty. This design uses two flip-

flops to synchronize a signal with the local clock and avoid metastability. To account 

for the synchronizer’s delay, the put_wait signal prevents the transmitter from 

sending until the FIFO buffer status following the previous put has propagated 

through the synchronizer. The take_wait signal serves the same function for the 

receiver. This simplistic design can transfer at most one datum for every three clock 

cycles of the transmitter or receiver clock, whichever is slower. 

Seizovec found a way to increase the throughput of an asynchronous interface by 

pipelining the synchronization operations trough a FIFO buffer along with the 

data[11].  This allowed transferring one datum per transmitter or receiver clock cycle, 

whichever is slower. Later, Boden et al. used this solution in the design of the 

Myrenet high-speed network hardware[21]. 

Considering design issues, Asynchronous interface offers the most flexible and 

probably the easiest integration into existing CAD tool[18].  The main concern is the 

modeling and validation of the synchronizer circuits and the impact of their delay 

because real synchronizer have complicated behavior and circuit simulators do not 

have the numerical accuracy to verify acceptable  reliabilitie[22]. Recent simulation 

methods where developed to address this problem [23, 24]. 



33 
 

A conclusion which one can withdraw is the advantage of this interface is that they do 

not affect the locally synchronous module’s operation but the introduction of latency 

might be significant and unacceptable for high-speed operation. 

 

FIGURE 12 – ASYNCHRONOUS INTERFACE GALS DESIGN STYLE: CIRCUIT (A) AND TIMING DIAGRAM (B), 

RETRIEVED FROM[18] 

The asynchronous GALS style is expected to find widespread use in SoC designs 

that can tolerate the extra latency of synchronization. 

2.4.3. LOOSELY SYNCHRONOUS INTERFACES 

Loosely synchronous interfaces are used for high –performance designs, however 

some bounds on the communication frequency have to be known and this design is 



34 
 

less prone to dynamic changes in the clock frequency. Handshaking becomes 

unnecessary during data transfer, so the resulting circuits can achieve higher 

performance and have higher deterministic latencies than those of the other 

methods. 

A loosely synchronous design exploits one of the known timing relationships 

described earlier. The simplest case is the mesochronous relationship, in which the 

frequencies of the local clocks are exactly matched but differ in phase. This situation, 

normally, occurs when the clocks are derived from the same source but the latency of 

delivery to each block differs. An example of this scheme can be seen in Figure 13. 

The sending and receiver clocks are derived from the same source. The solution 

here is for the receiver to compensate the phase difference through a FIFO buffer. 

The key for high performance is to initialize the FIFO buffer to be half full. During 

operation, the transmitter puts one datum into the FIFO buffer every cycle, and the 

receiver takes one datum. Neither one needs to check on the status of the buffer, it is 

assumed that it is fast enough. So the buffer will remain + 1 or -1 data item of half full 

because the frequencies are matched. 

To get the FIFO buffer half full, special initialization is required. Initially, a global reset 

signal is asserted, which may need to be synchronized. The TX_INIT block awaits a 

fixed number of cycles until the reset is guaranteed to have completed everywhere, 

and then enables the transmitter by asserting tx_enable. The transmitter begins to 

send data. After the first reset data item arrives, empty goes low. Because the 

transmitter and receiver can have arbitrary skew, this change of empty is 

asynchronous with respect to the asynchronous clock and must be synchronized. 

After the synchronizer latency, the RX_INIT block receives the signal, awaits any 

additional cycles necessary for the FIFO buffer to reach-full state, and asserts 



35 
 

rx_enable. The receiver begins to retrieve data items at the same rate the transmitter 

sends, and no further synchronization is required. 

 

FIGURE 13 – LOOSELY SYNCHRONOUS GALS DESIGN STYLE: CIRCUIT (A) AND TIMING DIAGRAM (B), RETRIEVED 

FROM[18] 

Bearing in mind the design issues, determining the optimal size of the FIFO buffers is 

necessary, as well, timing analysis are required to bound how far the relative phase 

differs between sender and receiver. 



36 
 

 In conclusion, the need for high clock frequencies and low latency in high-

performance designs will make them ideal candidates for loosely synchronous 

techniques.  

CAD support is expected to emerge as designers undertake chips with many timing 

domain[18]. 

2.5. CONCLUSION 

GALS design style build on the extensive infrastructure of synchronous design while 

avoiding the problems of a distribution of global, low-skew clock and metastability 

altogether. This methodology also facilitates the integration independently design 

blocks operation at different frequencies, which become a natural approach for SoC 

design. 

Pausible clocks are appealing for their elimination of metastability failures but do not 

fit well in CAD flows and do not scale well for designs with high-speed clocks. 

Therefore it is unlikely that they will find wide spread acceptance, although their 

ability to completely shutdown makes them attractive for low-power designs. 

Fully asynchronous interface offer the greatest flexibility. Commercial tools are 

already evolving in this direction, with tools that check circuits spanning multiple clock 

domains for structural and protocol errors. Additional problem with GALS design is 

that synchronizers and arbiters are nondeterministic, which complicates design 

validation and test. Some researchers have sought to make the timing of GALS 

designs deterministic [25]. Validation and test of GALS designs remains an important 

area for further research. 



37 
 

Loosely synchronous techniques offer the highest performance by removing 

synchronization delays from latency-critical paths. However, these methods require 

timing analysis that standard CAD flows do not support. 

In conclusion GALS design faces the challenge of acquire support from the CAD 

developers in order for the designers to accept and develop with this technology. 

Designs with fully asynchronous interfaces seem to require the least change to the 

local blocks while avoiding the need for a new global timing analysis tools.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

3. ASSEMBLING AN ASYNCHRONOUS INTERFACE 

3.1. INTRODUCTION 

Now that a global overview of the existing GALS solutions has been made and all the 

advantages and disadvantages been weighed it is important to select one that will 

adapt better to the solution we seek. The plausible clock proved to of difficult 

implementation and the necessity to freeze the system is a major drawback. As for 

the loosely synchronous is not possible to turn it into a general solution has it is 

necessary to know beforehand the specificities of each system. So the selection for 

the Asynchronous Interface was based in the criteria for the adaptability to any 

system, and, therefore greater reusability. 

In order to assemble such an interface we have to put together a series of elements. 

The choice criteria for each of the elements were that each of them were already 

utterly studied and proven. Also, in a global view, all the elements assembled and 

working together emerged as the least complex, thus, the ones who performed their 

duty with the least circuit size and speed reduction.   

In this chapter these items will be discussed in detail. 

3.2. COMPONENTS FOR ASSEMBLING THE ASYNCHRONOUS INTERFACE 

3.2.1. THE SYNCHRONIZER 

To achieve signal synchronization with a given clock we need no more than two flip-

flops in series. With this simple design we not only get the wanted synchronization, 



39 
 

but also, minimize the probability of metastable failure.  Figure 14 shows a common 

two-flip-flop synchronizer. Failure probability drops exponentially with settling time or, 

equivalently, with the number of flip-flops in the chain. Synchronizers can provide 

mean times between failures (MTBFs) of millions years or more if properly designed 

[26]. 

 

FIGURE 14 – TWO-FLIP-FLOP SCHEMATIC DESIGN. 

 

We can see below the circuit simulation of the two flip-flop design. 

 

FIGURE 15 – SIMULATION OF THE TWO-FLIP-FLOP 

As you can see from Figure 15, it takes at two clock cycles in a two-flop scheme to 

achieve the synchronization. 

In the case where the first flip-flop becomes metastable, being the probability of 1-e-

T/τ [9](which is infinitesimal close to 1) to exit metastability by the next clock, and has 



40 
 

arbitrarily settled to either high or low. If high, the next flop will go high on the next 

cycle. If low, it will surely go high on the next clock when the signal to synchronize is 

already stable. 

3.2.2. THE MULLER C-ELEMENT 

In order to successfully build a FIFO buffer, we will need to add the C-element to our 

design. 

The Muller C-element (often known as C-element or a C-gate), depicted in Figure 16, 

is commonly encountered in asynchronous VLSI ( Very Large Scale Integration) 

design. 

 

FIGURE 16 – THE MULLER C-ELEMENT: POSSIBLE IMPLEMENTATION, SYMBOL AND FUNCTION DEFINITION, 

RETRIEVED FROM[27] 

The Muller C-element is a state-holding element much like an asynchronous set-

reset latch. When both inputs are 0 the output is set to 0, and when both inputs are 1 

the output is set to 1. For other input combinations the output does not change. 

Consequently, an observer seeing the output change from 0 to 1 may conclude that 

both inputs are now at 1; and similarly, an observer seeing the output change from 1 

to 0 may conclude that both inputs are now at 0. 

I also had to include a variation of the C-element called the asymmetric C-element, 

which is also needed to assemble the latch controller (discussed later). This type of 

element allows inputs which only effect the operation of the element when 

transitioning in one of the directions. Asymmetric inputs are attached to either the 



41 
 

minus (-) or plus (+) strips of the symbol. The common inputs which effect both the 

transitions are connected to the centre of the symbol. When transitioning from zero to 

one the C-element will take into account the common and the asymmetric plus 

inputs. All these inputs must be high for the up transition to take place. Similarly 

when transitioning from one to zero the C-element will take into account the common 

and the asymmetric minus inputs. All these inputs must be low for the down transition 

to happen. Figure 17 shows the gate-level and transistor-level implementations and 

symbol of the asymmetric C-element. In Figure 17 the plus inputs are marked with a 

'P', the minus inputs are marked with an 'm' and the common inputs are marked with 

a 'C'.  

 

FIGURE 17 - THE ASYMMETRIC C-ELEMENT: POSSIBLE IMPLEMENTATION, SYMBOL. 

3.2.3. FIFO BUFFER 

A FIFO (First In First Out) buffer is nothing more than a sequence of latches that 

stores valid data in order, the last latch holds the first data item, as the first holds the 

last data. Practically speaking, the first item IN is the first item OUT. 

Bearing in mind that we are in an asynchronous time domain, we have no clock to 

enable the latches. Therefore, to accomplish this feat, we need, for each latch, a 

controller that drives the data through each of the latches, from the first to the last, 

and altogether manages the pace of the transfer flow (the sender cannot transmit 



42 
 

data while buffer is full). To this form of control, in the asynchronous domain, we call 

handshake. 

After we dwell in the realm of the handshake protocols we will first take a look at the 

Muller pipeline, which is common ground to all protocols. 

3.2.3.1. HANDSHAKE PROTOCOLS 

The choice of the handshake affects the circuit implementation (area, speed, power, 

robustness, etc.). We will discuss three protocols that most practical circuits use: 

• 4-phase bundled-data; 

• 2-phase bundled-data; 

• 4-phase dual-rail; 

3.2.3.1.1. 4-PHASE BUNDLED-DATA 

The term bundled-data refers to a situation where the data signals use normal 

Boolean levels to encode information, and where separate request and acknowledge 

wires are bundled with the data signal[9]. 

In the 4-phase protocol the term 4-phase refers to the number of communication 

action(see Figure 18): (1) the sender issues data and sets request high, (2) the 

receiver absorbs the data and sets acknowledge high, (3) the sender responds by 

taking request low (at which point data is no longer guaranteed to be valid) and (4) 

the receiver acknowledges this by taking acknowledge low. At this point the sender 

may initiate the next communication cycle. 

3.2.3.1.2. 2-PHASE BUNDLED-DATA 

In the standard two-phase protocol an event (rising or falling edge) on Rin signals the 

availability of input data and the register issues an event on Ain to indicate to the 



43 
 

source of the data that it has been captured and may be removed. The latch also 

issues an event on Rout to indicate that its output data is now valid and will be held 

stable until an event on Aout signals that it has been accepted by the next stage in 

the pipeline[28]. 

 

FIGURE 18 - A) A BUNDLED-DATA CHANNEL. B) A 4-PHASE BUNDLED-DATA PROTOCOL. C) A 2-PHASE DATA 
PROTOCOL, RETRIEVED FROM [9] 

3.2.3.1.3. 4-PHASE DUAL-RAIL PROTOCOL 

The 4-phase dual-rail protocol encodes the request signal into the data signals using 

two wires per bit of information that has to be communicated. 

The core of it is a 4-phase protocol using two request wires per bit of information. 

One wire is used for signaling a logic 1 (or true), and another wire is used for 

signaling logic 0 (or false). When observing a 1-bit channel one will see a sequence 

of 4-phase handshakes where the request signal in any handshake cycle can be 

either data true or data false. Two parties can communicate reliably regardless of 

delays in the wires connecting the two parties, which makes this protocol very robust 

and delay-insensitive. 



44 
 

 

FIGURE 19- A 4-PHASE DUAL-RAIL PROTOCOL, RETRIEVED FROM[9] 

3.2.3.2. MULLER PIPELINE 

The backbone of almost all asynchronous circuits[9] is shown Figure 20. The circuit is 

built from C-elements and inverters and is known as a Muller pipeline or a Muller 

distributor. 

 

FIGURE 20 - MULLER PIPELINE, RETRIEVED FROM[9] 

The figure is interpreted as follows: After all of the C-elements have been initialized 

to 0 the left environment may start handshaking. The ith C-element (C[i]) will 

propagate, input and hold, a 1 from its predecessor, C[i - 1], only if its successor, 



45 
 

C[i+1], is 0. In an analogous way it will propagate a 0 from its predecessor if its 

successor is 1. It is often helpful to think of the signals propagating in an 

asynchronous circuit as a sequence of waves, as illustrated at the bottom of Figure 

20. The elation one can take on the role of a C-element in the pipeline is to 

propagate peaks of waves in a controlled way that maintains the integrity of each 

wave. 

“On any interface between C-element pipeline stages an observer will see correct 

handshaking, but the timing may differ from the timing of the handshaking on the left 

hand environment;”[9] The speed in which a wave will propagate in the circuit is 

dependable on the circuit itself. The first handshake (request) injected by the left 

hand environment will reach eventually the right hand environment. If the right hand 

environment does not react to the handshake the pipeline will eventually fill and the 

pipeline will stop handshaking with the left hand environment, has the ripple of the 

wave will propagate back through the FIFO.  

Also, regardless of delays in gates and wires the circuit works correctly because of its 

delay-insensitive property.[9] 

3.2.3.3. 4-PHASE BUNDLED-DATA PIPELINE 

A 4-phase bundled-data pipeline is particularly simple. A Muller pipeline is used to 

generate local clock pulses. The clock pulse generated in one stage overlaps with 

the pulses generated in the neighboring stages in a carefully controlled interlocked 

manner.  

The pipeline implementation is particularly simple but it has some drawbacks: it only 

accomplishes to fill every odd latch because the state of the C-elements are (0,1 ,0 ,1 

, …). Also the throughput depends on the time it takes to complete a handshake 



46 
 

cycle and for the above implementation this involves communications with both 

neighbors. 

We will discuss next a better implementation. 

 

FIGURE 21 – (A) A 4-PHASE BUNDLED-DATA PIPELINE, AND (B) ITS IMPLEMENTATION USING SIMPLE LATCH 

CONTROLLER AND LEVEL SENSITIVE LATCHES. THE FIFO FILLS EVERY OTHER LATCH, RETRIEVED FROM[9] 

3.2.3.4. SEMI-DECOUPLED LATCH CONTROLLER 

Ideally one would want to fill every latch with valid data. This can be achieved 

through the implementation of Semi-Decoupled latch controller. The original design is 

from Furber, et al.[28], and can be seen in Figure 22(a).    

 

FIGURE 22 - SEMI-DECOUPLED LATCH CONTROLLER (A) ORIGINAL FURBER DESIGN(RETRIEVED FROM [28]) , 

NORMALLY OPAQUE (B) NORMALLY TRANSPARENT 



47 
 

The method, Furber used, was to add an internal variable A to the four-phase simple 

latch controller. This variable is used to indicate when the input side of the latch 

controller is ready to proceed, independently of the output side. This allows the latch 

to capture new set of data regardless of the next latches condition.  

Testing the design it become clear that some minor alterations needed to be 

performed in order to adapt to the asynchronous interface. The problem, as we can 

see in the wave simulation depicted in Figure 23, is that if the next latch is not ready 

to receive the next item, it will remain enabled, thus, losing the current value 

(because the transmitter was informed by Ain that the data was latched with 

success). 

 

FIGURE 23 - WAVE SIMULATION OF SEMI-DECOUPLED LATCH CONTROLLER FURBER DESIGN 

The solution was to apply an inverter to Lt. In that way the latch will become normally 

transparent. When Rin+ arises the latch will became opaque and hold the value until 

the next latch is ready to take it (Aout-). The wave simulation is in Figure 24. 

 

FIGURE 24 -WAVE SIMULATION OF THE IMPLEMENTED SEMI-DECOUPLED LATCH CONTROLLER 



48 
 

As we can see from Figure 22, the Lt (latch toggle) signal is high after the reset. Lt 

goes low after the put+, and the flag full and ok_to_take goes high. The signal names 

where changed in order to better correlate to the signals of the asynchronous 

interface. 

After take+, ok_to_take and full goes low, and Lt goes high.  

In the second part of the test (after the vertical yellow line), we consider the next latch 

is full. This corresponds to the take signal high. As we can see, despite the next latch 

is full, when the put signal goes high, Lt becomes low, storing the data. Full will 

become high, but ok_to_take will remain low until the take signal goes low. When this 

occurs, the latch will know that the next one is ready to take the next data and the 

ok_to_take flag will become high. 

 

FIGURE 25 – GENERAL DESIGN OF A SEMI-DECOUPLED FIFO BUFFER 

I will make mine the word of James B. Johnson in is master thesis [29] the reason for 

the choice of this type of latch controller: 

“The semi-decoupled controller is that the performance/area ratio is better than the 

fully decoupled four-phase controller also introduced in Furber’s papers [28]. We 

have already noted the problems with the simplified four-phase latch controller as far 

as the ability to fill all of the stages of the FIFO. The simplicity of the semi-decoupled 



49 
 

controller design combined with the capability to use transmission gate style latches 

fits well with our goals of a high-performance, small area data FIFO”. 

3.3. ASYNCHRONOUS INTERFACE 

Now we have all the elements to assemble the asynchronous interface that we 

discussed earlier. 

For reason of simplicity the first test will be with a simple buffer. It will hold only one 

latch d, which translates in FIFO buffer with depth 1 and width 1. 

The design of the interface will be an exact replica of the scheme suggested in the 

paper by Paul Teehan, et al.[18] 

The scheme is presented in Figure 26. 

 

FIGURE 26 - ASYNCHRONOUS INTERFACE, RETRIEVED FROM[18] 

For the test, the transmitter (rx_clock) and receiver clock (tx_clock) will have the 

same frequency, but will comprise an offset of 50 ns. We are then before a 

mesochronous case. 



50 
 

The wave simulation can be observed in Figure 27. The transmitter will send two 

data item in sequence. 

 

FIGURE 27 - ASYNCHRONOUS INTERFACE WAVE SIMULATION 

It can be observed, with the help of the vertical line, the offset between the clocks. 

After the reset ok_to_put goes high. The put+ latches the data and the FIFO puts 

ok_to_take high. it takes three receiver’s clocks for rx_ok_to_take to go high. This 

delay is due to the synchronizer. The receiver latches the data and take goes. Upon 

this the buffer acknowledges that the data was successfully transmitted and 

tx_ok_to_put goes high. The buffer is ready to take the next data and the cycle 

repeats.  

3.4. CONCLUSION 

In simulation the interface successfully makes the bridge between two different time 

domains. Observed behavior was in according with textbook. 

The greatest difficulty was in the construction of the latch controller. The simple latch 

controller, the Muller pipeline, lacked the elasticity to achieve the necessary 

performance. The Fully-Decoupled latch controller was complex and cumbersome 

and even following several designs from different authors was impossible to achieve 

the correct behavior. This is probably due to some ingenuity of the author of this 



51 
 

thesis, and the design should, maybe, be assembled in some way the author could 

not grasp. 

 The Semi-Decouple latch controller proved to be elegant in design, fitting perfectly 

the needs of FIFO buffer, without adding unnecessary header and complexity. 

The next step (addressing in the next chapter) will be a real world test in an FPGA.  

After the simulation success, the expectations are high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

4. A NEW ASYNCHRONOUS INTERFACE 

4.1. INTRODUCTION 

The need for a new interface rose from the problem that synchronous circuits do not 

possess handshake signals to commute data. 

In order for a LSI communicate to another LSI we need reconfigure the previous 

studied asynchronous interface. This will lead us to add two new elements: The Input 

Port and the Output Port.  

The new interface to be implemented can be observed in Figure 28. We can see that 

the FIFO buffer remains the same from chapter 3 and the ports make the signal 

transition from a LSI to the FIFO buffer and again to another LSI. It is an interface 

molded to fit below the layers of the FORDESIGN project [8] after the split in the Petri 

net models and obtaining several sub-models. The new interface will help to transmit 

the several event signal generated in each sub-models to each other. 

 

FIGURE 28 - NEW ASYNCHRONOUS INTERFACE 



53 
 

Before dwelling in these new components I will first demonstrate how and why the 

previous solution is inadequate by introducing the examples in which we will apply 

the developed solution. 

4.1.1. EXAMPLE 1 

I will present now one of the examples in which we will apply the solution. The only 

concern here is to explain the communication characteristics of both examples, for 

there will be a more detailed explanation in the next chapter. 

 

FIGURE 29 – 3 CARS EXAMPLE 

On all three cars are in the starting lane they start moving upon pressing the button 

GO and each stop at the end when Bx (being x the car number) is pressed. Upon 

pressing BACK button the start moving again to starting lane until Ax is pressed for 

each one. The cars can only start moving when all of them have finished a course. 

Figure 30 is the Petri Net representation of the controller for a 3 car system example. 

It represents three cars moving back and forth. 

GO

BACK

A1 B1

A2 B2

A3 B3

M1
Dir1

M2
Dir2

M3
Dir3

GO

BACK

A1 B1

A2 B2

A3 B3

M1
Dir1

M2
Dir2

M3
Dir3



54 
 

 

FIGURE 30 – 3 CAR SYSTEM EXEMPLE PETRI NET MODEL OF THE CONTROLLER 

 The input signals of this controller are: 

• GO; 

• BACK; 

• A1; 

• A2; 

• A3; 

• B1; 

• B2; 

• B3; 

And also, for the implementation, are present the clock and reset signal. . 

The output signals are: 

• Car 1 moves; 

• Car 2 moves; 

• Car 3 moves; 

• Car 1 moves back; 



55 
 

• Car 2 moves back; 

• Car 3 moves back; 

In order to get three separate models, one for each car, we apply the SPLIT tool [7]. 

This tool allows for a net splitting operation able to decompose a Petri net model into 

Petri net sub-models using synchronous communication channels. The generated 

sub-models are associated with components to be executed concurrently, allowing a 

distributed execution of the initial model. 

The net splitting operation is hold on the basis of a defining a valid cutting set and 

following specific rules. To define the cutting set he user starts by identifying a set of 

components to be executed concurrently. To represent the initial and final model it is 

used PNML notation. These can be produced using the graphical editor for Input-

Output Place-Transition Petri Net Class (SnoopyIOPT editor). 

 

FIGURE 31 – THE 3 CARS SYSTEM SPLIT AND SIGNALS INPUTS AND OUTPUTS 



56 
 

After the validation of the cutting set there are three rules that allow the generation of 

components, interconnected through synchronous communication channels. At the 

implementation level, each component can be seen as an autonomous model, 

however having information about the state of adjacent components. 

From the Figure 31 we can observe all the input and output signal of the modules 

generate by the split operation. In order for the model to maintain coherence event 

signals are generated between modules to transmit information about affecting 

states. 

So, after the split operation, no handshake signals are present for each of the events 

in order for module communication to be accomplished. The only signals present are 

the event signals, the same we wish to transmit.   

The Input and Output Ports will have to bypass this problem in order to pass and 

retrieve the information from the FIFO buffer. 

4.2. THE SIGNALS PROBLEM 

With no handshake signals the interface was stripped to only the input data signal, 

the transmitter’s clock and the receiver’s clock. 

On the other hand the FIFO buffer needs the data signal, the put and take signal, in 

order to successfully copulate the data from one end to the other. It also as the 

control signals ok_to_take and ok_to_put. 

The problem here is not has trivial has it first seems due to the condition of the latch 

controller. The data in must arrive first or at the same time than the put signal and 

maintained until the put signal is rises. Failure to accomplish this and the date will not 



57 
 

enter the buffer. This fact is also true if the data to be transmitted is an event, which 

can occupy only a fraction of the clock signal, which makes matters worse, because 

the event will have to be extended until it can enter the buffer. 

 

FIGURE 32- FIFO BUFFER INPUT AND OUTPUT SIGNALS 

For a deeper analysis on the FIFO buffer please consult the chapter 3 - Assembling 

an Asynchronous Interface. 

4.3. THE PORTS 

It was clear at this stage that a port controller was needed to interact between the 

module exchanging the data and the FIFO buffer. 

4.3.1. THE INPUT PORT 

One of the first solutions achieved in this work is presented in Figure 33. This circuit, 

although, achieving the desired control did not had a good performance. It only 

allowed the input of data only every four transmitters clock’s. 



58 
 

 

FIGURE 33 – FIRST INPUT PORT 

The latch SR would extend the event or signal (Sin) until the put signal come out of 

the first Flip-Flop D( with one clock delay). After another clock the latch SR would be 

reset. 

This allowed to surpass the restrains of the FIFO buffer, with only two input signals - 

The Sin and transmitter’s clock. 

Due to the performance limitations imposed by this system a new approach had to be 

conceived. 

The new input port can be observed in Figure 34. 

With this type of port one can achieve a buffer input once every two clocks, until the 

buffer is full. This delay is introduced by the necessity of the put signal to go down 

before a new input, and, also, because of the latch allowing only for clock 

synchronized inputs. 



59 
 

 

FIGURE 34 – NEW INPUT PORT 

The given schematic works as follows:  

If the FIFO is in condition to accept new entries then ok_to_put will be high. The first 

AND will be eligible to let a value pass through. 

If an event occurs Sin will be high for that given period and the C Minus Element will 

be set high (until both Sin and ok_to_put are down). The latch is there to extend the 

signal until there is confirmation that it entered the FIFO buffer (has the signal data). 

The put and data signal will be the output of flip-flop D whenever there is a gate input 

(in this case the output of the C Minus Element) and when tx_clk is high. In this way 

the put will be synchronized with the transmitter’s clock and naturally with the data to 

be transmitted. Therefore the data being transmitted will be inserted in FIFO at the 

same time the clock goes high, with only a certain amount of delay introduced by the 

flip-flop D. 



60 
 

 

FIGURE 35 – SIMULATION OF THE NEW INPUT PORT 

At this time, and for the duration of the put signal the ok_put wil be low. This implies, 

analyzing the schematic, that it will reset the C Minus Element and, also, the latch D. 

This will turn data low and consequently the put signal, when there is the next clock 

rise. If the FIFO is ready to take a new value the ok_to_put will be high and all the 

elements will be free to take a new value. 

4.3.2. THE OUTPUT PORT 

The output port is of fairly simple explanation. 

The data signal needs to be synchronized with the receiver’s clock in order to avoid 

metastability. This is accomplished using two flip-flop D, as seen in the Figure 14 and 

now, also, in Figure 36. 

 



61 
 

FIGURE 36 – OUTPUT PORT 

The and port before the synchronizer is there so the output data is present when 

there is an ok_to_take signal present. 

Take will be active as soon as Sout is high. This also implies that the synchronization 

was a success and the flow inside the synchronizer can be interrupted, if not, the 

signal would be extended for one more clock. To accomplish this we introduce an 

and gate between the two flip-flops. The and is only active if Sout is down. 

 

FIGURE 37- SIMULATION OF THE OUTPUT PORT 

From the Figure 37 it can be observed that the port, due to the synchronizer element, 

introduces a delay of one clock. 

4.3.3. FIFO BUFFER 

The FIFO buffer[9] used in the implementation is depicted in Figure 38. It possesses 

two semi-decoupled latch controllers, one for each latch. Each of the latches accepts 

only one bit. The Semi-Decoupled latch controller[28] is the same referred in Figure 

22 b), at chapter 3.2.3.4, where it is also analyzed, and can now be observed in 

greater detail in Figure 39. 

The depth and width of the FIFO for the given implementation is more than enough 

because, for the examples used, the FIFO will never take more than one datum at a 

time. 



62 
 

 

FIGURE 38- FIFO BUFFER WITH WIDTH 1 AND DEPTH 2. 

The controller uses two variations of the Muller C-element[9], the cnminus and the 

cplus[30], presented in Figure 39 b), c) respectively. The cplus output only goes up 

when signal p and a is active and continues active while signal a is active. 

 

FIGURE 39 –A) NORMALLY TRANSPARENT SEMI-DECOUPLED LATCH CONTROLLER, B) CNMINUS, C) CPLUS  

As for the cnminus, the behavior is identical to the C-element[9] except the output 

only goes down when the signal m goes down. To build the element with this 

behavior we have to draw the corresponding truth table. From the table, and building 



63 
 

the Karnaugh map we obtain the function Qn+1 = QA + QM + QB + AB, that permits to 

design the scheme present in Figure 39 b). All this steps are present in Figure 40. 

 

FIGURE 40 – CNMINUS ELEMENT. A) TRUTH TABLE, B) KARNAUGH MAP, C) FUNCTION 

 

4.4. THROUGHPUT  

So, the input signals have been reduced to three: Sin, Tx_Clock and Rx_Clock (not 

counting with the reset signal). The output is only one: Sout. 

The behavior can be observed in Figure 41.  

For the given simulation the transmitter’s clock has a period of 100ns and the 

receiver’s clock has a frequency of 150ns. The offset between the two is of 20ns. 

For testing purposes the Sin signal is asynchronous and with varied width (it is 

sometimes bigger than the clock signal). The purpose of this is to determine that the 

width of the input signal will not influence in the efficiency of the interface. 



64 
 

 

FIGURE 41- BEHAVIOR OF THE NEW ASYNCHRONOUS INTERFACE 

The first data input happens before the sixth transmitter’s clock edge. At that time the 

put signal goes up, ok_to_put goes down and ok_to_take goes up. In the next 

transmitter’s clock ok_to_put will go up and the FIFO will be ready to a new value.  

At the moment the data goes out the other side of the FIFO it take only two receiver’s 

clocks to reach destination. This is due to the delay imposed by synchronization. 

Sout will go up as well as take, which will empty the FIFO and ok_to_put goes down. 

Therefore an input in this Interface can be made every odd clock and the output 

takes two of the receiver’s clock. Thus the time it will take for an event to leave the 

transmitter until it reaches his destination is as follows: 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡1, 𝑡𝑡2) = 2 ∗ 𝑅𝑅𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡1) +  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡2) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡1) = 𝑇𝑇𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ′𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡2) = 𝑅𝑅𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ′𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡2) 

The equation reads as follows: the throughput of the signal takes two times the 

Receiver’s clock period plus delay. The delay is composed by two more equations. 

The inDelay is the time difference between the Sin event, at time t1, and the next 

Transmitter’s clock event. The outDelay is the time difference between the time data 

exits the FIFO buffer, at time t2, and the next receiver’s clock event. 

 



65 
 

5. IMPLEMENTATIONS 

5.1. INTRODUCTION 

This chapter will present two practical problems to be solved through the use of 

GALS technology. 

To aid in the creation of the practical example we will use three tools developed in 

the FORDESIGN project: 

• The SNOOPY-IOPT[2], a graphical IOPT Petri net editor for modeling the 

example. 

• The SPLIT tool [7], which enables us to partition of an IOPT Petri net into 

autonomous, yet inter-signal dependent, Petri net sub-models. 

• The PNML to VHDL tool[8], to convert the PNML to VHDL modules. 

As it was previously said the generated sub-model from the partition will generate 

events in order to maintain model coherence. It is these events that will have to be 

interconnected with the solution developed in this thesis in order for the example to 

properly work. 

5.2. EXAMPLE 1: THE 3 CARS SYSTEM 

To test our GALS interface we need several modules with different clocks. 

First we will use a know example and observe its behavior. 

The model in Figure 30 (presented in chapter 4) represents the controller of three 

cars moving back and forth. They can only start moving forward when all of them are 



66 
 

in their ready place (car1_ready, car2_ready, car3_ready). Upon occurrence of the 

event GO all tokens pass to car_move place (car1_move, car2_move, car3_move) 

which represents the cars moving forward. They will remain in this state until each of 

their corresponding transition are activated (B1, B2, B3). At that time each of the 

tokens makes the transition to the end place (car1_at_end, car2_at_end, 

car3_at_end). 

For the cars to move back and complete the cycle each one as to be at end place 

before the transition back is activated, which at that time each mark is moves to his 

corresponding move back place (car1_moves_back, car2_moves_back, 

car3_moves_back). To reach initial place each of their corresponding transition must 

be activated. When each of the car completes this cycle the system is in the initial 

state and can start all over again. 

The simulation of this system, after being converted to VHDL, can be observed in 

Figure 42: 

 

FIGURE 42 – SIMULATION OF THE 3 CARS EXAMPLE 

The transition a1 and b1 corresponds to the signal c1. As for the transition a2 and b2 

corresponds to the signal c2 and the transition a3 and b3 corresponds to the signal 

c3.  



67 
 

5.2.1. THE 3 CARS SYSTEM PARTITION 

The next step of this exercise is to take the PNML of the 3 cars system and split it in 

three controllers so that each of the splits contains one model of the cars. 

From Figure 31 (present in chapter 4) one can retrieve that car 1 is the main module. 

It is in the car 1 module that the GO, BACK commands are activated and verification 

of the ready and at the end places occurs. So in module 1 there are four more places 

and four more transitions. 

In order for the global system to work properly there is a need to pass information 

between each of the modules. In this case there is only communication between 

module 1 and module 2 and module 1 and module 3. The communication is made in 

form of in events and out events: 

• GO is active: event 1443 transmitted from module 1 to module 2 and 3; 

• A2 is active: event 1515 transmitted from module 2  to module 1; 

• A3 is active: event 1551 transmitted from module 3  to module 1; 

• BACK is active: event 1805 transmitted from module 1  to module 2 and 

3; 

• B2 is active (second time): event 1587 transmitted from module 2  to 

module 1; 

• B3 is active (second time): event 1569 transmitted from module 3  to 

module 1; 

This makes a total of eight signals to interconnect between modules.  

If all the modules were feed by the same clock, there were no problems in 

synchronization and it would never occur metastability failure. In Figure 43 is the 

simulation of this situation.  



68 
 

 

FIGURE 43 –SIMULATION OF THE 3 CARS SYSTEM FED BY THE SAME CLOCK  

Now if all the modules are to have different clock speeds the system would become 

unreliable, as one can observe from the simulation in Figure 44: 

 

FIGURE 44 - SIMULATION OF THE 3 CARS SYSTEM FED BY THREE DIFFERENT CLOCKS, ONE FOR EACH CAR 

In both Figure 43 and Figure 44 there are present signal C1, C2 and C3, which are 

not represented in the model of 3 cars system. These signals are associated the 

event signals A1, B1, A2, B2, A3, B3, respectively. So for C1 we have associated A1 

and B1. The reason for this change is to be easier to implement in the FPGA, where 

the buttons and triggers are very limited. This change will not affect in any way the 

behavior of the model. 

Module one (car one) was fed with a clock with 100ns high time and 100ns low time. 

Module two (car two) was fed with high time clock of 300ns and equal low time. 

Finally, the third with a 500ns high and low time.  All clocks offset are of 100ns. 



69 
 

The first output is completely unpredictable. After the GO signal there should have 

been, at least, the output signal car 1 moves, but instead, there was a rise in the 

output signal car 2 moves. After this there is a complete system failure, which should 

prove irrecoverable without a system reset. This is because the execution semantic 

associated with signal channel was not preserved and output events were lost, as for 

the receiver counterpart is too slow to catch them. 

Hence the need for the GALS solution in order to assure asynchronous connectivity 

between synchronous components. 

5.2.2. 3 CARS GALS SYSTEM 

To solve the synchronization problem we will apply to the three cars system our 

solution.

 

FIGURE 45 – 3 CARS GALS SYSTEM 



70 
 

For each of the modules signal being interchanged by the modules there will be a 

GALS wrapper (our developed asynchronous interface). As we have eight events 

being exchanged between modules it will give a total of 8 wrappers, one for each of 

the events.  

Each of the wrapper will have to be fed with the transmitter and receivers clocks 

respectively for each of the events. For example: After the GO event is triggered, 

module one will release event 1443, which as to be synchronized with module two 

and three clocks. So, for this event, we will need two wrappers. Each of the wrappers 

will be fed with module one clock (the transmitter’s clock). And one of them with 

module’s two clocks and the other with module’s three clock, which, respectively, the 

receiver’s clock.   

Figure 45 shows how the GALS system will integrate in 3 cars example. In the figure 

only the event signals are represented and each of the events names were assigned 

by the Split tool[7]. 

 

FIGURE 46- EVENT 1443 IN DETAIL 

Figure 46 magnifies event 1443 transmission to better understand the wrappers 

inputs and outputs. 



71 
 

So for event 1443 there will be a total of three inputs into the wrapper and, only, one 

output: 

• Inputs – event 1443, transmitter’s clock, receiver’s clock. 

• Output- event 1443. 

Car 1 is the transmitter and is fed by clock 1. The same clock will be used by wrapper 

1 to synchronize the signal being sent by car 1. 

When event 1443 is transmitted by car 1 it will enter wrapper 1 and exit wrapper 1 

duly synchronized with the clock 2, the same clock that feeds car 2.  

This situation is analogue to every other event being transmitted between modules. 

Extent behavior information on the wrapper is found in chapter 4. 

5.2.3. SIMULATION 

We feed each car in the GALS system with the same three clocks: 

 

FIGURE 47 – SIMULATION OF THE 3 CARS GALS SYSTEM 

Module one (car one) was fed with a clock with 100ns high time and 100ns low time. 

Module two (car two) was fed with high time clock of 300ns and equal low time. 

Finally, the third with a 500ns high and low time.  All clocks offset are of 100ns. 



72 
 

The output of the system can be observed in Figure 47. 

The difference in the outputs is visible noticed. After the GO signal the outputs from 

car 2 and 3 are not in the same clock due to synchronization delay. For each of the 

cars it takes two more of their own clocks for the output. The output from car 1 

remains the same because the GO signal has its origin in car 1.  

These effects are analogous to the BACK signal and C1, C2 and C3 signals. 

In overall the system has become somewhat slower but stable, thus, achieving the 

objective of the GALS system. 

5.2.4. IMPLEMENTATION 

For a real world test the system was implemented in a Xilinx Spartan-3 FPGA and in 

the Xilinx Virtex_II pro. 

 

FIGURE 48 – FPGA SCHEME, RETRIEVED FROM[31] 

For the Spartan-3 the VDHL GALS system was converted to a bit programming file 

through the Xilinx 6 software. For programming the FPGA the ADEPT software was 

used in conjunction with the bit file. 



73 
 

 

FIGURE 49 – VIRTEX-II PRO DEVELOPMENT SYSTEM BOARD PHOTO[32] 

Another problem was that the FPGA only possessed one internal clock generator. 

For this test we needed two more. 

The solution devised was to use the FPGA expansion ports to feed it with two more 

external clocks. So in total with had three clocks: 

1. The 50 MHz FPGA internal oscillator. 

2. The 10 MHz external oscillator. 

3. The 24 MHz external oscillator. 

The FPGA 50 MHz oscillator feed module one. The 10 MHz feed module two, and, 

24 MHz feed module three. With this we achieved the necessary conditions to test 

the GALS system. 



74 
 

The switches on the FPGA were used for the GO, BACK, C1, C2, C3 and reset for 

the input signals. The LEDs were used to observe the behavior of the system. One 

LED for each output: Car 1 moves, Car 2 moves, Car 3 moves, Car 1 moves back, 

Car 2 moves back, Car 3 moves back. 

For the Virtex_II Pro the implementation was done through the xilinx ISE 10.1 (it was 

the only software compatible with this board) with the help iMPATC tool. The Virtex 

possesses multiple clocks so the was no need for external clock implementation. 

The real world test for Spatan 3 and Virtex-II pro proved to be a success. Both of 

them behave exactly has expected. 

5.2.5. POWER, HEAT AND SIZE EVALUATION 

Closing this example we are now going to compare the heat generated and power 

consumption of the implementation with and without the GALS solution, for both 

platforms. 

5.2.5.1. SPARTAN-3 

 

FIGURE 50 – SIDE BY SIDE POWER COMPARISON OF THE SPARTAN-3 3 CARS EXAMPLE.  LEFT - WITHOUT GALS, 
RIGHT - WITH GALS  

Figure 50 is the side by side power consumption for the example of the 3 cars. This 
information was taken from the XPower tool from Xilinx. 



75 
 

We can see an increase from 37.21 mW to 425 mW, a difference of 387.79 mW. That 
represents an increase of power in 1042%. 

 

FIGURE 51 – SIDE BY SIDE HEAT COMPARISON OF THE SPARTAN-3 3 CARS EXAMPLE.  LEFT - WITHOUT GALS, 
RIGHT - WITH GALS  

Has for the heat generated, we see a boost from the case temperature from 25.80ºC 
to 36.90ºC. An 11.1ºC increase that represents a 43% increase in heat form.  

Another aspect is the overhead added by the inclusion of wrappers. Figure 52 shows 

the device utilization summary for the 3 cars system example with and without GALS. 

 

FIGURE 52 - DEVICE UTILIZATION SUMMARY OF THE SPARTAN-3 WITHOUT GALS(ABOVE) AND WITH GALS(BELOW) 
FOR CARS EXAMPLE 



76 
 

As one can observe from Figure 52 for the example of the 3 cars system the Total 

Number of Slices increases from 16 to 56.  

The 4 input LUTs increase from 18 to 100. 

As for Logic Distribution the number of occupied slices increases from 9 to 69. 

The number of bonded IOBs goes from 13 to 15. 

The number of GCLKs increases from 1 to 3. 

And the Total equivalent gate count for design goes from 239 to 1069. That 

represents a 347% size increase.  

Although every device percentage increases in enormous proportions, one should 

take in consideration that the 3 cars example is very elementary and any change will 

be felt in a dramatic way.   

5.2.5.2. VIRTEX-II PRO 

From Figure 53 and Figure 54 we can see that for the Virtex-II pro there are no 

changes in terms of Power and Heat when the system is operating without GALS and 

when it is operating with GALS. 

 

FIGURE 53- SIDE BY SIDE POWER COMPARISON OF THE VIRTEX-II PRO 3 CARS EXAMPLE.  LEFT - WITHOUT GALS, 
RIGHT - WITH GALS 



77 
 

The total consumption for both configurations is 797.50 mW. This is due to the power 

analyzer tool to estimate the leakage current of the gates. 

There is change, however, in what concerns device utilization. 

 

FIGURE 54 – SIDE BY SIDE HEAT COMPARISON OF THE VIRTEX-II PRO 3 CARS EXAMPLE.  LEFT - WITHOUT GALS, 
RIGHT - WITH GALS 

Figure 55 presents a detailed analysis of the number of slices, flip-flops, LUTs, IOBs, 
and GCLKs that are occupied on the device without the GALS system and with the 
GALS system. 

There is an increase from 10 slices to 66 slices. 

From 16 flip-flops to 56. 

From 18 LUTs to 112. 

And a decrease from 12 IOBs to 9. 

And 3 GCKLs to 2. 

 

FIGURE 55 – DEVICE UTILIZATION SUMMARY OF THE VIRTEX-II PRO WITHOUT GALS(ABOVE) AND WITH 
GALS(BELOW) FOR CARS EXAMPLE 



78 
 

5.3. EXAMPLE 2: MANUFACTURE CELLS 

This example is about a manufacturing cell controller, containing robots and 
movements carpets as illustrated in Figure 56. In the figure is represented a 
controller with 3 cells. In this practical example we will use 4 cells. 

 

FIGURE 56 – 3 CELLS MANUFACTURE SYSTEM, RETRIEVED FROM[33] 

The Petri Net model can be observed in Figure 57. 

 

FIGURE 57- 4 CELLS MANUFACTURES SYSTEM PETRI NET MODEL 

In order to be scalable, the system is divided into cells and may be added as desired 

without the need for the system to be adjusted. Each cell has two sensors ("INx" and 



79 
 

"OUTx") and two actuators (Movex "and" ROBOx "), in which the "x" symbolizes the 

ID of the cell sensor that indicates the end of transformation process and, so, the part 

can be removed from the assembly line. When INx is active the carpet starts to move 

(Movex) until sensor OUTx is activated and the carpet stops, at that time ROBOx is 

active and the piece is changed from one cell to the other. 

 

FIGURE 58 – MANUFACTURE CELL 4 MODULES WITH SIGNALS REPRESENTATION 

The input signals of this model are:  



80 
 

• IN1; 
• IN2; 
• IN3; 
• IN4; 
• OUT1; 
• OUT2; 
• OUT3; 
• OUT4; 

 

The output signals are: 

• MOVE1; 
• MOVE2; 
• MOVE3; 
• MOVE4; 
• ROBO1; 
• ROBO2; 
• ROBO3; 
• ROBO4; 

Figure 58 is the representation of all the signals as the result of applying the SPLIT 
tool [7] to the Manufacture Cells model.  

As a result we have six new event signals: 

• event2380; 
• event 2416; 
• event 2738; 
• event 2774; 
• event 4451; 
• event 4415; 

As the first example, this one, also, has no handshake signals to pass the 

information. 

 The two examples are in line with what most LSI interconnections issues will be, 

thus, the solution being developed will be, in all terms, a general solution. 

The simulation of the system, after converting the IOPT model to VHDL, can be 

observed in Figure 59: 



81 
 

The system was fed with only one clock of 100 ns high and low time. 

The part will naturally propagate from cell to cell, with new parts being added as soon 

as one cell becomes free. 

 

FIGURE 59- SIMULATION OF THE 4 CELLS MANUFACTURES SYSTEM 

5.3.1. MANUFACTURE CELL PARTITION 

This next step comprises of splitting the Petri Net [3-5] model into four, one for each 

cell. 

For each of sub-model it will be generated a PNML file and, later, converted do 

VHDL. 

The split model can be observed in Figure 58.  

The waveform simulation of the system fed by one clock (each of the modules are 

fed by the same clock, hence no ground for metastability to arise) is shown in Figure 

60. Has one can observe there is no difference between the original and the split 

model. The clock used was also 100 ns high and low time. 

 



82 
 

 

FIGURE 60 - SIMULATION OF THE 4 CELLS MANUFACTURES SYSTEM FED WITH SAME CLOCK 

So the next step was to feed each of the modules with a different clock: 

• Clock 1 – 100 ns high time, 100 ns low time, 100 ns offset; 

• Clock 2 – 200 ns high time, 200 ns low time, 120 ns offset; 

• Clock 3 – 300 ns high time, 300 ns low time, 130 ns offset; 

• Clock 4 – 400 ns high time, 400 ns low time, 140 ns offset; 

The behavior of the system can be observed in the waveform generated in the 

Modelsim software, presented in Figure 61. 

From Figure 61, we can come to conclusion that system encountered 

synchronization problems. It failed altogether even in the first instants of the 

simulation. So the solution to be applied is the introduction of Wrappers between 

signals to achieve the needed synchronization. 



83 
 

 

FIGURE 61 - SIMULATION OF THE 4 CELLS MANUFACTURES SYSTEM FED WITH DIFFERENT CLOCKS 

5.3.2. MANUFACTURE CELLS GALS SYSTEM 

So we have six signals being commuted between the four modules. With the 

introduction of the Wrapper will have twelve signals: 

• Wrapper 1  

- input signal is  inevent2380; 

- output signal is outevent2380; 

- receiver’s clock is clock 2; 

-  transmitter’s clock is clock 1; 

• Wrapper 2  

- input signal is  inevent2416;  

-  output signal is outevent2416; 

- receiver’s clock is clock 1; 

-  transmitter’s clock is clock 2; 

• Wrapper 3  

- input signal is  inevent2738;  



84 
 

- output signal is outevent2738; 

- receiver’s clock is clock 3; 

-  transmitter’s clock is clock 2; 

• Wrapper 4  

- input signal is  inevent2774 ; 

-  output signal is outevent2774; 

- receiver’s clock is clock 2; 

-  transmitter’s clock is clock 3; 

 

FIGURE 62 – MANUFACTURE CELLS GALS SYSTEM SIGNAL EXCHANGE 

• Wrapper 5  

- Input signal is  inevent4451;  

-  output signal is outevent4451; 

- receiver’s clock is clock 4; 



85 
 

-  transmitter’s clock is clock 3; 

• Wrapper 6  

- input signal is  inevent4415;  

- output signal is outevent4415; 

- receiver’s clock is clock 3; 

-  transmitter’s clock is clock 4; 

5.3.3. SIMULATION 

So for the simulation we will have the same four clocks:  

• Clock 1 – 100 ns high time, 100 ns low time, 100 ns offset; 
• Clock 2 – 200 ns high time, 200 ns low time, 120 ns offset; 
• Clock 3 – 300 ns high time, 300 ns low time, 130 ns offset; 
• Clock 4 – 400 ns high time, 400 ns low time, 140 ns offset; 

Clock 1 will feed module 1, Wrapper 1 and Wrapper 2.  

Clock 2 will feed module 2, Wrapper 1, Wrapper 2, Wrapper 3 and Wrapper 4. 

Clock 3 will feed module 3, Wrapper 3, Wrapper 4, Wrapper 5 and Wrapper 6. 

Clock 4 will feed module 4, Wrapper 5 and Wrapper 6. 

 

 

FIGURE 63- SIMULATION FOR MANUFACTURE GALS SYSTEM 



86 
 

The simulation of the system with GALS can be observed in Figure 63. 

As observed from the simulation the system although performing with diversity of 

clocks maintains its coherence, avoiding metastability or the lack of synchronization 

altogether, and so achieving the finality of the GALS solution. 

There is, although, an avoidable drawback in circuit speed as the result from the 

necessary synchronization between different synchronous islands.  

5.3.4. IMPLEMENTATION 

Has for example 1, example 2 was also implemented in a Xilinx Spartan-3 FPGA, for 

real world testing 

The Manufacture Cell with GALS systems VDHL was converted to a bit programming 

file through the Xilinx 6 software. For programming the FPGA the ADEPT software 

was used in conjunction with the bit file. 

The same solution was adopted to solve the problem of the FPGA single clock 

generator. 

So we have the FPGA expansion ports to fed with two more external clocks. So in 

total with had three clocks: 

1. The 50 MHz FPGA internal oscillator. 

2. The 10 MHz external oscillator. 

3. The 24 MHz external oscillator. 

The FPGA 50 MHz oscillator feed module one. The 10 MHz feed module two. The 24 

MHz feed module three, and module four was fed with the same 10 MHz of module 2 



87 
 

but with 180º phase difference (Using an inverter). With this we achieved the 

necessary conditions to test the GALS system. 

The system behaved has expected and proved to be a success. 

5.3.5. POWER, HEAT AND SIZE EVALUATION 

5.3.5.1. SPARTAN-3 

Closing this example we are now going to compare the heat generated and power 
consumption of the implementation with and without the GALS solution. 

In Figure 64 is the side by side power consumption for the example of the 3 cars. 

 

FIGURE 64 – SIDE BY SIDE POWER COMPARISON OF THE SPARTAN-3 MANUFACTURE CELLS EXAMPLE.  LEFT - 
WITHOUT GALS, RIGHT - WITH GALS  

 

We can see an increase from 37.21 mW to 425 mw, a difference of 387.79 mW. That 
represents an increase of power in 1042%. 

 

FIGURE 65 – SIDE BY SIDE HEAT COMPARISON OF THE SPARTAN-3 MANUFACTURE CELLS EXAMPLE.  LEFT - 
WITHOUT GALS, RIGHT - WITH GALS  

As for the heat generated, we see a boost from the case temperature from 25.80ºC 
to 36.90ºC. 11.1ºC more, which represents a 43% raise in heat form. 



88 
 

In relation of the size occupied in the FPGA it differs from the example with and 

without the GALS solution. 

 

FIGURE 66 - DEVICE UTILIZATION SUMMARY OF THE SPARTAN-3  WITHOUT GALS(ABOVE) AND WITH 
GALS(BELOW) FOR MANUFACTURE EXAMPLE 

The number of slice flip flop goes from 28 to 58. That is 207% increase. 

For the total equivalent gate count for design we see an increase from 377 to 1058, 

representing a 180% increase in overhead. 

 

 

 



89 
 

5.3.5.2. VIRTEX-II PRO 

 

FIGURE 67 – SIDE BY SIDE POWER COMPARISON OF THE VIRTEX-II PRO MANUFACTURE CELLS EXAMPLE.  LEFT - 
WITHOUT GALS, RIGHT - WITH GALS 

As with what succeded with the 3 car example we can see that for the Virtex-II pro 

there are no changes in terms of Power and Heat when the system is operating 

without GALS and when it is operating with GALS. The total consumption for both 

configurations is 797.50 mW. The heat produce by both systems is of 25º C. The 

comparisons for the Power and Heat of the system without and with GALS are in 

Figure 67 and Figure 68. 

 

FIGURE 68 – SIDE BY SIDE HEAT COMPARISON OF THE VIRTEX-II PRO MANUFACTURE CELLS EXAMPLE.  LEFT - 
WITHOUT GALS, RIGHT - WITH GALS 

As in what concerns device utilization Figure 69 presents a detailed analysis of the 
number of slices, flip-flops, LUTs, IOBs, and GCLKs that are occupied on the device 
without the GALS system and with the GALS system. 

There is an increase from 21 slices to 62 slices. 

From 37 flip-flops to 67. 

From 30 LUTs to 106. 

And a decrease from 18 IOBs to 17. 

And 4 GCKLs to 2. 



90 
 

 

FIGURE 69 – DEVICE UTILIZATION SUMMARY OF THE VIRTEX-II PRO WITHOUT GALS(ABOVE) AND WITH 
GALS(BELOW) FOR MANUFACTURE EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

5.4. GENERAL PLATFORM COMPARISON  

In this brief sub-chapter a table will be presented comparing the different power, heat 
and device utilization for both examples with and without GALS system in both 
platforms.  

 

FIGURE 70 – GENERAL COMPARISON OF BOTH PLATFORMS FOR BOTH EXAMPLES 

 

In overall the Virtex-II pro has a greater general consumption in terms of resources 
over the Spartan-3. 

 It consumes 372,5 mW more than the Spartan-3 with GALS system and 760,29 mW 
more without GALS system. That represents a big gap between both platforms. 

Has for the slices, flip-flops, LUTs,IOBs and GCLKs the Virtex-II always has a bigger 
usage of this elements over the Spartan-3. 

The only aspect the Virtex-II wins over the Spartan-3 is in the case temperature. It is 
0.80 ºC less without GALS system and 11, 90 º C less with GALS system. 

 

 

 

 



92 
 

6.  CONCLUSION 

The first conclusion one can withdraw is that the GALS solution can be implemented 

with success, even in a commercial FPGA. It can overcome the frontier between 

asynchronous and synchronous time domains. This, of course, does not come 

without a price. The inclusion of the GALS Wrapper between each signal that needs 

synchronization will increase the circuit size and add an unwelcome delay, resulting 

in a decreased circuit speed. 

This work as in some aspect extended the Asynchronous Interface, which served 

was the basis for the solution implemented. The Asynchronous Interface was 

dependent of handshake signals to properly work and it was impossible to implement 

it has a final solution, if the Transmitter and Receiver were both in synchronous time 

domain. Hence the necessity to adapt the Asynchronous Interface with the inclusion 

of the input and output ports. With those modifications the need for handshake signal 

were addressed only for the communication between the ports and the FIFO buffer. 

It is now fairly easy to adapt this Interface to whichever time domain. For example: a 

mix of asynchronous Transmitter and synchronous Receiver, or vice versa.   

Another aspect is the overhead added by the inclusion of wrappers 

And the Total equivalent gate count for design goes from 239 to 1069. That 

represents a 347% increase in overhead. 

The same pattern can be observed for the manufacture cells example: 

Also for the total equivalent gate count for design we see an increase from 377 to 

1058, representing a 180% increase in overhead. 



93 
 

Has for the heat and power increments they were same for both examples: A power 

increment of 1042% and heat rise of 43%.  

 

FIGURE 71 – DEVICE UTILIZATION FOR ONE WRAPPER 

It is of the utmost importance to refer that these huge increments in size, power and 

heat in relation to the examples without GALS is due to the fact that the examples 

implemented are elementary. By themselves they utilize very little resources from the 

FPGA. Using a more complex example then this so great impact would not be so 

visible. The device utilization for only one wrapper can be seen in Figure 71, which is 

very low indeed. 

 So in overall if a given project has to be a distributed solution and different time 

domains have to interact, this solution will accomplish the job perfectly. 

There will be a slight reduction in circuit speed and an increase in circuit size, power 

and heat, but the advantages that one can withdraw from this solution surpass 

greatly its own flaws. 



94 
 

7. BIBLIOGRAPHY  

 

[1] D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems." vol. Ph.D.: 
Stanford University, 1984. 

[2] R. Nunes, L. Gomes, and J. P. Barros, "A graphical editor for the input-output place-
transition petri net class," in Emerging Technologies and Factory Automation, 2007. 
ETFA. IEEE Conference on, 2007, pp. 788-791. 

[3] R. Wolfgang, Petri nets: an introduction: Springer-Verlag New York, Inc., 1985. 
[4] G. Claude and V. Rudiger, Petri Nets for System Engineering: A Guide to Modeling, 

Verification, and Applications: Springer-Verlag New York, Inc., 2001. 
[5] T. Murata, "Petri nets: Properties, analysis and applications," Proceedings of the IEEE, 

vol. 77, pp. 541-580, 1989. 
[6] L. Gomes, J. P. Barros, A. Costa, and R. Nunes, "The Input-Output Place-Transition Petri 

Net Class and Associated Tools," in Industrial Informatics, 2007 5th IEEE International 
Conference on, 2007, pp. 509-514. 

[7] A. Costa and L. Gomes, "Petri net partitioning using net splitting operation," in Industrial 
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on, 2009, pp. 204-209. 

[8] L. Gomes, A. Costa, J. P. Barros, and P. Lima, "From Petri net models to VHDL 
implementation of digital controllers," in Industrial Electronics Society, 2007. IECON 
2007. 33rd Annual Conference of the IEEE, 2007, pp. 94-99. 

[9] S. F. J. SPARSØ;, Principles of Asynchronous Circuit 
Design – A System Perspective,: Kluwer Academic Publishers, 2002. 
[10] J. Muttersbach, T. Villiger, and W. Fichtner, "Practical design of globally-asynchronous 

locally-synchronous systems," in Advanced Research in Asynchronous Circuits and 
Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Symposium on, 2000, pp. 
52-59. 

[11] J. N. Seizovic, "Pipeline synchronization," in Advanced Research in Asynchronous 
Circuits and Systems, 1994., Proceedings of the International Symposium on, 1994, pp. 
87-96. 

[12] A. Iyer and D. Marculescu, "Power and performance evaluation of globally 
asynchronous locally synchronous processors," in Computer Architecture, 2002. 
Proceedings. 29th Annual International Symposium on, 2002, pp. 158-168. 

[13] D. S. Bormann and P. Y. K. Cheung, "Asynchronous wrapper for heterogeneous 
systems," in Computer Design: VLSI in Computers and Processors, 1997. ICCD '97. 
Proceedings., 1997 IEEE International Conference on, 1997, pp. 307-314. 

[14] M. Najibi, K. Saleh, M. Naderi, H. Pedram, and M. Sedighi, "Prototyping globally 
asynchronous locally synchronous circuits on commercial synchronous FPGAs," in 
Rapid System Prototyping, 2005. (RSP 2005). The 16th IEEE International Workshop on, 
2005, pp. 63-69. 

[15] K. Y. Yun and R. P. Donohue, "Pausible clocking: a first step toward heterogeneous 
systems," in Computer Design: VLSI in Computers and Processors, 1996. ICCD '96. 
Proceedings., 1996 IEEE International Conference on, 1996, pp. 118-123. 

[16] A. E. D. Kenneth Y. Yun "Pausible Clocking Based Heterogeneous Systems," 1999. 
[17] C. L. Seitz, "System timing," in Introduction to VLSI Systems, C. A. M. a. L. A.Conway, Ed.: 

Addison-Wesley, 1980. 
[18] P. Teehan, M. Greenstreet, and G. Lemieux, "A Survey and Taxonomy of GALS Design 

Styles," Design & Test of Computers, IEEE, vol. 24, pp. 418-428, 2007. 
[19] D. G. Messerschmitt, "Synchronization in digital system design," Selected Areas in 

Communications, IEEE Journal on, vol. 8, pp. 1404-1419, 1990. 
[20] F. K. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner, "GALS at ETH Zurich: 

success or failure?," in Asynchronous Circuits and Systems, 2006. 12th IEEE International 
Symposium on, 2006, pp. 10 pp.-159. 



95 
 

[21] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and S. 
Wen-King, "Myrinet: a gigabit-per-second local area network," Micro, IEEE, vol. 15, pp. 
29-36, 1995. 

[22] D. J. Kinniment, C. E. Dike, K. Heron, G. Russell, and A. V. Yakovlev, "Measuring Deep 
Metastability and Its Effect on Synchronizer Performance," Very Large Scale 
Integration (VLSI) Systems, IEEE Transactions on, vol. 15, pp. 1028-1039, 2007. 

[23] Y. Suwen and M. Greenstreet, "Computing Synchronizer Failure Probabilities," in Design, 
Automation & Test in Europe Conference & Exhibition, 2007. DATE '07, 2007, pp. 1-6. 

[24] Y. Suwen and M. R. Greenstreet, "Simulating Improbable Events," in Design Automation 
Conference, 2007. DAC '07. 44th ACM/IEEE, 2007, pp. 154-157. 

[25] M. W. Heath, W. P. Burleson, and I. G. Harris, "Synchro-tokens: a deterministic GALS 
methodology for chip-level debug and test," Computers, IEEE Transactions on, vol. 54, 
pp. 1532-1546, 2005. 

[26] R. Ginosar, "Fourteen ways to fool your synchronizer," in Asynchronous Circuits and 
Systems, 2003. Proceedings. Ninth International Symposium on, 2003, pp. 89-96. 

[27] D. E. M. a. W. S. Bartky, "A Theory of Asynchronous Circuits," in Theory of Switching, Part 
1, H. U. Press, Ed., 1959, pp. 204–243. 

[28] S. B. Furber and P. Day, "Four-phase micropipeline latch control circuits," Very Large 
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 4, pp. 247-253, 1996. 

[29] J. B. Johnson, "APPLICATION OF AN ASYNCHRONOUS FIFO 
IN A DRAM DATA PATH," in Electrical Engineering. vol. Major in Electrical Engineering Idaho: 

University of Idaho, 2002. 
[30] K. Chen, "Circuit Design for Logic Automata," in Department of Electrical Engineering 

and Computer 
Science. vol. Master MASSACHUSETTS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2009. 
[31] XILINX, "Spartan-3 FPGA Starter Kit Board User Guide," 2008. 
[32] XILINX, "Xilinx University Program 
Virtex-II Pro Development 
System 
Hardware Reference Manual," 2005. 
[33] J. P. C. Oliveira, Anikó, Gomes, Luís, "Configurador de plataformas específicas em Co-

design de Sistemas Embutidos," in REC’2009 – V Jornadas sobre Sistemas 
Reconfiguráveis Monte de Caparica, 2009. 

 
 


	Introduction
	Current situation on distributed digital control circuits
	Objectives
	Structure of the document

	Theoretical fundaments
	Petri net based components
	Circuit architecture
	Synchronous system
	Asynchronous system
	Synchronous-asynchronous interface

	GALS
	Basic GALS Components
	Asynchronous Wrapper
	Data Port controllers
	Pausible Clock
	Asynchronous Synchronizer

	GALS designs types
	Pausible Clocks
	Asynchronous interfaces
	Loosely synchronous interfaces


	Conclusion

	Assembling an asynchronous interface
	Introduction
	Components for assembling the Asynchronous Interface
	The synchronizer
	The Muller C-element
	FIFO BUFFER
	handshake protocols
	4-phase bundled-data
	2-phase bundled-data
	4-phase dual-rail protocol

	Muller pipeline
	4-phase bundled-data pipeline
	Semi-decoupled latch controller


	Asynchronous interface
	Conclusion

	A new asynchronous interface
	Introduction
	Example 1

	The Signals Problem
	THE PORTS
	The input port
	The output port
	FIFO buffer

	Throughput

	Implementations
	Introduction
	Example 1: The 3 cars system
	The 3 cars system partition
	3 cars GALS system
	Simulation
	Implementation
	Power, Heat and Size evaluation
	Spartan-3
	Virtex-II pro


	Example 2: Manufacture Cells
	Manufacture Cell Partition
	Manufacture Cells GALS system
	Simulation
	Implementation
	Power, Heat and Size Evaluation
	Spartan-3
	Virtex-II pro


	General platform comparison

	Conclusion
	Bibliography

