6,127 research outputs found

    Throughput Optimal On-Line Algorithms for Advanced Resource Reservation in Ultra High-Speed Networks

    Full text link
    Advanced channel reservation is emerging as an important feature of ultra high-speed networks requiring the transfer of large files. Applications include scientific data transfers and database backup. In this paper, we present two new, on-line algorithms for advanced reservation, called BatchAll and BatchLim, that are guaranteed to achieve optimal throughput performance, based on multi-commodity flow arguments. Both algorithms are shown to have polynomial-time complexity and provable bounds on the maximum delay for 1+epsilon bandwidth augmented networks. The BatchLim algorithm returns the completion time of a connection immediately as a request is placed, but at the expense of a slightly looser competitive ratio than that of BatchAll. We also present a simple approach that limits the number of parallel paths used by the algorithms while provably bounding the maximum reduction factor in the transmission throughput. We show that, although the number of different paths can be exponentially large, the actual number of paths needed to approximate the flow is quite small and proportional to the number of edges in the network. Simulations for a number of topologies show that, in practice, 3 to 5 parallel paths are sufficient to achieve close to optimal performance. The performance of the competitive algorithms are also compared to a greedy benchmark, both through analysis and simulation.Comment: 9 pages, 8 figure

    Methods and problems of wavelength-routing in all-optical networks

    Get PDF
    We give a survey of recent theoretical results obtained for wavelength-routing in all-optical networks. The survey is based on the previous survey in [Beauquier, B., Bermond, J-C., Gargano, L., Hell, P., Perennes, S., Vaccaro, U.: Graph problems arising from wavelength-routing in all-optical networks. In: Proc. of the 2nd Workshop on Optics and Computer Science, part of IPPS'97, 1997]. We focus our survey on the current research directions and on the used methods. We also state several open problems connected with this line of research, and give an overview of several related research directions

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Call Control in Rings

    Get PDF
    The call control problem is an important optimization problem encountered in the design and operation of communication networks. The goal of the call control problem in rings is to compute, for a given ring network with edge capacities and a set of paths in the ring, a maximum cardinality subset of the paths such that no edge capacity is violated. We give a polynomial-time algorithm to solve the problem optimally. The algorithm is based on a decision procedure that checks whether a solution with at least k paths exists, which is in turn implemented by an iterative greedy approach operating in rounds. We show that the algorithm can be implemented efficiently and, as a by-product, obtain a linear-time algorithm to solve the problem in chains optimally. For the weighted version of call control in rings, where each path is associated with a weight and the goal is to maximize the total weight of the paths in the solution, we present a simple 2-approximation algorithm and a polynomial-time approximation scheme. While the complexity of the weighted version remains open, we show that it is at least as hard as the bipartite exact matching problem, which has not been resolved to be in P or NP-hard. This latter result follows from recent work by Hochbaum and Levi

    The rise and demise of Lucent Technologies

    Get PDF
    We analyze the rise and demise of Lucent Technologies from the time that it was spun off from AT&T in April 1996 to its merger with Alcatel in December 2006. The analysis, contained in the three sections that form the body of this paper, considers three questions concerning Lucent’s performance over the decade of its existence. 1.How was Lucent, with over $20 billion in sales in 1995 as a division of AT&T, able to almost double its size by achieving a compound growth rate of over 17 percent per year from 1995 to 1999? 2.What was the relationship between Lucent’s growth strategy during the Internet boom and the company’s financial difficulties in the Internet crash of 2001-2003 when the Lucent was on the brink of bankruptcy? 3.After extensive restructuring during the telecommunications industry downturn of 2001-2003, why was Lucent unable to re-emerge as an innovative competitor in the communications equipment industry when the industry recovered?Communications equipment; innovation; global competition; financialization

    Scheduling multicasts on unit-capacity trees and meshes

    Get PDF
    This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh topologies in the throughput-model. The problem is a generalization of the edge-disjoint paths problem and is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In the offline setting, we give the first constant-factor approximation algorithm for trees, and an O((log log n)^2)-factor approximation algorithm for meshes. In the online setting, we give the first polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network topologies [Bartal,Fiat,Leonardi, 96], and there exists a polylogarithmic lower bound on the competitive ratio of any online algorithm on tree topologies [Awerbuch,Azar,Fiat,Leighton, 96]. We prove the same lower bound for meshes
    corecore