
DOI: 10.1007/s00453-006-0187-4

Algorithmica (2007) 47: 217–238 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Call Control in Rings1

Udo Adamy,2 Christoph Ambühl,3 R. Sai Anand,4 and Thomas Erlebach5

Abstract. The call control problem is an important optimization problem encountered in the design and
operation of communication networks. The goal of the call control problem in rings is to compute, for a given
ring network with edge capacities and a set of paths in the ring, a maximum cardinality subset of the paths such
that no edge capacity is violated. We give a polynomial-time algorithm to solve the problem optimally. The
algorithm is based on a decision procedure that checks whether a solution with at least k paths exists, which
is in turn implemented by an iterative greedy approach operating in rounds. We show that the algorithm can
be implemented efficiently and, as a by-product, obtain a linear-time algorithm to solve the problem in chains
optimally. For the weighted version of call control in rings, where each path is associated with a weight and the
goal is to maximize the total weight of the paths in the solution, we present a simple 2-approximation algorithm
and a polynomial-time approximation scheme. While the complexity of the weighted version remains open,
we show that it is at least as hard as the bipartite exact matching problem, which has not been resolved to be
in P or NP-hard. This latter result follows from recent work by Hochbaum and Levin.

Key Words. Call admission control, Approximation algorithm, Cyclical scheduling, Periodic scheduling,
Exact matching.

1. Introduction. Due to the ever-increasing importance of communication networks
for our society and economy, optimization problems concerning the efficient operation
of such networks are receiving considerable attention in the research community. Many
of these problems can be modeled as graph problems or path problems in graphs. A
prominent example is the problem of call admission control (or simply call control),
where the task is to determine which of the requests in a given set of connection requests
(calls) to accept or reject so as to optimize some objective, e.g., the number of accepted
requests or the total weight of the accepted requests.

The ring topology is a fundamental network topology that is frequently encountered
in practice. In this paper we consider the off-line call control problem in ring networks

1 Preliminary versions of some of these results have been published as extended abstracts in the proceedings of
ICALP 2002 and WADS 2003. The research was partially supported by the Swiss National Science Foundation
(Project AAPCN) and by EU Thematic Network APPOL II, IST-2001-32007, with funding by the Swiss Federal
Office for Education and Science.
2 Institute for Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland. adamy@inf.ethz.ch.
3 Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, England. christoph@
csc.liv.ac.uk.
4 Computer Engineering and Networks Laboratory (TIK), Department of Information Technology and Elec-
trical Engineering, ETH Zürich, 8092 Zürich, Switzerland. anand@tik.ee.ethz.ch. Supported by the joint
Berlin/Zurich graduate program Combinatorics, Geometry, and Computation (CGC), financed by ETH Zürich
and the German Science Foundation (DFG).
5 Department of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, England.
t.erlebach@mcs.le.ac.uk.

Received September 3, 2003; revised September 20, 2005. Communicated by A. Panconesi.
Online publication February 28, 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159145269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

218 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

with arbitrary edge capacities, assuming that each request asks for one unit of bandwidth
on all edges of its predetermined path. For the objective of maximizing the number
of accepted paths, we present an efficient polynomial-time algorithm that solves the
problem optimally. As a by-product, we obtain a linear-time algorithm for chains. For
the case that the paths have weights (profits) and the goal is to maximize the total weight
of the accepted paths, we present a simple 2-approximation algorithm and a polynomial-
time approximation scheme (PTAS) for rings. While it remains an open problem whether
the weighted case can be solved optimally in polynomial time, we provide an indication
of its difficulty: based on recent results by Hochbaum and Levin [11], we show that
a polynomial-time algorithm for weighted call control in rings would also solve the
bipartite exact matching problem. The latter problem has a randomized polynomial-
time algorithm [15], but it is a long-standing open problem whether it can be solved in
polynomial time by a deterministic algorithm.

Call control in rings is closely related to cyclical scheduling. We discuss how our
optimal algorithm for call control in rings can be used to solve such scheduling problems
as well.

1.1. Problem Definition and Preliminaries. The CALLCONTROL problem considered
in this paper is defined as follows. An instance of the problem is given by an undirected
graph (V, E)with edge capacities c: E → N and a set P of m paths in (V, E). In general,
the set of paths P is a multiset, i.e., it may contain several instances of the same path.
The paths represent connection requests whose acceptance requires the reservation of
one unit of bandwidth on all edges of the path. A feasible solution is a set Q ⊆ P such
that for every edge e ∈ E , the number of paths in Q that contain e is at most c(e). Such
a set of paths is called a feasible set and the paths in it are called accepted. The objective
is to maximize the number of accepted paths.

We also consider the weighted version of the problem and refer to it as WEIGHTED-
CALLCONTROL. Here, an instance of the problem contains additionally a weight function
on the paths, w: P → N, and the objective is to maximize the sum of the weights of the
accepted paths. Note that CALLCONTROL corresponds to the special case of WEIGHTED-
CALLCONTROL in which all weights are equal.

In this paper we deal with CALLCONTROL and WEIGHTEDCALLCONTROL in networks
with ring or chain topology. A ring with n nodes is an undirected graph (V, E) that is
a cycle on the nodes V = {0, . . . , n − 1}. We imagine the cycle drawn in the plane
with the nodes labeled clockwise. The edge ei ∈ E , 0 ≤ i < n, connects the two
neighboring nodes i and (i + 1) mod n and has a non-negative integer capacity c(ei). A
chain is an undirected graph that consists of a single path. In instances of CALLCONTROL

in rings or chains, we assume that each path is specified by its endnodes (in rings, the
counterclockwise and clockwise endnode).

The problem of CALLCONTROL in ring networks as defined above applies to various
types of existing communication networks with ring topology. For example, the problem
applies to ring networks that support bandwidth reservation (e.g., ATM networks) and
in which the route taken by a request is determined by some other mechanism and
cannot be modified by the call control algorithm. Furthermore, it applies to bidirectional
self-healing rings with full protection. In such rings, one direction of the ring (say,

Call Control in Rings 219

clockwise) is used to route all accepted requests during normal operation, and the other
direction is used only in case of a link failure in order to reroute the active connections
that are affected. In all-optical WDM ring networks with w wavelengths that have a
wavelength converter in at least one node, any set of lightpaths with maximum link
load w can be established simultaneously [18]. Thus, call admission control in such
networks can also be modeled as CALLCONTROL with all edge capacities equal to w.
Another application is in ring networks with several parallel links connecting consecutive
nodes.

It should be noted that problems related to call control are often encountered in
an on-line setting, where the requests are presented to the algorithm one by one and
the algorithm must accept or reject each request without knowledge of future requests.
However, we think that it is meaningful to study the off-line version as well for several
reasons. First, an off-line call control algorithm is needed in the network design phase,
when a candidate topology with link capacities is considered and one wants to know how
many of the forecasted traffic requirements can be satisfied by the network. Second, an
off-line call control algorithm is useful in a scenario that supports advance reservation
of connections, because then it is possible to collect a number of reservation requests
before the admission control is carried out for a whole batch of requests. Finally, an
optimal off-line call control algorithm is helpful as a benchmark for the evaluation of
other off-line or on-line call control strategies.

1.2. Applications in Cyclical Scheduling. Call control in rings is closely related to
cyclical (or periodic) scheduling. First, consider the following setting. Without loss of
generality, assume a time period of one day. There are k machines and a set of tasks
with fixed start and end times. (For example, there could be a task from 10 a.m. to
5 p.m. and another task from 3 p.m. to 2 a.m. on the following day.) Each task must
be accepted or rejected. If it is accepted, it must be executed every day from its start
time to its end time on one of the k machines, and each machine can execute only one
task at a time. The goal is to select as many tasks as possible while ensuring that at
most k of the selected tasks are to be executed simultaneously at any point in time.
By taking the start times and end times of all given tasks as nodes in a ring, we can
view the tasks as calls and compute an optimal selection of accepted tasks by solving
the corresponding CALLCONTROL problem with all edge capacities set to k. Here, we
assume that a task can be executed on different machines on different days or that a
task can be moved from one machine to another at any time. Even if the number of
available machines changes throughout the day (and the changes are the same every
day), the problem can still be handled as a CALLCONTROL problem with arbitrary edge
capacities.

Hochbaum and Levin [11] discuss a different setting, in which there are requirements
for a specific number of workers in each time slot throughout the time period. The
goal is to satisfy these requirements using work shifts of minimum total cost, where
each shift covers a collection of consecutive time slots. For example, problems of this
type arise in the management of personnel in hospitals. They can be modeled as a
bounded multicover problem, which has the following representation as an integer linear

220 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

program (ILP):

(MCB) min
m∑

j=1

cj xj

s.t.
m∑

j=1

ai j xj ≥ bi , i = 1, . . . , n,

0 ≤ xj ≤ uj , j = 1, . . . ,m,

xj integer.

Here, A = (ai j) is an n×m matrix with entries in {0, 1}. Each column of A corresponds
to one possible shift, and the cost associated with shift j is cj . The minimum number
of workers required in the i th time slot is given by bi , 1 ≤ i ≤ n. The variable xj

represents the number of workers that are assigned to shift j , and uj is an upper bound
for this number. Since each shift consists of consecutive time slots, the matrix A has
the circular-ones property in its columns, i.e., the ones in each column form a consec-
utive interval if the first row of the matrix is considered to be the successor of the last
row.

For the case where all bi are equal to 1, polynomial-time algorithms for MCB were
presented by Atallah et al. [3] and by Hochbaum and Tucker [12]. If all bi are equal but
possibly larger than 1, the unbounded version of MCB (with uj = ∞ for all j) is shown
to be polynomial by Hochbaum and Levin [11]. For the general MCB, they present a
2-approximation algorithm. Our polynomial-time algorithm for CALLCONTROL can be
used to solve MCB optimally in polynomial time provided that cj = 1 for all j and
the uj ’s are polynomially bounded in n and m. First, we simply replace each variable
xj by uj copies of itself and assign each copy an upper bound of 1. Since the uj ’s are
polynomially bounded, the resulting instance has polynomial size. Then we substitute
yj = 1 − xj for each of the resulting variables. In this way we obtain the following
problem:

min m −
m∑

j=1

yj

s.t.
m∑

j=1

ai j yj ≤ −bi +
m∑

j=1

ai j , i = 1, . . . , n,

0 ≤ yj ≤ 1, j = 1, . . . ,m,

yj integer.

Note that the right-hand sides of the form −bi +
∑m

j=1 ai j (which can be assumed to
be non-negative, since otherwise the MCB problem has no feasible solution) are fixed
values that depend only on b and A, and that the objective min m−∑m

j=1 yj is equivalent
to max

∑m
j=1 yj with respect to the values of the variables in the optimal solution. Thus

Call Control in Rings 221

the problem is of the following form:

max
m∑

j=1

yj

s.t.
m∑

j=1

ai j yj ≤ ci , i = 1, . . . , n,

0 ≤ yj ≤ 1, j = 1, . . . ,m,

yj integer.

This is in fact the natural ILP formulation of the CALLCONTROL problem in rings (where
the ones in the j th column of A correspond to the edges used by the j th path, and ci

represents the capacity of the i th edge). Hence, an optimal solution can be computed
using our algorithm, and we obtain the claimed polynomial-time optimal algorithm for
MCB with unit costs and polynomially bounded uj -values.

Note that the above reduction from MCB to CALLCONTROL in rings works also in
the weighted case (i.e., an MCB instance with arbitrary costs is reduced to an instance
of WEIGHTEDCALLCONTROL). However, we do not have a polynomial-time optimal
algorithm for WEIGHTEDCALLCONTROL in rings, and our approximation algorithms
from Sections 4.2 and 4.3 do not yield approximation algorithms for MCB, since the
objective functions are not comparable (MCB corresponds to the objective of minimizing
the weight of the rejected calls, whereas in WEIGHTEDCALLCONTROL the weight of the
accepted calls is to be maximized).

1.3. Further Related Work. As paths in a ring network can be viewed as arcs on a
circle, path problems in rings are closely related to circular-arc graphs. A graph is a
circular-arc graph if its vertices can be represented by arcs on a circle such that two
vertices are joined by an edge if and only if the corresponding arcs intersect [10]. For
a given circular-arc graph, a maximum clique or a maximum independent set can be
computed in polynomial time [10]. Coloring a circular-arc graph with the minimum
number of colors is NP-hard [9]. A coloring with at most 1.5ω colors always exists and
can be computed efficiently [13], where ω is the size of a maximum clique in the graph.
Concerning our WEIGHTEDCALLCONTROL problem, we note that the special case where
all edges have capacity 1 is equivalent to the maximum weight independent set problem
in circular-arc graphs. We are interested in the case of arbitrary edge capacities, which
has not been studied previously.

Many authors have investigated call control problems for various network topolo-
gies in the off-line and on-line setting. For topologies containing cycles, an important
distinction for call control is whether the paths are specified as part of the input (like
we assume in this paper) or can be determined by the algorithm. In the latter case only
the endpoints are specified in the input, and we refer to the problem as CALLCONTROL-
ANDROUTING. The special case of CALLCONTROLANDROUTING where all edges have
capacity 1 is called the maximum edge-disjoint paths problem (MEDP). We refer to [5,
Chapter 13], [14], and [16] for surveys on on-line algorithms for call control problems
and mention only some of the known results here.

222 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

In [2] a polynomial-time algorithm for CALLCONTROLANDROUTING in rings is pre-
sented that always computes a feasible solution with at least OPT − 3 accepted calls,
where OPT is the number of calls in the optimal solution. To the best of our knowledge,
it is not known whether CALLCONTROLANDROUTING in rings is NP-hard.

For chains, the off-line version of CALLCONTROL is closely related to the maximum k-
colorable induced subgraph problem for interval graphs. The latter problem can be solved
optimally in linear time by a clever implementation of a greedy algorithm provided that
a sorted list of interval endpoints is given [6]. This immediately gives a linear-time
algorithm for CALLCONTROL in chains where all edges have the same capacity. It is not
difficult to adapt the approach to chains with arbitrary capacities incurring an increase
in running-time. As a by-product of our algorithm for rings, we will obtain even a
linear-time algorithm for CALLCONTROL in chains with arbitrary capacities.

The on-line version of CALLCONTROL in chains with unit edge capacities was studied
for the case with preemption (where interrupting and discarding a call that was accepted
earlier is allowed) in [8], where competitive ratio O(log n) is achieved for a chain
with n nodes by a deterministic algorithm. A randomized preemptive O(1)-competitive
algorithm for CALLCONTROL in chains where all edges have the same capacity is given
in [1]. It can be adapted to ring networks with equal edge capacities.

In [4] the preemptive on-line version of CALLCONTROL is studied with the number
of rejected calls as the objective function. They obtain competitive ratio 2 for chains
with arbitrary capacities, 2 for arbitrary graphs with unit capacities, and O(

√
m) for

arbitrary graphs with m edges and arbitrary capacities. For the off-line version, they give
an O(log m)-approximation algorithm for arbitrary graphs and arbitrary capacities.

1.4. Organization. The remainder of the paper is organized as follows. In Section 2 we
present our polynomial-time optimal algorithm for CALLCONTROL in rings and analyze
its correctness and running-time. As a subroutine, we employ a linear-time implemen-
tation of the greedy algorithm that is optimal for CALLCONTROL in chains, and this by-
product of our research is described in Section 3. Section 4 presents a 2-approximation
algorithm and a PTAS for the WEIGHTEDCALLCONTROL problem in rings and discusses
its connection with the bipartite exact matching problem. Finally, we conclude with open
problems in Section 5.

2. An Optimal Algorithm for Call Control in Rings. We start with some additional
preliminaries. Let P = {p1, . . . , pm} denote the given set of m paths, each connecting
two nodes in the ring network (V, E) with n = |V | nodes. Every pi ∈ P is an ordered
pair of nodes pi = (si , ti) with si �= ti . The path pi contains all edges from the source
node si to the target node ti in the clockwise direction. The nodes that lie between si

and ti in the clockwise direction (excluding si and ti) are called internal nodes of pi . We
can assume without loss of generality that n ≤ 2m, since every node in the ring that is
not an endpoint of a path can be removed. Figure 1 shows a set of seven paths in a ring
network on eight nodes. For example, the path p1 is given by the pair (0, 3) of nodes
and contains the edges e0, e1, and e2.

For a subset Q ⊆ P , the ringload L(Q, ei) of an edge ei with respect to Q is the
number of paths in Q that contain the edge ei , i.e., L(Q, ei) := |{p ∈ Q: ei ∈ p}|. A

Call Control in Rings 223

0
1

2

3
4

5

6

7

p1

p2

p3

p4

p5

p6

p7e0

e1

e2

e3e4

e5

e6

e7

Fig. 1. A set of paths in a ring network with eight nodes.

subset Q ⊆ P is called feasible if the ringload of any edge does not exceed its capacity,
i.e., L(Q, ei) ≤ c(ei) for all ei ∈ E .

By opening the ring at node 0, we partition the set P of paths into two disjoint subsets
P1 and P2, where P1 is the set of paths that do not have node 0 as an internal node
and P2 are the remaining paths, i.e., the paths passing through node 0. Each path in P2

consists of two pieces: the head of the path extends from its source node to node 0, and
the tail spans from node 0 to its target node. To simplify the explanation, we introduce
an additional node n and identify it with node 0. From now on, the paths with target
node 0 are treated as if they ended at node n. With this twist in notation we get a simple
characterization for the sets P1 and P2. The set P1 consists of all paths pi ∈ P with
si < ti , whereas all paths pi ∈ P obeying si > ti constitute the set P2. Note that P1 and
P2 are disjoint and their union P1 ∪ P2 equals P . In the example of Figure 1 the set P1

consists of the paths p1, . . . , p5, and the set P2 is composed of the paths p6 and p7.
We define a linear ordering on the paths in P as follows. All paths in P1 are strictly

less than all paths in P2. Within both subsets we order the paths by increasing target
nodes, resolving ties arbitrarily. We call this ordering greedy. In the above example the
paths p1, . . . , p7 are numbered according to that greedy order.

Instead of the ring network the algorithm considers a chain of 2n edges consisting of
two copies of the ring glued together as shown in Figure 2. The chain begins with the
first copy of e0 and ends with the second copy of en−1. The tails of the P2-paths extend in
the second copy of the ring, while the P1-paths and the heads of the P2-paths are situated
in the first copy. Note that the greedy order of the paths corresponds to an ordering by
non-decreasing right endpoints in this chain.

For a given set Q of paths, we define L1(Q, ei) and L2(Q, ei) to be the load of the
paths in Q on the first copy of ei and their load on the second copy of ei , respectively.
Thus, the paths in P1 and the heads of the paths in P2 contribute to the load values
L1(P, ei) of the first copy of the ring. The tails of the P2-paths determine the load values

224 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

0 0 11 22 33 44 55 66 77

p1
p2

p3
p4

p5
p6

p7

Fig. 2. The same set of paths in the chain with 16 nodes.

L2(P, ei). The ringload L is simply the sum of L1 and L2. We use this definition of L2

to introduce the central notion of profiles.

DEFINITION 1 (Profiles). Let Q be a set of paths. The profile π of Q is the non-
increasing sequence of n load values L2 for the edges e0, . . . , en−1 in the second copy
of the ring,

πQ := L2(Q, e0) · · · L2(Q, en−1).

With πQ(ei) we denote the profile values L2(Q, ei) for all edges ei ∈ E . The empty
profile is zero everywhere. For profiles π and π ′, we write π ≤ π ′ if π(ei) ≤ π ′(ei) for
all edges ei ∈ E .

In the instance shown in Figure 2, only the paths p6 and p7 potentially contribute to
profile values, because they extend into the second copy of the ring. For example the
profile of all paths in P is given by the sequence πP = 21000000.

A set Q of paths is called chain-feasible if it does not exceed the capacity of any edge in
the constructed chain of length 2n. In other words, Q is chain-feasible if it does not exceed
the capacities in both copies of the ring, i.e., L1(Q, ei) ≤ c(ei) and L2(Q, ei) ≤ c(ei)

hold for all ei ∈ E . It is called chain-feasible for (starting) profile π if it is chain-feasible
and in the first copy of the ring the stronger inequalities L1(Q, ei)+ π(ei) ≤ c(ei) hold
for all ei ∈ E . Observe that a set Q of paths is feasible (in the ring) if and only if it is
chain-feasible for starting profile πQ , which is the profile generated by the set Q itself.

2.1. The Algorithm. The goal of the algorithm is to find a feasible subset of paths in P
of maximum size. The algorithm builds a chain of 2n edges consisting of two copies of
the ring glued together. It sorts the paths in P according to the greedy order. The heart of
our algorithm is a decision procedure that, given a positive integer parameter k, decides
whether there exists a feasible solution Q ⊆ P of size k or not. Clearly, the maximum
k can be found by several calls to this procedure. The decision procedure makes heavy
use of the greedy algorithm, which processes the paths one by one in greedy order. If
adding the current path does not exceed any capacity constraint on its edges, the path is
accepted and the edge capacities are reduced accordingly; otherwise it is rejected.

We are now ready to describe the decision procedure. We start with the empty profile.
The decision procedure works in rounds. In each round it computes a (not necessarily
feasible) greedy solution of k paths for a given profile as follows. It initializes both

Call Control in Rings 225

copies of the ring with the edge capacities c(ei) and subtracts the profile values from
the initial capacities of the edges in the first copy, since these capacities are occupied by
the profile. Then it starts to place k paths using the greedy algorithm. If the procedure
runs out of paths before it can select k of them, there is no feasible solution of size k. It
answers “no” and stops. Otherwise, let Qi denote the candidate set of k chosen paths in
round i . By construction, the set Qi is chain-feasible for the given starting profile, but
not necessarily feasible in the ring, since the tails of the chosen P2-paths together with
the selected paths in P1 and the heads of the chosen P2-paths may violate some capacity
constraints.

At the end of round i , the procedure compares the profile of Qi with the profile of
the previous round. If they are equal, the paths in Qi form a feasible solution of size k.
The procedure outputs Qi , answers “yes”, and stops. Otherwise, the procedure uses the
profile of Qi as the starting point for round i + 1. As we will prove later, the profiles of
such a greedily chosen Qi serve as a lower bound for any feasible solution in the sense
that there exists no feasible solution with a smaller profile.

In Figure 3 we illustrate the decision procedure for the ring network and paths shown
in Figure 1. Let the capacities be c(ei) = 2 for all edges ei , i = 0, . . . , 7. We ask for a
feasible solution consisting of k = 5 paths. The paths are always processed in greedy
order, which can be seen in Figure 2. We start with the empty profile. In the first round
the paths p1 and p2 are accepted. The path p3 is rejected, because it violates the capacity
constraint of the edge e2 after the paths p1 and p2 have already been accepted. The
paths p4 and p5 are both accepted, and the path p6 is rejected, because otherwise the
edge e6 would be overloaded. Finally, the path p7 is accepted to form the candidate set
Q1 = {p1, p2, p4, p5, p7} of five paths shown in Figure 3(a). The profile of Q1 is 1
on the first two edges e0 and e1, and 0 elsewhere. Q1 is not feasible because the load
L(Q1, e1) = 3 exceeds the capacity c(e1) = 2.

The procedure starts a second round, this time with the profile of Q1 as the starting
profile. In this round the procedure accepts the paths in Q2 = {p1, p3, p4, p6, p7}
illustrated in Figure 3(b). The path p2 is rejected this time, because the edge e1 is
saturated by the profile of Q1 and the path p1 that is already accepted. The path p5 is
rejected because of the capacity constraint of the edge e5. The profile of Q2 is 2 for
the edge e0, 1 for the edge e1, and 0 elsewhere. Like Q1, the candidate set Q2 is not
feasible. Its load on the edge e0 is 3, violating the capacity constraint for edge e0, which
has capacity c(e0) = 2.

In the third round the procedure starts with the profile of Q2, and accepts the paths in
Q3 = {p2, p3, p4, p6, p7} depicted in Figure 3(c). Their profile is again 2 for the edge
e0, 1 for the edge e1, and 0 elsewhere. Since this resulting profile πQ3 is equal to the
starting profile πQ2 , the set Q3 is a feasible solution for the ring of size 5. The procedure
outputs Q3, and stops.

2.2. Correctness of the Algorithm. The decision procedure will generate a sequence
of profiles and chain-feasible solutions

π0 Q1 π1 Q2 π2 . . . ,

where π0 is the empty profile we start with, and Qi denotes the chain-feasible solution
computed in round i . We set πi := πQi .

226 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

0 0 11 22 33 4 5 6 7

(a) The candidate set Q1 of the first round.

0 0 11 22 33 4 5 6 7

(b) The candidate set Q2 of the second round. The
profile πQ1 is shown in grey.

0 0 11 22 33 4 5 6 7

(c) The set Q3 forms a feasible solution.

Fig. 3. The decision procedure in rounds. Accepted paths are plotted black, whereas rejected paths are shown
in light grey. In this example, k = 5 and all edges have capacity equal to 2.

We represent a chain-feasible solution A by the indices of the chosen paths in greedy
order. A chain-feasible set A of k paths corresponds to a k-vector A = (a1, a2, . . . , ak),
where ai is the index of the i th path in A according to the greedy order. If A and B are
two chain-feasible solutions, we write A ≤ B if ai ≤ bi for all 1 ≤ i ≤ k.

Note that A ≤ B implies πA ≤ πB . This can be seen by comparing the i th path in A
with the i th path in B: since their indices ai and bi satisfy the condition ai ≤ bi for all
i , the paths in A contribute no more to the profile values πA(ej) than the paths in B add
to their respective profile values πB(ej) for all edges ej . Thus, πA ≤ πB .

From π ≤ π ′ it follows easily that any chain-feasible solution for profile π ′ is also
chain-feasible for profile π . In the following we call a solution A that is chain-feasible
for profile π minimal if for any other solution B that is chain-feasible for π and has the
same cardinality as A, we have A ≤ B.

Call Control in Rings 227

LEMMA 1 (Optimality of Greedy Algorithm). Let π be some starting profile. If there
exists a solution of size k that is chain-feasible for profile π , there is also a minimal such
solution, and the greedy algorithm computes this minimal solution.

PROOF. Let Q be any chain-feasible solution for profile π of size k. We transform Q
step by step into the greedy solution G by replacing paths in Q by paths in G with smaller
index. This is done during the execution of the greedy algorithm as it processes the paths
in greedy order. We maintain the invariant that Q is always a chain-feasible solution
of size k and that Q is equal to G with respect to the paths that have been processed
so far.

Initially, the invariant clearly holds. Suppose the invariant holds up to path pi−1, and
the greedy algorithm processes the path pi .

If adding the path pi violates some capacity constraint, pi is not selected by the greedy
algorithm. Because of the invariant, the path pi is not in Q either. Otherwise, the path
pi is chosen by the greedy algorithm. We distinguish two cases:

Case 1: pi ∈ Q. Since the path pi is in both G and Q, no transformation is needed,
and Q remains feasible.

Case 2: pi /∈ Q. From the set of paths in Q with indices larger than i , we select a path
pj with the smallest source node (starting leftmost). We transform Q by replacing pj by
pi . Since j > i , the index j in Q is reduced to i . We have to check the invariant. If the
path pi is contained in pj , the invariant clearly holds, since replacing pj by pi does not
affect feasibility. Otherwise, consider the remaining capacities. The edges to the left of
the path pj do not matter, because pj has the smallest source node among all paths in
Q greater than pi . On the edges in the intersection of the paths pi and pj , taking either
path pi or pj does not affect the capacities. Finally, we even gain one unit of capacity
on all edges between the target node of the path pi and the target node of the path pj ,
since i < j . Altogether, Q is again feasible. The invariant holds.

At the end of the greedy algorithm, Q equals G. During the transformation we always
replaced paths pj ∈ Q by paths pi ∈ G with i < j . This implies that G is less than or
equal to the initial chain-feasible solution Q, i.e., G ≤ Q.

LEMMA 2. The sequence of profiles generated by the decision procedure is monotoni-
cally increasing, i.e., we have πi ≤ πi+1 for all i .

PROOF (by induction). For i = 0, the claim holds, since the profile π0 is the empty
profile. Assume that the claim holds for i − 1. The induction hypothesis πi−1 ≤ πi

implies that the greedy solution Qi+1, which is chain-feasible for profile πi , is also
chain-feasible for the profile πi−1. Because Qi is the greedy solution for the profile πi−1,
we obtain Qi ≤ Qi+1 by Lemma 1. Therefore, πi ≤ πi+1.

LEMMA 3. If a feasible solution Q∗ with k paths exists, then each profile in the sequence
of profiles generated by the decision procedure is bounded by the profile of Q∗, i.e., we
have πi ≤ πQ∗ for all i .

228 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

PROOF (by induction). Because π0 is the empty profile, the case i = 0 holds trivially.
Now suppose πi ≤ πQ∗ holds for some i . Since the set Q∗ is chain-feasible for the profile
πQ∗ generated by itself, it is also chain-feasible for the profileπi . Then the greedy solution
Qi+1 satisfies Qi+1 ≤ Q∗ by Lemma 1, which immediately implies πi+1 ≤ πQ∗ .

LEMMA 4. The decision procedure gives correct results and terminates after at most
n · c(e0) rounds.

PROOF. Assume first that there exists a feasible solution Q∗ with k paths. By Lemma 3,
the profile of the chain-feasible solutions computed by the algorithm always stays below
the profile of Q∗. By Lemma 2, in each round the profile either stays the same or grows.
If the profile stays the same, a feasible solution has been found by the algorithm. If the
profile grows, the algorithm will execute the next round, and after finitely many rounds,
a feasible solution will be found.

Now assume that the answer is “no”. Again, the profile grows in each round, so there
can be only finitely many rounds until the algorithm does not find k paths anymore and
returns “no”.

We have
∑n−1

j=0 πQi (ej) ≤ n · πQi (e0) ≤ n · c(e0) for every generated profile πQi ,
since profiles are non-increasing sequences and each Qi is chain-feasible. As the profile
grows in each round, the number of rounds is bounded by n · c(e0).

THEOREM 2.1. There is an algorithm that solves CALLCONTROL in ring networks op-
timally in time O(mncmin log m), where n is the number of nodes in the ring, m is the
number of paths, and cmin is the minimum edge capacity (which can be assumed to be
at most m without loss of generality).

PROOF. By Lemma 4, we have a decision procedure with n · c(e0) rounds to decide
whether there exists a feasible solution with k paths. This can be improved to n · cmin

rounds by labeling the nodes in such a way that c(e0) equals the minimum edge capacity
cmin. Each round is a pass through the m given paths in greedy order, which we show in
Section 3 to be implementable in linear time O(n + m) = O(m) (recall that n ≤ 2m
without loss of generality). Given the decision procedure, we can use binary search on
k to determine the maximum value for which a feasible solution exists with O(log m)
calls of the decision procedure. Thus the total running-time of our algorithm is bounded
by O(mncmin log m).

3. A Linear-Time Optimal Algorithm for Call Control in Chains. In this section
we consider the implementation of the greedy algorithm for CALLCONTROL in chain
networks with arbitrary capacities that is executed in each round of the decision procedure
that we used to obtain an optimal algorithm for CALLCONTROL in rings in Section 2.

The input of the greedy algorithm consists of a chain (V, E) with N nodes (where
N = 2n + 1 if the chain is obtained by duplicating a ring with n nodes as described in
Section 2) and arbitrary edge capacities, a set of m paths in the chain (each specified by its
left and right endpoint), and a positive integer parameter k. The nodes are numbered from

Call Control in Rings 229

0 to N − 1. The algorithm processes the paths in greedy order (i.e., in non-decreasing
order of right endpoints) and accepts each path if it does not violate any edge capacity.
It stops when either k paths are accepted or all paths have been processed.

While an O(m N) implementation of the greedy algorithm is straightforward, we show
in the following that it can even be implemented in linear time O(m), provided that a
sorted list of all path endpoints is given (which can be computed in time O(m+N) using
bucket-sort). From the sorted list of path endpoints it is easy to determine the greedy
order of the paths in linear time O(m).

Let C = maxe∈E c(e) denote the maximum edge capacity. Without loss of generality,
we can assume C ≤ m. In the following we let the greedy algorithm run until all paths
have been processed even if it accepts more than k paths. In this way the greedy algorithm
actually computes a maximum cardinality subset of the paths that does not violate any
edge capacity (which follows from Lemma 1). Stopping the greedy algorithm as soon
as k paths are accepted (as needed for the ring algorithm) is then a trivial modification.

3.1. The Algorithm by Carlisle and Lloyd for Identical Capacities. For the case that all
edges have the same capacity C , a linear-time implementation of the greedy algorithm
was given in [6]. We give an outline of their algorithm before we adapt it to the case of
arbitrary capacities in the next section. The main idea of their algorithm is actually to
compute a C-coloring of the accepted paths and to maintain the leader of each color in a
data structure. A path is called the leader of some color if it is the greatest path in greedy
order colored with that color so far. When a path p is processed, the data structure is used
to determine the greatest leader in greedy order that does not intersect the current path
p. This leader is called the best fit leader for the path p, and is denoted by leader(p). If
no such leader exists, p is rejected. Otherwise, p is assigned the color of leader(p) and
becomes the new leader of that color.

The difficulty is in finding the best fit leader in amortized constant time, since ex-
amining all colors would take O(log C) time per path. Carlisle and Lloyd show in [6]
how the union-find data structure of Gabow and Tarjan [7] can be used for this purpose.
They start by computing a preferred leader adj(p) for every path p, which is the greatest
path in greedy order ending to the left of p (see Figure 4). This can be accomplished
in linear time by scanning through the paths in greedy order (which they assume to be
given). Initially, every path constitutes a singleton set in the union-find data structure.
Throughout the algorithm, the paths that have already been processed are contained in

0 0 11 22 33 4 5 6 7

NIL

Fig. 4. The preferred leader adj(p) for every path p.

230 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

sets consisting of a collection of consecutive paths in greedy order, and the paths that are
not yet processed are in singleton sets. The representative of a set is always the smallest
path in greedy order contained in that set. As the algorithm proceeds, this representative
of a set will be either a leader (if the paths in the set have already been processed) or a
path that has not been processed yet at that time (otherwise). Thus, when the algorithm
processes a path p and finds that adj(p) is not a leader, the representative of the set
containing adj(p), which can be determined by calling find(adj(p)), must be the best fit
leader for p. (To handle the case that no best fit leader for p exists, a fictitious leader to
the left of all intervals can be introduced.)

Using this data structure, the algorithm works as follows. When a path p is processed
and adj(p) is really a leader, then adj(p) is clearly the best fit leader for p. Otherwise,
adj(p) has either been rejected or is no longer a leader. Then the operation find(adj(p))
is used to determine the largest leader in greedy order ending no later than adj(p). This
is the best fit leader for p in this case. If such a leader q = leader(p) is found, the
path p is colored with the color of q and the union-find data structure is updated. The
path q is no longer the leader of its color. Accordingly, its set is merged with the set
containing the predecessor of q in greedy order using a union-operation on these sets.
After that, q is no longer the representative for the resulting set. The fact that the path
p is the new leader of its color is reflected in the data structure, since p continues to
be the representative of its singleton set. On the other hand, if no leader is found, the
path p is rejected and the sets containing p and the predecessor of p in greedy order are
merged by a union-operation. We refer to [6] for a detailed explanation why this yields a
correct implementation of the greedy algorithm in the case where all edge capacities are
equal.

3.2. Adaptation to Arbitrary Capacities. Now we adapt this approach to the case of
arbitrary capacities. As a first step, we add dummy paths to the instance to fill up the
C−c(ei) units of extra capacity on every edge ei as shown in Figure 5 for an example. In
this new instance, we set all edge capacities equal to C and compute an optimal solution
among all solutions that contain all dummy paths. Removing the dummy paths from the
solution yields an optimal solution for the original problem, since no edge capacity will
be violated.

Before we explain how to modify the algorithm of [6] to ensure that all dummy paths
are colored, we treat the dummy paths in more detail. They can be computed by scanning
the chain from left to right and deciding at each node how many dummy paths should
start or end here. If the edges to the left and to the right of the current node are ei and ei+1,

0 0 11 22 33 4 5 6 7

C

c(ei)

Fig. 5. The dummy paths for a given capacity function.

Call Control in Rings 231

0 0 11 22 33 4 5 6 7

m

Fig. 6. A capacity function alternating between 1 and m requires �(m N) dummy paths.

then c(ei+1)−c(ei) dummy paths end at this node if c(ei+1) > c(ei), and c(ei)−c(ei+1)

dummy paths begin at the node otherwise.
In order to achieve an overall linear running-time, the number of dummy paths must

be O(m). However, there are capacity functions where�(m N) dummy paths are needed
as shown in Figure 6.

Therefore, we introduce the following preprocessing step in order to flatten somewhat
the capacity function. We scan the chain of nodes from left to right. Let n(i) denote the
number of original paths that have node i as their left endpoint. For each edge ei we
set the new capacity c′(ei) for the edge ei to the minimum of the original capacity c(ei)

and c′(ei−1)+ n(i). Hence, a decrease in the original capacity function is replicated by
the new capacity function, while an increase is limited to the number of paths starting
at the current node. A larger increase could not be filled out by the n(i) paths anyway.
We have c′(ei) ≤ c(ei) for all edges ei and that any subset of paths that is feasible for
capacity function c is also feasible for capacity function c′. To see the latter, note that the
number of paths using edge ei in any feasible solution for capacity function c is at most
c(ei−1)+ n(i). The new capacity function c′ clearly can be computed in linear time.

LEMMA 5. With the new capacity function c′, the number of dummy paths added by the
algorithm is O(m).

PROOF. Let us define the total increase of the capacity function c′ to be the sum of
the values max{c′(ei) − c′(ei−1), 0} for i = 0, . . . , N − 1, where we take c′(e−1) = 0.
By definition of c′, the total increase of c′ is at most m, since every increase by 1 can
be charged to a different path. Now consider the dummy paths added by the algorithm.
Every dummy path ends either at an increase by 1 of the capacity function c′ or because
the right end of the chain is reached. Therefore, there can be at most m + C = O(m)
dummy paths.

After preprocessing the capacity function and adding the dummy paths, we compute
a maximum C-colorable subset of paths in which all dummy paths are colored. It is clear
that then the set of colored original paths forms an optimal solution in the original chain
(with capacities c(ei) or c′(ei)).

We must modify the algorithm of [6] to make sure that all dummy paths are accepted
and colored. First, we compute a sorted list of the endpoints of all paths, including the
dummy paths, such that for every node i , the right endpoints of paths ending at node i

232 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

come before the left endpoints of paths starting at node i . The endpoints are processed in
this order. Now the idea is to process original paths at their right endpoints and dummy
paths at their left endpoints to make sure that all dummy paths are accepted and colored.

We describe the modified algorithm. First, we initialize the data structure as in [6]
with C virtual paths that serve as initial leaders for colors 1 to C , and a fictitious leader f .
The C virtual paths are considered to be located to the left of node 0, e.g., paths from
node −2 to node −1, and the fictitious leader is to the left of the C virtual paths, e.g., a
path from−4 to−3. We extend the greedy order to these C+1 additional paths by taking
first the fictitious leader, then the C virtual paths, and then the original and dummy paths.
Paths whose best fit leader is the fictitious leader will be rejected. After the initialization,
all paths (including the virtual paths and the fictitious leader) are in singleton sets of the
union-find data structure, and the C virtual paths and the fictitious leader are considered
to have been processed.

The algorithm maintains at any point the last path whose right endpoint has already
been processed. This path is called last and is stored in a variable with the same name.
As part of the initialization, we store the last virtual path in last.

Now the endpoints of the real paths (original paths and dummy paths) are processed
in sorted order as follows. Let x be the path endpoint currently being processed and let
p be the respective path. We distinguish two cases:

Case 1: x is the left endpoint of p. Then we set adj(p) to be the path stored in last, since
this path would be the preferred leader for the path p. If p is a dummy path, we want to
color p immediately and perform a find operation on adj(p) to find q = leader(p). We
color p with the color of q and perform a union operation to merge the set containing
q with the set containing the predecessor of q in greedy order, because q is no longer a
leader. If p is not a dummy path, nothing needs to be done for p now, because p will be
colored (or rejected) later when its right endpoint is processed.

Case 2: x is the right endpoint of the path p. Then p is stored in last, since it is now
the last path whose right endpoint has already been processed. If p is an original path,
we want to color it now, if possible. Therefore, we perform a find operation on adj(p)
in order to find its leader. If such a leader q is found, the color of p is set to the color
of q , and the set containing q is merged with the set containing the predecessor of the
path q in greedy order. Otherwise, no leader was found for p (i.e., the find operation on
adj(p) has returned the fictitious leader). The path p is rejected and the set containing
p is merged with the set containing the predecessor of the path p. If p is a dummy
path, p has already been colored at its left endpoint, so nothing needs to be done for p
anymore.

The union-find data structure of [7] is applicable, since the structure of the potential
union operations is a tree (actually, even a chain); to see this, observe that we always
merge a set containing a path p with the set containing the immediate predecessor of p
in greedy order. Therefore, the algorithm runs in time linear in the number of all paths
including the dummy paths.

We refer to the resulting algorithm as the union-find based algorithm and show that
it is a correct implementation of the greedy algorithm (in the sense that it accepts the
same subset of the original paths).

Call Control in Rings 233

LEMMA 6. The union-find based algorithm is a correct implementation of the greedy
algorithm.

PROOF. First, observe that the sets in the union-find data structure are maintained so
that the following property is ensured: the representative of the set containing a path that
has already been processed is indeed the leader with rightmost right endpoint among
all leaders that do not come after the path in greedy order (or the fictitious leader if no
such leader exists). Now it is easy to see that the union-find based algorithm, denoted
U from here on, computes a C-colorable subset of the paths that includes all dummy
paths. We only need to show that the algorithm accepts the same original paths as the
greedy algorithm. Consider the first path p in greedy order for which the result of U and
of the greedy algorithm are different. It must be the case that p is accepted by the greedy
algorithm, but rejected by U . Algorithm U processes p at its right endpoint. Assume
that U does not accept p. Then the leaders of all C colors must intersect p. Let A be
the set of all paths (dummy paths and original paths) that were accepted by U before
processing p. Following arguments used in [6], we will show that A ∪ {p} creates load
C + 1 on some edge, a contradiction to the fact that the greedy solution (which contains
all original paths in A∪{p}) is feasible. Let e be the rightmost edge of the leader �whose
right endpoint is as far left as possible among the C leaders intersecting p. Assume that
there is a color i , 1 ≤ i ≤ C , such that no path of color i contains e. Then the set of
paths colored i must contain a path p1 to the left of e (possibly the virtual path) and
a path p2 to the right of e. Choose such p1 and p2 with rightmost right endpoint and
leftmost left endpoint, respectively. At the time when p2 was colored by U , p1 was the
leader of color i and � was the leader of a different color. Since � does not intersect p2

and contains the edge e, which is strictly to the right of p1, p1 could not have been the
best fit leader for p2 (since � is a better leader). This contradicts the fact that U colored
p2 with color i . Therefore, e is contained in a path of every color and also in the path
p, implying that A ∪ {p} creates load C + 1 on edge e. Thus, we arrive at the desired
contradiction.

Summing up, our algorithm does a linear-time preprocessing of the capacity function,
then adds O(m) dummy paths in linear time, and finally uses an adapted version of the
algorithm in [6] to run the greedy algorithm for CALLCONTROL in chains in linear time.

THEOREM 3.1. The greedy algorithm computes optimal solutions for CALLCONTROL in
chains with arbitrary edge capacities and can be implemented to run in time O(N +m),
where N is the number of nodes in the chain and m is the number of given paths.

4. Weighted Call Control. In this section we consider the weighted version of the call
control problem, denoted WEIGHTEDCALLCONTROL. First we show how the algorithm
for the maximum weight k-colorable subgraph problem on interval graphs due to Carlisle
and Lloyd [6] can be used to obtain optimal solutions for WEIGHTEDCALLCONTROL in
chains. Then we present a simple 2-approximation algorithm for rings and give a PTAS
that, due to its large running-time, is mainly of theoretical interest. Finally, we link the

234 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

complexity of the problem in rings to the bipartite exact matching problem, indicating
that it may be difficult to find a deterministic polynomial-time optimal algorithm.

4.1. Weighted Call Control in Chains. Carlisle and Lloyd [6] presented an efficient
polynomial-time algorithm for the problem of computing a maximum-weight k-colorable
subset of a given set of weighted intervals on the real line. The algorithm is based on
solving a min-cost network flow problem and takes time O(kS(m)), where m is the
number of intervals and S(m) is the running-time of a shortest-path algorithm on directed
graphs with positive edge weights and O(m) vertices and edges. It assumes that a sorted
list of interval endpoints is given as part of the input. The problem solved by Carlisle
and Lloyd corresponds to WEIGHTEDCALLCONTROL in chains where all edges have
capacity k.

In order to be able to apply their algorithm also to chains with arbitrary capacities, we
simply add dummy paths of large weight. More precisely, we let C = maxe∈E c(e), set
the capacity of every edge to c′(e) = C , and add a set of dummy paths with the property
that every edge is contained in C − c(e) dummy paths. This can be done in linear time
as shown in Section 3, after preprocessing the edge capacities appropriately. Now we
set the weight of each dummy path to W + 1, where W is the sum of the weights of
the original paths. Then it is clear that every optimal solution to the resulting instance
I ′ must contain all dummy paths, and the paths in the optimal solution that are not
dummy paths give an optimal solution to the original instance I . Thus, we can apply the
algorithm by Carlisle and Lloyd to the instance I ′ in order to obtain an optimal solution
to I as well. Since only a linear number of dummy paths have to be added (as shown in
Section 3), WEIGHTEDCALLCONTROL in chains with N nodes can be solved optimally
in time O(N +C · S(m)), which includes O(N +m) time for sorting the path endpoints
using bucket-sort. As C can be assumed to be at most m, the running-time is bounded
by O(N + mS(m)).

4.2. A 2-Approximation Algorithm for Rings. Using the optimal algorithm for WEIGHT-
EDCALLCONTROL in chains as a subroutine, it is not difficult to obtain a 2-approximation
algorithm for WEIGHTEDCALLCONTROL in rings. We identify an edge e on the ring that
has the smallest capacity c(e) = cmin. Now take the chain obtained by removing the edge
e from the ring, and consider the set of paths that do not contain e. We can compute an
optimal set of paths on the chain for this instance of WEIGHTEDCALLCONTROL in chains,
as explained in the previous section. Denote this set of paths by OPT∗ē . Next, arrange the
set of paths that pass through e in order of decreasing weights. Pick the first c(e) paths in
this order and call the resulting set OPT∗e . It is easy to observe that both OPT∗ē and OPT∗e
are feasible solutions to the original instance of WEIGHTEDCALLCONTROL in rings. Let
OPT be an optimal solution to that instance. Trivially, the total weight of paths in OPT
that are routed through e, denoted by OPTe, satisfies w(OPTe) ≤ w(OPT∗e). Further,
the weight of the paths in OPT that are not routed through e, denoted by OPTē, satisfies
w(OPTē) ≤ w(OPT∗ē). Hence, we have

w(OPT) = w(OPTe)+ w(OPTē)

≤ w(OPT∗e)+ w(OPT∗ē)

≤ 2 ·max{w(OPT∗e), w(OPT∗ē)}.

Call Control in Rings 235

By choosing the set with larger weight among OPT∗e and OPT∗ē , we obtain a 2-approximation
algorithm.

4.3. A PTAS for Rings. In this section we describe a PTAS for WEIGHTEDCALLCON-
TROL in rings. Let ε > 0 be a fixed positive constant and let K = �2/ε�. An instance of
WEIGHTEDCALLCONTROL in rings is given by a ring G = (V, E) with edge capacities
c: E → N and a set P = {p1, . . . , pm} of paths with weightsw: P → N. Let cmin denote
the minimum edge capacity of the given instance, and label the edges of the ring in such
a way that e0 is an edge with c(e0) = cmin. If cmin ≤ K , we can enumerate in polynomial
time all subsets S0 ⊆ P that consist of at most cmin paths containing the edge e0; there are
at most O(mK) such subsets. For each such subset S0, we can use the optimal algorithm
for WEIGHTEDCALLCONTROL in chains to compute a maximum weight set S′0 of paths
not containing e0 such that S0 ∪ S′0 is feasible. In the end we output the solution S0 ∪ S′0
of maximum weight. As one of the enumerated sets S0 must be equal to the set of paths
containing e0 that are accepted by the optimal solution, we obtain an optimal solution in
this way.

Now consider the case that cmin > K . First, solve the following linear programming
(LP) relaxation of the problem:

(R) max
m∑

j=1

wj yj

s.t.
m∑

j=1

ai j yj ≤ ci , i = 0, . . . , n − 1,

0 ≤ yj ≤ 1, j = 1, . . . ,m.

Here, yj represents the fraction of path pj that is accepted, wj = w(pj) is the weight of
pj , ci = c(ei) is the capacity of edge ei , and ai j is 1 if pj contains ei and 0 otherwise.

Let y∗ denote the optimal solution to (R). Note that the weight of y∗, which equals∑m
j=1wj y∗j , is at least as large as w(OPT), where OPT is an optimal solution to the

integral problem. Now we interpret y∗ as a fractional solution of the LP relaxation of
WEIGHTEDCALLCONTROL in a chain as follows. The chain consists of 2n− 1 edges and
is obtained by duplicating every edge of the ring except e0 and then “unrolling” the ring.
More precisely, the middle edge of the chain is e0, the left part of the chain consists of
a first copy (the left copy) of the edges e1, . . . , en−1 of the ring, and the right part of the
chain consists of a second copy (the right copy) of the edges e1, . . . , en−1; see Figure 7.

p1

p1

p2

p2

p3 p3

p4

p4

e0

e0

e1

e2

e3e4

e5

e6

e7

e′1 e′2 e′3 e′4 e′5 e′6 e′7 e′′1 e′′2 e′′3 e′′4 e′′5 e′′6 e′′7

Fig. 7. Paths in the ring (left) are translated into paths in a chain (right) for the PTAS.

236 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

A path pi in the ring that consists of edges e�, e�+1, . . . , en−1, e0, e1, . . . , er is translated
into a path in the chain from the left copy e′� of e� to the right copy e′′r of er . A path
pi in the ring that does not contain e0 is translated into the corresponding path in the
left part of the chain. Let p′i denote the path in the chain that is obtained from pi in
this way. Now, assign each edge e of the chain capacity c′(e) = �∑i :e∈p′i

y∗i �. Observe
that y∗ is a feasible solution for the natural LP relaxation of the constructed instance
of WEIGHTEDCALLCONTROL in chains. By the feasibility of y∗ for (R), we have that
c′(e0) ≤ c(e0) and c′(e′)+ c′(e′′) ≤ c(e)+ 1 for all e ∈ E\{e0}, where e′ and e′′ are the
left and right copy of e, respectively.

The constraint matrix of the LP relaxation of WEIGHTEDCALLCONTROL in chains is
totally unimodular and, therefore, there is an optimal solution of the LP relaxation that
is integral and can be computed efficiently [17]. Hence, we obtain an integral solution
ŷ to the constructed instance of WEIGHTEDCALLCONTROL in chains whose weight is at
least as large as the weight of y∗. Now, we interpret ŷ as a solution in the ring. Let P∗ be
the set of paths pi such that ŷi = 1. Note that P∗ violates the edge capacities of the ring
by at most 1. We proceed to show that we can remove paths from P∗ so that we obtain
a solution that is feasible in the ring without losing too much weight.

Let Ev be the set of edges whose capacity is violated by P∗. We compute disjoint
subsets T1, T2, . . . , Tk of P∗ by repeatedly picking a subset Tj of the remaining paths in
P∗ that has maximum load 2 and the property that the union of the paths in Tj contains
all edges in Ev . (Such a subset Tj can be computed easily by first adding paths containing
all edges in Ev and then iteratively removing paths whose edges are contained in the
union of the edge sets of the other paths in Tj .) As P∗ contains at least cmin > K paths
through each edge in Ev , we obtain at least K/2 such subsets Tj , thus k ≥ K/2 ≥ 1/ε.
Finally, we determine j ′ ∈ {1, 2, . . . , k} such that the subset Tj ′ has smallest weight
and output the solution Q = P∗\Tj ′ . This is a feasible solution to the original instance
of WEIGHTEDCALLCONTROL in rings. As the sets Tj are disjoint subsets of P∗ and
k ≥ K/2, the weight of Tj ′ is at most a 1/k ≤ ε fraction of the weight of P∗, and
therefore w(Q) ≥ w(P∗) − w(Tj ′) ≥ (1 − ε)w(OPT). Hence, we have obtained a
PTAS.

THEOREM 4.1. There is a PTAS for WEIGHTEDCALLCONTROL in rings.

4.4. Relation to Bipartite Exact Matching. The computational complexity of WEIGHT-
EDCALLCONTROL in rings has not been resolved to be in P or NP-hard. However, a recent
result of Hochbaum and Levin [11] shows that this problem is at least as hard as the exact
matching problem in bipartite graphs. The exact matching problem is defined as follows.
Given a graph G = (V, E) and a subset E ′ ⊆ E and a positive integer k, find a perfect
matching of G that contains exactly k edges from E ′. As pointed out by Hochbaum and
Levin [11], the complexity of this problem has not been resolved to be in P or NP-hard
for more than 15 years now, even if G is bipartite. A randomized polynomial-time algo-
rithm for the exact matching problem (also in the non-bipartite case) was presented by
Mulmuley et al. [15].

In [11] it is shown that the bipartite exact matching problem can be reduced to MCB
(bounded multicover problem, see Section 1.2). The constructed instances of MCB have

Call Control in Rings 237

variables whose upper bounds are uj = 1. We have shown in Section 1.2 that instances of
MCB with polynomial upper bounds on the variables can be transformed into instances
of WEIGHTEDCALLCONTROL in rings. Thus, a polynomial-time optimal algorithm for
WEIGHTEDCALLCONTROL in rings would immediately give a polynomial-time optimal
algorithm for MCB with polynomial upper bounds on the variables and thus also for the
bipartite exact matching problem.

5. Conclusion and Open Problems. The main result of this paper is a polynomial-
time optimal algorithm for CALLCONTROL in ring networks. CALLCONTROL in rings
is significantly more general than the maximum edge-disjoint paths problem for rings
and appears to be close to the maximum k-colorable subgraph problem for circular-arc
graphs, which is NP-hard. Therefore, we find it interesting to see that CALLCONTROL in
rings is still on the “polynomial side” of the complexity barrier. Besides its applications
in call admission control for communication networks, the algorithm can also be used to
compute optimal solutions for various cyclical scheduling problems. We have shown that
the algorithm can be implemented efficiently, and as a by-product we have obtained a
linear-time implementation of the greedy algorithm that solves CALLCONTROL in chains
optimally. For WEIGHTEDCALLCONTROL in rings, we have presented a 2-approximation
algorithm and a PTAS and pointed out that solving the problem optimally is at least as
difficult as the bipartite exact matching problem. The latter problem is known to have a
randomized polynomial-time algorithm (even in the non-bipartite case) [15], but to date
its complexity has not been established to be in P or NP-hard according to [11].

Our results lead to several open questions for future research. We do not know
whether WEIGHTEDCALLCONTROL in rings is NP-hard or there is a (possibly random-
ized) polynomial-time optimal algorithm for it.

For the CALLCONTROLANDROUTING problem, where only the path endpoints are
given and the algorithm must determine the routing of the accepted requests, an approxi-
mation algorithm with an additive approximation guarantee for rings is presented in [2].
The complexity of that problem (polynomial or NP-hard?) is also unresolved, and we
are not aware of any results about the weighted version (for which a 2-approximation
algorithm can be obtained using standard techniques).

References

[1] R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemptive disjoint paths
and call control algorithms. In Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA ’99), pages 1–10, 1999.

[2] R. S. Anand and T. Erlebach. Routing and call control algorithms for ring networks. In Proceedings of
the 8th International Workshop on Algorithms and Data Structures (WADS 2003), LNCS 2748, pages
186–197, 2003.

[3] M. J. Atallah, D. Z. Chen, and D. T. Lee. An optimal algorithm for shortest paths on weighted interval
and circular-arc graphs, with applications. Algorithmica, 14:15–26, 1995.

[4] A. Blum, A. Kalai, and J. Kleinberg. Admission control to minimize rejections. In Proceedings of
the 7th International Workshop on Algorithms and Data Structures (WADS 2001), LNCS 2125, pages
155–164, 2001.

238 U. Adamy, C. Ambühl, R. S. Anand, and T. Erlebach

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, 1998.

[6] M. C. Carlisle and E. L. Lloyd. On the k-coloring of intervals. Discrete Applied Mathematics, 59:225–
235, 1995.

[7] H. Gabow and R. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of
Computer and System Sciences, 30(2):209–221, 1985.

[8] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call control algorithms.
Journal of Algorithms, 23:180–194, 1997.

[9] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring circular
arcs and chords. SIAM Journal on Algebraic and Discrete Methods, 1(2):216–227, 1980.

[10] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[11] D. S. Hochbaum and A. Levin. Cyclical scheduling and multi-shift scheduling: complexity and approx-

imation algorithms. Manuscript, UC Berkeley, June 2003.
[12] D. S. Hochbaum and P. A. Tucker. Minimax problems with bitonic matrices. Networks, 40:113–124,

2002.
[13] I. A. Karapetian. On the coloring of circular arc graphs. Journal of the Armenian Academy of Sciences,

70(5):306–311, 1980 (in Russian).
[14] S. Leonardi. On-line network routing. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The

State of the Art, LNCS 1442, pages 242–267. Springer-Verlag, Berlin, 1998.
[15] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica,

7(1):105–113, 1987.
[16] S. Plotkin. Competitive routing of virtual circuits in ATM networks. IEEE Journal of Selected Areas

in Communications, 13(6):1128–1136, August 1995.
[17] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg, 2003.
[18] G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proceedings of the Ninth

Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’98), pages 333–341, 1998.

