722 research outputs found

    Memory built-in self-repair and correction for improving yield: a review

    Get PDF
    Nanometer memories are highly prone to defects due to dense structure, necessitating memory built-in self-repair as a must-have feature to improve yield. Today’s system-on-chips contain memories occupying an area as high as 90% of the chip area. Shrinking technology uses stricter design rules for memories, making them more prone to manufacturing defects. Further, using 3D-stacked memories makes the system vulnerable to newer defects such as those coming from through-silicon-vias (TSV) and micro bumps. The increased memory size is also resulting in an increase in soft errors during system operation. Multiple memory repair techniques based on redundancy and correction codes have been presented to recover from such defects and prevent system failures. This paper reviews recently published memory repair methodologies, including various built-in self-repair (BISR) architectures, repair analysis algorithms, in-system repair, and soft repair handling using error correcting codes (ECC). It provides a classification of these techniques based on method and usage. Finally, it reviews evaluation methods used to determine the effectiveness of the repair algorithms. The paper aims to present a survey of these methodologies and prepare a platform for developing repair methods for upcoming-generation memories

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Miniphases: Compilation using Modular and Efficient Tree Transformations

    Get PDF
    Production compilers commonly perform dozens of transformations on an intermediate representation. Running those transformations in separate passes harms performance. One approach to recover performance is to combine transformations by hand in order to reduce number of passes. Such an approach harms modularity, and thus makes it hard to maintain and evolve a compiler over the long term, and makes reasoning about performance harder. This paper describes a methodology that allows a compiler writer to define multiple transformations separately, but fuse them into a single traversal of the intermediate representation when the compiler runs. This approach has been implemented in a compiler for the Scala language. Our performance evaluation indicates that this approach reduces the running time of tree transformations by 35\% and shows that this is due to improved cache friendliness. At the same time, the approach improves total memory consumption by reducing the object tenuring rate by 50\%. This approach enables compiler writers to write transformations that are both modular and fast at the same time

    Bayesian Network Approach to Assessing System Reliability for Improving System Design and Optimizing System Maintenance

    Get PDF
    abstract: A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled in a probabilistic man- ner. This dissertation focuses on analyzing system reliability for the entire system life cycle, particularly, production stage and early design stages. In production stage, the research investigates a system that is continuously mon- itored by on-board sensors. With modeling the complex reliability structure by Bayesian network integrated with various stochastic processes, I propose several methodologies that evaluate system reliability on real-time basis and optimize main- tenance schedules. In early design stages, the research aims to predict system reliability based on the current system design and to improve the design if necessary. The three main challenges in this research are: 1) the lack of field failure data, 2) the complex reliability structure and 3) how to effectively improve the design. To tackle the difficulties, I present several modeling approaches using Bayesian inference and nonparametric Bayesian network where the system is explicitly analyzed through the sensitivity analysis. In addition, this modeling approach is enhanced by incorporating a temporal dimension. However, the nonparametric Bayesian network approach generally accompanies with high computational efforts, especially, when a complex and large system is modeled. To alleviate this computational burden, I also suggest to building a surrogate model with quantile regression. In summary, this dissertation studies and explores the use of Bayesian network in analyzing complex systems. All proposed methodologies are demonstrated by case studies.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    PCB Quality Metrics that Drive Reliability (PD 18)

    Get PDF
    Risk based technology infusion is a deliberate and systematic process which defines the analysis and communication methodology by which new technology is applied and integrated into existing and new designs, identifies technology development needs based on trends analysis and facilitates the identification of shortfalls against performance objectives. This presentation at IPC Works Asia Aerospace 2019 Events provides the audience a snapshot of quality variations in printed wiring board quality, as assessed, using experiences in processing and risk analysis of PWB structural integrity coupons. The presentation will focus on printed wiring board quality metrics used, the relative type and number of non-conformances observed and trend analysis using statistical methods. Trend analysis shows the top five non-conformances observed across PWB suppliers, the root cause(s) behind these non-conformance and suggestions of mitigation plans. The trends will then be matched with the current state of the PWB supplier base and its challenges and opportunities. The presentation further discusses the risk based SMA approaches and methods being applied at GSFC for evaluating candidate printed wiring board technologies which promote the adoption of higher throughput and faster processing technology for GSFC missions

    Research Naval Postgraduate School, v.13, no.1, February 2003

    Get PDF
    NPS Research is published by the Research and Sponsored Programs, Office of the Vice President and Dean of Research, in accordance with NAVSOP-35. Views and opinions expressed are not necessarily those of the Department of the Navy.Approved for public release; distribution is unlimited

    Diagnostic, Prognostic and Therapeutic Value of Gene Signatures

    Get PDF
    Gene expression studies have revealed diagnostic profiles and upregulation of specific pathways in many solid tumors. Some gene-expression signatures are already used as predictors of relapse in early breast cancer patients. The explosion of new information in gene expression profiling could potentially lead to the development of tailored treatments in many solid tumors. In addition, many studies are ongoing to validate these signatures also in predicting response to hormonal, chemotherapeutic, and targeted agents in breast cancer as well as in other tumors. This book has been carried out with the aim of providing readers a useful and comprehensive resource about the range of applications of microarray technology on oncological diseases. The book is principally addressed to resident and fellow physicians, medical oncologists, molecular biologists, biotechnologists, and those who study oncological diseases. The chapters have been written by leading international researchers on these topics who have prepared their manuscripts according to current literature and field experience with microarray technology

    The Cord Weekly (January 17, 2007)

    Get PDF
    • …
    corecore