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ABSTRACT

A quantitative analysis of a system that has a complex reliability structure always

involves considerable challenges. This dissertation mainly addresses uncertainty in-

herent in complicated reliability structures that may cause unexpected and undesired

results.

The reliability structure uncertainty cannot be handled by the traditional relia-

bility analysis tools such as Fault Tree and Reliability Block Diagram due to their

deterministic Boolean logic. Therefore, I employ Bayesian network that provides a

flexible modeling method for building a multivariate distribution. By representing a

system reliability structure as a joint distribution, the uncertainty and correlations

existing between system’s elements can effectively be modeled in a probabilistic man-

ner. This dissertation focuses on analyzing system reliability for the entire system

life cycle, particularly, production stage and early design stages.

In production stage, the research investigates a system that is continuously mon-

itored by on-board sensors. With modeling the complex reliability structure by

Bayesian network integrated with various stochastic processes, I propose several

methodologies that evaluate system reliability on real-time basis and optimize main-

tenance schedules.

In early design stages, the research aims to predict system reliability based on

the current system design and to improve the design if necessary. The three main

challenges in this research are: 1) the lack of field failure data, 2) the complex reliabil-

ity structure and 3) how to effectively improve the design. To tackle the difficulties,

I present several modeling approaches using Bayesian inference and nonparametric

Bayesian network where the system is explicitly analyzed through the sensitivity

analysis. In addition, this modeling approach is enhanced by incorporating a tem-

poral dimension. However, the nonparametric Bayesian network approach generally

i



accompanies with high computational efforts, especially, when a complex and large

system is modeled. To alleviate this computational burden, I also suggest to building

a surrogate model with quantile regression.

In summary, this dissertation studies and explores the use of Bayesian network

in analyzing complex systems. All proposed methodologies are demonstrated by case

studies.
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Chapter 1

INTRODUCTION

1.1 Problem Definition

Although the rapid progress of engineering technology helps us develop advanced

systems, it introduces additional difficulties in analyzing the systems. Because of

increased complexity in system reliability structure, many unexpected failure modes

occur where their behaviors are interdependent. To avoid any losses (cost and quality)

generated by decisions made based on inaccurate reliability assessment, it is very

critical to devise new cutting-edge reliability analysis methodologies.

The main challenge in developing these methodologies is the uncertainty residing

in complicated reliability structure because the uncertainty prevents us from decom-

posing system reliability into component reliability in a deterministic manner (i.e.,

series or parallel systems). Consequentially, any popular reliability analysis tools such

as Fault Tree and Reliability Block Diagram are inadequate. In order to overcome

the challenge, this dissertation focuses on modeling system reliability structure using

Bayesian network (BN) and making correct decisions for complex systems.

Throughout the dissertation, systems are modeled by various approaches based on

research objectives and assumptions. Besides, the limitations of BN in system relia-

bility analysis will also be specifically addressed and overcome. The broad overviews

including distinct research purposes and assumptions for each chapter are given in

Section 1.2.
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1.2 Dissertation Overview and Organization

• Chapter 2 investigates a system in its production stage to optimize system

maintenance schedule based on real-time system reliability evaluation. On-

board sensors, which continuously monitor the health conditions of components

in a system, have made this predictive maintenance (PdM) possible. There-

fore, PdM technique effectively saves cost over the most prevalent maintenance

technique, preventive maintenance (PM), which is a time-based maintenance

strategy. In this chapter, several approaches are presented using discrete time

Markov chain and BN to model degradation processes of components and to

predict system reliability. The presented methodologies can be considered as

a special type of dynamic BN because the same BN is repeatedly constructed

over time for evaluating system reliability in the future. The PdM schemes are

able to make probabilistic inference at any system level (System, Subsystem,

and Components). Thus, PdM can be scheduled accordingly.

• Chapter 3 is devoted to system reliability analysis in the early design stage

(embodiment design stage). Besides, the proposed methodology overcomes the

limitation of discrete BN, which is employed in Chapter 2, in modeling complex

systems. Usually, discrete BN is suffered from heavy computational burden

when a continuous random variable is discretized because of the huge size of

conditional probability tables.

It is important to precisely predict a system’s reliability at its early design

stages because modifying a design to improve reliability and maintainability at

a later time in the system’s lifecyle will be costly and, oftentimes, impossible.

However, this early prediction is a difficult task because the absence of field

data severely limits our knowledge of system’s complex reliability structure. To
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tackle this problem and limitation of discrete BN, nonparametric Bayesian net-

work (NPBN) approach is presented in this chapter. Besides, global sensitivity

analysis is suggested to improve the system design.

• Chapter 4 further develops the approach proposed in Chapter 3 by incorporating

a temporal dimension. By incorporating degradation path models of compo-

nents in a system into NPBN modeling method, the proposed methodology in

this chapter allows us to effectively analyze system reliability over continuous

time at the embodiment design stage. Compared to the method presented in

Chapter 3, the proposed approach provides more flexible and broader range of

decision making options in improving system design. Besides, genetic algorithm

(GA) is used to improve the system design at the minimum development cost.

• In Chapter 5, the limitation of NPBN, which is used in Chapters 3 and 4,

is overcome in the context of Reliability-Based Design Optimization (RBDO).

Although NPBN effectively handles continuous random variables, probabilistic

inference on NPBN given evidence may require Monte Carlo simulation for a

significant amount of time. Thus, NPBN may not be the desired approach to

solve RBDO problem, which requires repeated system reliability evaluations

with various values of design variables.

To tackle this limitation, a surrogate model approach is proposed in this chapter.

In order to emulate a NPBN model in representing and analyzing a system

reliability structure, a quantile regression (QR) model is built based on samples

from the NPBN model. A QR model is estimated in Bayesian manner in order

to minimize the sampling procedure from NPBN that asks large computational

efforts. The QR model considerably facilitates an RBDO solving process and

assists the decision making in optimizing a system design.
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• Chapter 6 concludes this dissertation by summarizing the previous chapters and

planning the future research.
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Chapter 2

PREDICTIVE MAINTENANCE OF COMPLEX SYSTEMS WITH

MULTI-LEVEL RELIABILITY STRUCTURE

2.1 Introduction

Failure of an engineering system can be catastrophic if there were no proper mon-

itoring and warning mechanisms in place. Scheduling maintenance at the right time

in the right place is one of the most important decisions to be made by system engi-

neers. The conventional maintenance strategy adopted in industry is the preventive

maintenance (PM), where maintenance actions are scheduled based on the analy-

sis of historical system repair data. This strategy cannot be effective in preventing

unexpected system failures and may carry out unnecessary maintenance because it

does not take into account of the current health state of a system. However, these

problems can be handled by deploying onboard sensors in the system. Using real-

time sensor signals, the future states of monitored components, as well as the whole

system, can be forecasted for planning maintenance on the fly. Thus, predictive main-

tenance (PdM), which is enabled by onboard sensors, can avoid unexpected failures

and unnecessary maintenance, and thus improve the overall system efficiency.

This research proposes an approach to PdM for complex systems by using an

integrated framework of discrete time Markov chain (DTMC) model and Bayesian

network (BN) model. A complex system is defined as the system that consists of

multiple components and the dependency between system’s and components’ relia-

bility functions may not be completely known. DTMC is employed to model the

dynamic behavior of component’s health state. To overcome the limitation of Marko-
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vian property of a Markov chain, which ignores the component’s past deterioration

history and thus may lead to large prediction errors, we propose three different ways

to define the state space of DTMC and to better approximate component degradation

processes. In the meantime, a BN model is used to predict system reliability. BN has

been proved to be a powerful tool for modeling system reliability due to its ability of

representing high dimensional probabilistic distribution and formulating causal rela-

tionships between random variables. For a multi-component system, we denote the

system and its subsystems/components as connected random variables (nodes) in the

BN model. The uncertainties in the relationships between system node and subsys-

tem/component nodes will be taken care of by the conditional probability function

defined between these nodes so that the probabilistic inference of reliability at any

node can be made.

The main purpose of PdM is to carry out maintenance actions whenever they are

truly needed so as to utilize a company’s assets more efficiently and economically. To

implement PdM, the current- and future-time system reliability should be assessed

based on the data from onboard sensors. In this paper, we focus on the PdM of

multi-level hierarchical systems, where a system consists of multiple subsystems and

a subsystem consists of multiple components. In the real world, many sophisticated

systems are required to be highly reliable and such systems are, in general, designed

with multi-level hierarchical structures (Liu et al., 2011). To implement PdM, sensors

will be embedded in the system to monitor components/subsystems’ health states.

Using the information from these sensors, the system reliability can be predicted.

The remaining of the paper is organized as follows. In the next section, 2.2 the

literature on modeling system reliability and component degradation processes are

reviewed. It is followed by a detailed explanation of Markov chain and BN models

and how they can be used for online system reliability assessment. We propose three
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predictive maintenance models. In Section 2.4, a simulation study is performed to

validate these models. Finally, the paper is concluded in Section 2.5.

2.2 Literature Review

Due to the rapid increase of complexity in engineering systems and the availability

of condition monitoring data, PdM has gained a lot of attention in the last decade.

Alaswad and Xiang (2017) reviewed condition-based maintenance (CBM) literature

with a focus on mathematical optimization models. More than a hundred publications

were categorized by various aspects of optimization criteria, maintenance strategies,

and system configuration. Jardine et al. (2006) provided a comprehensive review

of CBM with a focus on the general procedure of implementing CBM. Heng et al.

(2009) gave a broad overview of the prognosis of rotating machinery and suggested

some future research topics that have been indeed extensively studied these days.

Many researchers have studied system degradation for the purpose of diagnosis and

prognosis where the system has a single component or it has multiple components with

deterministic reliability structure (Bian and Gebraeel, 2014). These assumptions,

however, are not applicable in many real-world problems. The assumption of well-

defined reliability structure may lead to large errors on evaluating system reliability

when the understanding of system reliability structure is incomplete.

Gebraeel et al. (2005) developed an exponential degradation path model for the

single-component system where the model parameters were updated in a Bayesian

fashion by infusing sensor data. This model was further generalized to a bivariate

degradation path by Gebraeel (2006). Kaiser and Gebraeel (2009) provided the PdM

policy based on the degradation model in these previous studies. A residual lifetime

distributions (RLD) were derived from the degradation path and maintenance was

performed based on the desired reliability level. All these papers focused on the
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single-component systems.

Wang and Coit (2004) provided a general approach to system reliability prediction

using multiple degradation measures. Their approach was for the case when a para-

metric degradation model was difficult to apply due to the limited understanding of

degradation mechanism. Li et al. (2011) provided a method for estimating a series sys-

tem’s reliability, in which components shared a common environment. Rasmekomen

and Parlikad (2014) presented a set of general models and the optimal maintenance

policy for multi-component system with the consideration of interactions among com-

ponent degradations. Bian and Gebraeel (2014) developed a Bayesian approach to

establishing degradation models of multi-component systems.

The BN model has become a popular tool for modeling multi-component systems

in recent years. Langseth and Portinale (2007) argued the advantages of BN model

over traditional system reliability models such as reliability block diagrams and fault

trees. Liu et al. (2011) provided a method for modeling multi-component systems

with hierarchical structures. This method estimates system reliability by combining

information from many binary component nodes. Li et al. (2014) further developed

the method proposed in Liu et al. (2011) to the case where the nodes in a BN have

multiple states. Wilson and Huzurbazar (2007) used BNs to model multilevel systems

and discussed how to make probabilistic inference for different cases. Mahadevan et al.

(2001) proposed a methodology for predicting system reliability of large structures

with the consideration of the correlation of components. Zhai and Lin (2013) and

Qian et al. (2009) provided the applications of BN to model multi-component sys-

tem reliability. Ozgür-Unlüakın and Bilgiç (2006) used a dynamic Bayesian network

(DBN) for modeling multi-component systems and implemented PdM with general

optimization formulation. The component degradation over time was represented by a

temporal dimension in the network. Przytula and Choi (2008) proposed a DBN model
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for the diagnosis and prognosis of system’s health state. McNaught and Zagorecki

(2009) applied DBNs on the prognosis modeling for predictive maintenance.

The CBM of a complex system has been made possible with the advent of ad-

vanced sensor technology. For the system’s degradation process that is continuously

monitored, stochastic processes have been usually applied to modeling. Castro et al.

(2015) proposed a CBM strategy for the degradation-threshold-shock (DTS) model

with the consideration of multiple degradation mechanisms. The initiations of inde-

pendent internal degradations and external shocks were modeled as non-homogeneous

Poisson processes (NHPP). An optimal maintenance strategy was provided in terms

of minimizing the operation cost. Caballé et al. (2015) generalized the work of Cas-

tro et al. (2015) by allowing internal degradation processes to be dependent, and the

external shocks that lead to the system failure were modeled as a doubly stochas-

tic Poisson process. Do et al. (2015) provided the CBM policy that employed the

perfect and imperfect maintenances together. Their optimal maintenance policy was

proposed for minimizing the maintenance cost. Chen and Wu (2007) proposed PdM

using multivariate statistical methods and DTMC. The system’s state was evalu-

ated by a machine capability index, which was developed based on the multivariate

process capability methodology, and the system’s deterioration process was modeled

by nonstationary discrete time Markov chains. Koochaki et al. (2012) investigated

the effectiveness of CBM compared to other age-based replacement policies in the

context of opportunistic maintenance. Xia et al. (2013) provided the PdM policy

that optimizes the availability and the cost effectiveness for multi-unit series systems.

Komijani et al. (2017) presented the optimal CBM model for minimizing the total

operation cost with three decision variables – the number of incomplete maintenance,

the maintenance time interval and the probability of failure, while the whole system’s

deterioration process was modeled by two independent stochastic processes for erosion
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and external shock.

In our research, a PdM scheme is proposed by integrating DTMC and BN mod-

els for modeling multi-level hierarchical systems. Employing the proposed method,

maintenance decisions can be made based on the forecasted values of system reliabil-

ity at a future time, as well as reliability predictions on subsystem/component levels.

The next section provides brief summary of DTMC, Semi-Markov chain (SMC) and

BN models and presents our proposed PdM framework. Three different models are

proposed for approximating component degradation processes.

2.3 Methodology

2.3.1 Markov Chain Models

A DTMC is a stochastic process {Xn, n > 0} in a discrete state and time space

ruled by the Markovian property. The Markovian property states that any future

event is independent of the past events of the process and it only depends on the

current state of the process, which can be expressed as

P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) = P (Xn+1 = x|Xn = xn) (2.1)

where Xn = xn indicates that the random variable X takes the state xn at time n.

Let pij > 0 represent the one-step transition probability from state i to state j.

The transition probabilities between all states can be fully specified based on this

one-step transition probability matrix (TPM), P , where

P =



p00 p01 . . . p0N

p10 p11 . . . p1N

... ... . . . ...

pN0 pN1 . . . pNN


(2.2)
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The n-step TPM is calculated as the power function of one-step TPM; i.e., P n, where

its element p(n)
ij denotes the probability of transitioning from state i to state j over n

steps.

If n is defined as the number of transition steps, instead of the discrete time, {Xn}

is called an embedded Markov chain (EMC) of a Markov renewal chain (MRC). A

MRC is a stochastic process (Xn, Sn)n∈N , where Sn = Y1 + · · ·+ Yn is an observation

time of the nth transition, where Yn is the sojourn time at the state Xn−1, if it satisfies

the Markovian property of

P (Xn+1 = j, Sn+1 − Sn ≤ k|(Xn = i, Sn), (Xn−1, Sn−1), ..., (X0, S0))

= P (Xn+1 = j, Sn+1 − Sn ≤ k|Xn = i)
(2.3)

In this paper, we assume MRC is time homogeneous.

Holding Eq. (2.3), the process Z = {Zt}t∈N is called a semi-Markov chain (SMC)

if the relationship between the processes Z and X is such as

Zt = XN(t) (2.4)

where N(t) := max {n ∈ N |Sn ≤ t}. The matrix q = qij(k); i, j ∈ E, k ∈ N is called

a discrete-time semi-Markov kernel, where

qij(k) = P (Xn+1 = j, Yn+1 = k|Xn = i) (2.5)

The sojourn time distribution conditioned on current state is denoted by hi(k) as

hi(k) = P (Yn+1 = k|Xn = i) =
∑
j∈E

qij(k), k ∈ T. (2.6)

The cumulative sojourn time distribution at state i is defined as

Hi(k) = P (Yn+1 ≤ k|Xn = i) =
k∑
l=1

hi(l), k ∈ T. (2.7)
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2.3.2 Bayesian Networks

A BN is a directed acyclic graph (DAG) where nodes represent random variables

and edges indicate direct probabilistic dependencies between the two connected nodes

(Friedman and Koller, 2003); therefore, the joint probability distribution of all nodes

can be represented by using conditional independency. BN is a graphical model that

illustrates the probabilistic causal relationship between random variables and the

direction of information flow (Mahadevan et al., 2001). In a BN, Xi is the parent of

Xj if there is an arrow from Xi to Xj, and Xj is the child of Xi. A node without

parents is called the root node, and a node without child is called the leaf node. Figure

2.1 is a simple BN example. In this example, X2 and X3 are root nodes and they are

also the parent nodes of X1, while X1 is a leaf node and the child of X2 and X3. The

probabilities of the child node conditioning on any combination of its parent nodes are

specified in its conditional probability table (CPT). The marginal probabilities are

given for the root nodes. Table 2.1 and Table 2.2 show these marginal probabilities

and the CPT for the BN in Figure 2.1, respectively.

X1

X2 X3

Figure 2.1: A BN Example

The conditional independence of BN implies the chain rule that is useful to cal-

culate the joint probability. The joint distribution of all nodes is factorized by using

the chain rule according to the topology of BN. For example,

P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi|pa(Xi)) (2.8)

where pa(Xi) is the set of parent of node Xi.
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Table 2.1: Marginal Probability Tables for the Root Nodes
X2 = 0 X2 = 1

p2 1− p2

X3 = 0 X3 = 1

p3 1− p3

Table 2.2: Conditional Probability Table
X1 = 0 X1 = 1

X2 = 0 X3 = 0 p00 1− p00

X2 = 0 X3 = 1 p01 1− p01

X2 = 1 X3 = 0 p10 1− p10

X2 = 1 X3 = 1 p11 1− p11

In a BN model, the marginal distribution of any node can be calculated by matrix

and vector operations. First, we define the CPT of a child node as matrix T , and T(i)

denotes the column vector corresponding to the child node value i. Define a vector V

as the vectorized Kronecker product of marginal distributions of parent nodes, where

the Kronecker product is defined as

A⊗B =


a1B

...

amB

 (2.9)

where A is an m× 1 vector and B is a p× 1 vector.

For example, using the two parent node distributions as defined by Table 2.1, their

Kronecker product becomes V = [p2p3, p2(1− p3), (1− p2)p3, (1− p2)(1− p3)]t. Then,

with the CPT of child node in Table 2.2 as a 4×2 matrix T , the marginal probability

of child node can be expressed as

P (X1 = i) = T t(i)V (2.10)

where T t(i) is the transpose of T(i). So, P (X1 = 0) is given by

P (X1 = 0) = T t(0)V (2.11)
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Using BNs to model system reliability, the uncertainties between system and com-

ponent reliability in a complex system can be explicitly taken into consideration.

Langseth and Portinale (2007) compared BNs with block diagrams or fault trees as

the graphical means for modeling system reliability. Yontay et al. (2015) discussed

how to estimate the conditional probabilities of a BN using aggregated system-level

and component-level data, and Yontay and Pan (2016) extended the discussion to the

scenario of having simultaneous failure observations on both system and component

levels.

2.3.3 Proposed Methods for Predictive Maintenance

In this section, three PdM methods are developed. All methods employ DTMCs

to model the degradation processes of components and a BN to represent the system

reliability structure and to predict system reliability.

In order to perform PdM, we need to forecast a system’s reliability in the future

by using its current sensor data so that we can make a decision of the time that a

maintenance action should be planned. To accomplish this goal, some assumptions

are made through this paper:

1. Onboard sensors provide the true health states of the components being moni-

tored.

2. The health state of system or component cannot be improved without mainte-

nance action.

3. The nodes at the lower hierarchy level of a BN model will affect the nodes at

the higher level, but not the opposite direction.
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Prediction with a Discrete Time Markov Chain (PdM-DTMC)

A system’s reliability is a function of its component’s reliability. In a BN, the marginal

probability of the top node represents the system’s health state. For example, the

BN in Figure 2.1 represents a system, in which the system node, X1, is the child

node of two component nodes, X2 and X3. If all nodes are binary random variable

with functional state 0 and dysfunctional state 1, the system reliability is calculated

by Eq. (2.11) . Thus, we need the component’s future state to forecast the system

reliability in future. In this study, component’s health is a discrete random variable

that changes over time, and we employ a DTMC to model this change process.

Suppose a system consists of N components, and the ith component has discretized

health states 0, 1, ..., fi where 0 is the healthy state, fi is the failure state, and any

states in between 0 and fi are degraded states. Assume the degradation is irreversible

without maintenance actions, then each component has a (fi + 1)× (fi + 1) one-step

TPM such as

Pi =



p00 p01 . . . p0fi

0 p11 . . . p1fi
... ... . . . ...

0 0 . . . 1


(2.12)

Given the current component’s health state that is provided by an onboard sensor,

the probability that this component will be residing in any specific state after n-step

transitions can be found from the elements in P n
i . Any row of P n

i plays a role of

marginal distribution for the corresponding component when its initial state is fixed.

In BN, a root node, which represents a component, has at least one child node, which

represents the system or a subsystem. Once we have collected all health states of

components from onboard sensors, the marginal distributions of the states of these
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components after n steps can be calculated. Then, (2.10) can be used to predict the

future state of the system/subsystem.

In a general case, a hierarchical system may consist of multiple subsystems and

multiple components, and they are configured (reliability-wise) in levels. The highest

level (Level 1) belongs to the state of the whole system, while the lowest level (Level l)

indicates the states of basic components. This structure is depicted in Figure 2.2. Let

Xi,j denote the health state of the jth node at the ith level. Every component in level l

has a TPM. Suppose the onboard sensors give a vector of current components’ health

state h = {h1, h2, ..., hN}, where hi is the health state of ith component, and we want

to forecast the system reliability after the n-step. A marginal distribution that will

be used as CPT for each component is the hthi row of n-step TPM of ith component.

The marginal distribution of any subsystem in l − 1 level can be calculated by using

the CPT of level l, and the same scheme is repeated until the marginal distribution

of the node representing the system on the top level is achieved. Mathematically,

P (Xi,j = k) = T ti,j,(k)Vi+1 (2.13)

where T ti,j,(k) is the column corresponding to state k in the t-step CPT of the jth node

at level i, and Vi+1 is the vector calculated by the Kronecker product using marginal

probabilities of corresponding parent nodes at level i+ 1.

Prediction with a Higher Order Markov Chain (PdM-HOMC)

The Markovian property, which completely ignores the deterioration history of a com-

ponent, is not a reasonable assumption in many realistic cases. In order to utilize

a Markov chain to better approximate degradation process, we can extend the state

definition in a DTMC to contain both current and previous health states of a com-

ponent. This model is called the higher order Markov chain (HOMC) model. A state
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Figure 2.2: Multi-Level Hierarchical System

for the kth-order Markov process at time t is defined as (xt−k+1, xt−k+2, ..., xt−1, xt),

and it satisfies the following Markovian property,

P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., X1 = x1)

= P (Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., Xn−k+1 = xn−k+1).
(2.14)

Note that xj ≤ xi, for all i, j where j < i, due to the second assumption in Section 3.3.

Same as the transition probability in Section 3.1, P(xt−k+1,xt−k+2,...,xt−1,xt)(xt−k+2,xt−k+3,...,xt,xt+1)

is denoted as the one-step transition probability from the current state (xt−k+1, xt−k+2, ..., xt−1, xt)

to the next state (xt−k+2, xt−k+3, ..., xt, xt+1).

Employing HOMC, a certain degree of deterioration history can be considered for

forecasting future system reliability. Predictive maintenance can be performed in the

same manner as in Section 3.3.1.
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Prediction with a Semi-Markov Chain (PdM-SMC)

When PdM-DTMC is employed for predicting system reliability, a main limitation is

that the current transition probability must be the same as the previous transition

probability at any two consecutive time points. This is an unrealistic assumption if

a system or component has a continuous degradation process, and even PdM-HOMC

does not directly solve this problem. In this section, a discrete time semi Markov chain

(DTSMC) is proposed to tackle this problem. Using the method in Chryssaphinou

et al. (2008), the semi-Markov chain is handled as a discrete time Markov chain so

that the method presented in the previous section can still be implemented. Because

DTSMC does consider the sojourn time of a component staying in any state, it will

change its health state at every transition time points. In other words, not only the

current health state but also the sojourn time in the current state will determine the

transition rate.

To formulate the SMC, {Zt}t∈N , as a DTMC, a backward recurrence time Ut is

defined as

Ut = t− SN(t) (2.15)

Table 2.3 provides examples of backward recurrence time with an associated semi-

Markov chain. Here, Ut can be viewed as the sojourn time that a random variable

has stayed at its current state. Then, a stochastic process (Zt, Ut)t∈N is a Markov

process defined in the discrete state space and time.

The transition probability of this process is given by

P (Zt+1 = j, Ut+1 = u′|Zt = i, Ut = u) =



qij(u+1)
1−Hi(u) , if u′ = 0

1−Hi(u+1)
1−Hi(u) , if u′ = u+ 1 and i = j

0, otherwise

(2.16)
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Table 2.3: Examples of Backward Recurrence Time and Semi-markov Chain
t 0 1 2 3 4 5 6 7 8

Xt 0 0 0 1 1 1 2 2 3

SN(t) 0 0 0 3 3 3 6 6 8

Ut 0 1 2 0 1 2 0 1 0

Note that qij(·) and Hi(·) are defined in Section 3.1. Because it is a DTMC with two-

dimensional states (the current health state and the sojourn time), the prediction of

system reliability can be performed as shown in Section 3.3.1.

2.4 Simulation Study

In this section, a simulation study is provided to demonstrate and compare the

three proposed models. The proposed methodologies are generally applicable to any

complex, repairable equipment or systems such as gearboxes, turbines, engines, etc.

The system to be discussed in this section was originally derived from a case study of

active vehicle suspension system, which had been previously discussed in Zhong et al.

(2010) and Yontay and Pan (2016). However, we will simply treat it as a generic

system with certain reliability structure. In order to perform PdM, onboard sensors

located at the right place in the system are needed. In addition, condition monitoring

data and various historical reliability data are critical for estimating TPMs and CPTs.

In this simulation study, transition matrices are estimated based on two degradation

datasets, which will be introduced in the next section. The CPTs and the reliability

structure of the system are assumed to be known.
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Figure 2.3: Laser Dataset
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Figure 2.4: Fatigue Crack Dataset

2.4.1 Estimating Transition Matrices and Goodness of Fit

For the illustration purpose, we use the laser dataset (Meeker and Escobar, 2014)

and the fatigue crack dataset (Lu and Meeker, 1993), shown in Table 2.4 and Table

2.5, respectively, to estimate the parameters in transition probability matrices. The

plots of degradation versus time are given in Figure 2.3 and Figure 2.4. We discretize

each dataset into five states based on Table 2.6 where 0 is the healthiest state, 4 is

the failure state, and the states between 0 and 4 indicate gradual degradation.

The TPMs are estimated for DTMC, HOMC (a 2nd order Markov chain), and

SMC for each dataset. To compare performances of the TPMs, Akaike′s Information

Criterion (AIC) and Bayesian Information Criterion (BIC) are used where AIC is

defined as

AIC = −2 logL+ 2p, (2.17)
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Table 2.4: Laser Dataset
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Table 2.5: Fatigue Crack Dataset
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Table 2.6: Discretization Criteria
Laser data Fatigue Crack data

State 0 0.00 ∼ 1.75 State 0 0 ∼ 1.0

State 1 1.75 ∼ 3.50 State 1 1.0 ∼ 1.2

State 2 3.50 ∼ 5.25 State 2 1.2 ∼ 1.4

State 3 5.25 ∼ 7.00 State 3 1.4 ∼ 1.6

State 4 7.00 ∼ ∞ State 4 1.6 ∼ ∞

Table 2.7: Fit Statistics
Laser dataset Fatigue crack dataset

DTMC HOMC SMC DTMC HOMC SMC

AIC 240.719 200.420 163.528 288.600 226.799 156.039

BIC 253.892 216.495 202.042 302.539 240.374 186.982

and BIC is defined as

BIC = −2 logL+ p log(n), (2.18)

where logL is the log-likelihood, p is the number of independent parameters, and n

is the number of data points. For p, the parameters that are estimated as zero will

not be counted (Bishop, Fienberg, and Holland, 2007).

The log-likelihood of TPM is calculated as

logL =
N∑

xt−k=1
· · ·

N∑
xt=1

nxt−k . . .xt log(p̂xt|xt−k...xt−1) (2.19)

where N is the number of states, xt is a value the random variable takes at time t,

xt−k . . . xt−1 is the consecutive values for k time interval, and nxt−k . . .xt is the number

of the corresponding sequence in dataset. The fit statistics of DTMC, HOMC, and

SMC for these two datasets are given in Table 2.7.

For both datasets, SMC is the most preferred model as it has the minimum AIC
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and BIC values. This result demonstrates that the degradation process of a compo-

nent can be well represented by the SMC model.

2.4.2 Implementing PdM

We built a hypothetical system that consists of two subsystems (subsystem 1

and subsystem 2). Each subsystem is composed of two identical components. It is

assumed that the components in subsystem 1 follow the fatigue crack degradation

process, while the components in subsystem 2 follow the laser degradation process.

The whole system has two states (0 for a functional system and 1 for a dysfunctional

system), but all subsystems and components have five states from 0 to 4, where 0

indicates the healthiest state and 4 is the failure state. Figure 2.5 gives the graphical

representation of this hypothetical system’s reliability structure. The conditional

probability tables for the system and subsystem nodes are given in Appendix A.

System

Subsystem 1 Subsystem 2

Component 1 Component 2 Component 3 Component 4

Figure 2.5: Reliability Structure of the Hypothetical System

Figure 2.6 plots the forecasted system reliabilities over the next thirty time stamps

when the current component states, as detected by sensors, are (0,0,0,0). The reli-

ability curves generated by the PdM-DTMC, PdM-HOMC and PdM-SMC models

are colored as red, black and blue, respectively. Although the three different curves
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exhibit similar patterns, PdM-SMC, which is represented by the blue line, shows the

most noticeable slope change. This is because SMC learned a sojourn time distri-

bution for each component from the given dataset. In other words, SMC will never

predict a shorter sojourn time than the minimum sojourn time in the dataset or a

longer lifetime than maximum sojourn time in the dataset for each healthy state. For

example, component 1 or 2, which is modeled after the fatigue crack dataset, should

not make a transition from state 0 to state 1 within two time stamps, but should

have a transition after six time stamps. Thus, the SMC model will predict a higher

component reliability at the beginning of system operation, which is equivalent to

continuous operation without failure within eight time stamps. On the other hand,

the DTMC and HOMC models provide gradually decreased reliability without the

consideration of maximum/minimum sojourn time. Figure 2.7 provides the estimated

reliability curves with realizations from the two datasets.
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Figure 2.6: System Reliability Forecast

Suppose that a maintenance action should be made when a system reliability is

reduced to 0.88. Table 2.8 provides the forecasted and actual system reliabilities
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when the current component health states are (0,0,0,0). According to PdM-DTMC,

it is necessary to schedule a maintenance action immediately after the third time

stamps, but PdM-HOMC and PdM-SMC would schedule it sometime after time 4.

In addition, components 1 and 2, which are modeled by using the fatigue crack

dataset, are expected to be more deteriorated than components 3 and 4 at the time

of maintenance. Thus, under the current scenario, the maintenance crew should

prepare to repair components 1 and 2. Because these components are continuously

monitored by sensors, the maintenance schedule can be updated based on the latest

sensor data. For example, if after a few time lags these components’ health states

become (1,0,1,0), maintenance schedule can be changed based on the updated system

reliability forecast. Table 2.9 presents estimated and actual system reliabilities when

the current component health states become (1,0,1,0). The maintenance action should

be taken after one time stamp for the PdM-DTMC model (or two and three time

stamps for PdM-HOMC and PdM-SMC, respectively), which is ahead of the previous

schedule. The actual system reliability passes the 0.88 threshold between three and

four time stamps. In this case, component 1 is expected to be the one that will

deteriorate most.

Assume two more scenarios in which PM policies are implemented and mainte-

nance actions are strictly conducted with a time interval of 3 and 5, respectively,

regardless of components’ states. Using Table 2.8 we find that the system reliability

at every maintenance time will be 0.9668 and 0.80425, respectively. If the first PM

policy is implemented, performing the maintenance action is really unnecessary, be-

cause the system is 96.68% reliable; while if the second PM policy is implemented, the

system reliability is considerably lower than the minimum system reliability require-

ment (88%). Starting from the healthy component state, the optimal maintenance

time interval is found to be 4, which is the same result as using the PdM-SMC model.
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Figure 2.7: System Reliability Forecast with Realizations

Table 2.8: System Reliability Forecast When the Current Component State Is
(0,0,0,0)

Time Stamp 0 1 2 3 4 5

PdM-DTMC 0.993449 0.972149 0.934878 0.88475 0.826295 0.763161

PdM-HOMC 0.996449 0.988567 0.965640 0.923567 0.864945 0.788154

PdM-SMC 0.998883 0.998109 0.970592 0.955700 0.919086 0.862322

Actual 0.998973 0.998973 0.998083 0.9668 0.93695 0.80425

However, the PM policy will not predict which component is the most deteriorated

component at the next scheduled maintenance time, nor will it be able to respond

quickly to unexpected component state changes.

In general, the system reliability is forecasted more precisely as we predict a closer

future or a far enough future when system certainly fails. The forecast in the middle

time frame would be masked by a large uncertainty due to many combinations of

component’s health states that can make a wide range of system reliability prediction.

In case that both components and subsystems are monitored by sensors, to esti-
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Table 2.9: System Reliability Forecast When the Current Component State Is
(1,0,1,0)

Time Stamp 0 1 2 3 4 5

PdM-DTMC 0.963627 0.914536 0.854595 0.789705 0.722963 0.655425

PdM-HOMC 0.989084 0.964217 0.902734 0.822558 0.738654 0.652299

PdM-SMC 0.976564 0.953108 0.924117 0.890762 0.780135 0.641278

Actual 0.99639 0.97761 0.93695 0.8876 0.82244 0.82244

mate the system reliability, we only need to know the subsystem sensor data. How-

ever, for the maintenance purpose, the health state of any components that are not

directly monitored can still be inferred from the health states of the subsystem and

other components.

For the system being discussed above, if its subsystem 2 is monitored, for example,

but not component 4, the health state of component 4 can still be inferred by

argmaxXP (X|e) (2.20)

where X indicates the health state of unmonitored component and e is the evidence

(data from sensors).

If the onboard sensors give the health state as (1,0,1,1) where the first three

numbers indicate the health of components 1, 2, and 3, and the last one indicates

the health of subsystem 2. By Eq. (2.20), it can be shown that the health state of

component 4 is 2. Then, the system reliability can be forecasted as if all components’

health states are known. Table 2.10 shows the predicted and actual system reliability

where component 4’s state is inferred from other sensor data. According to the Table

2.10, a maintenance action should be taken immediately by the PdM-DTMC model,

but it will be scheduled either before or after one time stamp by the PdM-HOMC or

PdM-SMC model. Component 4 is determined to be the most deteriorated component
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Table 2.10: System Reliability Forecast When the Current Component State Is
(1,0,1,2)

Time Stamp 0 1 2 3 4 5

PdM-DTMC 0.871578 0.806244 0.743513 0.681589 0.618538 0.553812

PdM-HOMC 0.893245 0.850501 0.786268 0.710403 0.630157 0.545813

PdM-SMC 0.926925 0.882039 0.827157 0.776281 0.670177 0.544600

Actual 0.93973 0.93973 0.86865 0.80425 0.72970 0.64000

at the time of maintenance.

2.5 Conclusion

In this paper, we proposed several integrated Markov chain-Bayesian network

models for forecasting system reliability in oder to implement PdM. Our method

can be applied on any multi-level hierarchical systems where reliability dependency

among components, subsystems and system is stochastic. The main objective of

this study is to predict a future system’s reliability so that a maintenance decision

can be made ahead of catastrophic failure. Three PdM models were proposed and

the performance of their transition matrices were evaluated. According to the fit

statistics, the Markovian property can become a better approximation of degradation

process when the state of DTMC is extended to include the past deterioration history.

Among the three models, DTSMC, in which state transitions consider the sojourn

time of the current state, has more advantages in terms of fitting real data. In

the simulation study, PdM-SMC provides the most accurate prediction of system

reliability than the other two models.

One limitation of the proposed method is the Markovian property. Although we

have successfully modified DTMC in order to more accurately approximate degrada-

tion processes, the increased number of states brings along some undesirable com-
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putational burdens. To overcome this limitation, other approaches such that using

continuous distributions to model system’s state (degradation, performance, residual

life time, etc.) will be investigated in our future research. In addition, the problem

considered in this paper can be extended by adding other failure modes. For example,

external shocks, which is not considered in this study, can be added as a factor that

causes catastrophic failures or acceleration of system deterioration. Some optimiza-

tion models can also be formulated based on the results from this study. To minimize

the system operation and maintenance cost, the time intervals between consecutive

maintenances or the system/subsystem reliability thresholds may become decision

variables to be optimized so that we can maintain a high reliability level while reduce

the total cost.
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Chapter 3

A NONPARAMETRIC BAYESIAN NETWORK APPROACH TO ASSESSING

SYSTEM RELIABILITY AT EARLY DESIGN STAGES

3.1 Introduction

Reliable products provide a significant competition edge to companies in today’s

hyper competitive market by enhancing overall system efficiency. Over the past two

decades, research attentions on design-for-reliability (DFR) had led to the develop-

ment of effective reliability analysis methodologies for evaluating and predicting reli-

ability of complex systems. One major concern in these methodological developments

is how to infuse the system reliability assessment into the system’s early design stage.

It is known that the quality of a product is decided, to a great extent, in its early

design stage (Clark and Paasch, 1996). Specifically, about 80% of a system’s lifecy-

cle cost is decided before the production stages (Buede and Miller, 2016). Besides,

DFR is a critical objective in system engineering for designing the system robust to

its operating environment (Wasson, 2015). However, the early assessment of system

reliability is a very challenging problem because field failure data, which is the ideal

data source for reliability analysis, can only be gathered after the product has been

manufactured and put in use. This is why reliability assessment was considered as

a retrospective activity in the past. Nevertheless, the elevation of customer expec-

tation on product reliability is demanding a proactive approach to system reliability

prediction.

A design process consists of four phases: problem definition stage, conceptual

design stage, embodiment design phase and detailed design phase (Cheng and Du,
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2015). This paper focuses on assessing system reliability as early as at a product’s

embodiment design phase. Note that the embodiment design phase is still at the

beginning of a product’s design process, when no actual products or prototypes have

been manufactured.

We propose to employ a probabilistic graphical model, called nonparametric Bayesian

network (NPBN), introduced in Kurowicka (2005) for modeling and analyzing sys-

tem reliability. As the uncertainty in system reliability structure is incorporated into

the probabilistic relationship between nodes, a BN model is well suited for a com-

plex system design. Moreover, continuous random variables, which are assigned to

nodes in a NPBN, can effectively represent a system’s degradation state. In brief,

the NPBN model can depict the entire reliability configuration of the system and the

strength of relationship between the system and its components. We can gain more

insights of the system’s working and failure mechanisms via sensitivity analysis. This

NPBN approach does not require defining conditional probability tables (CPTs) as

in discrete BNs.

We may choose Gaussian BN to handle continuous distributions. However, Gaus-

sian BN requires that each random variable follows a normal distribution and each

conditional probability distribution should be a linear Gaussian model; whereas NPBN

can handle any type of continuous random variable. In addition, like a hybrid BN,

NPBN is also able to simultaneously model continuous and discrete random variables,

while the details of these had been described in (Hanea and Kurowicka, 2008). The

object-oriented Bayesian networks (OOBNs) can also be a solution to the excessive

computational burden of discrete BNs. It is very effective for handling a large system

with hierarchical structures, where the system can be decomposed into many repet-

itive subsystems. OOBNs have been applied on analyzing some modern complex

systems in various domains (Molina et al., 2010; Cai et al., 2016; Weidl et al., 2005;
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Weber and Jouffe, 2006). However, most of these applications assume that random

variables are discrete and the networks are parameterized by CPTs. Both OOBN and

NPBN attempt to overcome the complexity of inference problem in discrete BNs,

but from different perspectives. OOBN attacks the problem from the perspective of

structured modeling, while NPBN makes the handling of continuous random variable

and parameterization more efficient.

Note that NPBN has only started getting noticed for its system analysis abilities.

In the past decade, discrete BN has been intensively researched and promoted as

a powerful tool for modeling and analyzing system reliability with the probabilistic

reliability structure (Langseth and Portinale, 2007). However, due to the disadvan-

tages mentioned above, the actual application of discrete BN to system design is

still limited. The methodology proposed in this paper expands the bandwidth of BN

applications by including any invertible univariate distributions for nodes. A draw-

back of NPBN is that it relies on Monte Carlo simulation for updating the joint and

marginal distributions in the model. But, it can be avoided by using the normal

copula vine approach presented in (Hanea, 2008).

In this paper, we also developed a Bayesian approach to combining the prior

knowledge of component failure with expert opinions to estimate the correlations

between two nodes in a NPBN. The elicitation of expert opinions on the relationship

between two nodes has been studied in (Morales Nápoles, 2010). However, a better

correlation estimation can be achieved if we utilize additional available reliability data

from relevant designs such as the designs of older product generation.

The rest of the paper is organized as follows: The literature review of system

reliability is given in Section 3.2, while some backgrounds for this study are presented

in Section 3.3. In Section 3.4, we provide a brief introduction of NPBN, the sampling

procedure of NPBN, and the methods for eliciting dependency. A simple illustrative
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example is given in Section 3.5 to show the process of employing NPBN on system

reliability assessment. Section 3.6 discusses a real industrial case. Finally, the paper

is concluded in Section 3.7.

3.2 Literature Review

There are only a few studies on evaluating system reliability at early design stages so

far. Ormon et al. (2002) developed simulation and analytic based methods for pre-

dicting the system reliability at the early stage of design process. Tumer and Stone

(2003) presented a method to predict potential failures at the conceptual design stage

using function-failure relationship. Sanchez and Pan (2011) presented an enhanced

parenting process for a single component. Cheng and Du (2015) provided an opti-

mization model which gives narrower rage of reliability than traditional methods for

a new product at the conceptual design stage.

Recently, Bayesian network models for modeling system reliability structure have

received much attentions from academics. Some detailed comparisons of BN and

fault tree were presented in Torres-Toledano and Sucar (1998); Bobbio et al. (2001);

Langseth and Portinale (2007). Applications of BN to analyzing the reliability of

large structure systems, power systems, military vehicles, and semiconductor manu-

facturing systems can be found in Mahadevan et al. (2001); Yu et al. (1999); Daemi

et al. (2012); Neil et al. (2001); Bouaziz et al. (2013), respectively. Weber et al.

(2012) provided a comprehensive review of BN applications in complex system mod-

eling. They mainly discussed the latest trend of BN model and its various uses on

dependability study, risk analysis, and maintenance applications. Li et al. (2014)

studied the BN in which nodes have multiple states and node information may come

from multiple sources. Incorporating expert opinion elicitation into BN reliability

modeling was addressed in Sigurdsson et al. (2001). Yontay et al. (2015) discussed
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the use of discrete BN for estimating system reliability at the conceptual design stage

through a rigorous functional analysis for complicated systems. The BN was param-

eterized by combining historical failure data (parent products) and expert opinion

solicitation using Bayesian inference. Yontay and Pan (2016) extended the discussion

for scenarios where failure data is simultaneously generated from system level and

component level.

Successful applications of discrete BN to modeling reliability structure can be

found from the publications mentioned above. In addition, mathematically rigorous

methods of fusing subjective information into BN have been provided in some previous

studies too. However, the use of discrete BN is very restrictive in most cases because

the parameterization of a large BN model can be too messy to be manageable. A

disorganized quantification process will result in poor probabilistic inferences. To

overcome these hurdles, we will explore the utility of NPBN for system reliability

assessment.

3.3 Early Phases of Engineering Design

3.3.1 Conceptual Design

For a new product, customers often demand not only proper product functions but

also a high reliability. In the conceptual design phase, such customer’s needs are

identified and the corresponding solutions are found from conceptually established

functional structures. Thus, conceptual design phase is a step of defining relationships

between functions and sub-functions to meet the customer’s needs. Any details about

physical components are not addressed in this phase. Multiple design concepts can

be created in this design phase, and candidates are evaluated and compared.

35



3.3.2 Functional Analysis

A systematic process that fulfills the creation of conceptual designs is called the

functional analysis. The main objective of functional analysis is to define relation-

ship between functions and to identify potential design faults in the system. All

elements of system, which are main- and sub-functions (not physical components),

are identified at beginning of functional analysis. Main functions are decomposed

into sub-functions to reduce complexity of functional structure of the system. Then,

relationship and interactions between these functions are investigated. A thorough

functional analysis could prevent considerable losses in later steps because if a func-

tional failure is only detected in a later design/production phases, it will be more

costly and time consuming to correct the design.

3.3.3 Embodiment Design

In the embodiment design stage, the abstract design concepts generated in the con-

ceptual design stage start being represented by actual components. For any physical

parts fulfilling the intended functions of the product, their general characteristics,

such as overall layout, geometry, preliminary production process, etc., are discussed.

In other words, before creating very detailed designs, the shape and material of the

product and design for manufacturability are determined in accordance with engi-

neering and economical considerations.

The challenge of evaluating a complex system’s reliability at the embodiment de-

sign stage, as well as other early design stages, comes from the design uncertainty,

which can result in the unexpected relationship between components. This is pri-

marily the matter of the lack of knowledge. Besides, analytical tools can also be the

reason for this challenge if these tools cannot take advantage of the useful knowledge
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extracted from any available information. For example, FT and RBD may not be

able to integrate all available information due to the limitation of Boolean logic rules.

However, BN generalizes Boolean logic by defining a probability distribution to each

node, thus the expert’s knowledge can be included into the probability distribution

assign to these nodes. Therefore, BN is a proper analytical tool for analyzing the

reliability of a complex systems at its early design stages.

3.4 Non-parametric Bayesian Networks

In this section, the NPBN method for evaluating a system’s reliability at its early

design stage is proposed. First, we give a brief introduction of NPBN and its prob-

abilistic inference procedure. Then, we discuss how to solicit expert opinions on the

parameters of NPBN model. For some recent applications of NPBN in system designs,

one may see Cooke et al. (2015) and Nannapaneni et al. (2017).

3.4.1 NPBNs and Vines

As mentioned in Section 3.1, NPBN overcomes many application difficulties of discrete

BN (Kurowicka, 2005). Model-wise and computation-wise, a discrete BN model is

often limited by the immense sizes of its CPTs. It becomes an acute problem when we

try to apply discrete BN modeling on continuous nodes by discretizing their states.

Figure 3.1: An Example of NPBN Figure 3.2: Parameterized NPBN

In NPBN, any invertible univariate continuous distribution can be used to define

a node (for convenience, we use ‘continuous random variable’ for ‘invertible univari-
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ate continuous random variable’ to the rest of this paper). More specifically, these

continuous distributions will be transformed to uniform distributions on (0, 1). The

original distribution can be converted back from the their inverse cumulative dis-

tribution functions (CDFs). As Spearman’s rank correlation defines the probability

dependency between two nodes, CPTs are not used. Moreover, all (conditional) rank

correlations in a NPBN are algebraically independent. Fig. 3.1 shows a NPBN exam-

ple. Each node in Fig. 3.1 has a uniform random variable as stated before. On the arc

between X1 and X2, r12 is the rank correlation that indicates their probabilistic de-

pendency. r13|2 is a conditional rank correlation indicating probabilistic dependency

between X1 and X3 for a given value of X2. Conditional rank correlations need not

to be constants in NPBN, because this probabilistic dependency may vary accord-

ing to the value of its conditioning node. For example, in Fig 3.1, the relationship,

r13|2, can be strong when X2 has a large value, and weak when X2 has a small value.

Given a NPBN, (conditional) rank correlations are decided such that if Xn has par-

ent nodes X1, ..., Xj, (conditional) rank correlations are assigned by successively and

cumulatively conditioning on previous parent nodes as follows:

r(Xn, X1) = rn1

r(Xn, X2) = rn2|1

r(Xn, X3) = rn3|12

...

r(Xn, Xj) = rnj|12···(j−1)

For each arc in a NPBN, not only a (conditional) rank correlation but also a

one parameter bivariate copula is assigned (for convenience, we use ‘copula’ for ‘one

parameter bivariate copula’ in the rest of this paper). The copula function defines

the joint distribution of two uniform random variables adjacent to the corresponding
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arc. Because a (conditional) rank correlation is a property of a copula, it can be

realized from a parameterized copula. Any copula function can be used if a zero rank

correlation represents the independence of two uniform random variables. These

copulas have the zero independence property.

In NPBN, no multivariate distribution of nodes is assumed. The joint behavior

of random variables in the network will be explored by Monte Carlo simulation.

However, if a network includes undirected cycles, multiple integrations, which will be

numerically approximated by Monte Carlo simulation, have to be calculated. This

can be very time-consuming if there are many such nodes.

We provide the following definitions needed for constructing a NPBN.

Definition 1 Pearson’s Correlation: A pearson’s correlation between random vari-

ables X and Y , ρXY , with finite expectations, E(X) and E(Y ), and variances, σ2
X

and σ2
Y , is

ρXY =E(XY )−E(X)E(Y )
σXσY

Definition 2 Copula Function: A copula function of FXi(xi), i = 1, 2, ..., n, where

FXi(xi) is the cumulative distribution function of Xi, is the joint distribution of con-

tinuous random variables Xi’s.

C(FX1(x1), ..., FXn(xn)) = FX1,...,Xn(x1, ..., xn)

If there are two random variables in a copula, it is a bivariate copula.

Definition 3 Rank Correlation: A rank correlation of two random variables X and

Y is defined as

r(X, Y ) = ρ(FX(x), FY (y))

where FX(x) and FY (y) are CDFs of X and Y , respectively, and ρ is the Pearson’s

correlation.
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The conditional rank correlation of X and Y given Z has the same definition

except of replacing X and Y by X|Z and Y |Z, respectively. While ρXY indicates a

proportional change rate of two random variables (linear dependency) between two

random variables, X and Y , r(X, Y ) measures the strength and the direction of their

changes (monotone dependency).

Definition 4 Vine: A vine on n variables is a nested set of trees where arcs of ith

tree become nodes of i+ 1th tree, i = 1, 2, ..., n− 2.

A vine is called a regular vine if combined arcs in the ith tree, i = 1, 2, ..., n − 1,

have a common node. D-vine, which is one of regular vine classes, is a vine that

all trees are paths, and it is closely related to NPBN. Fig. 3.3 and 3.4 show the

same D-vine of three variables in two different representations. A (conditional) rank

correlation can be assigned to each arc as a measure of probabilistic dependency.

Figure 3.3: D-vine on Three Vari-
ables Figure 3.4: D-vine Represented by

Paths

Although a multivariate copula itself is a multivariate probabilistic distribution,

this modeling technique may suffer in terms of accuracy and flexibility as the number

of random variables increases (Brechmann et al., 2013). However, by using a vine,

the multivariate probabilistic distribution can be decomposed to multiple bivariate

distributions, which are independently modeled by bivariate copulas. This is called

the vine copula approach and it is much more flexible than a multivariate copula. Al-

gorithms for sampling from particular vines (D-vine or other arbitrary regular vines)

are provided in (Aas et al., 2009; Kurowicka, 2011). The set of conditional indepen-

dences encoded in the BN topology helps us simplify the sampling procedure of a
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D-vine. In other words, the multivariate probabilistic distribution is sampled by the

vine copula approach, where the sampling procedure is simplified according to the

structure of the corresponding BN.

Once copulas and rank correlations are assigned to all arcs on a D-vine, the full

joint distribution has been fully specified. If all random variables on a vine are

continuous, the joint distribution is unique (Kurowicka, 2005).

Sampling a Vine

Probabilistic inference from NPBN is performed through Monte Carlo simulation and

sampling D-vine is carried out whenever an observation is obtained from a node. If

a D-vine is built on n random variables Xi, i = 1, ..., n as in Fig. 3.5, a sample of Xn

is drawn by conditioning on x1, x2, ..., xn−1 using its inverse conditional CDF.

Using copula function, conditional CDF is given as (Joe, 1996)

F (x|y) =
∂Cx,yj |y−j(F (x|y−j), F (yj|y−j))

∂F (yj|y−j)
(3.1)

Then, the sampling procedure for n random variables proceeds as
x1 = u1 if n = 1

xn = F−1(un|x1, ..., xn−1) if n > 1
(3.2)

where un is a sample from the uniform distribution, U(0, 1).

This general sampling procedure is common for vines. An example of sampling

X3 from the D-vine in Fig. 3.3 is provided in Appendix B.

Copula densities and marginal distributions of these random variables can also be

used to represent a joint density distribution. If the joint density distribution has a

D-vine structure, it can be represented as (Aas et al., 2009)

f(x1, x2, ..., xn) = f(x1)f(x2) · · · f(xn)c12c23 · · · c(n−1)n · · · c1n|2:(n−1) (3.3)
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Figure 3.5: A D-vine on n Random Variables

where cij|k = cij|k(F (xi|xk), F (xj|xk)) is the density copula of Cij(F (xi|xk), F (xj|xk)).

All terms in Eq. 3.3 can be found in a D-vine.

Sampling a NPBN

To sample Xi from a fully parameterized NPBN, we need to build a D-vine on random

variables X1, X2, ..., Xi and perform a D-vine sampling. The order of random variables

placed for the D-vine is: Xi, parent nodes of Xi, and remaining random variables

(Hanea, 2008). Suppose that we are interested in the joint distribution of X1, X2, X3,

and X4 where all random variables are continuous, and the a set of causal relationships

is known as Fig. 3.6. Based on the structure of this network, the joint distribution

can be factorized as

f(X1, X2, X3, X4) = f(X1)f(X2)f(X3|X1, X2)f(X4|X1, X3) (3.4)

From this factorization, we use a sampling order 1 → 2 → 3 → 4, although

2 → 1 → 3 → 4 could be another choice. Then, random variables are placed as

(3, 1, 2) and (4, 1, 3, 2) for sampling X3 and X4, respectively. These D-vines are shown

in Figs. 3.7 – 3.10 and we use the sampling algorithm for D-vine. Note that the
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Figure 3.6: NPBN on X1, X2, X3, and X4

sampling procedure can be reduced by utilizing the conditional independence property

implied by a BN structure. The sampling procedures for X3 and X4 in Fig. 3.7 and

Fig. 3.9 are provided in Appendix B.

Figure 3.7: D-vine on X3, X1, and
X2

Figure 3.8: D-vine on x3, X1, and x2
by Paths

Figure 3.9: D-vine on x4, X1, X3, and
x2

Figure 3.10: D-vine on x4, X1, X3,
and x2 by Paths

3.4.2 Eliciting Expert Opinions and Bayesian Inference

In this section, the methodology for eliciting rank and conditional rank correlations

from experts and combining expert opinions and existing data is presented.
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Eliciting Expert Opinions for (Conditional) Rank Correlations

As discussed before, reliability data for a new product do not exist in the embodiment

design stage. Thus, we have to rely on expert opinions for modeling system reliability.

In this paper, we discuss how to obtain (conditional) rank correlation values from

experts. Morales Nápoles (2010) thoroughly studied and presented a structured ap-

proach to expert opinion elicitation of rank correlation. To solicit the relationship

between random variables X and Y , the following question is designed for assessing

the conditional probability of exceedance:

In what probability, Y ’s value that is above qth quantile leads to X’s value that is

above qth quantile?

The question represents (Morales et al. (2008))

Pexpert = P (x ≥ F−1
X (q)|y ≥ F−1

Y (q)) (3.5)

Given the joint density distribution ofX and Y , Eq. 3.5 can be written as (Morales

et al. (2008))

Pexpert = 1
1− q

∫ ∞
F−1
X (q)

∫ ∞
F−1
Y (q)

fXY (x, y)dydx (3.6)

From Eq. 3.6, the parameter of copula can be determined and the rank correlation

can be realized.

In a similar fashion, to solicit the probability of exceedance (conditional rank

correlation), the following question can be asked:

Suppose Z’s value is observed above the qth quantile. In what probability, Y ’s value

that is above qth quantile leads to X’s value that is above qth quantile?

Bayesian Inference for Combining Information

Although the reliability data of a new product are unavailable at its early design stage,

it is possible that we may have some information regarding the correlations between
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different components or different failure modes from the parent products because the

design of a new product usually inherit functions of existing products. Therefore, if

we can combine the information from parent products with expert opinions, we can

obtain a more accurate estimation of rank correlation.

Bayesian inference provides a mathematically rigorous process for integrating in-

formation from different sources. For parameters of interest, prior distributions of

model parameters represent our beliefs and the observations (data) from the system

will form a likelihood function. Using below Bayes’ theorem, these two streams of

information are combined to calculate the posterior distribution of model parameter.

P (A|B) = P (B|A)P (A)
P (B) (3.7)

where P (A), P (B|A), and P (A|B) are prior distribution, likelihood, and posterior

distribution, respectively.

We provide a Bayesian approach to determine the conditional probability of ex-

ceedance, p, which is Pexpert in Section 3.4.2. We treat the information from parent

products and expert opinions as sources for prior distribution and likelihood, respec-

tively, and p can be inferred from its posterior distribution.

First, we define success and failure that is correspondent to X’s value conditioning

on Y ’s value above qth quantile:
X is treated as a success if it is observed above qth quantile

X is treated as a failure if it is observed below qth quantile

To make expert opinions binary type, we can give the question below to many

experts:

Suppose Y ’s value is observed above the qth quantile. What is the expected value

that X will take?
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If the answer is above (below) its qth quantile, it is considered as a success (failure).

Suppose a group of n experts were solicited their opinions, then the number of success

follows a binomial distribution, B(n, p).

Given the historical information of the correlation of these two random variables,

we can fit a beta distribution, Beta(α, β), as the prior distribution for p. In general,

choosing beta distribution provides two advantages:

1. It is flexible in modeling different distribution shapes that fit the data.

2. It is the conjugate prior for binomial likelihood function.

The first advantage is helpful as historical data from parent products may have

various distribution shapes. The second advantage finds the conjugated posterior

distribution for p since expert opinions are binary variables:

Beta(α + x, β + n− x) (3.8)

Once the posterior distribution of p is established, its appropriate statistics such

as mean and mode, or median can be used as the rank correlation value in the copula.

Although we use Bayesian inference and beta-binomial conjugation in this paper,

readers can refer to Liang and Mahadevan (2017) for another method of overcoming

the sparsity of data. Dempster-Shafer theory (DST) is also a well-known approach

in representing uncertainty of experts. Kay (2007) discussed DST from the reliability

point of view. Simon et al. (2008) modeled and performed probabilistic reasoning of

discrete BN in the epistemic manner by integrating the DST.

3.5 Application of NPBN to System Reliability Assessment

In this section, we provide a toy example to demonstrate how to quantify a system’s

reliability without any data in its early design stage. Some assumptions are made

through this paper:

46



1. There are no irrelevant nodes in the Bayesian network model.

2. A functional condition of each component positively influences to the system’s

functional performance (a coherent system).

3. The reliability-wise configuration of the system has been established and expert

opinions on the relationships between nodes are available.

4. Rank correlations are constant and Clayton copula is applied.

We choose Clayton copula because it properly reflects the behavior of deterio-

rated mechanical systems. This reason will be elaborated more at the end of this

section. Any continuous marginal distribution (Yi) is transformed to a uniform ran-

dom variable (Xi) in a NPBN model. In the product design, these random variables

may represent the functional performance of component, sub-system, or system where

the functional performance is defined as the degradation level at time t. Suppose a

component i has an increasing degradation path with a threshold of wi:

Di(t) = f(θi, t) + ei (3.9)

where f(θi, t) is a mean degradation at time t with a set of parameters θi, and ei is

a random variation. The performance of a component i at time t is given by

xi(t) = P (Di(t) < wi) (3.10)

Thus, a higher probability value represents a better performance of the corresponding

component. Besides, a rank correlation indicates the influence that the performance

of one component has on the performance of another component. Bivariate Clayton

copula is used in this paper, which is defined as

C(u1, u2) = (u−θ1 + u−θ2 − 1)− 1
θ , θ > 0 (3.11)
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If a system consists of two components such as the NPBN in Fig. 3.1, the node X1

represents the system’s performance, and nodes X2 and X3 represent its components’

performances. Then, r12 and r13|2 are the probabilistic dependencies between the

system and the two components. The value of rank correlation may vary between

-1 to 1, where a positive (negative) value indicates that the two variables move to

same (opposite) direction in changes, and zero indicates they are independent. In a

coherent system, good performance of a component should not cause bad performance

of another component or the system. If this contradiction happens, the root cause

needs to be sought out and the current design should be adjusted. In this study, we

do not consider negative rank correlation.

Eliciting expert opinions on conditional rank correlation could be challenging if

there are more than one conditioning variable, such as rij|kl. In other words, experts

are questioned about relationship where more than three elements (functional perfor-

mances of system, sub-systems and components) are associated. This is because such

scenario is more complicated and less likely to encounter in past experience. This

consideration affects the order of rank correlation elicitation. The most influential

parent node should be queried first and the least influential parent node should come

last.

In order to decide the rank correlation r12, we ask the following question to ten

experts:

If component 2’s performance is higher than 0.5 quantile, what is the expected

performance of the system?

Suppose seven experts’ answers are greater than 0.5 and Beta(78, 38) is estimated

for the probability of exceedance from parent systems. Considering experience of do-

main experts, we treat each expert opinion as equivalent to ten system tests, so these

expert opinions can be viewed as the data from a binomial distribution B(100, 0.7).
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Beta(78 + 70, 38 + 100 − 78) = Beta(148, 60) is the posterior distribution, and we

can use the mean value, 148/(148 + 60) = 0.712, for estimating the parameter of cop-

ula and the rank correlation. This results in the parameter value of Clayton copula,

θ = 1.442, and the rank correlation, r12 = 0.587, respectively.

For the conditional rank correlation between X1 and X3, the elicitation question

can be framed as

If components 2 and 3 show the performances higher than 0.5 quantile, what is

the expected performance of system?

Suppose that six out of eight experts’ answers are corresponding to success and

Beta(83, 17) is the prior distribution. Then, the posterior distribution is Beta(83 +

60, 17 + 80 − 60) = Beta(143, 37). In order to find the conditional rank correlation,

we build the D-vine on X1, X2, and X3, and estimate the parameter of copula that

shows

Pposterior = P (X1 > 0.5|X2 > 0.5, X3 > 0.5) (3.12)

where Pposterior is derived from the posterior distribution. For Pposterior, we use the

mean, 143/(143+37) = 0.794, and then we get θ = 0.428 and r13|2 = 0.261. Note that

the conditional rank correlation r13|2 is relatively small compared to r12 despite the

posterior distribution has a larger mean value. This is because the answer to the first

question affects the answer to the second question. Fig. 3.2 shows the parameterized

NPBN.

We can conduct sensitivity analysis with the parameterized NPBN. Basically, we

will answer “what-if” questions for a given scenario. For example, if performances

of components are assumed to be X2 = 0.95 and X3 = 0.9 at a specific time point,

the prognosis of the system can be made through simulation. This simulation result

is given in Fig. 3.11. Fig. 3.12 is the result of another scenario, X2 = 0.1 and
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X3 = 0.3. As expected, the system shows high (low) performance when both of

its components are well functioning (not well functioning). From the distribution of

system performance, we can extract any statistics of interest.

Figure 3.11: System’s Performance
Where x2 = .95 and x3 = .9

Figure 3.12: System’s Performance
Where x2 = .1 and x3 = .3

It is also possible to perform the what-if analysis for system diagnosis. Figs. 3.13

– 3.16 give two extreme cases for the illustration purpose. The system’s performance

is set as X1 = 0.9 or X1 = 0.1. Figs. 3.13 and 3.14 depict Components 2 and

3’s performance, respectively, in the high system performance scenario. One can see

that the distribution of X2 has been dramatically changed, while the distribution

of X3 is still close to a uniform distribution. This is because the component 2 is

more sensitive to the system (larger r12). However, from Figs. 3.15 and 3.16 one

can see that when the system performance is low, both components’ performance

will degrade significantly. In addition, if we assign the performance value to the

conditioning component, the other component’s performance can be predicted. For

example, let X2 = 0.5, then, for X1 = 0.1 and X1 = 0.9, Component 3’s performance

are shown in Figs. 3.17 and 3.18, respectively.

Figure 3.13: Component 2’s Perfor-
mance Where x1 = .9

Figure 3.14: Component 3’s Perfor-
mance Where x1 = .9

Another interesting observation from these sensitivity analyses is that when the

values of conditioning variables are smaller, the distribution changes in other vari-
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Figure 3.15: Component 2’s Perfor-
mance Where x1 = .1

Figure 3.16: Component 3’s Perfor-
mance Where x1 = .1

Figure 3.17: Component 3’s Perfor-
mance Where x1 = .1 and x2 = .5

Figure 3.18: Component 3’s Perfor-
mance Where x1 = .9 and x2 = .5

ables will be more noticeable. This is due to the lower tail dependence property of

Clayton copula, which is demonstrated in Fig. 3.19. This figure shows samples from

a bivariate Clayton copula with the rank correlation of 0.885 and one can see the

stronger correlation when the two variables are having smaller values. It is the lower

tail dependence of these variables. In contrast, Gumbel copula possesses an upper tail

dependence such that the dependence becomes stronger when variables have larger

values, which is shown in Fig. 3.20 with a Gumbel copula of 0.943 rank correlation.

Note that some copulas such as Frank copula and Gaussian copula do not have the

tail dependence property. In our example, the sensitivity analyses results can be ex-

plained that the impact of a relevant component of the system is stronger when it does

not function well than when it is well functioning. Thus, this lower tail dependence

property is a desirable property and it is the reason for using Clayton copula.

Note that, in this example, the marginal distributions of all nodes are distributed

in (0, 1) and they can be easily converted back to their original distributions. One of

the advantages of NPBN is that we can decouple the marginal distribution of each

node from the probabilistic model of the whole system and the decision making can

be made by using only the correlation structure in the system model. All simulation

codes used in this paper were written in R and they are available from the authors
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Figure 3.19: Lower Tail Dependence
of Clayton Copula

Figure 3.20: Upper Tail Dependence
of Gumbel Copula

upon request.

3.6 Case Study

In this section, the proposed methodology is applied on the reliability assessment of

automated production line of Li/MnO2 Cell described in Zhang et al. (2011). The

Li/MnO2 Cell production line is an assembly line for main parts (negative shell,

positive shell, lithium-chip, and MnO2 chip) of the battery and it requires highly

efficient process and reliability in order to meet an increasing demand. Zhang et al.

(2011) applied Fault Tree Analysis (FTA) to this automated production line and

showed the areas for improvement.

3.6.1 Model Specification

In the automated production line, there are five main modules that may cause the

entire system failure. Among these five modules, we focus on the cut Lithium-chip

module. The reliability structure of the cut Lithium-chip module modeled by a fault

tree, which is given in (Zhang et al., 2011), is shown in Fig. 3.21. To demonstrate

the use of NPBN in this case, we assume that the reliability structure is known, (con-

ditional) rank correlations are constant, bivariate Clayton copula is appropriate, and
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Figure 3.21: Fault Tree of the Lithium-Chip Manufacturing Process

all (conditional) rank correlations have been elicited from domain experts. To eval-

uate the current design and make proper decision for each node, we set the required

system’s performance as ‘kth percentile value of samples’ at the mission time, and it

is denoted by xT (reliability target). Based on the elicitation technique presented in

3.4.2, we let the quantile q, percentile k, and system performance xT to be q = 0.5,

k = 50, and xT = 0.9, respectively.

The NPBN structure of the system is shown in Fig. 3.22 and these nodes are

• X1: Air pressure performance

• X2: Solenold pilot actuated valve performance

• X3: Magnetic switch position performance

• X4: Cut lithium-chip mold performance

• X5: Cylinder performance

• X6: Sensor position performance

• X7: Lithium-belt performance

• X8: Sensor performance
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• X9: Cut lithium-chip performance

Nodes X9, X5, and X8 are defined as the system, subsystem 1, and subsystem 2,

respectively. The parameterized NPBN is given in Fig. 3.23.

Figure 3.22: NPBN Structure of the Lithium-Chip Manufacturing Process

Figure 3.23: Parameterized NPBN of the Lithium-Chip Manufacturing Process

3.6.2 Simulation Result and Sensitivity Analysis

The aim is to predict the system reliability and decide if the current design is accept-

able. In this case study, two scenarios of prognosis and diagnosis are presented. In

the first scenario, we assume the performances of all components at the mission time

T , and the distribution of system performance at time T will be given as the result.

In the second scenario, we want to diagnose the performances of some components at

the mission time T .
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For the first scenario, Table 3.1 provides the expected performance of each compo-

nent and the resulting fiftieth percentile value of system performance (X9). Because

the fiftieth percentile value, xT , is smaller than its target reliability 0.9, the current

design is unacceptable.

X1 X2 X3 X4 X6 X7 X9

0.84 0.75 0.65 0.7 0.81 0.65 0.884
Table 3.1: Expected Components’ Performance and System Reliability at Time t

To improve the design, we conducted a Morris global sensitivity analysis, which

measures not only the influence of an input to output but also its interactions with

other inputs based on its elementary effects. For each input, an elementary effect is

calculated as follow

EEi = f(X + ei∆i)− f(X)
∆i

i = 1 . . . n (3.13)

where X is a start value which is a n-dimensional input vector, ei is a n-dimensional

vector with all zeros except for ith entry that is ± 1, and ∆ is an amount of variation.

One trajectory is generated when all EEi are calculated. Generating r trajectories,

below two statistics are computed:

µi = 1
r

r∑
j=1

EEj
i i = 1 . . . n (3.14)

σi =
√√√√ 1
r − 1

r∑
j=1

(EEj
i − µi) i = 1 . . . n (3.15)

where EEj
i indicates the elementary effect of ith input in jth trajectory. Larger values

of µi and σi imply a strong influence to the output and an interaction with other

inputs, respectively. However, Campolongo et al. (2007) proposed a modified version

of µi because the opposite sign of EEj
i can offset its significance.

µ∗i = 1
r

r∑
j=1
|EEj

i | i = 1 . . . n (3.16)
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The sensitivity analysis simultaneously considers, µ∗i and σi.

µ∗ σ σ/µ∗

X1 0.11812 0.06296 0.53304

X2 0.17682 0.09903 0.56004

X3 0.13081 0.07116 0.54403

X4 0.28646 0.15569 0.54352

X6 0.06483 0.03379 0.52119

X7 0.59093 0.21732 0.36776
Table 3.2: Results of the Morris Sensitivity Analysis

We set r = 20 and the results are given in Table 3.2, which do not show nonlin-

earity or significant interactions as all σ/µ∗ are smaller than 1 (Menberg et al., 2016).

The priority of component improvement should be decided in the descending order

of µ∗. As Component X7 is the most effective component for increasing the entire

system’s reliability, we may concentrate on improving this component. It turns out

that as long as Component X7’s performance is guaranteed above 0.75, instead of

0.65 as in the current design, the system can reach its reliability target. However,

if it is impossible or very costly to modify Component X7, Components X4 and X2

will be next candidates to be considered because they are second and third in line for

affecting system reliability.

In the second scenario, both of the system’s target performance (X9) and the

sub-system 2’s expected performance (X8) are required to be 0.9, and component 3

and 4’s performances are expected to be 0.67 and 0.6 at the mission time T . The

simulation is run with the condition of X9 = 0.9, X8 = 0.9, X4 = 0.67 and X3 = 0.6.

The resulting performance distributions of components X1, X2, X6 and X7 are given in

Figs. 3.24 – 3.27. Utilizing the simulation result, we can set the minimum performance
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requirements of these components. As in the first scenario, engineers also need to

consider financial and engineering constraints when they make component design

recommendations.

This case study demonstrates that at the early design stage of a system, even

though the system information is very limited and there is no any system testing

data, we are still able to quantify the performance of the system or its components

by using NPBN. This is because we can integrate the engineering knowledge from

system reliability structure and the prior information of rank correlations between

components and system into the NPBN framework. Through the simulation, we can

specify the minimum performance requirement of each component for achieving the

system reliability target. Therefore, system design and system reliability assessment

should be performed concurrently, instead of sequentially as in the common engineer-

ing design practice.

3.7 Conclusion

In this paper, we propose the methodology of evaluating and analyzing system reli-

ability at its early design stages. The objective is to decide if the current design is

Figure 3.24: Component 1’s Ex-
pected Performance

Figure 3.25: Component 2’s Ex-
pected Performance

Figure 3.26: Component 6’s Ex-
pected Performance

Figure 3.27: Component 7’s Ex-
pected Performance
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acceptable in terms of reaching its reliability target and, if not, how to improve the

current design. Given that no physical products and product tests are available at

these stages, historical data from parent products and expert opinions on the product

design are the main sources that we can draw knowledge from.

The NPBN model is proposed because it is intuitive to elicit the information of

the relationship between system performance and component functionality. The rank

correlations between nodes in a NPBN model can be specified by eliciting domain

experts’ opinions and by infusing the existing knowledge from parent products into

expert opinions. In contrast to building system reliability as a deterministic func-

tion, the BN model defines a probabilistic relationship between system reliability and

its component functions. The use of NPBN overcomes the limitation of discrete BN,

which can have an unmanageable size of CPTs for a complex system when discretizing

continuous random variable. Thus, NPBN is very useful tool for quantifying system

performance at its early design stages. Through Monte Carlo simulation, probabilis-

tic inferences for system prognosis and diagnosis can be carried out, and appropriate

decisions can be made. All the simulation results presented in this paper are consis-

tent with intuitions; but, by quantifying them, the proposed methodology can assist

decision makers to evaluate design options and to improve the current design.

Therefore, we explore the utility of NPBN to quantify a product’s reliability even

before the product is manufactured. This approach helps the designer to adjust

product design as early as possible. Furthermore, to assist in designing reliability of

a complex system, we demonstrate the what-if analysis by using NPBN model for the

reliability prognosis and diagnosis of system and its components.
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Chapter 4

SYSTEM RELIABILITY DESIGN VIA A NONPARAMETRIC BAYESIAN

NETWORK APPROACH

4.1 Introduction

To develop a new system, a designer will create a set of design specifications based

on the intended system functions. Reliability is always one of the cardinal concerns

for system design in a variety of applications, since it may directly affect the safety

of people, organization, environment, etc. Therefore, substantial efforts have been

devoted to achieving the desired system reliability at various system design stages.

For a system that consists of many subsystems and components, its reliability can

be improved through either adding redundancy or wisely allocating reliability targets

to its components. Reliability allocation is an iterative process of assigning reliabil-

ity specifications to individual components such that the entire system can meet the

overall reliability target. It is an important step in the engineering design process

because it provides a deeper understanding of the reliability relationship between

system and component and cooperates implicit and explicit constraints such as func-

tional requirements, technology, cost, etc. (Lamberson and Kapur, 1977). Therefore,

a mathematically rigorous reliability allocation process can assure the economical use

of resource, as well as the maximization of system reliability, in developing a new sys-

tem. These advantages have sparked the growing interest in developing competitive

reliability allocation strategies, which is even more challenging nowadays due to the

increasing system complexity (Elegbede et al., 2003).

A typical engineering design process needs to go through three main design stages

59



– conceptual design, embodiment design, and detail design – to produce a system

with specific design specifications and concrete design materials. In the conceptual

design stage, a new system’s functional structure is constructed by specifying the

relationship between main function and sub-function and between sub-function and

sub-sub-function, etc. Engineers identify potential functional deficits and safety haz-

ards of the new system and propose solutions. In the embodiment design stage, the

solutions found in the conceptual design stage are further developed by identifying

proper components and the assembly of these components. Then, engineers can gen-

erate the initial physical layout of the system under the bounds of economical and

engineering feasibilities. Note that most information generated in the conceptual and

embodiment design stages is qualitative and abstract. Only in the detail design stage,

the very specific physical attributes of components will be determined and the man-

ufacturablity of the system will be evaluated. In general, system reliability should

be assessed as soon as the system design concept has been formulated, as the re-

liability requirement can guide system design changes in the early design stages to

avoid any costly late change. In practice, reliability allocation to components often

happen at the embodiment stage so that the reliability target to each component can

be adequately specified before other engineering specifications are laid out.

Some conventional reliability allocation techniques used in industry include the

equal reliability allocation rule, ARINC (developed by the ARINC Research Corpo-

ration), and AGREE (advocated by the Advisory Group on Reliability of Electronic

Equipment). Their popularity comes from the easiness of applying these methods

and, sometimes, reasonable results. However, these methods are only pragmatic un-

der several restrictive assumptions. For example, it is assumed that the system must

have a series reliability structure configuration and each component must have a

constant failure rate. Besides, seldom do these conventional methods deal with the
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economical and engineering feasibility constraints in system designs. Actually, the

assumptions aforementioned significantly limit the use of these reliability allocation

techniques. To overcome these limitations, there have been some new developments

on reliability allocation methodologies for the systems that have more complex relia-

bility structures such as parallel-series, series-parallel, k-out-of-n, etc. Most of them

formulate the reliability allocation problem as an optimization problem in terms of

minimizing the system development cost (or maximizing the system reliability) sub-

ject to meeting its targeted reliability (or not exceeding a given system development

budget). The optimization problem can become very challenging as it may involve

convoluted constraints and multi-objective functions. Furthermore, most of the previ-

ous research assumed a deterministic reliability structure and well-established model

parameters that can be estimated from a large amount of field data. These assump-

tions make the system reliability estimation problem mathematically malleable and

the reliability allocation problem relatively straightforward. However, at a system’s

early design stage, as considered in this paper, the understanding of system reliabil-

ity structure is often obscure due to the absence of field system performance data.

Another assumption that often appears in previous studies is to assume the discrete

state space for the system. For example, a binary state space is defined for a system

with functional or dysfunctional state, or a multiple-state space for more detailed

system performance levels. However, a generalized description of system condition

is a continuous state change such as degradation, corrosion and deterioration. A

prevailing approach to handling continuous states is through the discretization of a

degradation process (Luque and Straub, 2016). However, this approach has to make

the tradeoff between accuracy and computational efficiency.

In summary, there are at least four challenges in the reliability allocation prob-

lem at an early system design stage: the lack of reliability data, the obscurity of
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system reliability structure, the difficulty in handling continuous system condition,

and the intricacies in optimization. The first three items will hinder the accuracy of

system reliability estimation, while the last one adds more computational difficulties

to finding the optimal reliability design.

4.1.1 Contributions

This paper presents a new approach to tackling these challenges. Our proposed

methodology focuses on a multi-component system where the system reliability struc-

ture is non-deterministic. We use non-parametric Bayesian network (NPBN) in mod-

eling and analyzing system reliability structures. NPBN is a directed acyclic graph

(DAG) where any univariate invertible continuous random variables can be used.

Nodes in a NPBN will be associated with the operating conditions of the system and

its components in terms of their failure probabilities. Fig. ?? illustrates the change of

failure probability of a system over time due to its degradation. Note that the black

curve is a mean degradation path, while the distribution of system performance at a

given time t is represented by a blue bell-shaped curve. Whenever the performance

exceeds the red line (the threshold value), a failure occurs. Based on the NPBN

model evaluation, Genetic Algorithm (GA) will be used for solving an optimization

problem of reliability allocation. Therefore, the proposed methodology allows us to

explore the dynamic behavior of a system at early design stages and can be used as

a decision support tool for system design.

In this paper, we propose to integrate the NPBN model with component degrada-

tion to model a continuous-time system. The full description of NPBN can be found

in (Kurowicka, 2005). Like Bayesian network (BN) and dynamic Bayesian network

(DBN), NPBN is a graphical representation of a multivariate distribution with a set

of conditional independence; however, unlike BN and DBN, it can handle any contin-
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Figure 4.1: Failure Probability of Component over Time

uous distributions as its nodes. It uses (conditional) rank correlations to specify the

association between nodes, instead of CPTs. In this research, the parametric lifetime

distribution that is generated from a degradation model is defined as a node of NPBN.

The joint distribution of the network is defined by a set of bivariate copula functions.

Following the system reliability analysis, GA will be applied to generate new designs

by allocating reliability requirements to individual components. The overall objective

is to minimize the total system development cost, while the reliability target is served

as a constraint. Through this paper, we assume that the overall layout of a new

system has been determined and the functional requirements of each component need

to be specified. Thus, the proposed methodology is best applied in the embodiment

design stage. Fig. 4.2 illustrates our methodology when Di indicates a degradation

path of a component Xi with a set of associated parameters θi.

4.1.2 Organization

The rest of this paper is organized as follows: A literature review on system

reliability and reliability allocation is given in Section 4.2. Then, Section 4.3 describes

how NPBN may be used for system reliability modeling. The methods for parameter
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Figure 4.2: Framework of the Proposed Methodology

estimation in NPBN are presented in Section 4.4. The proposed methodology, along

with examples and a case study, is explained in Section 4.5 and Section 4.6. Finally,

the research is concluded in Section 4.7.

4.2 Literature Review

For analyzing a complex multi-component system, Bayesian network (BN) and dy-

namic Bayesian network (DBN) have been proposed for modeling uncertainties in

system reliability structures. Note that traditional reliability analysis tools, such as

fault tree (FT) or reliability block diagram (RBD), can be generalized to BN models,

which greatly empower system modeling and analysis (Su et al., 2016). The detailed

comparison of these traditional tools with BNs can be found in Langseth and Portinale

(2007).

DBN is an extended version of BN because it is constructed by duplicating the

same BN at sequential discrete time points and successive BNs being connected by
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arcs, called ‘inter-time-slice edges’. While a single BN is a multivariate distribution

at a fixed time point, DBN is a random process of the multivariate distribution.

For an effective representation of the random process, the Markov assumption can be

embedded in DBN such that Xt is influenced only by Xt−k:t−1 with k = 1, 2, . . . , t. It is

called a stationary process where the transition and observation models are invariant

in time t. The most compact DBN model is the first order DBN, and it is also

known as the two-timeslice BN (2TBN). By encompassing a temporal dimension into

DBN, more versatile reliability analysis can be conducted such as system prognosis

(prediction), reliability estimate (filtering), system diagnosis and analysis of past

system states (smoothing).

Although DBN may seem to be an ideal tool for modeling the stochastic behav-

ior of a system, its use is actually quite limited in real-world problems. One of the

shortcomings of DBN is the size of the conditional probability tables (CPTs). As in

BN, nodes (random variables) on the network are discrete and their joint distribution

is defined by CPTs. As the nodes in the network and their number of states grow,

the size of CPTs will explode. Any DBN has to deal with this problem when dis-

cretizing continuous nodes. Eventually, there will be too many parameters in CPTs

to be properly estimated and maintained. Gaussian Bayesian networks can handle

continuous nodes. However, this approach requires that each random variable follows

a (conditional) Gaussian distribution and their joint distribution is restricted to a

multivariate Gaussian distribution.

In literature, Yontay et al. (2015) applied BN to model and analyze complex

systems at conceptual design stage and Yontay and Pan (2016) used BN to evaluate

a hierarchical system when simultaneous failure at different system levels happen.

Cai et al. (2016) presented Object-Oriented BN (OOBN) approach for real time fault

diganosis. Weber and Jouffe (2006) presented Dynamic OOBN (DOOBN) in modeling
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complex systems. Lee and Pan (2018) presented a NPBN approach to analyzing

system reliability at system’s early design stages. However, BN has been of little

help when dealing with a system’s evolution over time such as degradation, corrosion,

fatigue, etc. In order to model these stochastic factors, dynamic FT (DFT), dynamic

RBD (DRBD) and dynamic BN (DBN) had been developed and applied on dynamic

systems. DFT and DRBD were compared in Distefano and Puliafito (2007). The

relationship between DRBN and DBN was discussed in Cai et al. (2017).

In fact, BN is capable of modeling a temporal dimension if a node is defined

for time intervals that a specific event can occur. This is called the “event-based”

approach. Boudali and Dugan (2005) and Boudali and Dugan (2006) provided the

framework of “event-based” approach for modeling system where nodes take discrete

and continuous random variables, respectively. On the other hand, DBN subsequently

constructs the same BN to build a time dimension (Boudali and Dugan, 2005; We-

ber et al., 2012). This is a the “time-sliced” approach. Weber and Jouffe (2003)

compared Markov Chain (MC) and DBN in modeling dynamic systems and shows

the advantages of DBN over MC. Salem et al. (2006) provided a formalism and in-

ference techniques in modeling and analyzing system reliability using DBN. Luque

and Straub (2016) used DBN to model a deterioration process of a structural sys-

tem while the parameters in BN are updated based on inspection and monitoring

results. Su et al. (2016) modeled a multi-state system with DBN using structural

analysis and design technique (SADT) and failure mode and effect analysis (FMEA).

Cai et al. (2017) presented a methodology for fault diagnosis through fault symp-

toms of electronic systems using DBN where degradation processes of components

are modeled by Markov models. Montani et al. (2008) developed a software tool for

conversion between DFT and DBN in modeling and analyzing the system reliability.

Cai et al. (2015) proposed a two phase approach for real time system diagnosis and
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reliability evaluation using BN and DBN based on sensor data and observed informa-

tion. McNaught and Zagorecki (2009) and Ozgür-Unlüakın and Bilgiç (2006) applied

DBN to the optimal maintenance policy of multi-component systems. Lee and Pan

(2017) used discrete time Markov chain (DTMC) and BN for predictive maintenance

of multi-component systems where DTMC and BN are employed for a degradation

process of each component and an evaluation of system reliability, respectively. Cózar

and Gámez (2017) developed a decision support system (DSS) to detect failures in

advance for predictive maintenance using DBN. In relation to literature above, copula

theory is also increasingly adapted in modeling a dependence structure of complex

system. Wang and Pham (2012) developed the competing risk models considering a

dependent relationship of degradation processes and catastrophic shocks. Zhang and

Wilson (2017) studied the influence of dependence structure to system reliability and

component importance for binary and multi-state systems.

To balance between the improvement of reliability of a system and the resource

consumptions, many methodologies have been suggested on reliability allocation prob-

lem and redundancy allocation problem. In general, each component has a non-linear

cost function for reliability improvement. The objective is to minimize the develop-

ment cost while the target reliability is treated as a constraint. Kuo and Wan (2007)

provided the comprehensive overview of these two problems for various types of sys-

tem according to problem formulation and optimization techniques. Mettas (2000)

developed a general non-linear optimization approach for reliability allocation prob-

lem. Yalaoui et al. (2005) studied series-parallel systems under the specific convex

condition for cost functions. Kim et al. (2013) proposed a methodology of weighted

reliability allocation considering a failure effect that is a measure of failure probabil-

ity and severity. Yang et al. (1999) applied GA for optimal reliability allocation of

pressurized water reactor. Guo et al. (2014) presented a reliability allocation method
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with confidence levels for various reliability configurations. Elegbede et al. (2003)

proposed a methodology of reliability and redundancy allocation problem for general

parallel-series structure. Garg and Sharma (2013) presented a fuzzy optimization for-

mulation for overcoming ambiguity and vagueness of system complexity and human

judgement and a particle swarm optimization technique for solving the optimization

problem. Zhao et al. (2013) studied redundancy allocation problem for two compo-

nent series systems where all components and redundancies have exponential lifetime

distributions. Yun et al. (2007) provided a formulation of multiple multi-level (sys-

tem, subsystems and components simultaneously) redundancy allocation problem and

solved it using GA.

Various approaches have been proposed for system reliability modeling and relia-

bility allocation problems in complex industrial systems. However, the four challenges

mentioned in Section 4.1 are still largely unsolved, which motivates us to develop a

more flexible and practical method. In this paper, we propose to integrate NPBN

and degradation path models to study a system’s behavior over time, and thus to

better design a system to meet its reliability target.

4.3 Non-parametric Bayesian Networks

The Bayesian network model is a directed acyclic graph (DAG) representing a mul-

tivariate distribution, in which nodes and arcs indicate random variables and prob-

abilistic dependencies between pairs of random variables. Nonparametric Bayesian

networks (NPBN) are suitable for continuous multivariate distributions. Any con-

tinuous random variable can be defined as a node in a NPBN, as long as its dis-

tribution function is invertible. Therefore, each marginal distribution can be trans-

formed to a uniform distribution by its cumulative distribution function (CDF) such

as Ui = FXi(xi). Then, NPBN is a DAG of multivariate distribution with marginal
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uniform distributions at its nodes and this is called a multivariate copula.

The simplest copula is the bivariate copula. For any two uniform random vari-

ables, Ui and Uj, connected by an arc which indicating the rank correlation, rij, or

the strength of directed probabilistic dependency between them. The rank corre-

lation represents a monotonic relationship between two random variables. Then, a

bivariate copula function, C(FXi(xi), FXj(xj)), defines the joint distribution of these

two uniformly distributed random variables. By assigning a bivariate copula to each

arc in a NPBN, we can build the multivariate distribution for a given network struc-

ture. To make probabilistic inferences from a series of bivariate copulas, Monte Carlo

simulation is commonly utilized.

Bivariate copula function is the most fundamental unit of NPBN that possesses

two important properties in terms of defining the probabilistic relationship between

two uniformly distributed nodes. As the first property, the rank correlation between

two nodes can be calculated by (Cherubini et al., 2004)

r(X, Y ) = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3, (4.1)

where U and V , the two uniformly distributed random variables, are transformed

from the marginal distributions of random variables X and Y , respectively; C(u, v)

is the copula function defined as C(u, v) = FX,Y (F−1
X (u), F−1

Y (v)).

Another property of bivariate copula is called the zero independence property; that

is, a copula becomes an independent copula (C(u, v) = uv) when its rank correlation

is zero.

As an example of building a multivariate distribution, consider the three uniform

random variables, X1, X2, and X3, without the assumption of multivariate normality.

Modeling the multivariate distribution with some Archimedean copula functions (a

trivate copula function in this example) can be a general approach as they are capable
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of measuring dependencies between random variables for non-elliptical distributions.

However, the application of Archimedean copula in high-dimension is limited because

it allows only one parameter to capture dependencies. In fact, most previous research

had focused on bivariate copula families and many publications have shown successful

applications of bivariate copulas to various fields (Brechmann et al., 2013).

With the BN model, a multivariate distribution can be decomposed to a set of

bivariate distributions based on the conditional independence among random vari-

ables. Given the network structure, NPBN utilizes a series of bivariate copulas to

model the entire joint distribution. For a node having more than one parent nodes,

we specify conditional rank correlations for some arcs so that a value of the node is

defined based on values of all its parent nodes. More specifically, if a node, Xn, has j

number of parent nodes, the probabilistic relationship within each copula is given by

r(Xn, Xm) = rnm|12···(m−1) m = 1, .., j

When m = 1, there is no conditioning random variable.

Fig. 4.3 shows one example of the multivariate distribution of three nodes, X1,

X2, and X3. We can see the direct influence of Nodes X2 and X3 on Node X1, as

well as their strengths, r12 and r13|2, from the graph. Note that for modeling the

joint distribution of this NPBN, the bivariate copula function between two nodes can

be independently chosen and the multivariate distribution of the three nodes in this

𝑋3 𝑋2 

𝑋1 

𝑟12 𝑟13|2 

Figure 4.3: A Simple NPBN
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example is then decomposed to two bivariate copulas defined with rank correlation

or conditional rank correlation.

4.3.1 NPBN and D-vine

To facilitate the computation for probabilistic inferences in NPBNs, it is necessary to

introduce another probabilistic graphical model called vine. A vine provides a specific

dependence structure that consists of a set of nested trees, where arcs on ith tree is

defined as nodes on i+ 1th tree. If the arcs sharing a common node in the ith tree are

always linked by an arc in the i + 1th tree, it is called a regular vine (Morales et al.,

2008). Vine can be viewed as an alternative representation of NPBN for facilitating

probabilistic computing.

There are several types of regular vine such as D-vine, C-vine and R-vine, but

only D-vine is adapted in NPBN where all trees in D-vine are paths. Two examples

of D-vines are shown in Fig. 4.4 and 4.5. Obviously, Fig. 4.4 is a path. In Fig. 4.5,

the 1st tree is a path consisting of random variables X1, X2 and X3, and the 2nd tree

is formed by linking the arcs in the 1st tree.

1 2 
𝑟12 

Figure 4.4: D-vine on Two Random
Variables

1 3 2 
𝑟12 𝑟23 

𝑟13|2 

Figure 4.5: D-vine on Three Random
Variables

For each arc, adjacent nodes are probabilistically related. A vine uses rank corre-

lation or conditional rank correlation to indicate the strength of relationship. Three

conditional rank correlations, r12, r23 and r13|2, are shown in the D-vine in Fig. 4.5.
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To map Fig. 4.5 to Fig. 4.3, as Nodes X2 and X3 are independent, r23 should be set

to zero.

If we assign a bivariate copula to each arc on a vine, a multivariate distribution

can be defined similarly to NPBN. This is the vine copula approach.

4.3.2 Sampling D-vines

Monte Carlo simulation is implemented to draw samples of random variables in

NPBN, where parent nodes are always sampled ahead of child nodes. The sam-

pling order of parent nodes can be derived from the factorization order of the joint

distribution of BN. For example, the NPBN in Fig. 4.3 can be factorized as:

f(X1, X2, X3) = f(X3)f(X2|X3)f(X1|X2, X3) = f(X3)f(X2)f(X1|X2, X3) (4.2)

Then, the sampling order can be decided as X3 → X2 → X1. With the given sampling

order, each random variable can be sampled by constructing the corresponding D-

vine.

Suppose we want to take a sample of random variable Xi. The corresponding

D-vine is built on random variables, Xi, and its parent nodes. Then, these parent

nodes are sampled first (many sampling orders may exist among parent nodes) and a

sample of random variable, Xi, is taken conditioned on the sampled values of parent

nodes. Sampling a D-vine is an iterative procedure of sampling from a bivariate

copula, where a sample of random variable can be taken from a bivariate copula as

follows:

xi = F−1
rij ;xj(u) (4.3)

where u is a sample from a standard uniform distribution, U(0, 1), and xj is the

conditioning value of a parent node; rij is a probabilistic dependency between two

random variables Xi and Xj; F is a conditional distribution function of Xi.
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Generally, random variables in a vine are successively sampled conditioning on

values of all previous random variables. Suppose a vine consisting of n random

variables. Then, a sample of the first random variable, x1, is u1, which is randomly

taken from a uniform distribution, U(0, 1), and the remaining random variables are

sampled as follow:

xn = F−1
rn(n−1);xn−1(un|x1, ..., xn−1) (4.4)

where un, n = 2, ..., n, is a sample from the uniform distribution, U(0, 1). The detailed

sampling algorithm of D-vine is explained in Aas et al. (2009).

4.4 Estimation of Conditional Rank Correlation

In this section, we introduce two methods for specifying conditional rank correlations

that are needed for defining a NPBN. In general, this statistic can be easily calculated

if data are available. However, as our study focuses on the embodiment design stage

where field failure data are absent, we resort to the opinions from domain experts

and the data from parent products (historical data) for correlation estimation.

The first method will be used when expert opinion is the only obtainable informa-

tion source. The structured inquiry method developed in Morales et al. (2008) can

be utilized to learn the rank correlation or conditional rank correlation between two

nodes. If historical data are also available, Bayesian inference technique can be used

to integrate information from different channels to estimate rank correlations. This

second method was introduced in Lee and Pan (2018).

Both methods aim to estimate a conditional exceedance probability, which is de-

noted as PEP in Equation (4.5). Then, we can determine the parameter in copula
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function, as well as the rank correlation, by using Equation (4.1).

PEP = P (x ≥ F−1
X (q)|y ≥ F−1

Y (q))

= 1
1− q

∫ ∞
F−1
X (q)

∫ ∞
F−1
Y (q)

fXY (x, y)dydx
(4.5)

4.4.1 Elicitation of Expert Opinions

In order to estimate a conditional exceedance probability of random variables X and

Y , domain experts are queried about the following association:

Suppose that the random variable Y has a value above qth quantile, what is the

probability that the random variable X also has a value above qth quantile?

Given an answer, we can calculate a rank correlation using Equations 4.5 and 4.1.

In a BN structure, the random variables X and Y are a child node and parent node,

respectively. For a conditional rank correlation such as rXY |Z , we will structure a

slightly different query such as:

Suppose that the random variable Y and Z have values above qth quantile, what is

the probability that the random variable X also has a value above qth quantile?

4.4.2 Bayesian Information Fusion

If a new system shares some part of its system reliability structure with a parent

system, the historical data should be very useful information. Besides, expert opinion

is a complement of historical data so these information should be combined. We use

Bayesian inference technique to accomplish the information fusion.

Bayesian inference is an inductive statistical approach that an initial belief (prior

distribution) is updated based on evidence (likelihood) for parameters of interest.

The updated initial belief is a posterior distribution in which probabilistic inference

is made.

In order to utilize information from two difference sources to estimate a condi-
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tional rank correlation, we treat the distributions derived from historical data and

expert opinions as the prior distribution and the likelihood function for a conditional

probability of exceedance, respectively. Specifically, expert opinions will be translated

to statistical data by encoding the opinion into binomial type of data. An expert is

questioned the query given in Section 4.4.1 for a probability dependency between two

random variables, X and Y . If an answer is higher than qth quantile, we convert it

into 1 (success), and vice versa.

Suppose we have compiled n answers where Ai is an answer from the ith domain

expert. Then, the fitted Binomial distribution is Bin(n,
∑n

i=1 Ai
n

).

We choose a Beta distribution, Beta(α, β) to fit the historical data. It is not

compulsory but a Beta distribution is preferred because not only it is very pliable for

various shapes of data but also it is a conjugate prior with binomial type of data.

Given a likelihood and a prior distribution, a posterior distribution can be calculated

as

Beta(α +
n∑
i=1

Ai, β + n−
n∑
i=1

Ai). (4.6)

Given the posterior distribution, any appropriate statistic, e.g., mean, mode, me-

dian, etc. can be used to parameterize a copula and to compute a corresponding

rank correlation. For a conditional rank correlation, the query is accordingly modi-

fied as Section 4.4.1 shows. Note that this approach can commonly be applicable for

conditional rank correlation with more than one conditioning variables.

4.5 Modeling Continuous-Time Systems

The parameter estimation protocol in Section 4.4 allows us to model a system reli-

ability structure without field failure data. In this section, we enlarge the model by

incorporating degradation paths of individual components, thus introducing a tempo-
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ral dimension. We assume that historical degradation data exists for some subsystems

and components.

Consider that the performance of a component in a system deteriorates over time

and the component fails when it passes a certain threshold value. We assume this

performance degradation behavior is monotonic and nonreversible. In NPBN, each

parent node represents the failure probability of a component, so the failure proba-

bility at a given time will be computed from its degradation path. For a coherent

system, when its components are highly probable to fail the system itself will be more

likely to fail too. Thus, a copula function with the property of upper tail dependence

is appropriate.

The Gumbel copula is one of Archimedian class copulas, which is defined by

C(u1, u2, ..., un) = φ−1{φ(u1) + φ(u2) · · ·+ φ(un)}, (4.7)

where φ is called a generator and a Gumbel copula has a generator (− ln(u))θ.

As only bivariate copulas are needed for quantifying a NPBN, the Gumbel copula

used in this study is

C(u, v) = exp(−[(− ln(u))θ + (− ln(v))θ]1/θ) (4.8)

Fig. 4.6 depicts an example of a joint behavior of two uniform random variables

modeled by a Gumbel copula. A parameter is set as θ = 6 and the equivalent rank

correlation is 0.96. Due to the large rank correlation, the plot obviously shows a

positive strong relationship between the uniform random variables. One can see that

as the random variables have larger values, their correlation becomes even stronger.

This upper tail dependence property is desirable for modeling the cascading effect

that results in a high system failure probability once any of its component is severely

damaged. It suggests that system deterioration is accelerating when any of its com-

ponents degrades further.
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Figure 4.6: An Example of Gumbel Copula

In summary, the following assumptions have been made for system reliability:

• The reliability structure of the system is known.

• The system reliability is a non-decreasing function of component reliabilities

(coherent system).

• There exist domain experts to provide their opinion, and historical degradation

data exists for some parts.

• The Gumbel copula is in use.

4.5.1 Node Definition

As aforementioned, each node represents a failure probability of the corresponding

component/system; thus, its numerical value is ranged from zero to one. Suppose

that we have an additive degradation model for a component such as

D(t, θ,X) = η(t, θ) +X, (4.9)

where η(t, θ) and X are a mean degradation at time t and a random variation, re-

spectively. Given a pre-specified threshold of failure, Df , the lifetime distribution of
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the component at time t can be derived to be (Bae et al., 2007)

GX = P (D(t, θ,X) > Df ) = P (η(t, θ) +X > Df ) = P (X > Df − η(t, θ))

= 1− P (X < Df − η(t, θ)) = 1− FX(X,Df − η(t, θ)).
(4.10)

GX can be viewed as a transformation from random variable X, while the function

FX(.) is the cumulative distribution function of random variable X. It is known

that the CDF transformation of a continuous random variable becomes a uniformly

distributed random variable, thus GX is also a uniform random variable and it is

defined as a node of NPBN.

4.5.2 Estimation of Parameters for Continuous-Time Systems

In the embodiment design stage, we can have the following two scenarios:

• Scenario 1: Only opinion from domain expert is available.

• Scenario 2: Expert opinion and historical data both are available.

For the first scenario, the questions given in section 4.4.1 are modified to quantify

a relationship between degradation states such that:

Question 1: Suppose that the component Y has a degradation state above the qth

failure quantile. What is the probability that the component X also has a degradation

state above the qth failure quantile?

An answer is used to calculate a parameter of a bivariate Gumbel copula using

Equation (4.5) and its rank correlation can be computed using Equation (4.1). Simi-

larly, if there exists a conditioning degradation state, the following query is provided:

Question 2: Suppose that the components Z and Y have degradation states above

the qth failure quantile. What is the probability that the degradation state X also has

a value above the qth failure quantile?
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time 0 1 2 . . . n-1 n

CX d0
X d1

X d2
X . . . dn−1

X dnX

CY d0
Y d1

Y d2
Y . . . dn−1

Y dnY
Table 4.1: Degradation Data of Two Components

A bivariate Gumbel copula is parameterized via sampling a D-vine, and the cor-

responding conditional rank correlation can be calculated.

For the second scenario, we utilize the Bayesian inference technique introduced in

Section 4.4.2. The same queries with those of the first scenario are asked to a group of

experts. However, each answer is encoded into success (failure) if it is higher (lower)

than q value. A likelihood function, Bin(n, p), can be fitted where n is the number

of domain-expert and p is the probability of success.

For a prior distribution, we use a historical degradation data of two dependent

components as shown in Table 4.1, in which Ck and djk denote a component k and a

degradation state of component k at time j, respectively. To find the dependency of

two degradation processes, we exploit the increments of degradation state as presented

in Table 4.2, in which ijk indicates an increment of degradation state of component

k between time j and j − 1. Based on the data, appropriate distributions, possibly

empirical distributions, for each component can be found, F̂k(ik). A conditional

probability of exceedance between degradation processes of two components, X and

Y , is computed as

Pexceed = P (iX ≥ F̂−1
X (q)|iY ≥ F̂−1

Y (q)) (4.11)

For more than one conditioning variables

Pexceed = P (iX ≥ F̂−1
X (q)|iY1 ≥ F̂−1

Y1 (q), ..., iYn ≥ F̂−1
Yn (q)) (4.12)
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time 1 2 . . . n-1 n

CX i1X i2X . . . in−1
X inX

CY i1Y i2Y . . . in−1
Y inY

Table 4.2: Increments of Two Degradation Processes

We choose a Beta distribution, Beta(α, β), for fitting the conditional probability

of exceedance. The corresponding posterior distribution is easily calculated by using

Eq. 4.6. Using any proper statistics of the posterior distribution, a bivariate Gumbel

copula is parameterized, and its (conditional) rank correlation is computed.

To demonstrate the proposed method, consider a system consisting of two compo-

nents where its reliability structure is the NPBN in Fig. 4.3. Note that any historical

reliability data regrading the new system itself dose not exist. For r12 and r13|2 we ask

the previous questions with q = 0.5. Suppose the answer from the group of experts is

0.7524. Then, a Gumbel copula has a parameter, θ = 2.016, and a rank correlation,

0.687. Similarly, for the conditional rank correlation r13|2, the group of experts give

the answer, 0.818. The parameterized NPBN is shown in Fig. 4.7.

𝑋1

𝑋2 𝑋3

0.687 0.335

Figure 4.7: The Parameterized NPBN

Suppose we are interested in the system reliability at the time points 40, 42, 44,

and 46, and the components’ degradation models are given in Table 4.3. For each time

point, Monte Carlo simulation of NPBN is performed with the failure probabilities of

the components in Table 4.4 as evidence. Each sample of the simulation indicates a

probability of system failure at the corresponding time point. The simulation results
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are given in Figs. 4.8 – 4.11. We can observe that the system’s failure probability

increases over time and it sharply rises between the time points 44 and 46. To quantify

the system reliability, we define that the system reliability as 1 − q50 where q50 is a

median value of the sampling results. The system reliability at the time points 40,

42, 44, and 46 are 1 − 0.076 = 0.924, 1 − 0.129 = 0.871, 1 − 0.269 = 0.731 and

1 − 0.969 = 0.031. This example shows that we quantify system reliability at the

embodiment design stage for any time points, thus to predict the system behavior

over a long term.

Comp
Degradation

Model
X ∼ Wei(α, β) Dif

Lifetime

Distribution

C2 0.1exp(0.1t)+X2 Wei(1, 1.54) 10 exp(10−0.1exp(0.1t)
1.54 )

C3 0.114exp(0.101t)+X3 Wei(1, 1.39) 12 exp(12−0.114exp(0.101t)
1.39 )

Table 4.3: Degradation Models and Lifetime Distributions for Components

time time 40 time 42 time 44 time 46

C2 0.052 0.115 0.299 0.967

C3 0.019 0.053 0.192 0.914
Table 4.4: Failure Probability of Each Component at Time 40, 42, 44, and 46
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Figure 4.8: Simulation at Time 40
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Figure 4.9: Simulation at Time 42
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Figure 4.10: Simulation at Time 44
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Figure 4.11: Simulation at Time 46

4.6 Case Study

In this case study, we consider an automatic temperature control system, which is a

subsystem of a mixing tank. The mixing tank mixes and heats flammable liquid dur-

ing general chemical processes. Khakzad et al. (2013) discussed the safety analysis

of mixing tank by applying discrete BN. The reliability of this type of tank is ex-

tremely important because the vapor cloud can explode if the tank temperature was

not tightly controlled. The reliability structure of an automatic temperature control

system is given in Fig. 4.12. Definitions of the nodes in Fig. 4.12 are provided below:

• X1: The failure probability of Automatic temperature control system.

• X2: The failure probability of Temperature control system.

• X3: The failure probability of Automatic steam valve.

• X4: The failure probability of Pneumatic unit.

• X5: The failure probability of Sensor.

In the NPBN structure above, X1 is shown as the system, while X2 and X3

are subsystems and X2 consists of components X4 and X5. For each component, its

degradation model, the distribution of random variation (Weibull(α, β)), the implied

lifetime distribution, and the pre-fixed threshold (Dif ) are given in Table 4.5.

Suppose there are 10 domain experts and the quantile value for the query is set
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𝑋1

𝑋2 𝑋3

𝑟12 𝑟13|2

𝑋4 𝑋5

𝑟24 𝑟25|4

Figure 4.12: A System Consisting of
a Subsystem and Components

𝑋1

𝑋2 𝑋3

0.687 0.335

𝑋4 𝑋5

0.544 0.226

Figure 4.13: Parameterized NPBN

Comp
Degradation

Model
X ∼ Wei(α, β) Lifetime Distribution Dif

C3

0.4 exp(0.1t) +

X3

Wei(1, 1.54) exp((40−0.4 exp(0.1t)
1.54 )1) 40

C4

0.266 exp(0.11t)+

X4

Wei(1.03, 1.59) exp((42−0.266 exp(0.11t)
1.6 )1.03) 42

C5

0.667 exp(0.09t)+

X5

Wei(1, 1.42) exp((42−0.667 exp(0.09t)
1.42 )1) 42

Table 4.5: Degradation Models and Lifetime Distributions for Components

as 0.5. First, we estimate the rank correlation (r24) and conditional rank correlation

(r25|4) between the subsystem X2 and its components X4 and X5, respectively. Using

the historical data of X2 and X4, we have fitted a Beta distribution for the conditional

probability of exceedance as Beta(65, 31). Seven experts gave answers higher than 0.5

for Question 1 with nodes X2 and X4. To give more weight to expert opinion, we scale

up one expert’s answer as ten reliability tests. Then, the fitted binomial distribution

becomes Bin(100, 0.7), and the posterior distribution is Beta(65 + 70, 31 + 100 −

70) = Beta(135, 61). Using the mean value (0.69) of this posterior distribution, the
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parameter of a bivariate Gumbel copula is calculated as 1.63 and the corresponding

rank correlation is 0.544.

For a conditional rank correlation, r25|4, for example, suppose that we have a Beta

prior distribution, Beta(71, 31), and eight experts have answers higher than 0.5 for

Question 2. Then, the fitted Binomial distribution is Bin(100, 0.8), and the posterior

distribution becomes Beta(71 + 80, 31 + 100 − 80) = Beta(151, 51). Based on the

rank correlation r24 = 0.544 and r45 = 0, a D-vine on X2, X4, and X5 is constructed

and the parameter of bivariate copula with r25|4 can numerically be computed by

sampling this D-vine, which turns out to be 0.226.

The estimation processes of r12 and r13|2 are the same as before, but without any

historical data. Based on expert opinions only, they are estimated to be r24 = 0.608

and r13|2 = 0.335. The parameterized NPBN is shown in Fig. 4.13.

Suppose we are interested in the system reliability at the time points 45, 45.7, and

46. Using the following sampling algorithm, Monte Carlo simulations are run where

the failure probabilities in Table 4.6 are used as evidence.

x3 = u3

x4 = u4

x5 = u5

x2 = F−1
r24;x4

(
F−1
r25|4;Fr45;x4 (x5)(u2)

)
= F−1

r24;x4

(
F−1
r25|4;x5(u2)

)
x1 = F−1

r12;x2

(
F−1
r13|2;Fr23;x2 (x3)(u1)

)
= F−1

r12;x2

(
F−1
r13|2;x3(u1)

)
The simulation results are provided in Fig. 4.14. We predict that the system is

quite reliable at time 45 but very likely to fail at time 46. The state of system at time

45.7 shows the transition of the system from reliable to unreliable. Using the median

values of these samples, we quantify the system reliability at these time points are

0.85, 0.62 and 0.06, respectively.
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time 45 45.7 46

C3 0.074 0.407 0.874

C4 0.056 0.405 0.955

C5 0.007 0.422 0.925
Table 4.6: Failure Probabilities of Three Components Calculated from Their Degra-
dation Models at Time Points 45, 45.7 and 46
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Figure 4.14: Monte Carlo Simulation Results at Time 45, 45.7 and 46

Suppose that the mission time of the system is set at the time point 45, but

we would like the system to attain a higher reliability, 0.88. Our goal is to find

an acceptable system design by re-allocating improved reliabilities to components.

That is, we will decide which set of components to be upgraded and the extents of

their improvements. There are many factors to be considered, including the non-

deterministic reliability structure, various cost functions, available budget, and the

limitation of current technology. Therefore, we employ Generic Algorithm (GA) in

this study. GA is an evolutionary optimization method that enjoys a broad range of

applications and often provides satisfactory near-optimal solutions. We formulate our

reliability allocation problem such as the total development cost will be minimized,

subject to the target reliability constraint. Cost functions of all components are

assumed to follow an exponential function such as (Mettas, 2000)

Ci(Ri;Rcurrent, Rmax) = exp
(
Rcurrent −Ri

Ri −Rmax

)
, (4.13)

where Ci(Ri) is the cost for the improvement effect of the ith component, Rcurrent is
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is current reliability, and Rmax is the maximally achievable reliability with current

technology.

The optimization problem is formulated as:

min
∑

Ci(Ri)

s.t. RSys 6 f(R1, R2, ..., Rn)

Rcurrent 6 Ri 6 Rmax ∀i

(4.14)

where f(R1, R2, ..., Rn) is the system reliability function and RSys is the targeted

reliability.

The results in Table 4.8 are taken from several iterations of GA, while the associ-

ated parameters of components are given in Table 4.7.

C1 C2 C3

Rcurrent 0.074 0.056 0.007

Rmax 0.001 0.0001 0.0005
Table 4.7: Parameters of the Optimization Problem

The results in Table 4.8 show that although different design solutions may provide

similar reliability, their costs can be dramatically different. For example, we can

achieve the reliability 0.8806 with a cost of 4.4544 using the first design candidate,

but if we choose the design of the last row, the system reliability is improved a little

to 0.8897, while the cost increases to a prohibited large number, 35102.2651. These

solutions are plotted in Fig. 4.15 to find a Pareto frontier with the preference to be

high reliability and low cost. A line connecting the solutions marked as a circle is

the Pareto frontier, where above (below) this line is the feasible region (the infeasible

region). This plot clearly illustrates the trade-off between reliability and cost. The

final decision may vary, depending on the user’s preference; however, the fifth solution,

which gives a reliability value of 0.9082, seems to be the best compromise solution.
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Num C1 C2 C3 RelSys Cost

1 0.0613 0.0324 0.0062 0.8806 4.4544

2 0.0728 0.0240 0.0063 0.8829 5.9719

3 0.0613 0.0317 0.0036 0.8843 6.3769

4 0.0268 0.0454 0.0029 0.8870 12.8293

5 0.0297 0.0205 0.0031 0.9082 14.9223

6 0.0435 0.0258 0.0022 0.8946 20.7033

7 0.0273 0.0272 0.0024 0.8827 20.8022

8 0.0670 0.0129 0.0054 0.8877 31.1584

9 0.0430 0.0389 0.0018 0.8918 69.2516

10 0.0372 0.0097 0.0033 0.8932 132.9043

11 0.0452 0.0087 0.0044 0.9004 252.2713

12 0.0122 0.0100 0.0053 0.9162 349.2966

13 0.0122 0.0100 0.0053 0.8994 349.2994

14 0.0110 0.0239 0.0065 0.9004 533.2888

15 0.0098 0.0087 0.0028 0.9152 1688.7530

16 0.0424 0.0067 0.0041 0.8979 1847.7523

17 0.0367 0.0067 0.0041 0.9260 1848.4466

18 0.0091 0.0350 0.0069 0.8925 3181.2710

19 0.0088 0.0108 0.0069 0.9036 4133.6770

20 0.0509 0.0061 0.0014 0.9251 5034.2885

103 0.0733 0.005 0.0065 0.8897 35102.265
Table 4.8: Reliability Allocation Results

In this case study, we have demonstrated that the reliability of a continuous-time

system can be quantitatively evaluated at the embodiment design stage, so the design

can be improved accordingly. The combination of NPBN and degradation models has
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Figure 4.15: A Pareto Frontier of Alternative Design Solutions

overcome the limitation of DBN and GA has been successful in generating alternative

designs.

4.7 Conclusion

In a system’s early design stage, the reliability structure of the system is often un-

clear. In this paper, we proposed a computational framework for quantifying system

reliability with such reliability structure uncertainty. This methodology can be best

deployed at a system’s embodiment design stage. As the reliability of the current

system design can be quantitatively assessed over its intended lifespan, better design

options are generated if the current design fails to reach its reliability target.

To evaluate system reliability, we have employed a BN model to model the un-

certainties existed between system and components and integrated the component

degradation processes into system analysis. A NPBN computational approach is de-

veloped for dealing with continuous random nodes in the network. This approach
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overcomes many limitations of discrete BNs and it can incorporate the degradation

behaviors of components into the system reliability analysis. Therefore, our research

has established a system design framework in which the uncertainties in system reli-

ability structure and the temporal change of system reliability can be quantitatively

assessed. It is also a novel decision-making tool for generating and comparing alter-

native design options.

The proposed framework can be nevertheless hampered by its computational

speed, particularly for a big, complex system, because both Monte Carlo sampling

and GA are computationally resource-demanding algorithms. Our future research

will focus on improving the computational efficiency by developing new approxima-

tion algorithms.
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Chapter 5

RELIABILITY-BASED DESIGN OPTIMIZATION FOR OPTIMAL SYSTEM

RELIABILITY USING NONPARAMETRIC BAYESIAN NETWORK AND

QUANTILE REGRESSION SURROGATE

5.1 Introduction

During an engineering design process, it is necessary to iteratively find better val-

ues of design variables and estimate the corresponding system reliability. This is a

continuous process to economically modify and improve a system design until a sys-

tem design guarantees the required level of reliability. Therefore, it is an optimization

problem to find the optimal system design compromising between the minimum de-

velopment cost and the ensured system reliability. It is an Reliability-Based Design

Optimization (RBDO) problem and formulated as follows:

Min:
θ

C(θ)

Subject to: Prob[Gi(θ) ≥ 0] ≥ Ri, i = 1, . . . ,m.
(5.1)

In the formulation, θ is a design variable vector about which a cost function, C,

is minimized. Gi is a performance function of system. Gi ≥ 0 (success) indicates a

safety region and vice versa. The performance function should satisfy a desired prob-

ability of success and this is called a probabilistic constraint. Uncertainty inherent in

probabilistic constraints often brings some difficulties in solving RBDO problems. In

the last two decades, there have been extensive studies on how to efficiently quantify

this uncertainty. Zhuang and Pan (2012a) provides various sources of uncertainty

that can arise in RBDO and points out that epistemic uncertainty may lead to either

infeasible or conservative design results.
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There exist three main different approaches to solve the probabilistic constraint in

an RBDO problem: the double loop method, decoupled loop method, and single loop

method. The double loop method is the most conventional approach. All probabilis-

tic constraints are repeatedly executed to account for the associated uncertainties.

This process is fulfilled with a different set of design variables at every optimization

iteration. Thus, the double loop method generally requires massive amount compu-

tational efforts until an optimal solution is acquired. To alleviate the computational

demand, Du and Chen (2004) developed an efficient decoupled loop approach called

Sequential Optimization and Reliability Assessment (SORA). SORA decouples the

reliability assessment process and optimization problem so that these two indepen-

dent processes are consequentially carried out. Many previous studies have employed

the SORA method to improve computational efficiency (Zhuang and Pan, 2012a,b;

Ba-Abbad et al., 2006). Yi et al. (2016) presented an approximate reliability evalua-

tion method on the concept of SORA. The proposed method provides close solutions

to the SORA method with a less number of performance function evaluations. Ba-

Abbad et al. (2006) presented a new RBDO approach for series systems by modifying

the SORA method. The single loop method is a technique to convert an RBDO

problem into a deterministic optimization problem. Liang et al. (2007) developed a

single loop method for the problem defined in (Ba-Abbad et al., 2006). Shan and

Wang (2008) proposed a single loop approach for RBDO problems using the gradient

information of all constraints. This approach eliminates the reliability analysis loop

and converts an RBDO problem into a general optimization problem.

RBDO becomes even more challenging when performance functions cannot be an-

alytically expressed. As the mathematical nested form of the probabilistic constraints

is unavailable, the corresponding uncertainties are usually assessed by computer ex-

periments. However, this approach introduces additional computational burdensome
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with significant amount experiment time. To overcome the difficulty on computer

experiments, some previous studies have suggested of building surrogate models.

Zhuang and Pan (2012b) used a Kriging surrogate model and developed sequential

maximum expected improvement sampling strategy, which efficiently improves a per-

formance of the surrogate model. The sampling strategy particularly aims to precisely

find the most probable point (MPP) instead of approximating the entire surface of

the unknown constraint function. Dubourg et al. (2011) also used a kriging surrogate

model to emulate expensive computer experiments, and an optimization problem is

solved in a double loop manner. Liang and Mahadevan (2017) used nonparametric

Bayesian network (NPBN) as a surrogate model in the context of RBDO for multi-

objective optimization (MOO) problem. The surrogate model successfully incorpo-

rates uncertainties and dependencies between objective functions. Cooke et al. (2015)

also utilized NPBN to optimize an engineering design. Choi et al. (2010) provided a

new RBDO method using copula functions for accurate estimations of marginal and

joint input distributions when we have an insufficient amount of input data. Offset-

ting the limited data available, this approach provides RBDO outputs with confidence

intervals. Gunawan and Papalambros (2006) proposed an RBDO method in Bayesian

manner to overcome incomplete information of uncertain variables. The Bayesian ap-

proach estimates distributions of random variables in probabilistic constraints via

Beta-Binomial conjugate.

This paper proposes a new surrogate modeling approach for RBDO problems

when a design of complex system is under consideration. We employ nonparametric

Bayesian network (NPBN) and Bayesian Quantile Regression (BQR) to construct a

probabilistic model of the system reliability structure and to surrogate this NPBN

model, respectively. The proposed approach aims to reduce an amount of time that

a probabilistic constraint on the system’s performance measure is evaluated.
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NPBN is first proposed in (Kurowicka, 2005). In contrast to discrete BN, NPBN

incorporates continuous random variables into nodes by transforming the random

variables to uniform random variables. Therefore, NPBN can provide a more natural

way to model continuous processes such as performance, decay, and degradation than

discrete BN. In fact, many other reliability assessment tools including the Fault Tree

(FT), Dynamic FT, Reliability Block Diagram (RBD), Dynamic RBD and BN dis-

cretize continuous system’s condition states and focus on binary or multiple outcomes.

However, this discretization approach is always accompanied with the trade-off be-

tween mathematical tractability and analysis accuracy. After building a multivariate

distribution of continuous random variables by NPBN, various probabilistic infer-

ences can be made via Monte Carlo simulation. The inference produces a sampling

distribution on [0, 1] for each random variable of interest. Lee and Pan (2018) pro-

posed a NPBN approach to modeling a system reliability structure and to assessing

its reliability at design stages. The system reliability is quantified based on its pre-

dicted functional performance (FP) at the mission time given the expected FPs of

components. More specifically, the system’s predicted FP at the mission time is rep-

resented as a continuous distribution on [0, 1] and the system reliability is defined as

a value of sample in the kth quantile. This method obviously shows the advantages

of NPBN approach over the other reliability assessment tools in analyzing system

reliability with continuous system conditions. However, the NPBN approach is not

desirable for solving RBDO problems because of its shortcoming that probabilistic

inference should be made by time-consuming Monte Carlo simulations. Actually, this

limitation can be overcome if joint behaviors of continuous random variables follow

Gaussian distributions as shown in (Liang and Mahadevan, 2017).

Based on the approach for system reliability assessment presented in (Lee and

Pan, 2018), we will propose to build a quantile regression (QR) model that emulates
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a NPBN model to overcome its computational disadvantage. Since our main interest

is the value of a sample at a specific quantile of an output distribution, QR can be a

suitable alternative approach to achieve such values. To effectively build a QR model

in design stages, we will estimate coefficients of a QR model in Bayesian manner using

the methodology developed in (Yu and Moyeed, 2001).

The use of QR model to surrogate a NPBN model can be arguable because a QR

model should not be capable of establishing the complex relationship between system

reliability and its components’ FPs, which was originally modeled by a NPBN. In

order to handle this difficulty, a QR model will be locally fitted to a small region of

the input-space of a system’s performance function in this research with the following

two assumptions:

1. Components’ FP never adversely affect to system’s FP (coherent system).

2. The relationship between system’s FP and components’ FPs is almost linear or

weak nonlinear in a narrowed input-space.

Based on the first assumption, we can currently achieve the highest system re-

liability at the mission time when each component shows its best FP. In addition,

we can guarantee that the current system design can be improved if any of its com-

ponent’s functionality is upgraded. Thus, if the FP of ith component is promised

to be pi, 0 ≤ pi ≤ 1, at the mission time, our interest should be the interval [pi, 1]

to enhance the system design. Finally, the proposed methodology will provide the

optimal expected FPs of components in order for the system to guarantee the desired

reliability level at the minimum development cost.

The organization of the paper is as follow: Section 5.2 will briefly introduce NPBN

and its system reliability approach and Section 5.2 reviews QR model and its Bayesian

approach. In Section 5.4, we will propose QR surrogate model for NPBN model. It

94



is followed by a case study to demonstrate the proposed methodology in Section 5.5.

The paper is concluded in Section 5.7.

5.2 Reliability Analysis with NPBN

This section gives a brief introduction of NPBN and its application to system

reliability analysis proposed in (Lee and Pan, 2018).

5.2.1 NPBN Overview

Classical BN provides an efficient method of modeling a discrete multivariate dis-

tribution in high-dimension. The application of classical BN can be expanded by

including continuous random variables if the Gaussian assumption is made. Due to

BN’s flexible capability to model complex relationship between random variables, its

application domain is highly diverse including the system reliability analysis. Much

existing literature has utilized the classical BN in analyzing complex system reli-

ability over more the last decade (Weber et al., 2012). However, it is technically

problematic to use the classical BN if there exist continuous random variables hav-

ing arbitrary forms. Although discretization is a common approach to handle this

problem, it can cost very expensive computational efforts. To overcome this short-

coming, Kurowicka (2005) proposed Nonparametric Bayesian network (NPBN) by

incorporating copulas on the same concept of BNs. Using copulas, NPBN explicitly

models joint distributions of continuous random variables and a network structure

shows a set of embedded conditional independence. Given a network, probabilistic

inference is made only through Monte Carlo simulation. In contrast to probabilistic

inference on discrete BN that updates distributions of discrete random variables of

interest, NPBN’s probabilistic inference produces updated continuous distributions

given evidence. One may refer to (Hanea et al., 2015) for the broad overview of NPBN
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applications.

Modeling BN with Copula

Copula is a function that associates n univariate marginal distributions and defines a

multivariate distribution where each marginal follows a uniform distribution on [0, 1].

In other words, a copula models correlated uniform random variables. Mathemati-

cally, a copula, Cρ : [0, 1]n is represented as

Cρ(u1, ..., un) = Pr[U1 ≤ u1, ..., Un ≤ un] (5.2)

where a parameter, ρ, indicates the strength of probabilistic relationship between

the associated random variables. The strength also can be represented by a rank

correlation, which is a property of copula. Note that each marginal distribution

can be a cumulative distribution function (CDF) of any continuous random variable.

Thus, a copula allows us to build a multivariate distribution of arbitrary continuous

random variables. However, modeling a continuous multivariate distribution in high

dimension is a difficult task even with copulas because of the complex interactions

between many random variables.

In NPBN, only bivariate copula family is used. A copula and its rank correlation

are independently assigned to each arc on a network to model a joint distribution of

the adjacent uniform random variables. Thus, each copula locally models a bivari-

ate joint distribution on an arc, and all bivariate copulas on a BN are integrated to

compose a multivariate distribution. A NPBN is a graphical representation of this

multivariate copula where the network topology reveals a set of conditional indepen-

dence. As mentioned in the previous paragraph, each uniform random variable can

represent an arbitrary continuous random variable. Therefore, the NPBN is also a

continuous multivariate distribution. Any copula that represents independence be-
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Figure 5.1: A BN Example

tween two random variables as zero rank correlation can be used where this is called

the ‘zero independence property’. Fig. 5.1 shows a small NPBN example representing

the particular dependability structure between the three random variables (X1, X2,

and X3). That is, X2 and X3 are independent and they become dependent once a

value is assigned to X1. To build this dependence structure, we independently decide

copulas to two pairs of correlated random variables ((X1, X2) and (X1, X3)). The rank

correlations, r12 and r13|2, are the strengths of probabilistic relationships between the

random variables.

Probabilistic Inference on NPBN

Probabilistic inference on a NPBN model is made by repeated sampling from condi-

tional bivariate copulas (Monte Carlo simulation). Given evidence, an inference result

is updated distributions of other random variables. Suppose we are interested in the

distribution change of X1 given evidence X2 = x2 and X3 = x3 on the network in Fig.

Figure 5.2: A Distribution of x1 given Evidence of x2 and x3
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Figure 5.3: A D-vine Example

5.1. If the simulation result is the distribution given in Fig. 5.2, we can interpret

that X1 will mostly take values around 0.38 or 0.39 and have values closer 0 and 1

with gradually decreased probability. If X1 was a transformed uniform distribution

from a particular continuous random variable, the original distribution conditioned

on X2 = x2 and X3 = x3 can also be obtained using the inverse of its CDF.

More specifically, conditional sampling of bivariate copulas is performed on a

specific graphical dependence structure called D-vine. A D-vine consists of a series of

paths where each node and arc represent a random variable and a direct relationship

between the adjacent nodes, respectively. Given the first path that is composed of

random variables and arcs, the second path is constructed by defining the arcs of the

first path as its nodes. The consecutive paths are built in the same scheme. A D-vine

example is given in Fig. 5.3. This D-vine is consisting of two paths. The first path has

nodes 1, 2, and 3 and the second path has nodes a12 and a23 (aij is an arc connecting

nodes i and j). Equivalent to NPBN, probabilistic relationship between nodes is

represented by rank correlation. Note that the exactly same relationship between

random variables on BN in Fig. 5.1 is also shown in this D-vine example. Moreover,

the D-vine specifies the relationship between X2 and X3, which is independent based

on the structure of BN. Given the D-vine, one can take samples of each random
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variable with the following algorithm:

x3 = u3

x2 = F−1
r23;x3(u2)

x1 = F−1
r12;x2(F−1

r13|2;Fr23;x2 (x3)(u1)) = F−1
r12;x2(F−1

r13|2;x3(u1))

(5.3)

where Frij ;xj(xi) is a CDF of conditional copula with a rank correlation, rij, and

conditioning value, xj, and ui is a sample from a uniform distribution, U(0, 1). The

sampling algorithm for a general D-vine is described in (Aas et al., 2009).

5.2.2 System Reliability Analysis with NPBN

Lee and Pan (2018) used NPBN for evaluating system reliability at design stages

where a system has a hierarchical reliability structure such as the BN in Fig. 5.1.

The BN example represents a reliability structure of a system, X1, consisting of

two components, X2 and X3. In general, a system’s element (a node) in a level i is

composed of directly related system’s elements (nodes) in a level i+1. In this manner,

a node at the level 1 always indicates the system itself and nodes at the lowest level

represent the most basic components. Nodes in the intermediate levels correspond to

subsystems. Therefore, a BN structure effectively visualizes the system’s reliability-

wise configuration.

In a BN, each node is defined as a FP of system, subsystems, and components. As

stated in Section 5.2.1, a node can take any value on [0, 1] and this value quantitatively

specifies a FP of the corresponding part (system, subsystem, or component). A part is

considered to be failed (fully performing) when the corresponding node has 0 (1) and

values between 0 and 1 represent intermediate FP states. Arcs and rank correlations

on a NPBN show direct influences between FPs and their strengths. In building

NPBN, rank correlation’s value is restricted to be greater than 0 as only coherent

systems are considered. That is, never do FPs negatively impact each other. To
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reflect this restriction and model the joint distributions of FPs, Clayton copulas, which

possess the lower tail dependence property, are used in (Lee and Pan, 2018). The

lower tail dependence property helps effectively model the general behavior between

related FPs that a system’s part likely has more impacts to its associated parts as

its condition is worse. However, the choice of copula can be different based on data

or opinions from domain-experts. The authors also introduced and developed the

rank correlation estimation methods in system design stages. This is out of scope for

this research and we assume that a fully parameterized NPBN model is given for this

study.

For instance of the NPBN approach, suppose we are analyzing the system reli-

ability structure given in Fig. 5.1. The network structure shows the impacts that

the components’ FPs, X2 and X3, have on the system’s FP, X1, as r12 and r13|2,

respectively, while the FPs between the components are independent.

Probabilistic inference on this BN model is the estimation for the system’s FP

given the components’ FPs (opposite direction is also possible) at the mission time.

If each component is expected to show its performance, X2 = fp2 and X3 = fp3, the

system’s FP can be inferred as following:

x1 = F−1
r12;fp2(F−1

r13|2;Fr23;fp2 (fp3)(u1)) = F−1
r12;fp2(F−1

r13|2;fp3(u1)) (5.4)

Replicating the sampling, a distribution of the system’s FP can be generated. Suppose

the output distribution is given in Fig. 5.2. We can expect that the system will

moderately or poorly perform. To quantify the simulation result, the system reliability

is defined as a value of sample at 50th quantile. In this example, the system reliability

is 0.423. One may refer to (Lee and Pan, 2018) for the details of NPBN construction

in system’s design stages.
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Figure 5.4: Skewed Distributions

5.3 Regression Models

5.3.1 Quantile Regression Models

Quantile regression (QR) establishes a relationship between predictors and condi-

tional quantiles of a response variable. QRs have been widely utilized for statistical

analysis in various areas because of its advantages over ordinary least squares (OLS)

linear regression models.

First, it is well known that the conditional mean, which is provided by an OLS

model, is inadequate to capture the central tendency if the conditional distribution

of response variable is asymmetric. Fig. 5.4 shows two skewed distributions where

both distributions have the mean = 0. If these are the conditional distributions of

the response variable given different values of the same predictor, the OLS model

fails to convey useful information. On the other hand, the median values, which are

measured by a 50th QR model, of the distributions are −0.12 (the distribution in blue)

and 0.139 (the distribution in red), respectively, and these values show the central

value of the conditional distributions.

Other disadvantages of the OLS approach include its restrictive assumptions of

constant variance (homoscedasticity) and normality assumptions on errors. These

assumptions may frequently be violated in real-world problems; thus, OLS models
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cannot provide the best fit to data. Moreover, the OLS method provides only one

regression model that is very vulnerable to outliers. Elimination of outliers is not

always desired. Fig. 5.5 and 5.6 compare and show how QR models overcome the

shortcomings of an OLS model on the same dataset. Obviously, the scatter plot in

Fig. 5.5 does not satisfy the homoscedasticity assumption and this violation should

result in unreliable confidence intervals for the OLS model. There are five QR models

with different quantiles, 10th, 30th, 50th, 70th, and 90th, in Fig. 5.6 on the same scatter

plot. The use of many models with different quantiles can overcome the non-constant

variance and non-normality on errors. Besides, QR models are robust to outliers.

A general QR model is expressed as follow:

yi = xTi βq + εi (5.5)

where yi is the ith response variable, xTi is a transposed vector of ith predictors, βq

is a coefficient vector for the specified quantile (0 < q < 1), and εi is an error term.

Note that the error term does not have any distributional assumption. For n samples,

βq is obtained by minimizing this expression:
n∑

yi≥xTi β
q|yi − xTi β|+

n∑
yi<xTi β

(1− q)|yi − xTi β| =
n∑
i=1

ρq(yi − xTi β) (5.6)

where ρq(x) = x(q − I(x < 0)). Letting

εi = yi − xTi β

ui = max(ei, 0)

vi = max(−ei, 0)

ei = ui − vi

Eq. 5.6 can be represented as
n∑
i=1

ρq(yi − xTi β) =
n∑
i=1

ρq(εi) =
n∑
i=1

ρq(ui − vi) =
n∑
i=1

(qui + (1− q)vi)
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Figure 5.5: An Example of LR Figure 5.6: Examples of LR and QRs

with the constraints ui, vi > 0 and yi = xTi β + ui − vi. Thus, the coefficients can be

calculated by formulating the linear programming problem (LP):

Min:
n∑
i=1

(qui + (1− q)vi)

Subject to: yi = xTi β + ui − vi i = 1, . . . , n

ui, vi > 0,β ∈ Rp

(5.7)

The above LP problem can be solved by the simplex method.

5.3.2 Bayesian Quantile Regression

Yu and Moyeed (2001) presented a Bayesian approach to building quantile re-

gression models. The Bayesian quantile regression (BQR) provides a mechanism of

incorporating our prior knowledge in estimating coefficients of models. This inte-

gration process can naturally be accomplished by having the likelihood function as

the asymmetric Laplace distribution (ALD) regardless of data’s original distribution.

The density of the ALD is:

fq(x) = q(1− q) exp(−ρq(x− µ)) (5.8)

where µ is a location parameter. Thus, we can minimize Eq. 5.6 by maximizing
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Eq. 5.8 where the location parameter is set as xTi β. For BQR models, any prior

distributions including improper uniform distributions, p(β), can be chosen. The

posterior distributions of β, π(β), can be easily calculated if conjugate priors are

used. Otherwise, one can use the Markov Chain Monte Carlo (MCMC) approach.

Plese refer to (Benoit et al., 2017) for the technical details on MCMC.

5.4 Proposed Methodology

In this section, we propose to use a BQR model to surrogate a NPBN model. A

regression model that emulates the NPBN model is expected to significantly facilitate

solving an RBDO problem because the main limitation of NPBN model for solving

an RBDO problem is its large amount of time in running simulations.

As mentioned in Section 5.2.2, a node on a NPBN represents a FP of each part

in the system. This modeling approach allows us to evaluate system’s FP by making

probabilistic inference on a node at the level 1 based on FPs of its components, which

are indicated by nodes at the last level. In other words, an updated distribution

of system’s FP (posterior distribution) is provided given a set of components’ FP

(evidence). Lee and Pan (2018) defines system reliability as a kth quantile value in

the posterior distribution. Replications of this probabilistic inference given different

sets of evidence help us discover the relationship between the specific quantile values

of output distributions (distributions about system’s FP) and components’ FPs. A

QR model is employed to establish this relationship in this paper.

From the perspective of a QR model, components’ FPs and a predicted system

reliability are explanatory variables and a response variable, respectively. As each

component’s FP and a predicted system performance are defined by a continuous

numerical value in [0, 1], for a system consisting of n components, the input space

is [0, 1]n and output space is [0, 1]. Note that a QR model may not be appropriate
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to represent the complex relationship between components’ FPs and system’s FP

because the relationship, [0, 1]n → [0, 1], may show a strong non-linear behavior.

To overcome this challenge, we will locally fit a QR model by narrowing the input

space. Suppose the ith component’s FP is expected to be pi at the mission time

with the current technology. If we have to improve this component’s expected FP

at the mission time to enhance the overall system’s performance, the targeted FP of

this component should lie in the interval [pi, 1]. Thus, once we obtain the optimal

solution of an RBDO problem, the expected FP of this component will be at least pi.

Therefore, the input space of this component’s FP can be [pi, 1] instead of [0, 1]. By

applying this idea to all components, we can reduce the input space into ∏n
i=1[pi, 1]

with the assumption that the relationship becomes more linear or at least weakly

nonlinear in a smaller input space.

This paper employes the NPBN modeling method proposed in (Lee and Pan,

2018), but the definition of system reliability is changed. We set the system reliability

as a probability of success, which can be obtained by repeatedly evaluating the system

performance function in an RBDO problem. The RBDO formulation given in Section

5.1 is replicated below for convenience.

Min:
θ

C(θ)

Subject to: Prob[Gi(θ) ≥ 0] ≥ Ri, i = 1, . . . ,m.
(5.9)

The system performance function, G(θ), in the RBDO formulation 5.9 is defined

as follows:

G(θ) = f(θ)− h (5.10)

where f(θ) provides a predicted system performance given components’ FPs, θ, and

h is a pre-defined threshold. If Eq. 5.10 is positive (negative), it is treated as a success
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(failure). The desired probability of success is R, and it is a target reliability. This

function is considered implicit and can be evaluated by a NPBN model.

Suppose we run simulations on NPBN given evidence and generate N samples. In

order to satisfy the probabilistic constraint, at least N ×R samples should be greater

than h. In other words, a (1−R)-quantile value from below has to be equal to or larger

than h. For instance, assume we have the simulation results given in Fig. 5.7 and 5.8

based on different sets of solutions (Design 1 and Design 2). Because the (1 − R)-

quantile value is less than h in Fig. 5.7, a fraction of samples greater than h is smaller

than R. On the other hand, Fig. 5.8 shows the (1−R)-quantile value that is greater

than h. Thus, a fraction of samples above h is larger than R and the probabilistic

constraint is satisfied. Note that we can evaluate the probabilistic constraint based

on a (1−R)-quantile value. Thus, if we have a (1−R)-quantile regression model, we

can evaluate the probabilistic constraint without running simulation.

Figure 5.7: A Simulation Result
of System’s FP with Design 1

Figure 5.8: A Simulation Result
of System’s FP with Design 2
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Suppose we have a system given in Fig. 5.1 and solve the RBDO problem below:

Min:
θ

C(θ)

Subject to: Prob[G(θ) ≥ 0] ≥ R

θL ≤ θi ≤ θU , i = 1, 2.

(5.11)

The objective is to minimize the system development cost where the decision variables

θ are a set of the expected components’ FPs at the mission time. As the system has

two components, θ is a vector of two elements. The optimal solution of this RBDO

problem, θopt is the optimal assignment of the components’ expected FPs at the

mission time so that the probability of success is guaranteed above R.

Having the corresponding NPBN model, we can evaluate the probabilistic con-

straint by performing Monte Carlo simulation. Suppose h = 0.85 and R = 0.95.

Then, the RBDO problem is formulated as below:

Min:
θ

C(θ)

Subject to: Prob[f(θ)− 0.85 ≥ 0] ≥ 0.95

θL ≤ θi ≤ θU , i = 1, 2.

(5.12)

As it is costly to repeatedly evaluate the system performance function, G(θ) =

f(θ)−0.85, by running simulation on NPBN, constructing (1−0.95)-quantile regres-

sion in Bayesian manner is proposed by taking some samples (a sample from NPBN

is a set of components’ FPs and the corresponding system’s FP distribution. Thus, a

sample of NPBN is called a design sample to the rest of this paper) from the NPBN

model. The QR model is updated by adding more design samples until it provides

an accurate approximation of the relationship. For the efficient sampling procedure,

a space-filling sampling approach can be used. Because there are two components,

the initial BQR model with 5-quantiles will have the form:

y5
i = β5

0 + β5
1θ1 + β5

2θ2 (5.13)
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The above model is iteratively updated based on design samples from the NPBN

model. The sampling and updating are terminated if the following criteria is met:

Max.Coeff.Diff = |Max(β5
0(c) − β5

0(p), ..., β
5
n(c) − β5

n(p))| ≤ ω (5.14)

where β5
i(c) and β5

i(p) represent the estimated coefficients at the current and previous

iterations and ω is a small number. Thus, once coefficient values show negligible

changes over iterations, the surrogate model is not updated anymore. The One can

set a stricter stopping criteria by requiring the negligible coefficient changes over a

few successive iterations. Then, by substituting the probabilistic constraint for the

surrogate model, we have the below optimization problem:

Min:
θ

C(θ)

Subject to: β5
0 + β5

1θ1 + β5
2θ2 ≥ 0.85

θL ≤ θi ≤ θU , i = 1, 2.

(5.15)

Note that the equation β5
0 + β5

1θ1 + β5
2θ2 provides the value of 5th quantile sample

of the distribution about expected system’s FP given components’ FPs. Thus, if

β5
0 + β5

1θ1 + β5
2θ2 is larger than h = 0.85 given θ, it indicates that the portion of

samples larger than h = 0.85 is higher than R = 0.95. Then, the system reliability

(probability of success) is greater than 0.95.

Any optimization technique can be applied to solve the above deterministic opti-

mization problem. The proposed method is illustrated step by step in the following:

1. Construct a BN model as proposed in (Lee and Pan, 2018).

2. Set values of the threshold, h, and the probability of success, R.

3. Build an initial (1−R)-BQR surrogate model.

4. Update the BQR surrogate model by taking samples from NPBN model.

5. Check the stopping criteria.
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6. If the stopping criteria is satisfied, put the BQR model in the RBDO formulation

and solve. Otherwise, go back to the step 4.

5.5 Case Study

This section conducts a case study to demonstrate the proposed methodology. A

radar system is investigated, which is also used in (Zhou et al., 2006) for the reliability

assessment. The radar system is functioning to detect targets and reporting signals.

Its application areas are extremely diverse such as transportation systems, air-defense

systems, antimissile system, etc. As the radar system is embedded in various sophis-

ticated systems for purposes of safety and security, any failures of the radar system

can cause catastrophic disasters. Therefore, a very high level of reliability is required.

The general reliability structure of radar system is given in Fig. 5.9 and it is

assumed to be a coherent system in this study. For each arc, a value of rank correlation

and a copula assigned are specified (C: Clayton Copula, G: Gumbel Copula). The

node 1 represents the FP of the radar system and the nodes circled by dotted lines

are corresponding to the components. Each node represents the FP of the following

components:

• Node 5: Antennas

• Node 11: Receiver

• Node 12: Transmitter

• Node 13: Actuators

• Node 14: Displayed Screen

• Node 15: Black Display Instrument

• Node 16: White Display Instrument

• Node 17: Signal Processor

• Node 18: Data Processor
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• Node 9: Basic component 1

• Node 10: Basic component 2

The nodes 2,3,4,6,7, and 8 are the non-physically existing subsystems consisting of

associated components, which are directly connected from below in the network.

Given the network structure, assigned copulas, and a set of components’ FPs,

we take 2500 samples to get an output distribution because a specific quantile value

shows little variations (less than 0.1e− 2) after taking 2500 samples. The simulation

is performed on the processor Intel(R) Core(TM) i5-3337U and the memory (RAM)

6GB. Drawing 2500 samples takes 192.73 seconds on average.

Suppose we are solving an RBDO problem for the system, and the threshold, h,

and target system reliability, R, are set as 0.85 and 0.95, respectively. All components

are currently expected to show the FPs, 0.7, at the mission time where the corre-

sponding system reliability is 0.6688 (5th-quantile value is 0.6181). Fig. 5.10 shows

the distribution of predicted system performance with the current design. Since not

more than 95% samples are larger than h = 0.85, the current design does not meet

Figure 5.9: The Reliability Structure of Radar System
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the target reliability. We want to improve the system design by finding the optimal

apportionment of components’ FPs at the minimum development cost.

Each component is assumed to show an exponential cost function (Mettas, 2000):

Ci(Ri) = e
Ri−Ri.current
Ri.max−Ri (5.16)

where Ci is the cost incurred to develop the reliability of ith component from the

currently expected reliability, Ri.current, to Ri. Ri.max is the maximum reliability

that can be achieved by the current technology. In this paper, Ri.max is assumed as

1 for all components. Thus, we have the following RBDO problem:

Min:
θ

11∑
i=1

Ci(θ)

Subject to: Prob[f(θ)− 0.85 ≥ 0] ≥ 0.95

0.7 ≤ θi ≤ 1, i = 1, . . . , 11.

(5.17)

Figure 5.10: The Distribution of Predicted System Performance Based on the Cur-
rent Design
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Note that the input space is defined as [0.7, 1]11. The system performance function,

G(θ) = f(θ)− 0.85, can be evaluated through simulations on NPBN and the proba-

bility of success can be calcuated. However, this approach is computationally costly.

Thus, a 5th-quantile regression surrogate model will be constructed based on prior

knowledge and some design samples from the NPBN model. For the Bayesian ap-

proach, we assume a Gaussian distribution, N(µi, σi), as a prior distribution for each

coefficient. Based on the analysis of historical data of parent systems, the initial QR

model is given as:

y = −0.6 + 0.3θ5 + 0.01θ9 + 0.1θ10 + 0.2θ11 + 0.1θ12

+ 0.1θ13 + 0.25θ14 + 0.01θ15 + 0.6θ16 + 0.15θ17 + 0.1θ18 (5.18)

where y and θ represent a 5th quantile value and components’ FPs. The information

for prior distribution is given in Table. 5.1.

We fit the BQR by using an R package, bayesQR, and the Latin Hypercube

Design (LHD) is used for sampling strategy. The surrogate model is updated in

every iteration by taking 20 additional design samples. 300 samples are taken from

each design sample using the NPBN. The posterior distributions of coefficients are

approximated by the MCMC method. During the MCMC procedures of finding the

posterior distributions, 5000 samples are drawn in every iteration and 4500 samples

are retained (500 burnin samples). The stopping criteria is that the Max.Coeff.Diff

value of Eq. 5.14 is less than 0.01 for two consecutive iterations. The stopping criteria

met at 10th iteration and the finial model is (Appendix C provides all the intermediate
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No. Component Prior Dist

1 Intercept N(−0.6, 0.01)

2 Node 5 (θ5): Antennas N(0.3, 0.03)

3 Node 9 (θ9): Basic component 1 N(0.01, 0.03)

4 Node 10 (θ10): Basic component 2 N(0.1, 0.03)

5 Node 11 (θ11): Receiver N(0.2, 0.03)

6 Node 12 (θ12): Transmitter N(0.1, 0.03)

7 Node 13 (θ13): Actuators N(0.1, 0.03)

8 Node 14 (θ14): Displayed Screen N(0.25, 0.03)

9 Node 15 (θ15): Black Display Instrument N(0.01, 0.03)

10 Node 16 (θ16): White Display Instrument N(0.6, 0.03)

11 Node 17 (θ17): Signal Processor N(0.15, 0.03)

12 Node 18 (θ18): Data Processor N(0.1, 0.03)
Table 5.1: Prior Distributions for Coefficients

QR models):

y = −0.480447 + 0.165483θ5 + 0.113388θ9 + 0.042766θ10 + 0.082854θ11

+ 0.0076θ12 + 0.000528θ13 + 0.143478θ14 + 0.023603θ15

+ 0.747396θ16 + 0.110762θ17 + 0.003082θ18 (5.19)

The model summary is given in Table. 5.2. The first and second columns indicate

the coefficients and corresponding estimated values. The third and fourth columns

provide the 95% credible intervals of the coefficients. The model summary shows that

the order of component’s impact on the system is

comp16→ comp5→ comp14→ comp9→ comp17→ comp11→

comp10→ comp15→ comp12→ comp18→ comp13
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Bayes Est. 2.5 Quantile 97.5 Quantile

Intercept -0.480447 -0.491302 -0.47013

θ5 0.165483 0.161315 0.16953

θ9 0.113388 0.109206 0.11753

θ10 0.042766 0.038748 0.04697

θ11 0.082854 0.078582 0.08725

θ12 0.0076 0.003376 0.011656

θ13 0.000528 -0.003397 0.00443

θ14 0.146478 0.14248 0.15052

θ15 0.023603 0.019489 0.02819

θ16 0.74739 0.74223 0.752

θ17 0.110762 0.10625 0.11541

θ18 0.003082 -0.000939 0.00716
Table 5.2: A Summary of the Final Model

The components 13 and 18 are statistically non-significant. Thus, these components

will be the last priority to be developed.

Given the final model, we can formulate the RBDO problem as follow:

Min:
θ

11∑
i=1

C(θ)

Subject to: BQR.model ≥ 0.85

0.7 ≤ θi ≤ 1, i = 1, . . . , 11.

(5.20)

where the BQR.model is the final model:

− 0.480447 + 0.165483θ5 + 0.113388θ9 + 0.042766θ10 + 0.082854θ11 + 0.0076θ12

+0.000528θ13 +0.143478θ14 +0.023603θ15 +0.747396θ16 +0.110762θ17 +0.003082θ18
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Table 5.3: RBDO Result

This is a deterministic optimization problem. We used the ‘Constrained Opti-

mization BY Linear Approximation (COBYLA)’ method proposed in (Powell, 1994).

COBYLA is a direct search method that can handle both non-linear equality and

inequality objectives and constraints. The optimization problem result is given in

Table. 5.3. Note that currently all the components’ FPs are expected to be 0.7 and

the predicted system reliability is 0.6688. It is hard to intuitively find the optimal

solution because of the complex system reliability and exponential behaviors of cost

functions. The θ values in Table. 5.3 represent the components’ FPs in order to meet

the target reliability, 0.95, at the minimum development cost, 103.815. The solution

is verified by generating 2500 samples on the NPBN and 2384 samples are larger

than the threshold, h = 0.85. Thus, the fraction of samples larger than the threshold

is 95.36% and the system reliability is 0.9536. In addition, the 5th quantile value,
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Figure 5.11: The Verification of the Solution from BQR Model

which is 0.8554, also shows that the predicted system reliability meets the target

reliability as it is higher than the threshold, h = 0.85. The graphical representation

of the verification is given in Fig. 5.11. Although the RBDO solution with the BQR

model provides the approximate solution, further investigations may be needed for

more accurate result. However, the surrogate model approach certainly offers useful

information for design changes.

5.6 Discussion

It is verified that the optimal solution found by the surrogate model provides the

system reliability, which is little higher than the target reliability. Thus, further inves-

tigations on the system may find better solutions with the system development cost

lower than 103.815. Although the surrogate model does not guarantee the optimal

solution, it greatly helps our decision making on the system design change.

Note that the current design is expected to show the system reliability, 0.6688,
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with all components’ FPs, 0.7. Because the expected system reliability does not meet

the target reliability, we could improve the system reliability using the approaches

used in Section 3 and 4.

In Section 3, we performed the global sensitivity analysis and focused on improving

the most efficient component, and in Section 4, genetic algorithm (GA) was carried

out to consider all components together. However, the GA introduces another com-

putational burdensome and the optimal solution is not ensured too. On the other

hand, the surrogate model approach allows us to comprehensively examine all the

components without additional computational efforts. In fact, after building a BQR

model, computational time to solve an RBDO problem becomes negligible (0.16 sec-

ond on average) compared to that of performing a simulation on the NPBN, 192.73

sec. If we solely rely on the NPBN model, computational time will be 192.73 sec × a

number of different solution sets until obtaining the optimal solution. Therefore, the

surrogate model provides the advantages on the fast problem-solving time and the

reasonable solution that our intuition may hard to produce.

5.7 Conclusion

In this paper, we proposed a new approach to solving an RBDO problem when

a system with a complex reliability structure is being developed. Due to the lack

of our understanding on the reliability structure, the system reliability should be

modeled and analyzed through a NPBN model, and it is expressed as the implicit

performance function in an RBDO problem. Even though solving an RBDO problem

by running the simulation on the NPBN model will directly evaluate the probabilistic

constraint, the accompanied computational cost can be very expensive. To ease the

computational efforts, a BQR surrogate model is built in a Bayesian manner.

Replacing the performance function with a BQR model transforms the RBDO
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problem into a deterministic optimization problem. Thus, the proposed methodology

is a single-loop method. The application of the method extremely expedites the

RBDO solving process and the optimal solution assists in improving the current

system design. As shown in the Section. 5.5, however, the optimal solutions may

need more detailed investigations because the evaluated system reliability with the

solution isn’t perfectly meet the target reliability. The errors should come from the

inaccurate approximation of a BQR model to a NPBN model.

Our future research will be on improving the surrogate model’s accuracy. As

there exist much uncertainties in the sampling procedure of NPBN model, we need to

develop more robust and flexible surrogate models with not increasing the problem

solving-time.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation addresses the challenges in analyzing modern complex systems

and proposed various reliability analysis approaches using two graphical models: dis-

crete Bayesian network (discrete BN) and nonparametric Bayesian network (NPBN).

Throughout the system lifecyle, our limited understanding of system reliability

structure should be handled in a probabilistic manner. The BN approach provides

a mechanism that the uncertainty is expressed as probabilistic distributions of ran-

dom variables as well as their relationship. By defining nodes in BN as functional

performances of system, subsystem, and components, a system reliability structure

consisting of multiple subsystems and components could be modeled as a multivariate

distribution, and various decisions could be made based on probabilistic inference.

The dissertation particularly focused on the production stage in chapter 2 and the

embodiment design stage in chapters 3, 4, and 5 for optimizing system maintenance

schedule and improving system design, respectively.

Research on Production Stage: In the production stage, we presented the three

PdM schemes with different approximation approaches for degradation process of

component. The case study shows that Semi-Markov chain model most generalizes

the Markovian property among the proposed methodologies. In other words, Semi-

Markov chain model is more data-driven than the other models (higher-order Markov

chain and discrete time Markov chain models) while more computational demand is
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accompanied.

As stated in chapter 2, the main limitation of this research is the Markovian

property. Although Semi-Markov chain and higher order Markov chain models solve

this limitation to some extent, these approaches could not fundamentally remove the

restriction. To overcome the limitation, the NPBN modeling method presented in

chapters 3 and 4 can be used with some modifications.

Moreover, this research has many potentials to be further developed by considering

more realistic constraints. For example, minimizing the maintenance cost can be a

primary interest under some constraints such as a probability of external shocks, the

limited number of components being repaired, and minimum required reliability for

each subsystem or component.

Another extension of this research can be made by integrating machine learning

techniques. Because of on-borad sensors, manufacturing system generates massive

data every day. Thus, thorough data pre-processing and application of various ma-

chine learning techniques are promising in system reliability analysis.

Research on Design Stage: In the embodiment design stage, we proposed the

system reliability modeling frameworks using NPBN and Bayesian inference. The

use of NPBN effectively overcome the limitation of discrete BN, thus, the continuous

system conditions could be naturally modeled as a multivariate distribution.

In contrast to the research on the production stage, one of main challenges in the

design stage is the lack of field failure data. To handle this difficulty, we developed

the information integration technique that combines domain-expert opinion and his-

torical reliability data. Besides, the modeling method is enlarged by incorporating

degradation paths of components, and the system could explicitly be analyzed on

continuous time.
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The last research presented in this dissertation overcomes the limitation of NPBN,

the expensive computational cost in making a probabilistic inference. We suggested to

build a surrogate model with quantile regression (QR) model as conditional quantiles

of distributions can be calculated without Monte Carlo simulation. The case study

in chapter 5 shows that the use of QR surrogate model extremely facilitates solving

an Reliability-Based Design Optimization problem.

The research on embodiment design stage in this dissertation can be further devel-

oped to the earlier design stage, conceptual design stage. As conceptual design stage

comes before embodiment design stage, any decision made in the conceptual design

stage will have a stronger impact than decisions made in the embodiment design

stage. To conduct research on conceptual design stage, system’s functional analysis

should exhaustively be examined.
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Conditional Probability Tables (CPTs) of the BN used in the simulation study
are given below.

Table A.1: The CPT for Subsystem 1
Subsystem 1

C1 C2 0 1 2 3 4
0 0 0.999 0.001 0 0 0
0 1 0.9 0.1 0 0 0
0 2 0.5 0.25 0.25 0 0
0 3 0.2 0.3 0.3 0.2 0
0 4 0 0.25 0.4 0.35 0
1 0 0.9 0.1 0 0 0
1 1 0.5 0.25 0.25 0 0
1 2 0.2 0.3 0.3 0.2 0
1 3 0 0.25 0.4 0.35 0
1 4 0 0.2 0.3 0.4 0.1
2 0 0.5 0.25 0.25 0 0
2 1 0.2 0.3 0.3 0.2 0
2 2 0 0.25 0.4 0.35 0
2 3 0 0.2 0.3 0.4 0.1
2 4 0 0 0.25 0.6 0.15
3 0 0.2 0.3 0.3 0.2 0
3 1 0 0.25 0.4 0.35 0
3 2 0 0.2 0.4 0.35 0
3 3 0 0 0.25 0.6 0.15
3 4 0 0 0.05 0.15 0.8
4 0 0 0.25 0.4 0.35 0
4 1 0 0.2 0.3 0.4 0.1
4 2 0 0 0.25 0.6 0.15
4 3 0 0 0.05 0.15 0.08
4 4 0 0 0 0.001 0.999
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Table A.2: The CPT for Subsystem 2
Subsystem 2

C3 C4 0 1 2 3 4
0 0 0.998 0.002 0 0 0
0 1 0.9 0.1 0 0 0
0 2 0.6 0.25 0.15 0 0
0 3 0.3 0.3 0.3 0.1 0
0 4 0 0.15 0.5 0.35 0
1 0 0.9 0.1 0 0 0
1 1 0.6 0.25 0.15 0 0
1 2 0.3 0.3 0.3 0.1 0
1 3 0 0.15 0.5 0.35 0
1 4 0 0.15 0.25 0.4 0.2
2 0 0.6 0.25 0.15 0 0
2 1 0.3 0.3 0.3 0.1 0
2 2 0 0.15 0.5 0.35 0
2 3 0 0.15 0.25 0.4 0.2
2 4 0 0 0.25 0.5 0.25
3 0 0.3 0.3 0.3 0.1 0
3 1 0 0.15 0.5 0.35 0
3 2 0 0.15 0.25 0.4 0.2
3 3 0 0 0.25 0.5 0.25
3 4 0 0 0 0.2 0.8
4 0 0 0.25 0.4 0.35 0
4 1 0 0.15 0.25 0.4 0.2
4 2 0 0 0.25 0.5 0.25
4 3 0 0 0 0.2 0.8
4 4 0 0 0 0.001 0.999
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Table A.3: The CPT for System
System

Sub1 Sub2 0 1
0 0 0.999 0.001
0 1 0.99 0.01
0 2 0.9 0.1
0 3 0.8 0.2
0 4 0.7 0.3
1 0 0.99 0.01
1 1 0.9 0.1
1 2 0.8 0.2
1 3 0.7 0.3
1 4 0.6 0.4
2 0 0.9 0.1
2 1 0.8 0.2
2 2 0.7 0.3
2 3 0.6 0.4
2 4 0.5 0.5
3 0 0.8 0.2
3 1 0.7 0.3
3 2 0.6 0.4
3 3 0.5 0.5
3 4 0.2 0.8
4 0 0.7 0.3
4 1 0.6 0.4
4 2 0.5 0.5
4 3 0.2 0.8
4 4 0.001 0.999
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Sampling algorithms for some nodes in Figures 3.3, 3.7, and 3.9

• Sampling algorithm for X3 in Fig. 3.3
x3 = F−1

r23;x2(F−1
r13|2;Fr12;x2 (x1)(u3))

• Sampling algorithm for X3 in Fig. 3.7
x3 = F−1

r31;x1(F−1
r32|1;Fr12;x1 (x2)(u3)) = F−1

r31;x1(F−1
r32|1;x2(u3))

The second equality holds because the network structure shows that X1 and X2
are independent.

• Sampling algorithm for X4 in Fig. 3.9

x4 = F−1
r41;x1(F−1

r43|1;Fr13;x1 (x3)(F−1
r42|31;Fr12|3;Fr13;x3 (x1)(Fr32;x3 (x2))(u4)))

= F−1
r41;x1(F−1

r43|1;Fr13;x1 (x3)(u4)))

Again, the second equality holds because the network structure implies X4 and
X2 are independent once values of X1 and X3 are given.
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BQR models for each iteration and Max coefficient differences.

Initial Model

y = −0.6 + 0.3θ5 + 0.01θ9 + 0.1θ10 + 0.2θ11 + 0.1θ12

+ 0.1θ13 + 0.25θ14 + 0.01θ15 + 0.6θ16 + 0.15θ17 + 0.1θ18

Iteration 1 (Max coefficient difference from the Initial Model: 0.266)

y = −0.349 + 0.09573θ5 + 0.0455θ9 + 0.1668θ10 + 0.1827θ11 − 0.0963θ12

− 0.166θ13 + 0.1933θ14 − 0.0857θ15 + 0.8401θ16 + 0.1576θ17 + 0.1156θ18

Iteration 2 (Max coefficient difference from the Iteration1 Model: 0.20787)

y = −0.55687 + 0.15177θ5 + 0.09425θ9 + 0.12069θ10 + 0.15914θ11 + 0.00448θ12

− 0.02826θ13 + 0.21854θ14 − 0.05736θ15 + 0.80076θ16 + 0.0978θ17 + 0.02417θ18

Iteration 3 (Max coefficient difference from the Iteration2 Model: 0.07117)

y = −0.62804 + 0.19557θ5 + 0.09937θ9 + 0.10402θ10 + 0.10432θ11 + 0.001195929θ12

+ 0.03004θ13 + 0.21556θ14 + 0.00474θ15 + 0.74816θ16 + 0.1256θ17 + 0.01102θ18

Iteration 4 (Max coefficient difference from the Iteration3 Model: 0.03074)

y = −0.5973 + 0.1881θ5 + 0.113θ9 + 0.0769θ10 + 0.0906θ11 + 0.02573θ12 + 0.0147θ13

+ 0.1991θ14 + 0.0318θ15 + 0.7417θ16 + 0.1263θ17 + 0.0336θ18

Iteration 5 (Max coefficient difference from the Iteration4 Model: 0.0396)

y = −0.5577 + 0.1915θ5 + 0.0962θ9 + 0.0556θ10 + 0.0895θ11 + 0.00518θ12 + 0.0318θ13

+ 0.1917θ14 + 0.0446θ15 + 0.7386θ16 + 0.1163θ17 + 0.0514θ18

Iteration 6 (Max coefficient difference from the Iteration5 Model: 0.033)

y = −0.5247 + 0.1995θ5 + 0.119θ9 + 0.0542θ10 + 0.0906θ11 + 0.02154θ12 + 0.0155θ13

+ 0.1851θ14 + 0.0382θ15 + 0.7334θ16 + 0.1128θ17 + 0.0443θ18

Iteration 7 (Max coefficient difference from the Iteration5 Model: 0.034)

y = −0.4907 + 0.1917θ5 + 0.1068θ9 + 0.0347θ10 + 0.0905θ11 + 0.03608θ12 + 0.0183θ13

+ 0.163θ14 + 0.0199θ15 + 0.7356θ16 + 0.1194θ17 + 0.0428θ18

Iteration 8 (Max coefficient difference from the Iteration5 Model: 0.0219)

y = −0.4789 + 0.176θ5 + 0.1211θ9 + 0.0442θ10 + 0.0833θ11 + 0.019θ12 + 0.0168θ13

+ 0.1417θ14 + 0.0177θ15 + 0.7563θ16 + 0.1197θ17 + 0.0209θ18
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Iteration 9 (Max coefficient difference from the Iteration5 Model: 0.00893)

y = −0.47448 + 0.17079θ5 + 0.12312θ9 + 0.03986θ10 + 0.07848θ11 + 0.01108021θ12

+ 0.00787θ13 + 0.14373θ14 + 0.02425θ15 + 0.75515θ16 + 0.11594θ17 + 0.012θ18

Iteration 10 (Max coefficient difference from the Iteration5 Model: 0.009732)

y = −0.480447+0.165483θ5+0.113388θ9+0.042766θ10+0.082854θ11+0.0076θ12+0.000528θ13

+ 0.143478θ14 + 0.023603θ15 + 0.747396θ16 + 0.110762θ17 + 0.003082θ18
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