392 research outputs found

    Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

    Full text link
    Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.Comment: Accepted for publication by the International Journal of Computer Vision (IJCV) on 16.02.2016 (submitted on 17.10.14). A combination into a single framework of an ECCV'12 multicamera-RGB and a monocular-RGBD GCPR'14 hand tracking paper with several extensions, additional experiments and detail

    Learned Vertex Descent: A New Direction for 3D Human Model Fitting

    Get PDF
    We propose a novel optimization-based paradigm for 3D human model fitting on images and scans. In contrast to existing approaches that directly regress the parameters of a low-dimensional statistical body model (e.g. SMPL) from input images, we train an ensemble of per-vertex neural fields network. The network predicts, in a distributed manner, the vertex descent direction towards the ground truth, based on neural features extracted at the current vertex projection. At inference, we employ this network, dubbed LVD, within a gradient-descent optimization pipeline until its convergence, which typically occurs in a fraction of a second even when initializing all vertices into a single point. An exhaustive evaluation demonstrates that our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art. LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.Comment: Project page: https://www.iri.upc.edu/people/ecorona/lvd

    Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity

    Get PDF
    Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal ratio and ECD fitting showed that higher values of metallic interference produced highly scattered dipoles. Results revealed a significant reduction on dispersion using the BSS-based reduction procedure, yielding feasible locations of ECDs in contrast to the other two approaches. Significance. The automatic BSS-based method can be applied to MEG datasets affected by metallic artifacts as a processing step to improve the localization of epileptic foci.Postprint (published version

    Two-View Geometry Scoring Without Correspondences

    Full text link
    Camera pose estimation for two-view geometry traditionally relies on RANSAC. Normally, a multitude of image correspondences leads to a pool of proposed hypotheses, which are then scored to find a winning model. The inlier count is generally regarded as a reliable indicator of "consensus". We examine this scoring heuristic, and find that it favors disappointing models under certain circumstances. As a remedy, we propose the Fundamental Scoring Network (FSNet), which infers a score for a pair of overlapping images and any proposed fundamental matrix. It does not rely on sparse correspondences, but rather embodies a two-view geometry model through an epipolar attention mechanism that predicts the pose error of the two images. FSNet can be incorporated into traditional RANSAC loops. We evaluate FSNet on fundamental and essential matrix estimation on indoor and outdoor datasets, and establish that FSNet can successfully identify good poses for pairs of images with few or unreliable correspondences. Besides, we show that naively combining FSNet with MAGSAC++ scoring approach achieves state of the art results

    Neural network approximated Bayesian inference of edge electron density profiles at JET

    Get PDF
    A neural network (NN) has been trained on the inference of the edge electron density profiles from measurements of the JET lithium beam emission spectroscopy (Li-BES) diagnostic. The novelty of the approach resides in the fact that the network has been trained to be a fast surrogate model of an existing Bayesian model of the diagnostic implemented within the Minerva framework. Previous work showed the very first application of this method to an x-ray imaging diagnostic at the W7-X experiment, and it was argued that the method was general enough that it may be applied to different physics systems. Here, we try to show that the claim made there is valid. What makes the approach general and versatile is the common definition of different models within the same framework. The network is tested on data measured during several different pulses and the predictions compared to the results obtained with the full model Bayesian inference. The NN analysis only requires tens of microseconds on a GPU compared to the tens of minutes long full inference. Finally, in relation to what was presented in the previous work, we demonstrate an improvement in the method of calculation of the network uncertainties, achieved by using a state-of-the-art deep learning technique based on a variational inference interpretation of the network training. The advantage of this calculation resides in the fact that it relies on fewer assumptions, and no extra computation time is required besides the conventional network evaluation time. This allows estimating the uncertainties also in real time applications.Comunidad Europea de la Energía Atómica. EURATOM - 2014-2018 y 2019-2020 - 63305

    B-CLEAN-SC: CLEAN-SC for broadband sources

    Full text link
    This paper presents B-CLEAN-SC, a variation of CLEAN-SC for broadband sources. Opposed to CLEAN-SC, which ``deconvolves'' the beamforming map for each frequency individually, B-CLEAN-SC processes frequency intervals. Instead of performing a deconvolution iteration at the location of the maximum level, B-CLEAN-SC performs it at the location of the over-frequency-averaged maximum to improve the location estimation. The method is validated and compared to standard CLEAN-SC on synthetic cases, and real-world experiments, for broad- and narrowband sources. It improves the source reconstruction at low and high frequencies and suppresses noise, while it only increases the need for memory but not computational effort.Comment: revision

    Two-View Geometry Scoring Without Correspondences

    Get PDF
    Camera pose estimation for two-view geometry traditionally relies on RANSAC. Normally, a multitude of image correspondences leads to a pool of proposed hypotheses, which are then scored to find a winning model. The inlier count is generally regarded as a reliable indicator of 'consensus'. We examine this scoring heuristic, and find that it favors disappointing models under certain circumstances. As a remedy, we propose the Fundamental Scoring Network (FSNet), which infers a score for a pair of overlap-ping images and any proposed fundamental matrix. It does not rely on sparse correspondences, but rather embodies a two-view geometry model through an epipolar attention mechanism that predicts the pose error of the two images. FSNet can be incorporated into traditional RANSAC loops. We evaluate FSNet onfundamental and essential matrix estimation on indoor and outdoor datasets, and establish that FSNet can successfully identify good poses for pairs of images with few or unreliable correspondences. Besides, we show that naively combining FSNet with MAGSAC++ scoring approach achieves state of the art results
    corecore