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Abstract
A neural network (NN) has been trained on the inference of the edge electron density profiles from
measurements of the JET lithium beam emission spectroscopy (Li-BES) diagnostic. The novelty of the
approach resides in the fact that the network has been trained to be a fast surrogate model of an existing
Bayesian model of the diagnostic implemented within the Minerva framework. Previous work showed
the very first application of this method to an x-ray imaging diagnostic at the W7-X experiment, and it
was argued that the method was general enough that it may be applied to different physics systems.
Here, we try to show that the claim made there is valid. What makes the approach general and versatile
is the common definition of different models within the same framework. The network is tested on data
measured during several different pulses and the predictions compared to the results obtained with the
full model Bayesian inference. The NN analysis only requires tens of microseconds on a GPU
compared to the tens of minutes long full inference. Finally, in relation to what was presented in the
previous work, we demonstrate an improvement in the method of calculation of the network
uncertainties, achieved by using a state-of-the-art deep learning technique based on a variational
inference interpretation of the network training. The advantage of this calculation resides in the fact that
it relies on fewer assumptions, and no extra computation time is required besides the conventional
network evaluation time. This allows estimating the uncertainties also in real time applications.

Keywords: JET, neural network, Bayesian inference, real time, dropout, Lithium beam
diagnostic, edge electron density

(Some figures may appear in colour only in the online journal)

1. Introduction

The application of neural networks (NN) to fusion experi-
ments is not new, dating back to the mid-1990s with

examples at the JET experiment of reconstruction of ion
temperature profiles in real-time [1] and analysis of charge
exchange spectra [2, 3]. They have been used for the infer-
ence of plasma parameters from diagnostic data as well as the
prediction of disruptive events from different parameters and
measured quantities [4]. More recently, they have also been
used at the Wendelstein 7-X experiments for the task of
reconstructing magnetic configuration properties from heat
load patterns on the plasma-facing components [5, 6]; at JET
for tomographic reconstruction [7]; they have been used also
as surrogates for transport models as shown in [8–10]. Dif-
ferent machine learning algorithms as Gaussian processes
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have been used in surrogate-based optimization strategy for
the accelerated validation of plasma transport codes as in [11].
NN are very desirable tools especially for two reasons: they
are able to identify patterns for those phenomena where a
physics model describing the process is missing, e.g. plasma
disruption, and they can process data at very fast time scales,
e.g. in the order of tens of microseconds. The latter feature is
particularly relevant today as fusion experiments produce
more data than we can hope to exhaustively analyze with
traditional tools.

Here we train a NN as a fast approximation, i.e. a sur-
rogate model, of a Bayesian model of the JET lithium beam
spectroscopy (Li-BES) diagnostic for the inference of the
edge electron density profiles from experimental measure-
ments. The principles behind the functioning of the diagnostic
are given in [12], whereas details about the experimental
configuration and measurements at JET can be found in
[13–15]. Edge electron density profiles are useful quantities in
controlling and understanding plasma phenomena as edge
localized modes (ELMs), L-H transitions and turbulence
transport. A model for the diagnostic, described in detail in
[16], is implemented within the Minerva Bayesian modeling
framework [17]. The framework provides a common way to
define models and perform Bayesian inference when mea-
surements are available. The models are strongly modular so
that different modules, or nodes in the jargon, can be easily
used to build similar models for different systems, e.g.
diagnostics at different fusion machines, or test different
assumptions. Currently, the framework is extensively used at
the fusion experiment JET, where its application is discussed
in [18] and an application to the equilibrium reconstruction
using microwave diagnostics is described in [19], and W7-X,
where it has been used to model a microwave radiometer
calibration for the electron cyclotron emission diagnostic
[20], for the inference of electron, ion, and impurity density
profiles from an x-ray imaging diagnostic [21], and for the
inference of ion temperature from measurements of a coe-
herent thomson scattering diagnostic [22].

In a previous work [23], it was shown that a NN can be
trained as approximation of the Bayesian model of an x-ray
imaging diagnostic at W7-X, and it was argued that the same
method could be easily applied to a different system for which
a Bayesian model implemented within Minerva was available.
Extending such work, here we aim at validating this claim.
Therefore we make use of the same method for training the
network, i.e. we train the network on data generated exclu-
sively with the Bayesian model sampling from its joint dis-
tribution, and we show that it can be successfully used to
approximate the full model Bayesian inference of plasma
parameters from data measured with a new physical system at
a different fusion experiment, the edge electron density pro-
files from the Lithium beam emission spectroscopy diagnostic
measurements at JET. In this way, we demonstrate that all
that is required to obtain such network approximation is a
Bayesian model. This is relevant because it shows that it is
possible to replicate the method and achieve a fast

reconstruction for any diagnostic modeled within the Minerva
framework. Moreover, a major novel contribution is achieved
by improving on the uncertainties calculation previously
reported, which suffered from being slow and requiring lim-
iting approximations. The calculation makes use of a novel
state-of-the-art deep learning technique which can provide
fast and at the same time accurate uncertainty estimates. This
is of particular relevance if we think of using the network
reconstructions in real time systems and control applications
where we need to take decisions according to the network
result and it is therefore crucial to know whether and to what
extent the network output is accurate and can be trusted.

In section 2 we give an overview of the Lithium beam
spectroscopy diagnostic to the extent that is relevant to this
work, in section 3 we describe the Bayesian model of the
diagnostic implemented within the Minerva framework, in
section 4 we show how the network is trained making use of
data generated with the Minerva Bayesian model in order to
make predictions from experimental data, in section 5 we
describe how the uncertainties of the network model can be
calculated, and in section 6 we compare the network inference
to the Bayesian inference carried out with the Minerva model
on measurements collected at several JET pulses. We draw
our conclusion in 7, where we also give an outlook on future
developments.

2. The JET lithium beam spectroscopy diagnostic

The Li-BES system measures the spectral emission produced
by the interaction of lithium atoms with the plasma species.
The lithium atoms are injected with a beam vertically from
the top of the machine, and as the beam penetrates the plasma
it gradually gets excited and it is lost along the magnetic field
lines when most of the atoms get ionized. A transmission
grating spectrometer collects the radiation emitted along the
penetration path, which is limited to the edge region of the
plasma where it allows the reconstruction of the electron
density. The spectrum is observed in a few nanometers
wavelength range from 26 different spatial positions. A CCD
camera is used to detect the photons with an integration time
of typically 10 ms. A sketch of the system is shown in
figure 1.

In order to understand the work presented here, details
about the hardware are not as relevant as those about the
model, which are given below. For the reader interested in
knowing further details about the hardware set-up, detailed
descriptions can be found in [13] and [14]. Here we will give
an overview of the diagnostic principles and the model in
order to provide the information required to understand the
rest of the work. A full description of the Bayesian model and
its usage to infer the electron density, including details about
error treatment, modeling of the instrument function and
calibration, is given in [16, 24].

The measured spectra contain different components: the
Li I line radiation A, a bremsstrahlung dominated background
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B assumed to be constant in the wavelength range of interest,
and an offset Z. The signal S can be found by taking into
account an instrument function C(λ) representing the shape of
an infinitely narrow line on the detector and an interference
filter function F(λ) according to the following equation (the
spectral width of the Li line is below the resolving capability
of the instrument):

l l l= + +S F C A B Z. 2.1( ) ( )[ ( ) ] ( )

The quantity of interest for this study is the Li I line radiation
A, which we will refer to as the measurement or observation
of our system from now on. It is inferred from the measured
signal S in a pre-processing stage, prior to any NN or Baye-
sian model evaluation, by first inferring the interference filter
function F and the instrument function C from two inde-
pendent and dedicated measurements without plasma, and
then by inferring A, B and Z simultaneously from actual
plasma experiments. We will not give further details here
about how this is accomplished as it is not relevant for the rest
of this work; the interested reader can find more information
in [16].

The intensities of the Li I (2p-2s) line radiation come
from the neutral lithium beam atoms injected into the vacuum
vessel as they traverse and interact with the plasma. The
atoms penetrating into the plasma undergo collisions with the

plasma electrons, protons and other impurities and by mean of
spontaneous emission processes they produce the line radia-
tion that is collected by the diagnostic. The line radiation is
emitted by the decay from the first excited state (1s2 2p1) to
the ground state (1s2 2s1) of the beam atoms. The line
intensity is then dependent on the population of the first
excited stated. The change in the relative population of any
excited state Ni as the beam atoms penetrate the plasma can be
expressed in terms of the plasma electron density ne(z) and
temperature Te(z) according to a multi-state collisional-
radiative model firstly introduced in [25]:

å= + +
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where z represents a coordinate along the penetration length
of the beam. The coefficients aij

e and aij
p with ¹i j( ) and

a> 0 are net population rate coefficients accounting for the
contribution of plasma electrons and ions in populating the ith
state from the jth state; whereas aii<0 denotes a net de-
population rate coefficient of the ith state accounting for
excitation, de-excitation and ionization processes. The coef-
ficients bij represent instead spontaneous emission rate coef-
ficients or Einstein coefficients. vLi is the lithium beam
velocity corresponding to ≈50 keV beam energy, np is the
density of plasma protons, and MLi is the number of con-
sidered states of the neutral lithium atoms, which is 9 in this
case. The dependency of the plasma profiles ne, Te and Nj on
the z coordinate has been omitted for brevity. In order to be
able to solve equation (2.2), an initial condition needs to be
defined. It can be chosen to be:

d= =N z 0 2.3i i1( ) ( )

corresponding to the assumption that all lithium beam atoms
are neutral in the ground state (i= 1) at z=0, the position
where they enter the vacuum vessel. In other words we
assume N1(z=0)=1. The population of the first excited
state (i= 2) of the lithium atoms N2 can then be calculated.
This quantity is proportional to the observed lithium inten-
sities A(z) found from the signal measured with the CCD
camera along the observation length. We therefore introduce a
calibration factor α to express this relationship:

a=A z N z . 2.42( ) ( ) ( )

The factor is not known and it has to be inferred from the
data. For the interested reader, a complete derivation and an
explicit expression of α in terms of the CCD output counts
can be found in [16].

Figure 2 shows an example calculation carried out with
the forward model implementing the physics described so far.
Given the plasma profiles in the two plots on the top, the
relative population of the first excited state of the lithium
atoms and then the Li I line intensity can be calculated. The
plot on the bottom left representing the line intensity in
arbitrary units also shows a 10% relative Gaussian noise
added to the calculation (the scattered circles) in order to
simulate the noise present in the measurements. As the beam

Figure 1. A schematic of the Li-BES system at JET. The lithium
beam is injected vertically (blue arrow) and it penetrates the plasma
volume, indicated by the orange ellipsoid, emitting light by
interacting with the plasma species. The spatial positions of the
measurements is indicated by the intersection of the lines of sight
(dashed lines) with the lithium beam path. The light is collected by a
spectrometer, in yellow in the figure.
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atoms penetrate into the plasma they also get ionized and
when this happens they follow the magnetic field lines as
charged particles and do not contribute any longer to the
collected emission. The ionized atom population is shown in
violet in the plot on the bottom right.

The measured intensity can be used to infer the electron
density profile at different edge locations along the penetra-
tion length, provided the electron temperature profile infor-
mation. The latter is usually delivered at JET by the high
resolution Thomson scattering diagnostic (HRTS) [26].

3. The Bayesian minerva model

The multi-state model described in section 2 is implemented
within the Minerva Bayesian modeling framework. The
Minerva modeling framework [17] is a framework that allows
modeling complex systems and carrying out Bayesian infer-
ence with them. Models are expressed in a modular way, where
the modules are called nodes. These modules can be easily
switched and replaced so that different models can be easily
built, and different assumptions can be easily tested. Nodes can
represent physics quantities with associated probability dis-
tributions over the values they can assume, or they can
represent deterministic calculations consumed by other nodes
in the model. The models are used as forward models to predict
observations from given free parameters. It makes use of gra-
phical models [27] to represent models and the probabilistic
relations between quantities in the model. An example of a
Minerva graph for the lithium beam system is shown in
figure 3, and it is described later in the section. Once a model
has been defined within the framework, Bayesian inference can
be performed with it. Thanks to the fact that model definition
and Bayesian inference constitute two different and indepen-
dent stages, such that the implementation details of one are
abstracted away from the other, the framework offers a solution
for performing scientific inference in complex systems which is
general, and not strictly related to a single nuclear fusion

experiment or even nuclear fusion research. As a Bayesian
framework, it employs Bayesian probability theory to handle
the uncertainties attributed to any modeled quantity. In Baye-
sian probability a prior distribution p(T) is assigned to the
model free parameters T and a likelihood function p D T( ∣ ) is
assigned to the model observations D. As measurements are
available, they can be used to update the prior knowledge on
the free parameters through Bayes formula:

=p T D
p D T p T

p D
. 3.1( ∣ ) ( ∣ ) ( )

( )
( )

The quantity p T D( ∣ ) is called the posterior distribution and it
reflects the new state of knowledge on the parameters T as the

Figure 2.An example case of the Li-BES forward model calculation. In clockwise direction, from the top left plot the following quantities are
shown: an electron density profile, an electron temperature profile, the Li I line intensity predicted with the forward model (solid line)
together with the addition of 10% relative Gaussian noise (scattered dots), and the relative population of the ground state (GS), the first
excited state Li I and the first ionized state Li1+ of the beam atoms. All quantities are expressed as function of the penetration distance inside
the plasma, with z=0 corresponding to the position where the beam enters the vacuum vessel.

Figure 3. A simplified sketch of the Li-BES Minerva model graph.
Colored nodes are probabilistic nodes, where orange denotes the free
parameters and blue denotes the observed quantities. White nodes
represents deterministic calculation nodes or other input parameters
required by the model. The arrows represent direct or indirect
dependencies in the probabilistic relations between the quantities in
the probabilistic nodes.

4

Plasma Phys. Control. Fusion 62 (2020) 045019 A Pavone et al



observations D are taken into account. The numerator of the
equation is also known as the joint distribution p(D, T) of the
observations and parameters. The denominator p(D) is a nor-
malization factor and it is referred to as the evidence.

3.1. Model parameters

The model free parameters are the electron density profile ne
and the absolute calibration factor α. The prior distribution
for the ne profile is modeled through a zero mean Gaussian
process [28]. A Gaussian process is a stochastic process
whose realizations are functions. In Bayesian inference they
are used for models where the free parameters are functions,
in this case 1D electron density profiles, and the observations
are the values they assume in a number of domain locations.
A realization of a random function drawn from the process is
given by the values it assumes in a number of positions in its
domain and its probability distribution is chosen to be
Gaussian. Its covariance is known as covariance function.
One common choice for it is the squared exponential, which
regulates the smoothness of the function by modeling the
correlation between points in the domain. For the density
profiles it can be written as:

s
s

d s= -
-

+K z z
z z

, exp
2

, 3.2f
x

ij y1 2
2 1 2

2

2
2

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

where z1 and z2 are two positions along the z axis and the
different σ parameters regulate the smoothness of the profile.
σf regulates the overall variance of the profile and σx regulates
the length scale of the changes in the profile. Small values
mean that the profile can change quickly along z, whereas
large values mean that it will change slowly. σy is used to
allow for small amount of noise expected in the profile. A
uniform distribution is used for the calibration factor α. The
model observations are the Li I line intensities. The likelihood
function is chosen to be a normal distribution centered on the
forward model prediction.

3.2. Model graph

A sketch of the Minerva model graph for the Li-BES system
is shown in figure 3. In the sketch, the nodes representing the
free parameters ne and α are in orange, and the node repre-
senting the observations is depicted in blue. The white nodes
represent computation nodes, as the ‘multi-state model’ node
which is used to calculate the predicted Li I line intensity,
represented in the ‘Li I intensity’ node, or other quantities
required by the model, as the energy of the lithium beam,
represented by the ‘beam energy’ node, and the observation
length, defined as the length along the beam path where the
emission is observed, represented by the ‘length’ node. The
observation length is a quantity that is known given
the experimental setup and it can be different for different
experiments. We make use of 20 and 26 equally spaced
positions along the observation length for the profile and the
observations locations, respectively. The calibration coeffi-
cient α is applied to the predicted Li I line intensities as an
overall multiplicative factor. In the graph, we have also

shown the dependency of the multi-state model from the rate
coefficients that are taken from the Atomic Data and Analysis
Structure (ADAS) database [29], a database containing data
useful for modeling the radiating properties of ions and atoms
in plasmas. The arrows represent direct or indirect depen-
dencies in the probabilistic relations between the quantities in
the probabilistic nodes, and should not be understood as a
computational flow. All free parameters node reach, indir-
ectly, the observation node and are not connected to each
other. This expresses the fact that the joint distribution of the
graph p(D, T) can be factorized in terms of a conditional
distribution of the observations conditioned on the free
parameters ap D n ,e( ∣ ) and the product of two independent
prior distributions over the electron density p(ne) and the
calibration factor p(α):

a a=p D T p D n p n p, , . 3.3e e( ) ( ∣ ) ( ) ( ) ( )

4. NN training

Given the Bayesian model described in the previous section,
we aim now at training a NN in such a way that it constitutes
an approximation of the Bayesian inference that can be car-
ried out with the full Minerva model. In order to achieve this,
we use the Minerva model to generate the training data. In
this section, we outline the procedure to the extent it concerns
the specific case of the lithium beam system under invest-
igation. For the interested reader, further conceptual and
theoretical insights about how this method can provide a
sound approximation are given in [23].

4.1. Generation of the training data

The electron temperature profile Te and the observation length
l are parameters that are known at inference time, when we
perform inference with the Minerva model and the network:
the former is provided by an independent measurement of
the Thomson scattering diagnostic, the latter comes from
the experimental setup. Both quantities constitute part of the
network input, together with the measured lithium line
intensities, and therefore need be generated with the Minerva
model for training the network. As we aim at training the NN
on the problem of inferring electron density profiles from
measured Li I line intensities, the training input data are the Li
I line intensities, the Te profiles, and the length, while the
training output data are the ne profiles and the absolute cali-
bration coefficient α. We generate the training data by sam-
pling from the joint distribution of the model. This means
that, as a first step, we draw a sample of ne, Te, l and α from
the corresponding prior distributions and, given these values,
we compute the predicted Li I line intensities and draw a
sample from the likelihood function. We iterate over this
process a number of times equal to the number of samples in
the training set. As we need to generate data also for Te and
the observation length, we assign probability distributions
also to them, so that the joint distribution of the model can be
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written as:

a=p D T p D n T l, , , , , 4.1e e( ) ( ) ( )

and

a a=p D T p D n T l p n p T p l p, , , , . 4.2e e e e( ) ( ∣ ) ( ) ( ) ( ) ( ) ( )

A sketch of the procedure is shown in figure 4.
We used for the ne and Te profiles a zero mean GP prior

defined on a x domain of 20 linearly spaced positions between
x0= 0.0 and x1= 20.0 with covariance function as in
equation (3.2). The parameters of the GP are set to:
σx=10.0, σy=0.002× 1019 m−3, σf=2.0× 1019 m−3 for
ne, and σx=10.0, σy=0.002 keV, σf=1.0 keV for Te. The
profiles are constrained to be non-negative by rejecting
the samples having negative values as they are drawn from
the GP prior distributions until a positive valued sample is
drawn and kept. Moreover, we constrain the profiles to
assume low value at x=0 corresponding to the position
z=0, the edge location where the beam enter the plasma.
The constraint is implemented as a virtual observation, i.e. by
implementing an observed node in the Minerva graph as a
normal distribution with standard deviation 100 eV around a
value of 100 eV for the Te profile, and standard deviation
0.1× 1019 m−3 around a value of 0.01×1019 m−3 for the ne
profiles. In this way, when the profiles are sampled, they are
constrained by this virtual observation as if it was a real
measurement, although no measurement of such kind actually
occurred. Further details about how a virtual observation
constraint is implemented are provided extensively in [23]
and will not be treated further here, as they are not relevant to
the understanding of the work that follows.

Samples from the ne and Te prior distributions are shown
in figure 5. The distance from the location z=0 at which the
beam atoms enter the plasma is on the x axis. It is worth
noticing that the profiles are not monotonic. For the calibra-
tion factor α we use a uniform distribution between 1.0 and
20.0. The choice for this prior was motivated by the infor-
mation available from previous analysis, which showed
values typically falling in this range. For the parameter l we
use a uniform distribution between 0.2 and 0.4 cm. Finally,
the conditional distribution of the simulated Li I intensity
P D T( ∣ ) is a normal distribution centered on the model pre-
diction and with standard deviation equals to 10% relative
error. In this way, we inject noise in the training input data, as
we expect to have noise at evaluation time, when the input are
the experimental measurements. Our training data set is made
of 100 000 samples.

4.2. Network model

The NN architecture used for this problem is a multilayer
perceptron (MLP) with one hidden layer with 1000 units. The
activation function used in the hidden units is the so called
scaled exponential linear function (SELU) [30] and the loss
function used is the mean squared error:

å= -L
N

w y w t
1

, 4.3
i

i i
2( ) ( ( ) ) ( )

where N is the number of training samples, w is the vector of
adaptable network weights, and yi and ti are the ith multi-
dimensional output and target vector, respectively. The net-
work was trained using the Adam optimizer with parameters:
learning rate=0.001, β1=0.9, β2=0.999, ò=10−8, see
[31] for a description of the algorithm and parameters. The
training data were divided in batches of 100 samples and the
network weight training was terminated once 5000 passes

Figure 4. A sketch to illustrate the sampling procedure for the
training set creation. A sketch of the Li-BES Minerva model and the
neural network, having one hidden layer with 1000 units, is shown
on the left and on the right, respectively. At training time, the NN
takes as input the Li I line intensities generated with the Minerva
model and sampled from the likelihood function together with the
sampled Te and observation length l. The sampled ne and α used to
generate the intensities are the target data of the network. The blue
nodes of the neural network denote the input intensities and the two
red nodes at the top denote the output points of the electron density
profile.

Figure 5. Samples from the Gaussian process priors for the Te and ne
profiles, top and bottom figures, respectively. The x-axis position at
0.0 corresponds to the location where the beam atoms enter the
plasma, which is at the edge of the machine. The low value
constraint at such position is also visible in the shape of the sampled
profiles.
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through the training set were reached (also called epochs).
One single starting position was used for the initialization of
the weights. The number of 1000 hidden units in one hidden
layer was chosen by validating the network performance on a
set of test data made of 1000 samples drawn from the joint
distribution of the Bayesian model. The network was imple-
mented within the TensorFlow framework [32]. The NN has
been trained with dropout [33, 34]. Dropout is a technique
originally introduced to prevent overfitting. Although this can
be, by itself, a good reason to make use of it, there is at least
another reason. Dropout training can also be used to estimate
uncertainties in the network prediction; when used in this way
it is referred to as Monte Carlo (MC) dropout [35]. In the next
section we will give an overview of the theoretical framework
that allows to interpret dropout training as a Bayesian infer-
ence technique. We will only touch the salient points of the
derivation which are necessary to understand the current
work, but for the reader interested in a deeper understanding
of the theory behind it, details can be found in [35].

Before proceeding, we would like to summarize the
relationship between the two key elements of this work:

• the Minerva Bayesian model is defined at the first step,
and it is used to both carry out the full Bayesian inference
of the electron density profiles from the measured
experimental data, and to generate the training data for
the NN from its joint distribution.

• the NN is first trained on data generated exclusively with
the Minerva Bayesian model, afterwards it is applied to
infer electron density profiles from the measured exper-
imental data.

In this way, the full Bayesian inference and the NN inference
are both based on the same Bayesian model, with the
distinction that the latter approximates the former. The two
inference methods will be compared in section 6.

5. NN uncertainties

Delivering uncertainties in the NN calculation is necessary in
order to asses whether, and how far, the network prediction
can be trusted. This is important when the network output is
wanted for further calculations, and especially when a deci-
sion has to be taken according to its output, as in the case of
real time control systems, e.g. feedback systems. Therefore, it
is also important that the uncertainties can be calculated in a
time scale comparable to the network processing speed itself.
Here we give an overview of the theoretically sound and
practically desirable method presented in [35].

5.1. Bayesian NNs

NN uncertainties can be calculated in a Bayesian framework
known as Bayesian NNs [36]. In this context, the network
training is seen as an inference problem, where the free
parameters are the network weights w and the training target
data are the observations Y. It follows that we can write

Bayes formula for the posterior of the network weights:

=p
p p

p
w Y X

Y w X w
Y X

,
,

, 5.1( ∣ ) ( ∣ ) ( )
( ∣ )

( )

where X denotes the training input data. As we have now a
distribution over the network weights, we will also have a
distribution over the network’s predictions y* for a new input
vector x*, given by:

ò=p p py x X Y y w x w Y X w, , , , d . 5.2* * * *( ∣ ) ( ∣ ) ( ∣ ) ( )

This distribution is the one we are interested in and which
prescribes the uncertainties in the network prediction.

5.2. Variational inference

For any interesting NN model, the posterior p w Y X,( ∣ ) can-
not be treated analytically because of the large number of
weights and complex network function. We therefore make
use of variational inference (VI) [37] in order to approximate
it. In VI we choose an approximating variational distribution
qθ(w) parametrised by θ, which is easy to evaluate, in order to
approximate the original posterior distribution. This is
achieved by minimizing the Kullback–Leibler (KL) diver-
gence with respect to θ, which can be thought as a measure of
similarity between two distributions:

ò=q q
qq p q

q

p
w w Y X w

w

w Y X
wKL , log

,
d .( ( )∣∣ ( ∣ )) ( )

( )
( ∣ )

It can be shown that minimizing the KL divergence is
equivalent to maximizing the so called evidence lower bound
(ELBO) with respect to θ:

òq = -q qL q p d q pw Y X w w w wlog , KL ,
w

VI ( ) ( ) ( ∣ ) ( ( ) ∣∣ ( ))

where, noticeably, the KL divergence term now is between
the approximating distribution qθ(w) and the prior distribution
p(w), fact that explains the name of the expression. At this
point we make use of the results derived in [35], where it is
shown that the conventional dropout training of a NN is
equivalent to the maximization of the ELBO function.

5.3. Dropout

When a network is trained with conventional dropout, at each
iteration of the training, as a new training batch sample is
provided to the network, some of its units are dropped. This
makes the trained network more flexible, intuitively because
the units need to learn to be useful also when some of the
others are missing. To be more rigorous, dropout prevents
overfitting by preventing co-adaption of the units. At eva-
luation time all units are retained, but their output is scaled
down by the probability of dropping them, since now there is
a larger number of units in the network.

5.4. MC dropout

In the conventional dropout picture of training, the stochastic
process is applied in the unit (or feature) space. We can
switch view and see the stochastic process as applied in the
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weight space, since as units are dropped, also the corresp-
onding weights that connect them are dropped. Under this
view, it is finally possible to merge the dropout training with
the VI approximation of the true weight posterior. This hap-
pens by re-parametrising the weights w in terms of a function
g such that:

q= = gw M b, diag , , 5.3( ) { ( ) } ( )

where θ=M, b and ~ pBernoulli b( ) where pb is the
probability of dropping the units.  is then a vector of zeros
and ones, M is a Q by D deterministic matrix of connecting
weights where Q is input vector size and D output vector size,
b is the bias vector of dimension Q, and diag( ) is a diagonal
matrix of same size as M having as diagonal elements the
elements of the vector  . The product  Mdiag( ) represents a
matrix multiplication whose results end up ‘selecting’ what
connecting weight is active at a given dropout step. At this
point, after some more manipulations, we can rewrite the
integral in the ELBO expression as an integral over pb ( ) and
the derivatives required for the optimization as derivatives
with respect to θ. In [35] it is then shown that, optimizing a
NN dropout loss function is equivalent to optimizing the
function LVI(θ). In conclusion, this means that, by using a
well established method for training the network, we can at
the same time approximate the posterior distribution of the
corresponding Bayesian network via variational inference
with Bernoulli approximating variational distribution.

The only difference with the standard dropout training is
that at evaluation time, instead of retaining all units, we keep
dropping them as several forward passes of the network are
done, so to obtain a distribution of network predictions rather
than a single best estimate. This corresponds to estimating the
ELBO integral with a Monte Carlo integration. The major
advantage of this approach is that it scales well with large
networks: forward passes of the network are typically very
fast and can also be run in parallel. Therefore, calculating
uncertainties in this way does not require substantial extra
computation time.

We used dropout probability pb=0.5 for all units in the
hidden layer, and pb=0.0 for the input units, i.e. all input
units were retained.

We have described how variational inference and drop-
out can be combined in a unified view of the network training,
leading to a Bayesian NN interpretation. One must be aware,
though, of some caveats that have been acknowledged
regarding the theoretical framework supporting this techni-
que: see for example [38], where it is claimed that in the case
of simple linear networks, this method approximates the risk
of a process rather than the uncertainty of the model because
the variance found in this way do not vanish at the limit of
very large amount of training data; see also [39], where it is
shown that the variational inference framework described in
[35], specifically with regards to the choice of some
approximating distributions, can lead to undefined objective
function of the network, and they propose an alternative to
such objective; in general, some difficulties have been
recognized in the application of standard variational inference
approach, as indicated in [40], where pitfalls are found in the

usage of the KL divergence, and a different distance is
proposed.

In the next section we will show results obtained with
MC dropout estimation of the uncertainties, as we tested the
network on experimental data collected at the JET tokamak.

6. Results

We evaluated the NN on data collected at several JET pulses.
In order to assess the quality of the network reconstruction we
can compare the reconstructed electron density profiles to
those inferred with the full Bayesian model. Also, we can use
the reconstructed ne profiles as input to the forward model and
simulate Li I line intensities to compare with the measured
ones. This is indeed a better way to assess the quality of the
network reconstruction as we can see how well the NN pre-
diction fits the data. In the same way, the full Bayesian
inference reconstruction can be compared against the mea-
surements and the quality of the fit compared to that obtained
with the NN reconstruction. We want to point out that this
kind of comparison is possible because we have a model for
the measurement processes, and it is the same one used for
generating the network training data and the full Bayesian
inference. As we previously mentioned, we are comparing
two inversion methods applied to the same Bayesian model:
the network inversion being a fast approximation of the full
Bayesian inference.

6.1. Uncertainties

One illustrative example of such comparison is shown in
figures 6 and 7 for data collected at the JET pulse 89312 at
time 48.295 s, just before NBI heating started, so the plasma
was in L-mode and the line integrated density was
» ´ -5 10 m19 2. In figure 6, the NN reconstructed density
profiles are compared to those inferred with the full Bayesian
inference (Minerva). In figure 7, the Li I line intensities
generated with the Minerva and NN reconstructed profiles are
compared to the measured ones. The multiple samples
represent the uncertainties. In the NN case, these are 100
samples obtained with MC dropout; in the Minerva case,
these are 100 samples drawn from the full model posterior
distribution which has been explored with a Markov Chain
Monte Carlo sampler. From figure 6 it is evident that the
uncertainties of the density profiles inferred with the network
and with Minerva can be quite different. This should not
surprise. It is important to realize that the uncertainties
stemming from the two methods arise from two different
models, the network and Minerva model, and the corresp-
onding Bayesian inference problems. In both cases, the
uncertainties are calculated in a Bayesian framework, but the
models and quantities that contribute to the uncertainties in
the reconstructed profiles are different, as the inference task to
be solved is different. This is made evident by looking at
Bayes formula and the mathematical expression of the
uncertainties for the two models. In the network case, the
distribution of the predicted profiles is obtained by

8

Plasma Phys. Control. Fusion 62 (2020) 045019 A Pavone et al



marginalization over the network weights w when a new
input vector x* is provided:

ò=p n p n px Y w x w Y w, , d 6.1e e* *( ∣ ) ( ∣ ) ( ∣ ) ( )

which is the same expression of equation (5.2), in which we
have omitted the dependence on the input variable X and
substituted y*=ne. When the network is evaluated on the
measured line intensities, the input vector x* is constituted of
the electron temperature profile independently measured by a
Thomson scattering diagnostic, the observation length used at
that experiment, and the measured line intensities. The pos-
terior of the network weights, instead, is given by

µp p pw Y Y w w( ∣ ) ( ∣ ) ( ) and it is found with variational

inference with dropout training as described in section 5. We
do not expect dropout training to reconstruct the posterior
distribution of the Minerva model p n De( ∣ ), but to approx-
imate the true posterior distribution of the network weights
p w Y ;( ∣ ) then, the spread of this posterior gives rise to a
spread in the predicted profiles according to equation (6.1).
Whereas, in the Minerva case the distribution of the inferred
profiles is given by the posterior:

µp n D p D n p n , 6.2e e e( ∣ ) ( ∣ ) ( ) ( )

where D represents the measured Li I line intensities. The
spread of the posterior, therefore, is influenced by the model
uncertainties in predicting the measured Lithium 1 line
intensity p D ne( ∣ ) (e.g. measurement errors) and the prior
p(ne).

To highlight the difference between the two models, it is
useful to notice what is the role of the different quantities in
each of them: in the Minerva model, the free parameters are
the electron density profiles, and the observations are the
lithium line intensities. The inference task is then to find the
electron density profiles which allow to predict the measured
Li line intensities, given the measurements, the physics
model, and the prior. These are the boundaries of the infer-
ence problem. The final posterior distribution expresses the
uncertainties in the inference of the density profiles given the
model and these boundary conditions. The uncertainties that
arise in this case are related to the model uncertainties in the
prediction of the Li intensities—typically estimated from the
measurement errors, the sensitivity of the model to different
values of the electron density, and the beam attenuation. For
example, because the beam is attenuated as it penetrates the
plasma and gets ionized, the model is less sensitive to changes
in the electron densities in the locations closer to the core of
the machine, and the uncertainties are therefore larger.
Quantitative details about the estimation of the error from the
measurements, and quantitative considerations on the beam

Figure 6. A comparison between the ne profiles predicted with the NN and the full model Bayesian inference (Minerva). The samples
represent the uncertainties from the MC dropout in the NN case, and the posterior distribution in the Minerva case. The data are taken from
the JET pulse number 89312 at time 48.295 s.

Figure 7. The Li I line intensities predicted with the NN and Minerva
ne profiles are compared to the measurements. The shadowed areas
represent the uncertainties. The data are taken from the JET pulse
number 89312 at time 48.295 s.
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attenuation and sensitivity on the model are reported in pre-
vious works [16], and are not discussed here as they fall
beyond the scope of this work. In the network model, the free
parameters are the network weights, which lack any physics
interpretation, and the observations are the set of target data in
the training set, i.e. the sampled electron density profiles. The
uncertainties of the network posterior depend on a combina-
tion of network structure, weight prior and approximating
distribution, as it is indicated and further discussed in [35]. At
training time, the network model inference task is to find the
weights which allow to reconstruct the electron density pro-
files from the Li I line intensities, given a specific choice of
network structure, weight prior, approximating distribution
and training set, whose statistical properties are inherited from
the Minerva model by sampling from its joint distribution.
These are the boundary conditions of the inference problem
for the network. The predictive distribution of equation (6.1),
then, expresses the uncertainties of the model in making a
prediction within these boundaries.

6.2. Li I line intensity reconstruction

The performance of the two methods is compared more
extensively in figure 8, where the Li I line intensities predicted
with electron density profiles found by the network (top row)
and the full model Bayesian inference (Minerva, bottom row)
are compared to the measurements in a scatter plot. The pro-
files used are the average of the MC dropout samples in the
network case and the posterior distribution samples in the
Minerva case. The solid line shows the y=x line, where all
points would lie if we had a perfect fit to the measurements.
Each plot in a column shows a different spatial position along
the intensity profile; since the corresponding real space coor-
dinates may vary throughout the experiments, the positions are

labeled according to an index ranging from 0 for the outermost
location to 25 for the innermost one. More than 200 hundred
measured data points collected across 65 pulses were con-
sidered in the analysis (see appendix for a list of the pulses).
The pulses were arbitrarily chosen, without selecting for a
specific set of features or plasma configurations. The pulses
featured a broad range of parameters, including both L- and
H-mode scenarios, low and high power and gas levels. Across
all pulses, the NBI power ranged from ≈3.0 to ≈28 MW, the
vacuum toroidal magnetic field from 1.6 to 3.3 T, the total
ICRH power from ≈2.0 to ≈6.0 MW, the plasma current from
≈1.1 to ≈3.5 MA, and the line integrated density from
≈8.0× 1019 m−2 to ≈2.6× 1020 m−2. The agreement to the
measurements is, in general, satisfactory for both methods.
Although the network consists of a quick, approximated
inversion of the full Bayesian inference, its reconstructions
appear to be good enough to closely predict the data in most
cases.

This is confirmed by figure 9, where we compare the
mean relative error between the observations calculated with
each of the two method inverted profiles and the measure-
ments, for each position along the profile intensities:

å=
-

E
N

q q

q

1
, 6.3

i

i i

i
mre

1 2

2

( )

where q1i is the line intensity predicted by one of the methods,
q2i are the measured line intensities and N is the number of
data points. The figure shows that the error for the network is
consistently larger at every location, and it follows a trend
similar to the full Bayesian inference case (Minerva). At most
positions the error is below 20%, a reasonably good value,
suggesting that the network inversion can provide a reliable
approximated analysis.

Figure 8. The Li I line intensity predicted with electron density profiles found by the network (top row) and the full model Bayesian inference
(Minerva, bottom row), on the y-axis, are compared to the measurements, on the x-axis. Each column shows the comparison for a spatial
position along the intensity profile. The real space coordinates of the positions can vary through the experiments, so here they are labeled by
an index starting from the outermost position at index 0 to the innermost position at index 25. The solid line shows the y=x line. More than
200 hundred measured data points collected across 65 pulses were used.
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6.3. Electron density profile inference

Finally, the electron density profiles inferred with Minerva
can be compared to those found with the network as shown in
figure 10. Each plot shows the ne values at four different
locations along the profile, indexed with an integer number
from 0 to 19. The values are the average of the samples drawn
from the posterior distribution inferred with Minerva (x-axis)
and the samples found with the MC dropout network. The
agreement is, in general, quite satisfactory. Indeed, an ana-
lysis of the mean relative error as defined in equation (6.3),
with q1 denoting the NN reconstructed profiles and q2 the
Minerva reconstructed profiles, shows that it is <15% at any
spatial location. This can be seen in figure 11.

7. Conclusions

Extending from previous work [23], we have trained a NN as
a fast, approximated Bayesian inference model for the infer-
ence of edge electron density profiles from measurements at
the JET tokamak. Exploiting the NN well-known data pro-
cessing speed, we can reduce the time required for the ana-
lysis from tens of minutes to tens of microseconds on a GPU,
providing an approximated reconstruction. We have shown
here, as it was suggested in [23], that all that is necessary in
order to realize this kind of fast network approximation is the
definition of a Bayesian model within the Minerva frame-
work, since the network is trained exclusively on data gen-
erated with the model by sampling from its joint distribution.
This is of particular interest because it opens the possibility to
fully automate the process in order to be able to have a fast
network approximation for any Bayesian model of any other
diagnostic implemented within the framework.

Uncertainties can also be calculated for the network
inversion. We made use of a state-of-the-art training method
to approximate the network weight distribution with varia-
tional inference and calculate the uncertainties in the predic-
tion. Compared to other existing methods, this method has the
advantage of requiring essentially the same evaluation time of
a standard network evaluation. It can be, therefore, particu-
larly useful when the network is used in real time systems,
which benefit of the uncertainty information when using the
network prediction to make further actions or take decisions.

The network has been tested on data collected during
several pulses at the JET tokamak, considering a wide range
of plasma features and scenarios. A comparison of the net-
work inferred profiles and those found with the conventional
Bayesian inference shows a discrepancy in the two methods
reconstructed uncertainties. This should not surprise, as they
arise from two very different models with different free
parameters, observed quantities, and different limitations, and
therefore they are not expected to match. This discrepancy is
a price that has to be paid to achieve the several orders of
magnitude acceleration provided by the network. As we
trained the network on a Bayesian model, we could use the
same model to simulate the observations, given the network
reconstructed profiles, and compare them against the mea-
surements. We included in the comparison the full Bayesian
inference reconstruction, which was carried out making use of
the same model. The comparison was therefore fully con-
sistent: the network inversion being a fast approximation of
the full model one. The error in the prediction of the mea-
surements is consistently larger when using the network
predicted density profiles, as it might be expected from an
approximated inversion. Still, the error is consistently below
approximately 20% in all considered experimental cases,
suggesting that the network inversion can be a reliable tool for
fast analysis.

In future works, the NN could be used as a initial guess
for the Bayesian inference carried out with the Minerva
model, in this way speeding up the sampling of the posterior
distribution with the MCMC by quickly providing a good
starting location. The network could also be used indepen-
dently, providing a fast edge profile reconstruction. For the
reconstruction to be reliable, the network could be tested on a
larger data set of measurements collected at previous
experiments and the cases where the reconstruction fail
should be investigated individually. Also, the implementation
of a novelty detection system could be useful: this is a system
which can preventively inform the user when a measurement
represents an input which is unfamiliar for the network with
respect to the data that had been used for training it. These
cases often bring to unreliable network output and, in this
way, they could be readily identified. A novelty detection
method can rely on the reconstruction of the probability
density of the input training data, which is then evaluated at
the location of the incoming measurement input in order to
asses its degree of novelty [41].

Figure 9. The mean relative error between measured Li I intensities
and the intensities simulated with ne profiles reconstructed by the
network (NN) and the full Bayesian inference (Minerva) is shown at
each position along the intensity profile. The calculation has been
carried out for more than 200 measurements collected across 65 JET
pulses.
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Appendix. List of JET pulses

What follows is a list of the JET pulses used in the analysis
shown in figures 8 and 10, and discussed in section 6. The
pulses were arbitrarily chosen, without selecting for a specific
set of features or plasma configurations. The pulses featured a
broad range of parameters, including both L- and H-mode
scenarios, low and high power and gas levels. Across all
pulses, the NBI power ranged from ≈3.0 to ≈28 MW, the
vacuum toroidal magnetic field from 1.6 to 3.3 T, the total

ICRH power from ≈2.0 to ≈6.0 MW, the plasma current
from ≈1.1 to ≈3.5 MA, and the line integrated density from
≈8.0× 1019 m−2 to ≈2.6× 1020 m−2.

86685, 86687, 86902, 86906, 86911, 86913, 86918,
86983, 87080, 87091, 87094, 87143, 87184, 87260, 87261,
87283, 87411, 87412, 87487, 87518, 87562, 87790, 87792,
87825, 87864, 87865, 87873, 89094, 89095, 89110, 89174,
89193, 89231, 89237, 89248, 89312, 89341, 89342, 89343,
89344, 89345, 89346, 89347, 89349, 89351, 89353, 89387,
89390, 89391, 89392, 89393, 89395, 89425, 89426, 89427,
89448, 89449, 89450, 89451, 89705, 89707, 89708, 89727,
89728.
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