This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Two-view Geometry Scoring Without Correspondences

Axel Barroso-Laguna’
Gabriel Brostow'3
INiantic

Eric Brachmann'!
Daniyar Turmukhambetov?
2University of Oxford

Victor Adrian Prisacariu'»?

3University College London

www.github.com/nianticlabs/scoring-without-correspondences

Abstract

Camera pose estimation for two-view geometry tradi-
tionally relies on RANSAC. Normally, a multitude of image
correspondences leads to a pool of proposed hypotheses,
which are then scored to find a winning model. The inlier
count is generally regarded as a reliable indicator of “con-
sensus”. We examine this scoring heuristic, and find that it
favors disappointing models under certain circumstances.

As a remedy, we propose the Fundamental Scoring Net-
work (FSNet), which infers a score for a pair of overlap-
ping images and any proposed fundamental matrix. It does
not rely on sparse correspondences, but rather embodies
a two-view geometry model through an epipolar attention
mechanism that predicts the pose error of the two images.
FSNet can be incorporated into traditional RANSAC loops.
We evaluate FSNet on fundamental and essential matrix es-
timation on indoor and outdoor datasets, and establish that
FSNet can successfully identify good poses for pairs of im-
ages with few or unreliable correspondences. Besides, we
show that naively combining FSNet with MAGSAC++ scor-
ing approach achieves state of the art results.

1. Introduction

How to determine the relative camera pose between two
images is one of the cornerstone challenges in computer vi-
sion. Accurate camera poses underpin numerous pipelines
such as Structure-from-Motion, odometry, SLAM, and vi-
sual relocalization, among others [26,37,47,48,56]. Much
of the time, an accurate fundamental matrix can be es-
timated by existing means, but the failures are prevalent
enough to hurt real-world tasks, and are hard to antici-
pate [23]. Where are the mistakes coming from?

Traditional approaches first detect then describe a set
of interest points in each image, and establish correspon-
dences between the two sets while possibly filtering them,
e.g., checking for mutual nearest neighbors or applying
Lowe’s ratio test [36]. Then, random subsets of correspon-
dences are sampled and a 5-point or 7-point algorithm is
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Figure 1. Example where SuperPoint-SuperGlue [19, 46] corre-
spondences are highly populated by outliers, but there are still
enough inliers to produce a valid fundamental matrix hypothe-
sis. In such scenarios with unreliable correspondences, current
top scoring methods fail (MAGSAC++ [5]), while our proposed
FSNet model, a correspondence-free scoring approach, is able to
pick out the best fundamental matrix.

used to estimate many essential or fundamental matrix hy-
potheses, respectively, (i.e., two-view geometry models). A
RANSAC [25] loop iterates over the generated hypotheses,
and ranks them. Conventionally, the ranking is scored by
counting inliers, i.e. the number of correspondences within
a threshold of that two-view geometry hypothesis. Finally,
the top-ranked hypothesis is further refined by using all in-
lier correspondences.

As the research in robust model estimation advances [2,
5,13,15,41,58], the different stages of the pipeline are be-
ing revisited, e.g., local feature detection and description is
learned with neural networks, outlier correspondences are
filtered with learned models, hypotheses are sampled more
efficiently, or the inlier threshold is optimized. Although the
latest matching pipelines produce very accurate and robust
correspondences [19, 46, 50], correspondence-based scor-
ing methods are still sensitive to the ratio of inliers, num-
ber of correspondences, or the accuracy of the keypoints
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[2,5,10,23]. Incorrect two-view geometry estimation can
lead to invalid merges in 3D reconstruction models [48&],
bad localization services [1], or more expensive steps when
finding outliers in pose graphs [14].

A second family of approaches emerged in recent years,
where a neural network is trained to directly regress two-
view geometry from the input images [I, 40, 42, 68].
Thus, such approaches replace all the components of the
RANSAC pipeline. This can be a viable approach when
two views are extremely difficult, even when they do not
overlap [11]. However, challenging scenarios, e.g., wide-
baseline, or large illumination changes, can lead to incor-
rect predictions [32]. Typically, poses directly regressed
this way have fewer catastrophic relative pose predictions,
but they have difficulty in estimating precise geometry [1].
On the other hand, correspondence-based hypotheses can
be very precise, if estimated correspondences are of suffi-
ciently high quality. Our approach uses correspondences
to generate model hypotheses, but does not use correspon-
dences to score them during the RANSAC loop.

We propose a fundamental matrix scoring network that
leverages epipolar geometry to compare features of the im-
ages in a dense manner. We refer to our method as the Fun-
damental Scoring Network, or FSNet for short. Inspired
by the success of Vision Transformers [01], and detector-
free matchers [31,50], we define an architecture that incor-
porates the epipolar geometry into an attention layer, and
hence the quality of the fundamental matrix hypothesis con-
ditions the coherence of the computed features. Figure 1
shows an example where correspondences are highly popu-
lated by outliers. However, there are still enough inliers to
generate a good fundamental matrix, and FSNet was able to
select it from the hypothesis pool.

Our contributions are 1) an analysis of the causes of scor-
ing failures, as well as more insights into the traditional
RANSAC approach of relative pose estimation; 2) FSNet, a
network that predicts angular translation and rotation errors
for a given image pair and a fundamental matrix hypothesis;
3) an image order-invariant design of FSNet that outputs the
same values for (Image A, Image B, F') and (Image B, Im-
age A, FT) inputs; 4) a solution that can be combined with
state-of-the-art methods to cope with current failure cases.

2. Related Work

Establishing correspondences. Previous correspondence
estimation built around SIFT [36] has largely been su-
perseded by learned methods. Keypoint detectors [6, 62],
patch-based descriptors [53, 54], joint detector-descriptors
[8, 19,22,43], or shape estimators [7, 38, 65] are some of
the steps that have benefited from data-driven techniques.
To find correspondences, the mutual nearest neighbors and
Lowe’s ratio test [36] approach has also been revisited, and
learned matchers have pushed forward the matching capa-
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Figure 2. Failure cases analysis. We plot for ScanNet and
MegaDepth datasets the percentage of image pairs for which
a good fundamental matrix (fundamental matrix with pose er-
ror below 10°) was not selected due to scoring failure, degen-
erate case, or pre-scoring failure, ie., there was not a valid
fundamental matrix in the hypothesis pool. We see that the fail-
ures center on the scoring function, it is especially difficult to score
hypotheses in the indoor scenario (ScanNet), where local features
suffer more [50].

bility of feature extractors [460]. Complementary to match-
ers, additional filtering methods learn to detect and reject
outlier correspondences [12,51,64,66,67]. Once correspon-
dences are established, the RANSAC loop finds the best
hypothesis among the pool. Multiple works aim at sam-
pling an all-inlier correspondence minimal-set sooner than
RANSAC [10, 15,55,57,58]. Combining that with early
termination techniques and detection of degenerate config-
urations [13, 17, 30] can significantly improve the results
and run-time. More recently, alternative methods have been
proposed to improve upon the classical detect-then-describe
approach, e.g., detector-free matchers [3 1,50, 60], or direct
relative-pose regressor networks [1, 11,42, 44, 68].

Model quality. Model quality research focuses mainly
on improving the heuristics for classical inlier counting
[49, 58, 59]. LO-RANSAC [16] applies a local optimiza-
tion step to promising models generated from the RANSAC
sampling. GC-RANSAC [3] extended previous local opti-
mization and uses graph techniques to infer spatial struc-
tures and mask out outliers. MAGSAC++ [4, 5] proposes
an iterative inlier counting score over a range of inlier
thresholds, which reduces the sensitivity to the inlier-outlier
threshold parameter. MQ-Net [2] combines the inlier count-
ing score with a neural network that predicts the quality of
a hypothesis from correspondence residuals.
Transformers in vision. Since its introduction, the trans-
former architecture [61] has become the standard in natural
language processing due to its performance and simple de-
sign. Transformers are getting attention in the vision com-
munity, and have been applied successfully to image match-
ing [31, 50], multi-view stereo [20, 29, 63], or depth esti-
mation [27, 34], among others [21,44]. Moreover, differ-
ent works have been proposed to guide the cross-attention
mechanism with epipolar supervision [20,27,29,63], where
the most popular strategies use the epipolar attention to limit
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Figure 3. MAA @10° vs number of correspondences. We show
that the number of correspondences has a high impact on the pre-
cision of the fundamental matrix. The latest matchers already filter
out the correspondence outliers [46], and naturally, the number of
correspondences correlates with the difficulty of correctly match-
ing two images. Thus, we see that the number of correspondences
is a good indicator to decide when to trust the correspondences.

the matching search space [29], or to check the consistency
of a depth map [27].

3. Analysis

In this section we explore shortcomings of the tradi-
tional RANSAC-based pose estimation approach. First,
we show that correspondence-based scoring of fundamen-
tal matrix hypotheses is the major reason for RANSAC
returning incorrect relative poses. Next, we show that
the low number of correspondences often leads to scor-
ing function failures motivating correspondence-free ap-
proach. To predict fundamental matrix quality without
correspondence-based heuristics, we need a good training
signal. We consider alternatives to correspondence-based
scoring functions that can be used to quantify the quality of
fundamental matrix hypotheses. For our analyses, we use
SuperPoint-SuperGlue (SP-SG) [19, 46] correspondences
with MAGSAC++ [5], a top-performing publicly available
feature extraction, feature matching and robust estimation
model. We opt for a top performing combination instead
of a classical baseline, i.e., SIFT with RANSAC, to anal-
yse a more realistic use case. We then mine image pairs
with low overlapping views from validation splits of Scan-
Net [18] and MegaDepth [35] datasets as in [40, 50] and
study MAGSAC++’s behavior for 500 iterations, i.e., 500
fundamental matrix hypotheses were generated and scored.
See Section 4.6 for more details on the validation set gener-
ation.

Where do wrong solutions come from? In Figure 2,
we show the number of times a good fundamental ma-
trix (fundamental matrix with pose error < 10°) was se-
lected. We also count failures: (i) pre-scoring, i.e., no
good fundamental matrix is among hypotheses, (ii) de-
generacy cases, e.g., inlier correspondences can be ex-
plained with a homography, (iii) scoring failures, where bad
fundamental matrix was chosen by MAGSAC++ heuristic

mAA at 10°

ScanNet MegaDepth

R t R t
GT Pose error  0.75  0.72 094 0.89
SED 0.57 048 0.86 0.78
RE1 0.74 041 091 0.78
Epi. Distance ~ 0.57  0.40 0.89  0.76
MAGSAC++ 0.51 0.22 0.80 0.55

Table 1. Error criteria evaluation. Fundamental matrices are
generated with SP-SG [19,46] and MAGSAC++ [5], and evalu-
ated under densely projected correspondences with ground-truth
camera poses and depth maps on our validation set. GT Pose error
uses directly the error associated to the fundamental matrix to rank
them, being the upper-bound of the scoring function.

while a good fundamental matrix was among the 500 hy-
potheses but had lower score. As seen in the figure, 42%
(ScanNet) and 23% (MegaDepth) of the image pairs gener-
ate a valid fundamental matrix but the scoring method is not
able to select it.
Why are wrong solutions selected? Inlier heuristics find
fewer inliers for a good fundamental matrix than a bad
fundamental matrix. So, what leads to a low number of
inliers for a good fundamental matrix? Intuitively, feature
matching methods return fewer correspondences when the
image pair is difficult to match, due to repetitive patterns,
lack of textures, or small visual overlap, among the possi-
ble reasons. In such scenarios, correspondences can also
be highly contaminated by outliers, making it even harder
to select the correct fundamental matrix. Figure 3 shows
the MAA@10° as in [32] w.r.t the number of correspon-
dences generated by SP-SG and MAGSAC++. We see the
strong correlation between the number of correspondences
and the accuracy of the selected model. Furthermore, the
SuperGlue correspondences in this experiment are already
of high-quality, as bad correspondences were filtered out.
In supplementary materials, we show that loosening the
correspondence filtering criteria, and hence, increasing the
number of correspondences, does not lead to improved re-
sults. This observation motivates our correspondence-free
fundamental matrix hypothesis scoring approach, which
leads to improvements in relative pose estimation task when
correspondences are not reliable.
How should we select good solutions? If we want to train a
model that predicts fundamental matrix quality what should
this model predict? As we are interested in ranking hy-
potheses, or potentially discard all of them if they are all
wrong, the predicted value should correlate with the error
in the relative pose or the mismatch of epipolar constraint.
The quality of relative pose is measured for rotation and
translation separately. The angle of rotation between the
estimated and the ground truth rotation matrices provides
the rotation error. As fundamental and essential matrices
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Figure 4. FSNet architecture has four components. 1. A CNN feature extractor computes the feature maps £ and £Z from input images
A and B at 1/4 of input resolution (Section 4.1). 2. The extracted features are then processed by the transformer block, which contains
N; self and cross-attention layers. The transformer outputs 'f# and TfZ, which are stored and reused for every F; hypothesis (Section
4.2). 3. The epipolar cross-attention layer applies cross-attention along the epipolar lines, and embeds F; into the feature maps f/* and
£2. Epipolar attention is done every two positions, reducing the final feature maps to an 1/8 of the input resolution (Section 4.3). 4. The

pose regressor applies a ResNet and a 2D average poolmg block, and outputs v;

A28 and v2 =4, The vectors are combined through a max

pooling operator, and the final MLP layer predicts the el and e! errors associated to F; (Section 4.4).

are scale-invariant, the scale-invariant metric of translation
error is the angular distance between the estimated and the
ground truth translation vectors. Thus, relative pose error
requires estimation of two values.

There are multiple error criteria [24] for (fitting
fundamental matrices. Reprojection error (RE) measures
the minimum distance correction needed to align the corre-
spondences with the epipolar geometry. Symmetric epipo-
lar (SED) measures geometric distance of each point to its
epipolar line. Finally, Sampson (RE1) distance is a first-
order approximation of RE. The benefit of these metrics is
that the quality of fundamental matrices is measured with
one scalar value.

So, how do we choose the best error criteria as train-
ing signal for FSNet? Should it be relative pose error,
or one of the fundamental matrix error criteria? Let us
assume that we have access to multiple oracle models,
one oracle for each of different error criteria in Table 1.
So, one oracle model that predicts the relative pose er-
ror perfectly, one oracle model that predicts SED error
perfectly, efc. Which of these oracle models provides
the best fundamental matrix scoring approach? To simu-
late evaluation of these oracle models, we use SP-SG and
MAGSAC++ to mine fundamental matrix hypotheses from
validation datasets, and use the ground truth depth maps and
camera poses to generate dense correspondences between
image pairs to exactly compute all error criteria. In Ta-
ble 1, we show the MAA@10° of different scoring criteria
when evaluating mined fundamental matrices using oracle
models in ScanNet and MegaDepth image pairs. As can

be seen in the table, all the fundamental matrix error crite-
ria under-perform compared to relative pose error metrics,
hence FSNet should be supervised by the relative rotation
and translation errors.

4. Method

FSNet estimates the quality of a fundamental matrix hy-
pothesis, F;, for the two input images, A and B, without
relying on correspondences and processing the images di-
rectly. Besides fundamental matrix quality estimation, in
a calibrated setup, FSNet could compute the score of the
essential matrix, E;, by first obtaining F; based on their
relationship: E; = KLF,;K 4. Figure 4 shows the four ma-
jor components of FSNet architecture: the feature extractor,
the transformer, the epipolar cross-attention, and the pose
error regressor. The supplementary materials provide more
detailed description of our network.

4.1. Feature Extractor

The feature extractor is a standard convolutional archi-
tecture as in [50], it follows the Unet-style network [45] de-
sign with skip and residual connections [28] and computes
feature maps at 1/4 of the input resolution. Before feature
extraction, we center-crop and resize the input images A
and B to a resolution of (H, W) (in our experiments we use
(256, 256)). Images are then processed by the convolutional
feature extractor to produce the C-dimensional feature maps
£4 and 5.
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4.2. Transformer

We use an L multi-head attention transformer architec-
ture following [50], and alternate between self and cross-
attention blocks to exploit the similarities within and across
the feature maps. We denote the transformed features as
ff4 and TfB. Following the transformer nomenclature,
some features are used to compute the query (Q), and po-
tentially different features are used to compute the key (K)
and the value (V). Q retrieves information from V based on
the attention weight computed from the product of Q and
K. In the self-attention layer, the same feature map builds
Q, K, and V, meanwhile, in the cross-attention layer, Q is
computed from a different feature map than K and V. We
interleave the self and cross-attention block V; times.
Self-attention and Cross-attention layers. To limit the
computational complexity of our transformer block, we use
a Linear Transformer [33] as in [50]. Linear Transformer
reduces the computational complexity of the original Trans-
former from O(N?) to O(N) by making use of the associa-
tivity property of matrix products and replacing the expo-
nential similarity kernel with a linear dot-product kernel.
Specifically, in a self-attention layer, the input feature map
f’ is used to compute Q, K and V. We concatenate the re-
sult of the attention layer with the input f” feature map and
pass it through a two-layer MLP. The output of the MLP is
then added to f’ and passed to the next block. In the cross-
attention layer, we repeat the previous process but compute
Q from one feature map and K and V from the second.

We found that positional encoding for attention layers
did not improve our results, similarly to findings in [34],
and hence, we do not use positional encodings in FSNet.

4.3. Epipolar Cross-attention

Up to this point, attended feature maps, Tf4 and T£5,
are cached and reused. Given that FSNet computes the
score for every F;, this design assures a more practi-
cal scenario where the overhead of computing additional
fundamental matrix scores is small.

For every fundamental matrix hypothesis F';, our epipo-
lar cross-attention mechanism embeds F; together with fea-
ture maps 'f4 and TfB. Every position p* = [u,v] in
feature map Tf4 has a corresponding epipolar line in Tf5
defined as 1172 = F/p“, where p* refers to the homoge-
neous coordinates of p* and F’ is a scaled F; by a factor
of 1/4. As we consider potentially hundreds of hypotheses,
the resolution of feature maps impacts run-time speed. So,
we opt to define query points, p** = [u, v], with a step sam-
pling of two. This reduces even further the final feature map
to a resolution of 1/8 of the input image.

So, for every feature £ € 'f4 we sample Tf? at D
equidistant locations along the epipolar line 1275, We
start sampling where the epipolar line meets the feature map
(from left to right) and use bilinear interpolation to pro-

duce D features Tfli. If sampling positions fall outside the
image plane, or the epipolar line never crosses the image,
we zero pad the features. Thus, we build feature volume
't ¢ [C,D,W/8, H/8] from feature map f? and F;.
We use ff4 to compute Q, and TfiB volume to obtain the K
and V, and perform attention along the epipolar candidate
points. Finally, we use Q, K, and V to obtain epipolar trans-
formed features f{“. For order-invariance, we also compute
£ by repeating these operations for (TfZ T £4) pair of fea-
ture maps and F7 .

4.4. Pose Error Regressor

As seen in Figure 4, the pose error regressor uses a
ResNet block to extracts features from ;! and f. Follow-
ing [1,11], we apply a 2D average pooling that results in two
1D vectors, vA—5 and vB~4, with size C’. Both 1D vec-
tors are then merged by a max pooling operator, such that
different order of the input images always produce the same
feature vector v;. An MLP layer then regresses the angular
translation and rotation errors, e§ and eZR, associated to F;.

4.5. Loss Function

Contrary to previous binary [2] or multi-class [1 1] for-
mulation of the pose error, we experimentally found that
FSNet is more accurate when regressing independently the
translation and rotation errors (see Section 5.3). The su-
pervision we use is angular errors, hence, the predicted
error, ¢;, and the ground truth error, ¢€;, are bounded be-
tween [0°,180°]. Directly using a simple L1 loss (I =
|e; — e;]) would treat all error ranges equally. However,
we are interested in accurate error estimation of all good
fundamental matrices, while not requiring being as pre-
cise when the fundamental matrices have high pose errors.
Hence, we propose to use a soft clamping of the ground
truth error as well as the network prediction, such as:

L= lg(ef) — glep)| + lg(&i") — g(e)], (D

where g(x) refers to the tanh(xz/t,) function, and ¢, is the
scaling factor that adjusts the (soft) threshold after which
the accuracy of the angular errors is not important.

4.6. Implementation Details

We train indoor and outdoor FSNet models on ScanNet
[18] and MegaDepth [35] datasets. To generate training and
validation sets, we first extract SP-SG [19, 46] correspon-
dences using appropriate indoor and outdoor pre-trained
models. We then draw minimal subsets of correspondences
randomly and extract 500 two-view hypotheses for every
image pair. For each hypothesis, we compute the angular
translation (e;) and rotation (eg) errors using the ground
truth extrinsic and intrinsic parameters. During training, we
ensure that the ground truth hypothesis is among the 500
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0-100 100-Inf All
MAA@10° 1 Median (°) | MAA@10° 1 Median (°) | MAA@10° 1 Median (°) |
R /t/max(R, t) er/et R /t/max(R, t) er /et R /t/max(R, t) er /et
Fundamental
RANSAC [25] 0.15/0.07/0.04 17.97/30.28 0.24/0.06 / 0.05 11.91/37.03 0.17/0.07 /0.04 15.54/32.18
MAGSAC++ [5] 0.28/0.12/0.08 9.19/24.38 0.63/0.29/0.27 2.80/8.66 0.38/0.17/0.14 6.35/17.89
FSNet (F) 0.29/0.19/0.12 7.98/13.30 0.52/0.25/0.21 4.16/9.62 0.36/0.21/0.15 6.52/12.05
__FSNet(F+E) __029/0.18/0.11 _ __801/1405 __ 050/024/020 __ 435/1026 _ _ 035/020/0.14 _ _ 664/1278
w/ Corresp. filter ~ 0.29/0.19/0.12 7.98/13.30 0.63/0.29/0.27 2.80/8.66 0.39/0.22/0.16 6.09/11.59
w/ Candidate filter  0.33/0.18/0.13 7.48 /1491 0.66 /0.36/0.32 2.69/6.50 0.43/0.23/0.19 5.38/11.39
Essential
EssNet [68] - - - 0.01/0.02/0.01 48.64/52.95
Map-free [ 1] - - - - 0.39/0.13/0.09 5.75/14.20
RANSAC [25] 0.27/0.16/0.13 9.78 / 16.64 0.63/0.38/0.33 3.03/6.15 0.37/0.24/0.19 6.55/11.68
MAGSAC++ [5] 0.29/0.19/0.14 8.90/16.00 0.65/0.41/0.38 2.57/5.65 0.40/0.26/0.21 5.95/10.96
FSNet (E) 0.36/0.25/0.18 6.34/10.51 0.61/0.35/0.31 3.22/6.78 0.44/0.28/0.22 5.13/8.95
__FSNet(F+E) | _035/024/017 _ __670/1065 _ _060/033/030 __ _341/715 _ _ _043/027/021 _ _ _526/921__
w/ Corresp. filter 0.36/0.25/0.18 6.34/10.51 0.65/0.41/0.38 2.57/5.65 0.44/0.29/0.23 5.07/8.75
w/ Candidate filter ~ 0.33/0.22/0.16 7.71/13.41 0.69/0.44 / 0.40 2.40/5.26 0.44/0.28/0.23 5.14/9.48

Table 2. Fundamental and essential matrix estimation on ScanNet. We compute the MAA@10° and Median error (°) metrics in the
test split of ScanNet, and divide the pairs of images based on the number of SP-SG correspondences to highlight the benefits of FSNet,
which results in 3,522 (0-100) and 1,478 (100-Inf) image pairs. In fundamental and essential estimation, we see that when number of
correspondences is small (0-100), FSNet provides a more robust solution than competitors. In the overall split (All), FSNet obtains more
precise rotation errors for the fundamental estimation tasks, while outperforming in all metrics in essential estimation. Moreover, we also
show how FSNet and MAGSAC++ can be easily combined to obtain more reliable approaches.

hypotheses. In batch generation, we cluster the hypotheses
into bins based on the pose error and randomly select a bin,
from which one hypothesis is uniformly sampled.

For the indoor model, we use the training splits proposed
in [50]. For our outdoor model, we use the MegaDepth
training and validation scenes proposed in [50], except for
scenes in the test set of the CVPR IMW 2019 PhotoTourism
dataset [32,52] as in [40]. For both datasets, we generate a
total of 90,000 and 30,000 image pairs with 500 fundamen-
tal and essential matrix hypotheses for each image pair. To
highlight the benefit of FSNet over hard image pairs, we
sample image pairs in both datasets that have a visual over-
lapping score between 10% and 40% of the image.

We indicate the training source of FSNet by (F) and
(E) for fundamental and essential matrices, respectively.
We also found that the distribution of essential matrices
is very different from distribution of fundamental matrices
(see supplementary), so, we combine fundamental and es-
sential matrix hypotheses into (F + E) training dataset.

FSNet is trained end-to-end with randomly initialized
weights, a learning rate of 1 x 10~* and a batch size of 56
image pairs. We train on four V100 GPUs and the network
converges after 72 hours. For the feature extractor, we use a
ResNet-18 [28] as in [50]. The transformer block uses three
attention layers (N; = 3), and we sample D = 45 match-
ing candidates along the epipolar line. The loss formulation
uses t; = 25, such that the pose errors above 40°are (soft)
clamped. At test time, FSNet selects the model hypothesis

that returns the minimum pose error, where the pose error

for F; is computed as e; = max(el?, ef).

107

5. Experiments

This section presents results for different fundamental
and essential hypothesis scoring methods. We first compute
correspondences with SP-SG [19,46], and then use the uni-
versal framework USAC [41] to generate hypotheses with
a uniformly random minimal sampling. Besides the inlier
counting of RANSAC [25], we also use the state-of-the-art
MAGSAC++ scoring function [5], and compare them both
to FSNet scoring method. To control for randomness, we
use the same set of hypotheses generated for each image
pair for the evaluation of all methods. We refine all the se-
lected hypotheses by applying LSQ fitting followed by the
Levenberg-Marquardt [39] optimization to the correspon-
dences that agree with the best hypothesis model.

To evaluate the scoring methods, we decompose the hy-
pothesis (fundamental or essential matrix) into rotation ma-
trix and translation vectors, and compute the angular errors
(er and e;) w.r.t ground truth rotation and translation. We
report the mean Average Accuracy (mAA), which thresh-
olds, accumulates, and integrates the errors up to a max-
imum threshold (in our experiments 10°) [32]. The inte-
gration over the accumulated values gives more weight to
accurate poses and discards any camera pose with a relative
angular error above the maximum threshold. Besides the
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Figure 5. Combining FSNet and MAGSAC++. Complement-
ing both scoring methods retrieves the highest number of correct
fundamental matrices under all error thresholds (5°, 10° and 20°).

mAA, we report the median errors of the selected models.

5.1. Indoor Pose Estimation

Evaluations on the Scannet test set are shown in Table 2.
Motivated by the analysis in Section 3, and to emphasize the
benefits of FSNet, we also report results on two types of im-
age pairs: image pairs with up to 100 input correspondences
and image pairs with more than 100 input correspondences.
The threshold is chosen based on our validation, where 64%
of the image pairs do not have more than 100 correspon-
dences, and hence, top-performing methods can struggle.

We see that in the few-correspondences split (0-100),
all FSNet models outperform RANSAC and MAGSAC++,
being especially effective on the angular translation error
metrics. Overall, FSNet returns the best mAA score and
median error for translation, while having comparable re-
sults to MAGSAC++ on rotation, both for fundamental and
essential matrix evaluations. We also observe that FSNet
(F+E) does not score as well as models trained on F or E
hypotheses only, further indicating differences in the distri-
bution of fundamental and essential matrices.

For essential matrix evaluations, we also report scores of
relative pose regression methods (RPR), i.e., EssNet [68]
and Map-free [1], which also do not rely on correspon-
dences. FSNet (E) obtains the best mA A scores and median
errors in the full test set (All). RPR methods do not compute
as accurate poses as RANSAC-based methods or FSNet.

As MAGSAC++ is very effective when SP-SG is able
to extract sufficient number of correspondences (100-Inf),
we propose two approaches to combine both methods. In
Corresp. filter, we use the number of correspondences such
that if the number is below 100, we use FSNet to score,
otherwise, we use MAGSAC++. In Candidate filter, we
first select top hypotheses using MAGSAC++, and then we
use FSNet to choose the best hypothesis out of the selected
hypotheses. We use FSNet to score the top 10 hypothe-
ses for fundamental, and top 20 hypotheses for essential
based on a hyperparameter search on the validation set.
Moreover, in Figure 5, we show the percentage of correct
fundamental matrices, i.e., hypotheses with a pose error un-

MAA@10° 1 Median (°) |
0-100 All All
R/t R/t erlet
Fundamental
RANSAC [25] 0.12/0.11 0.55/0.21 3.72/17.75
MAGSAC++ [5] 0.24/0.17 0.80/0.44 1.39/542
__ _FSNe®___021/009 __071/035 ___208/722
w/ Corresp. filter 0.21/0.19 0.80/0.44 1.39/5.42
w/ Candidate filter ~ 0.27 / 0.21 0.82/0.47 1.32/4.78
Essential
RANSAC [25] 0.25/0.31 0.81/0.59 1.13/3.06
MAGSAC++ [5] 0.24/0.30 0.85/0.65 0.92/2.18
C_ _FSNet(®) 0307031 081/055 ___139/342
w/ Corresp. filter 0.30/0.31 0.85/0.65 0.92/2.18
w/ Candidate filter ~ 0.29/0.35 0.87/0.67 0.88/2.08

Table 3. Fundamental and essential matrix estimation on Pho-
toTourism dataset. We show the mAA (10°) and median error
when using SP-SG correspondences. Contrary to indoor datasets
[18], in the outdoor scenario, current feature extractors provide
very accurate and robust features, and in the test split only 1.5% of
the image pairs returned fewer than 100 correspondences. Never-
theless, combinations of FSNet and MAGS AC++ provide the most
reliable methods for fundamental and essential matrix estimation.

der given thresholds (5°, 10°, and 20°), and see how com-
bining both methods always maximizes the number of cor-
rect fundamental matrices. Moreover, we observe that in
the more flexible regime (20°) the FSNet performance is
almost identical to the combinations of both methods, in-
dicating that although FSNet estimations are not as accu-
rate as MAGSAC++, there are fewer catastrophic predic-
tions. We link this behaviour with the nature of our method,
which uses low resolution feature maps to predict the pose
errors, and hence, lacks precision. On the other hand,
MAGSAC++ relies on potentially ill-conditioned sets of
correspondences, resulting in occasional catastrophic poses.

5.2. Outdoor Pose Estimation

In Table 3, we show the mAA and median errors of
the fundamental and essential matrix estimation tasks on
the PhotoTourism test set. Analogous to the indoor eval-
uation, we split the image pairs based on the number of
SP-SG correspondences. Contrary to the indoor scenario,
there are only 1.5% of the image pairs in the test set that
have fewer than 100 SP-SG correspondences. This is in line
with the analysis of Figure 2, where scoring failures are not
as common in outdoor dataset as in indoor dataset. There
are multiple explanations of these phenomena: (i) walls and
floors are mostly untextured surfaces which lead to fewer
reliable correspondences for indoor images, (ii) indoor sur-
faces are closer to the camera, so small camera motion can
result in large parts of the scene not being visible from both
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MAA@10° 1 Median (°) |
0-100 All All
R/t R/t er /et
Supervision
RE1 0.23/0.12 0.28/0.14 8.53/19.42
CEasin [2] 0.27/0.18 0.34/0.20 6.94/13.21
L1 0.25/0.16 0.32/0.18 7.52/14.07
_ FSNet(Soft-L1) _ 0.29/019 _ _ 036/021 _  652/12.05
MAGSAC++[5]  0.28/0.12 0.38/0.17 6.35/17.89

Table 4. Loss function and generalization ablation results on
the fundamental matrix estimation task in the test set of ScanNet.
Supervising the training of FSNet directly with the camera pose
error provides the best results, while the CE approach outperforms
L1 norm and Sampson distance (RE1) prediction models.

cameras, which could result in fewer correspondences, (iii)
outdoor datasets are generated with SfM methods that rely
on 2D-2D correspondences estimated with RANSAC, while
indoor datasets rely on RGBD SLAM with dense geometry
alignment, so inherent algorithmic bias could result in fewer
difficult image pairs in outdoor datasets [9].

In the fundamental estimation task, FSNet scoring ap-
proach obtains the most accurate poses in the low number
of correspondences split (0-100), while still outperforming
RANSAC inlier counting approach in the full test set. In
the essential estimation task, even though we observe that
correspondence-based scoring approaches, i.e., RANSAC
or MAGSAC++, outperform FSNet, they still benefit from
combining their predictions with FSNet.

5.3. Understanding FSNet

Loss supervision ablation. In Table 4, we experimen-
tally verify our analysis of supervision signals in Section 3.
We show that FSNet trained with Eq. 1 outperforms FSNet
trained using RE1 supervision (best epipolar constraint er-
ror criteria among oracle models in Table 1) and FSNet
trained using L1 norm without soft clamping. We also train
FSNet using binary cross-entropy (CE), where fundamen-
tal matrix hypothesis F'; is deemed correct if e; < 10° and
incorrect otherwise. We follow [2] and incorporate the net-
work uncertainty in the cross-entropy loss; please see the
supplementary materials for details.

Failures. Figure 6 shows failure cases for FSNet hypothesis
selection. As FSNet needs to run on hundreds of hypothe-
ses in a reasonable time, the network is designed to work
on low resolution images. Unfortunately, at low resolution,
matching features can seem degenerate. Looking into the
failures, we observe that the fundamental matrices selected
by FSNet have a valid epipolar geometry, i.e., epipolar lines
in image B cross the surrounding regions of corresponding
points from image A, and hence, the low resolution features
((W/8,H/8) = (32, 32)) given to the pose error regressor
lack the precision to produce a good estimate.

FSNet selection

Best hypothesis F;

Figure 6. Failure examples. We plot the co-visible points and
corresponding epipolar lines of the fundamental matrix selected
by FSNet and the best hypothesis in the pool. Besides, we also
mark the intersection of the best and FSNet epipolar lines. We
see that the lines intersect at positions close to neighbor regions of
the corresponding points, and hence, the low-resolution design of
FSNet limits its capability to select the optimal hypothesis.

Time analysis. Given a pair of images and 500 hypotheses,
FSNet scores and ranks them in 0.97s on a machine with
one V100 GPU. Running the feature extraction and trans-
former subnetworks takes 138.28ms. This is precomputed
once and reused for every hypothesis. The hypotheses are
queried in batches, so the epipolar cross-attention and pose
error regressor subnetworks run in 167.13ms for a batch of
100 fundamental matrices. Besides, strategies such as Can-
didate filter can reduce FSNet time by only scoring promis-
ing hypotheses, e.g., for fundamental estimation it only adds
150ms on top of MAGSAC++ runtime (71ms).

6. Conclusions

We introduce FSNet, a correspondence-free two-view
geometry scoring method. Our experiments show that our
learned model achieves SOTA results, performing excep-
tionally well in challenging scenarios with few or unreliable
correspondences. These results suggest exciting avenues for
future research. We mention some of them here.

Naive combinations of FSNet with traditional inlier
counting lead to even higher reliability. This suggests
that more sophisticated combinations of scoring approaches
could lead to further improvements. Alternatively, a bet-
ter network design may improve prediction accuracy, which
could supersede inlier counting in all scenarios.

The first stages of our pipeline (feature extraction, self
and cross-attention blocks) form a subnetwork that precom-
putes feature maps for each image pair. This subnetwork
architecture is similar to the latest feature extraction meth-
ods, e.g. [50]. This means that feature map precomputation,
local feature extraction, feature matching, and hypothesis
generation can all be performed by this subnetwork. Train-
ing the whole network on two tasks: estimating good cor-
respondences and two-view geometry scoring could lead to
synergistic improvements on both tasks.
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