23 research outputs found

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th European Symposium on Programming, ESOP 2019, which took place in Prague, Czech Republic, in April 2019, held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019

    Evaluating the Robustness of Resource Allocations Obtained through Performance Modeling with Stochastic Process Algebra

    Get PDF
    Recent developments in the field of parallel and distributed computing has led to a proliferation of solving large and computationally intensive mathematical, science, or engineering problems, that consist of several parallelizable parts and several non-parallelizable (sequential) parts. In a parallel and distributed computing environment, the performance goal is to optimize the execution of parallelizable parts of an application on concurrent processors. This requires efficient application scheduling and resource allocation for mapping applications to a set of suitable parallel processors such that the overall performance goal is achieved. However, such computational environments are often prone to unpredictable variations in application (problem and algorithm) and system characteristics. Therefore, a robustness study is required to guarantee a desired level of performance. Given an initial workload, a mapping of applications to resources is considered to be robust if that mapping optimizes execution performance and guarantees a desired level of performance in the presence of unpredictable perturbations at runtime. In this research, a stochastic process algebra, Performance Evaluation Process Algebra (PEPA), is used for obtaining resource allocations via a numerical analysis of performance modeling of the parallel execution of applications on parallel computing resources. The PEPA performance model is translated into an underlying mathematical Markov chain model for obtaining performance measures. Further, a robustness analysis of the allocation techniques is performed for finding a robustmapping from a set of initial mapping schemes. The numerical analysis of the performance models have confirmed similarity with the simulation results of earlier research available in existing literature. When compared to direct experiments and simulations, numerical models and the corresponding analyses are easier to reproduce, do not incur any setup or installation costs, do not impose any prerequisites for learning a simulation framework, and are not limited by the complexity of the underlying infrastructure or simulation libraries

    Formal aspects of component software

    Get PDF
    This is the pre-proceedings of 6th International Workshop on Formal Aspects of Component Software (FACS'09)

    Reducing complexity in developing wireless sensor network systems using model-driven development

    Get PDF
    Wireless Sensor Network (WSN) is a collection of small and low-powered gadgets called sensor nodes (motes), which are capable of sensing the environment, collecting and processing the sensed data, and communicating with each other to accomplish a specific task. Moreover, all sensed and processed data are finally handed over to a central gathering point called a base station (sink), where all collected data are stored and can be reviewed by the user. Most of the current methods concerning WSN development are application or platform-dependent; hence it is not a trivial task to reuse developed applications in another environment. Therefore, WSN application development is a challenging and complex task because of the low-level technical details and programming complexity. Furthermore, most WSN development projects are managed by software engineers, not application field experts or WSN end users. Consequently, WSN solutions are considered expensive, due to the amount of effort that has to be put into these projects. This research project aims to reduce the complexity in developing WSN applications, by abstracting the low-level technical and programming details for average developers and domain experts. In this research, we argue that reducing complexity can be achieved by defining a new Domain-Specific Language (DSL) as a new application development and programming abstraction, which supports multi-levels modelling (i.e. network, group, and node-level). The outcome of this work is the definition of a new language called SenNet, which is an open source DSL programming abstraction that enables application developers to concentrate on the high-level application logic rather than the low-level complex details. SenNet was developed using the principles of Model-Driven Development (MDD) and macro-programming. Developers can use SenNet as a high-level programming abstraction to auto-generate a ready-to-deploy single node nesC code for all sensor nodes that comprise the SenNet application. SenNet gives developers the flexibility they need by offering them a broad range of predefined monitoring tasks and activities, enabling developers to develop different application types such as Sense-Forward (SF), and Event-Triggered (ET); besides providing a set of node-level and in-network data processing tasks. The current SenNet version is configured to generate nesC code, yet SenNet can be set up to produce and generate any programming language such as Java, or C++, by reconfiguring the code generator to produce the new language format, without changing the language design and produced semantics. Various tests and user study have been used to evaluate SenNet’s usability and functional suitability. Evaluation results found that SenNet could save 88.45% of the LOC required to be programmed by a developer, and 87.14% of the required vocabularies. Furthermore, results showed that SenNet could save 92.86% and 96.47% of the program length and volume respectively. Most of the user study participants (96%) found SenNet to be usable and helps to achieve the required WSN application with reduced development effort. Moreover, 82% of the participants believe that SenNet is functionally suitable for WSN application development. Two real-world business case studies developed were used to assess SenNet’s appropriateness to develop WSN real applications, and how it can be used to develop applications related to data processing tasks. Based on the final evaluation results, it can be concluded that our research has been successful in introducing SenNet as a new abstraction to reduce complexity in the WSN application development process

    Annales Mathematicae et Informaticae (38.)

    Get PDF
    corecore