
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2015

Evaluating the Robustness of Resource Allocations Obtained Evaluating the Robustness of Resource Allocations Obtained

through Performance Modeling with Stochastic Process Algebra through Performance Modeling with Stochastic Process Algebra

Srishti Srivastava

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Srivastava, Srishti, "Evaluating the Robustness of Resource Allocations Obtained through Performance
Modeling with Stochastic Process Algebra" (2015). Theses and Dissertations. 1972.
https://scholarsjunction.msstate.edu/td/1972

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1972?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Evaluating the robustness of resource allocations obtained through

performance modeling with stochastic process algebra

By

Srishti Srivastava

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2015

Copyright by

Srishti Srivastava

2015

Evaluating the robustness of resource allocations obtained through

performance modeling with stochastic process algebra

By

Srishti Srivastava

Approved:

Ioana Banicescu
(Major Professor)

Sherif Abdelwahed
(Committee Member)

Edward A. Luke
(Committee Member)

Edward B. Allen
(Committee Member)

Changhe Yuan
(Committee Member)

T.J. Jankun-Kelly
(Graduate Coordinator)

Jason M. Keith
Interim Dean

Bagley College of Engineering

Name: Srishti Srivastava

Date of Degree: May 08, 2015

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Ioana Banicescu

Title of Study: Evaluating the robustness of resource allocations obtained through per-
formance modeling with stochastic process algebra

Pages of Study: 174

Candidate for Degree of Doctor of Philosophy

Recent developments in the field of parallel and distributed computing has led to a pro-

liferation of solving large and computationally intensive mathematical, science, or engi-

neering problems, that consist of several parallelizable parts and several non-parallelizable

(sequential) parts. In a parallel and distributed computing environment, the performance

goal is to optimize the execution of parallelizable parts of an application on concurrent pro-

cessors. This requires efficient application scheduling and resource allocation for mapping

applications to a set of suitable parallel processors such that the overall performance goal

is achieved. However, such computational environments are often prone to unpredictable

variations in application (problem and algorithm) and system characteristics. Therefore, a

robustness study is required to guarantee a desired level of performance. Given an initial

workload, a mapping of applications to resources is considered to be robust if that map-

ping optimizes execution performance and guarantees a desired level of performance in the

presence of unpredictable perturbations at runtime.

In this research, a stochastic process algebra, Performance Evaluation Process Alge-

bra (PEPA), is used for obtaining resource allocations via a numerical analysis of perfor-

mance modeling of the parallel execution of applications on parallel computing resources.

The PEPA performance model is translated into an underlying mathematical Markov chain

model for obtaining performance measures. Further, a robustness analysis of the allocation

techniques is performed for finding a robust mapping from a set of initial mapping schemes.

The numerical analysis of the performance models have confirmed similarity with the sim-

ulation results of earlier research available in existing literature. When compared to direct

experiments and simulations, numerical models and the corresponding analyses are easier

to reproduce, do not incur any setup or installation costs, do not impose any prerequisites

for learning a simulation framework, and are not limited by the complexity of the underly-

ing infrastructure or simulation libraries.

Key words: performance modeling, performance evaluation, robustness analysis, parallel
computing, process algebra, stochastic computing environment

DEDICATION

To my beloved father, mother, brother, and husband, who have all been my eternal

inspiration, emotional support, and my pillars of strength.

ii

ACKNOWLEDGEMENTS

Foremost, I would like to acknowledge and convey my sincerest gratitude to my ma-

jor professor and mentor, Dr. Ioana Banicescu, who has continuously guided me towards

achieving quality research work, has provided me the required platform, constant encour-

agement, and unending valuable support to grow as an academic professional, and has

helped me in many different ways throughout the entire course of this dissertation. As my

major adviser, she led me to a number of research collaborations that have helped increase

the qualitative value of my Ph.D. dissertation and has helped my research gain recognition

at both national and international levels. I am also very thankful and honored to be consid-

ered for nomination by Prof. Banicescu for a number of distinguished academic awards.

Her efforts and support allowed me to attend prestigious forums, such as the Heidelberg

Laureate Forum. In addition, as a director of the National Science Foundation Center

for Cloud and Autonomic Computing at Mississippi State University (NSFCAC at MSU),

Prof. Banicescu provided generous financial support and research opportunities. The re-

search work in this dissertation was supported in part by the National Science Foundation

(NSF) under grant numbers NSF IIP-1127978 and NSF IIP-1034897 at the NSF Center for

Cloud and Autonomic Computing, Mississippi State University and the NSF CORBI grant

NSF IIP-1331282.

iii

I am also very thankful to all the members of my graduate committee, for their invalu-

able advice towards perfecting the research in my Ph.D. dissertation. As a professor in

the field of high performance computing, Dr. Luke provided very useful advice towards

maintaining the correctness of my research. As a graduate coordinator, Dr. Allen provided

me with helpful suggestions and comments for improving my dissertation and for abiding

by the required regulations for a timely completion of my Ph.D. studies. As a co-PI on the

project for NSFCAC at MSU, Dr. Abdelwahed helped in providing financial support and

research opportunities that helped in improving the breadth of my dissertation research.

Dr. Yuan provided valuable advice and resources in the field of machine learning that led

to a research collaboration on advancing the benefits of the work on robustness of dynamic

scheduling with the help of machine learning techniques.

I would like to acknowledge Dr. Reese, department head, for her invaluable support

and words of encouragement throughout the course of my graduate studies. In addition,

I thank all the faculty members at the Department of Computer Science and Engineering

who have been equally supportive and have added value to my knowledge domain in the

field of computer science via their graduate courses, teaching, and research. I would also

like to acknowledge the support for infrastructure and resources provided by the high per-

formance computing collaboratory at MSU. A special appreciation goes to my colleagues

and collaborators, Dr. Ciorba, Nitin Sukhija, Mahadevan Balasubramaniam, Rajat Mehro-

tra, Dr. Malone, Timothy Hansen, Dr. H.J. Siegel, and Dr. Anthony Maciejewski, for their

valuable contributions towards improving the quality of my research work. I would also

iv

like to thank the staff members at the Department of Computer Science and Engineering,

who were always willing to help me with everything required during my graduate studies.

On a personal note, I would like to thank my family for their love, sacrifice, and sup-

port, at every step of my Ph.D. education. I would like to acknowledge my father, Dr. S.C.

Srivastava, for being my first and very strong inspiration towards becoming a quality aca-

demic professional. I would like to thank my mother, Mrs. Beena Srivastava, for always

being my emotional support and for providing me with her love, care, and blessings. I

am deeply grateful to my husband, Dr. Prashant Kumar, for being my pillar of strength

and hope, and for his unending love, support, and words of encouragement that have kept

me moving towards achieving a high quality Ph.D. I would also like to thank my brother,

Srijan Srivastava, for always believing in me and for his continuous love and best wishes

for my successful endeavors.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.1.1 Performance Evaluation 2
1.1.2 Robustness Analysis . 3
1.1.3 Process Algebra for Performance Evaluation 5

1.2 Thesis Statement . 8

2. BACKGROUND . 11

2.1 Robustness . 11
2.1.1 Robustness of Static Resource Allocation 12
2.1.2 Robustness of Dynamic Scheduling 16
2.1.3 A Combined Dual-stage Framework for Robust Scheduling

of Applications in Stochastic Computing Environments . . 20
2.2 Performance Modeling and Evaluation of Parallel and Distributed

Computing Systems . 23
2.3 Process Algebra . 28

2.3.1 Process Algebra for Parallel and Distributed Computing . . 28
2.3.2 Performance Evaluation Process Algebra 33

3. RELATED WORK . 44

3.1 Enhancing the Functionality of a GridSim-based Scheduler for Ef-
fective Use with Large-Scale Scientific Applications 44

vi

3.1.1 Motivation . 45
3.1.2 Integrating DLS within Alea 46
3.1.3 Analysis of simulation results 48

3.2 Performance Optimization of Scientific Applications using an Au-
tonomic Computing Approach 48

3.2.1 Motivation . 49
3.2.2 Integrated framework for an autonomic algorithm selection 50
3.2.3 Experimental results, analysis, and evaluation 52

3.3 Investigating the robustness of dynamic loop scheduling on hetero-
geneous computing systems . 54

3.3.1 Motivation . 54
3.3.2 Formulating robustness metrics for DLS 55
3.3.3 Notes on the usefulness of the proposed robustness metrics 63

3.4 A Combined Dual-stage Framework for Robust Scheduling of Sci-
entific Applications in Heterogeneous Environments with Uncer-
tain Availability . 65

3.4.1 Motivation . 65
3.4.2 Outline of the combined dual-stage framework 67
3.4.3 Usefulness of Proposed Framework 71

3.5 Analyzing the Robustness of Dynamic Loop Scheduling for Het-
erogeneous Computing Systems 72

3.5.1 Motivation . 72
3.5.2 Experimental Analysis and Evaluation 73
3.5.3 Benefits of the Proposed Methodology 81

3.6 Predicting the Flexibility of Dynamic Loop Scheduling Using an
Artificial Neural Network . 82

3.6.1 Motivation . 83
3.6.2 Design of the MLP ANN Model 84
3.6.3 Experimental Analysis and Evaluation 87
3.6.4 Benefits of the MLP ANN Flexibility Prediction Model . . 91

4. ROBUSTNESS ANALYSIS VIA PERFORMANCE MODELING USING
A STOCHASTIC PROCESS ALGEBRA 93

4.1 A Study of Robustness of Resource Allocations in Parallel Com-
puting Systems using Performance Modeling 93

4.2 PEPA Performance Models of Resource Allocations in Parallel
Computing Systems . 98

4.2.1 PEPA modeling for case study (i): equal workload variation
across all applications . 99

4.2.2 PEPA modeling for case study (ii): non-uniform workload
variation across all applications 103

vii

5. MODELING STUDY AND ROBUSTNESS ANALYSIS 105

5.1 Robustness evaluation case study: equal workload variation across
all applications . 107

5.1.1 Deriving PEPA activity rates in ideal computing environ-
ment (λ̂ = λ) . 107

5.1.2 Deriving PEPA activity rates in perturbed computing envi-
ronment (λ̂ =6 λ) . 108

5.1.3 Numerical Analysis and Validation of Performance Model-
ing of Resource Allocations using the PEPA Workbench . . 112

5.2 Robustness evaluation case study: non-uniform workload variation
across all applications . 122

5.2.1 Deriving PEPA activity rates in ideal computing environ-
ment (λ̂ = λ) . 123

5.2.2 Deriving PEPA activity rates in perturbed computing envi-
ronment (λ̂ =6 λ) . 124

5.2.3 Numerical Analysis and Validation of Performance Model-
ing of Resource Allocations using the PEPA Workbench . . 125

6. BENEFITS, CONCLUSIONS, AND FUTURE WORK 134

6.1 Benefits of robustness analysis via analytical and numerical mod-
eling of resource allocations . 134

6.2 Conclusions and future work . 135

REFERENCES . 137

APPENDIX

A. ADDITIONAL WORK RELATED TO DISSERTATION RESEARCH . . 148

A.1 A Utility Based Power-Aware Autonomic Approach for Running
Scientific Applications . 149

A.2 Background . 153
A.2.1 Power-Aware Approaches with DVFS 153
A.2.2 Loop Scheduling . 154
A.2.3 DVFS Based Loop Scheduling 156
A.2.4 Elements of Control Theory 157

A.3 Proposed Approach . 159
A.4 Simulations and Analysis . 166
A.5 Benefits of the Proposed Approach 171
A.6 Conclusion and Future Work . 173

viii

LIST OF TABLES

3.1 Bounds on the tolerance factors, τ1, τ2, τ3, and their suggested average case values 64

T ideal TP AR � T ideal3.2 P AR , TP AR, and rmethod = values for N = 1048576 iterationsP AR
and P = 4096 processors . 80

4.1 Mapping A and Mapping B of applications (ai) to machines (mj) based on
the initial sensor load values: λ1 = 962, λ2 = 380, andλ3 = 240. 100

ˆ ˆ5.1 Example Tij and ri values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and
the machine availability factor (η) for Mapping A. 109

ˆ ˆ5.2 Example Tij and ri values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and
the machine availability factor (η) for Mapping B. 109

5.3 ˆ ˆExample Tij and pi values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and
the machine availability factor (η) for Mapping A. 111

5.4 ˆ ˆExample Tij and pi values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and
the machine availability factor (η) for Mapping B. 111

ix

LIST OF FIGURES

2.1 Architecture of Alea’s functionality extended with DLS algorithms 18

2.2 Schematic illustration of the proposed combined dual-stage framework 21

2.3 Schematic description of performance modeling and evaluation of computing systems. 26

3.1 Makespan obtained from simulated execution of different number of tasks on 1024
resources. 48

3.2 Resource utilization of simulated execution of different number of tasks on 1024
resources. 49

3.3 RL system for autonomic selection of DLS methods 52

3.4 Mean parallel time (Tp) for wavepacket simulation using QTM using with RL . . 53

3.5 Two possible scenarios to determine DLS flexibility 55

3.6 Schematic illustration of the proposed dual-stage framework. 66

3.7 Schematic illustration of the proposed combined dual-stage framework with robust-
ness. 67

3.8 Iteration execution times generated using Gaussian distribution with µ = 25 and
σ = 5. 74

3.9 Variation in processor weights as a Gamma distribution with µ = 11. 75

3.10 Execution of the DLS methods and STATIC on a system with 1024 processors and
constant processor weights equal to 27.66 . 76

3.11 Execution of the DLS methods and STATIC on a system with 2048 processors and
constant processor weights equal to 27.66 . 76

x

3.12 Execution of the DLS methods and STATIC on a system with 4096 processors and
constant processor weights equal to 27.66 . 77

3.13 Execution of the DLS methods and STATIC on a system with 1024 processors and
varying processor weights in the [3.52, 27.66] range 77

3.14 Execution of the DLS methods and STATIC on a system with 2048 processors and
varying processor weights in the [3.52, 27.66] range 77

3.15 Execution of the DLS methods and STATIC on a system with 4096 processors and
varying processor weights in the [3.52, 27.66] range 78

3.16 Weka-generated MLP ANN with five input attributes and one output class attribute. 87

3.17 The confusion matrices of (a) the MLP ANN and (b) the 0-R classifier. 90

3.18 Degree of robustness predictions obtained from the MLP ANN model. 90

4.1 Activity diagram of an example PEPA model for a mapping system. 96

4.2 PEPA model for Mapping A defined as a cooperation between the applications and
the machines over the compute activity. 101

4.3 PEPA model for Mapping B defined as a cooperation between the applications and
the machines over the compute activity. 102

5.1 Screenshot of the Eclipse Luna Development Tool with the PEPA workbench mod-
eling framework. 112

5.2 Screenshot of the derivation of the state space of the underlying mathematical
Markovian model. 113

5.3 An activity diagram of the CTMC processes of the corresponding PEPA compo-
nents in Mapping A. 114

5.4 An activity diagram of the CTMC processes of the corresponding PEPA compo-
nents in Mapping B. 114

5.5 Passage time analysis parameters generated by the PEPA workbench. 116

5.6 Cumulative distribution function (CDF) of the finishing time of machine M1 for
executing applications A5, A9, A12, A17, A20 as given by Mapping A. 117

xi

5.7 Cumulative distribution function (CDF) of the finishing time of machine M2 for
executing applications A6, A16 as given by Mapping A. 117

5.8 Cumulative distribution function (CDF) of the finishing time of machine M3 for
executing applications A1, A3, A7 as given by Mapping A. 117

5.9 Cumulative distribution function (CDF) of the finishing time of machine M4 for
executing applications A2, A4, A10, A13, A15, A19 as given by Mapping A. 118

5.10 Cumulative distribution function (CDF) of the finishing time of machine M5 for
executing applications A8, A11, A14, A18 as given by Mapping A. 118

5.11 Cumulative distribution function (CDF) of the finishing time of machine M1 for
executing applications A3, A4, A5, A17, A18, A20 as given by Mapping B. 118

5.12 Cumulative distribution function (CDF) of the finishing time of machine M2 for
executing applications A2, A11, A14, A19 as given by Mapping B. 119

5.13 Cumulative distribution function (CDF) of the finishing time of machine M3 for
executing applications A1, A7, A13 as given by Mapping B. 119

5.14 Cumulative distribution function (CDF) of the finishing time of machine M4 for
executing applications A9, A12, A15 as given by Mapping B. 119

5.15 Cumulative distribution function (CDF) of the finishing time of machine M5 for
executing applications A6, A8, A10, A16 as given by Mapping B. 120

5.16 A comparative analysis of the numerical results of performance modeling with ex-
isting simulation results. 121

5.17 A comparison between the robustness values of the two resource allocations Map-
ping A and Mapping B delivering equal performance in terms of the system makespan.122

5.18 An activity diagram of the CTMC processes of the corresponding PEPA compo-
nents in Mapping A for the modeling study in Case (ii). 126

5.19 An activity diagram of the CTMC processes of the corresponding PEPA compo-
nents in Mapping B for the modeling study in Case (ii). 126

5.20 Cumulative distribution function (CDF) of the finishing time of machine M1 for ex-
ecuting applications A5, A9, A12, A17, A20 as given by Mapping A for the modeling
study in Case (ii). 128

xii

5.21 Cumulative distribution function (CDF) of the finishing time of machine M2 for
executing applications A6, A16 as given by Mapping A for the modeling study in
Case (ii). 128

5.22 Cumulative distribution function (CDF) of the finishing time of machine M3 for
executing applications A1, A3, A7 as given by Mapping A for the modeling study
in Case (ii). 129

5.23 Cumulative distribution function (CDF) of the finishing time of machine M4 for
executing applications A2, A4, A10, A13, A15, A19 as given by Mapping A for the
modeling study in Case (ii). 129

5.24 Cumulative distribution function (CDF) of the finishing time of machine M5 for
executing applications A8, A11, A14, A18 as given by Mapping A for the modeling
study in Case (ii). 130

5.25 Cumulative distribution function (CDF) of the finishing time of machine M1 for
executing applications A3, A4, A5, A17, A18, A20 as given by Mapping B for the
modeling study in Case (ii). 130

5.26 Cumulative distribution function (CDF) of the finishing time of machine M2 for
executing applications A2, A11, A14, A19 as given by Mapping B for the modeling
study in Case (ii). 131

5.27 Cumulative distribution function (CDF) of the finishing time of machine M3 for
executing applications A1, A7, A13 as given by Mapping B for the modeling study
in Case (ii). 131

5.28 Cumulative distribution function (CDF) of the finishing time of machine M4 for
executing applications A9, A12, A15 as given by Mapping B for the modeling study
in Case (ii). 132

5.29 Cumulative distribution function (CDF) of the finishing time of machine M5 for
executing applications A6, A8, A10, A16 as given by Mapping B for the modeling
study in Case (ii). 132

5.30 Case (i) probability values s.t. Fi(Mj , λi) ≤ 45 and the robustness. 133

5.31 Case (ii) probability values s.t. Fi(Mj , λi) ≤ 45 and the robustness. 133

A.1 Structure of a Control System. 158

A.2 Online Controller Architecture. 159

xiii

A.3 The proposed two-level approach . 161

A.4 Experiments performed with and without perturbation in CPU availability with
deadline = 500 samples. 169

A.5 Experiments performed with the proposed approach and perturbation in CPU avail-
ability with deadline = 500 samples. 170

A.6 Experiments performed to show the impact of relative weights to deadline and
power consumption with the proposed approach and perturbation in CPU avail-
ability with deadline = 800 samples. 172

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent developments in the field of parallel and distributed computing has led to a pro-

liferation of solving large and computationally intensive mathematical, science, or engi-

neering problems, that consist of several parallelizable parts and several non-parallelizable

(sequential) parts. Amdahl’s law states that, “a small portion of the program which can-

not be parallelized will limit the overall speed-up available from parallelization” [9]. In

addition, Gustafson’s law states that, “if you apply P processors to a task that has se-

rial fraction f, scaling the task to take the same amount of time as before, the speedup =

f + P (1 � f) = P � f(P � 1). It shows more generally that the serial fraction does

not theoretically limit parallel speed enhancement, if the problem or workload scales in

its parallel component.” [54]. Therefore, in a parallel and distributed computing envi-

ronment, the performance goal is to optimize the execution of parallelizable parts of an

application on concurrent processors. This requires efficient application scheduling and

resource allocation for mapping applications to a set of suitable parallel processors such

that the overall performance goal is achieved. However, such computational environments

are often prone to unpredictable variations in application (problem and algorithm) and

system characteristics. Therefore, a robustness study, of resource allocation and schedul-

1

ing, is required to guarantee a desired level of performance. Given an initial workload, a

mapping of applications to resources is considered to be robust if that mapping optimizes

execution performance and guarantees a desired level of performance in the presence of

unpredictable perturbations, in application and system characteristics, at runtime. The

knowledge of a robust mapping is useful in designing an efficient resource allocation sys-

tem that can maintain a desired level of execution performance in the presence of tolerable

variations in application and system parameters.

1.1.1 Performance Evaluation

The rapid development of computing technology has increased the complexity of com-

putational systems and the ability to solve large, more complex problems. However, the

need for system developers and users to measure the performance of these systems has been

constant throughout this proliferation. Researchers and scientists from various fields are in-

terested in accurate modeling and simulation of various complex phenomena from various

scientific and enterprise areas. These simulations are often routines that perform tasks as

repetitive computations over very large data sets. Moreover, their nature (or computational

requirements) may be irregular, rendering one task likely to take more time than other tasks,

depending on the application. The resources in a large-scale system are widely distributed

and highly heterogeneous, often shared among multiple users, and their availability cannot

always be guaranteed or predicted. Hence, the quality and quantity of available resources to

a single user are continuously changing. Running computationally intensive applications in

heterogeneous environments exhibits irregular behavior, in general due to variations in pa-

2

rameters of problem, algorithm and system. Performance evaluation is concerned with the

description, analysis and optimization of such dynamic behavior of parallel and distributed

systems. The goal of performance evaluation is to understand the behavior of the system

(which includes the application and the computational system) and identify the aspects of

the system that are sensitive from a performance point of view. In general, a performance

study addresses an objective, which is achieved via evaluating several alternative solu-

tions to the intended problem, and often requires solution to a multi-objective optimization

problem of a utility function (U = f(makespan, robustness, power, cost, andothers)).

In parallel and distributed computing, resource management is an important and active

research area, which is often challenged by the problem of finding a mapping of tasks

to machines that optimizes a system performance feature while maintaining an acceptable

level of quality of service. The work done in this research is focused on evaluating resource

allocations in a dynamic environment which is prone to unpredictable variations in appli-

cation and system characteristics by analyzing the effect of probable runtime perturbations

on the execution performance obtained as a result of using a certain resource allocation.

1.1.2 Robustness Analysis

Scheduling applications on large-scale platforms, where chances of workload varia-

tion and faults are high, require an approach to ensure the robustness of the underlying

mapping. In earlier work on robustness of resource allocations/task scheduling algorithms,

robustness was addressed individually for a single method, or even for a single applica-

tion [107] and has been discussed in the following chapter. As robustness has various

3

http:mapping.In

definitions under different contexts and applications, it has not yet been possible to give

it a universally valid definition for all circumstances. Moreover, designing a scheduling

algorithm with the goal of achieving robustness gives no guarantee that the algorithm is

more robust than an algorithm designed without that goal. It is a fact that today’s high-

performance computing systems have rapidly evolved in size (from multi-core to many-

core and to petascale), increased in complexity of the interconnection networks and of

the processor hierarchies, and consequently, have become more expensive in terms of en-

ergy consumption and performance per watt. Nowadays, time to solution consists of more

factors than just the execution time of the application [45]. It naturally follows that new

metrics are needed to characterize the application performance, in addition to the tradi-

tional performance metrics, such as execution time, efficiency, scalability, and others. The

new metrics must characterize the robustness of scientific applications running on the com-

plex high-performance computing systems. Therefore, a study of robustness is essential to

ensure the level of performance of the techniques used to parallelize scientific applications

under highly unpredictable conditions, and to develop metrics that can measure the robust-

ness of the scheduling techniques with respect to various causes that degrade performance.

Although much work has been focused on formulating robustness metrics for a number

of resource allocation techniques [106] and a number of dynamic loop scheduling (DLS)

techniques [15][107], developing formal analytical models for evaluating the robustness of

such techniques on parallel and distributed systems is still an open problem.

Analytical modeling of robustness can provide a platform for predicting the robustness

of various application-to-machine allocations and thereupon for selecting the most robust

4

allocation for a parallel execution of scientific applications on systems that are often prone

to uncertain variations in their computational environmental factors. The proposed ana-

lytical modeling of robustness can provide a platform for predicting the performance of

executing applications on parallel machines, such as makespan, throughput, and resource

utilization [59]. Further, the modeling can also be extended to include other metrics, such

as robustness, power consumption, and others, to ensure an efficient, robust, and power ef-

fective execution of scientific applications on parallel and distributed computing systems,

via modeling a single utility function that includes all the performance features of interest

as mentioned above.

1.1.3 Process Algebra for Performance Evaluation

The approaches for performance evaluation of computer and communication systems

have been broadly classified into three types: analytical and numerical modeling, simu-

lation, and direct experiments [70]. The choice of a performance evaluation technique is

dependent upon many key factors such as, the stage of the system under evaluation (for

example, if a system already exists and requires postmortem analysis or if a new system

needs to be created and requires a predictive analysis), need for generality, analysis time,

tools required, comparative analysis of systems, and cost. In parallel and distributed com-

puting systems, direct experimentation requires the availability of a system in which all

the parameters can be controlled. Such an approach is costly, time consuming, difficult

to replicate (for a comparative analysis), and lacks generality. Simulations provide a more

cost-efficient approach towards performance evaluation of parallel and distributed comput-

5

ing systems. An abstraction of the system is simulated using specific simulation languages,

tools, and techniques. However, developing a simulation platform to incorporate all of the

essential system properties is a time consuming process, it compromises accuracy and often

incurs an intellectual burden of validating the simulations and evaluating the correctness

of the simulated system via calculation of confidence intervals. In contrast, analytical and

numerical modeling for performance evaluation allows derivation of an expression of the

performance feature of interest in terms of the input parameters of the model. In case of a

predictive analysis of a computing system, analytical models generally provide the best in-

sight into the effects of various parameters and their interactions, and are easier to replicate

for a comparative analysis of different systems. In addition, analytical and numerical mod-

eling provides the most cost efficient approach towards performance evaluation of parallel

and distributed computing systems [19][21][59].

Markovian models have been shown to be an effective technique for performance anal-

ysis of computer and communication systems, where the system components are mod-

eled as Markov processes and the overall performance (for example, throughput, resource

utilization, and others) is evaluated upon the numerical analysis of these Markov pro-

cesses [114]. However, construction of Markov processes is a tedious task for large paral-

lel and distributed systems. Therefore, a intermediate system description language is often

used to model and design the system components and their behavior. Process algebras are

abstract languages used for specification and design for parallel and distributed systems.

The motivations for investigating the use of process algebras for performance modeling

can be regarded as arising from three distinct problems of performance analysis which

6

http:systems.In

have been identified in the recent years and are listed as follows along with a description of

how the adoption of process algebra as a performance modeling language has implications

for each of these problems [59][60]:

• Integrating performance analysis into system design: using a formal description lan-
guage for performance modeling such as process algebra allows a closer integration
of performance analysis into design methodologies. This enables a timely consid-
eration of performance aspects for designing a parallel and distributed computing
system.

• Representing systems as models: modern parallel and distributed systems do not fit
into the traditional models of sequential control and resource allocation. The com-
ponents within modern parallel and distributed computing systems work in a frame-
work of autonomy and cooperation. A process algebra model consists of a system
of components known as active agents who are defined by their individual behaviors
and these agents interact via the cooperator paradigm of the process algebra.

• Model tractability: process algebra models offer techniques such as model simplifi-
cation and aggregation that enable performance analysis of very large systems. The
compositionally of process algebra allows a system designer to evaluate a part of the
model while maintaining the integrity of the overall model.

In this work, Performance Evaluation Process Algebra (PEPA) [59] is used for per-

formance modeling of resource allocations for mapping scientific applications to parallel

machines, followed by an analysis of the robustness of the resource allocations. The mo-

tivation behind using PEPA, for performance modeling and evaluation of resource allo-

cations in parallel and distributed computing systems, is the theoretical development of

PEPA that captures the advantages of analytical modeling via process algebra and deriva-

tion of performance measures via the underlying mathematical structure. A more detailed

theoretical description of process algebra and PEPA is given in Chapter 2.

7

1.2 Thesis Statement

Hypothesis: the numerical models of resource allocations (for mapping applications

to parallel machines) obtained using the performance evaluation from stochastic process

algebra can be successfully used for obtaining a robust solution to the mapping problem

in parallel computing systems.

The focus of this research is a study to address the challenging issues concerning the

evaluation of robustness of initial mappings used for scheduling applications on today’s

emerging parallel computing systems (clusters, grid environments, clouds, and others).

This approach is inclined towards evaluating robustness of the performance of the resource

allocations modeled numerically using a stochastic process algebra. The goal is to develop

analytical and numerical models of resource allocations for parallel execution of appli-

cations, that have varying workload, on parallel and heterogeneous computing resources.

The underlying theoretical foundation is constructed based on the established quantitative

concepts of the stochastic process algebra (SPA). Further, the benefits of the proposed ana-

lytical model of robustness are discussed highlighting its utility towards a holistic approach

that can ensure a robust execution of applications on modern and future parallel computing

systems (including autonomic computing systems (ACS) and cloud computing systems)

by selecting the most robust mapping obtained from the analysis of the analytical model.

Novel contributions as well as the contributions that led to the research in this disserta-

tion are listed below.

1. Performance modeling of resource allocations in parallel and distributed computing
using PEPA.

8

2. Robustness evaluation using a passage time analysis (numerical analysis of Marko-
vian models) of the developed performance models of resource allocations.

3. Robustness analysis of resource allocations w.r.t. equal variation in workload across
all applications, and validating the robustness results of resource allocations obtained
from performance modeling using PEPA with the robustness of the same resource
allocations obtained via prior simulation experiments.

4. Robustness analysis of resource allocations w.r.t. the non-uniform variation in work-
load across all applications.

5. First implementation of the DLS methods in a simulation framework for a compara-
tive analysis of the execution performance of these methods [108].

6. Study of the use of a model free machine learning (reinforcement learning) approach
towards an automatic selection of the best DLS method for scheduling time-stepping
scientific applications [16].

7. Formulation of robustness metrics for dynamic scheduling methods used in paral-
lel computing systems and a study towards an online selection, of the most robust
dynamic scheduling method, using machine learning techniques. The study of ro-
bustness of dynamic scheduling is applicable to a class of time-stepping scientific
applications and is a part of the foundation work on robustness that has led to this
research [107][110].

8. First implementation of a learning based methodology for an online prediction of the
robustness of DLS methods using an artificial neural network [109].

9. A power-aware execution of scientific applications parallel and distributed comput-
ing systems using an existing model-based framework that combines the functional-
ities of DLS methods with a feedback limited look ahead controller [87].

10. A combined dual-stage framework for robust scheduling of scientific applications in
heterogeneous environments with uncertain processor availability [32].

11. A list of publications, which have resulted from this research work, is given below.

(a) I. Banicescu, F. M. Ciorba, and S. Srivastava, “Chapter 22: Performance Opti-
mization of Scientific Applications using an Autonomic Computing Approach”,
pp. 437466, in Scalable Computing and Communications: Theory and Prac-
tice, 2013, John Wiley & Sons, Inc.

(b) N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, F. M. Ciorba. “Portfolio-
based Selection of Robust Dynamic Loop Scheduling Algorithms Using Ma-
chine Learning,” In Proceedings of the 15th IEEE/ACM International Parallel
and Distributed Processing Symposium (IPDPS-ParLearning) 2014, Phoenix,
AZ, USA, On CD-ROM, IEEE Computer Society Press.

9

(c) S. Srivastava, B. Malone, N. Sukhija, I. Banicescu, F. M. Ciorba, “Predict-
ing the Flexibility of Dynamic Loop Scheduling Using an Artificial Neural
Network,” In Proceedings of the IEEE International Symposium on Parallel
and Distributed Computing (ISPDC2013), Bucharest, Romania. On CD-ROM,
IEEE Computer Society Press.

(d) N. Sukhija, I. Banicescu, S. Srivastava, F. M. Ciorba, “Evaluating the Flexibil-
ity of Dynamic Loop Scheduling on Heterogeneous Systems in the Presence
of Fluctuating Load using SimGrid,” In Proceedings of the 14th IEEE/ACM
International Parallel and Distributed Processing Symposium (IPDPS-PDSEC)
2013, Boston, USA, On CD-ROM, IEEE Computer Society Press

(e) S. Srivastava, N. Sukhija, I. Banicescu, F.M. Ciorba, “Analyzing the Robust-
ness of Dynamic Loop Scheduling for Heterogeneous Computing Systems,” In
proceedings of the 11th IEEE International Symposium on Parallel and Dis-
tributed Computing (ISPDC 2012)

(f) F. M. Ciorba, T. Hansen, S. Srivastava, I. Banicescu, A. M. Maciejewski, H.
J. Siegel. “A Combined Dual-stage Framework for Robust Scheduling of Sci-
entific Applications in Heterogeneous Environments with Uncertain Availabil-
ity”. In Proceedings of the 13th IEEE/ACM International Parallel and Dis-
tributed Processing Symposium (IPDPS-HCW) 2012, Shanghai, China: On
CD-ROM, IEEE Computer Society Press.

(g) S. Srivastava, I. Banicescu, F.M. Ciorba, W.E. Nagel, “Enhancing the Function-
ality of a GridSim-Based Scheduler for Effective Use with Large-Scale Scien-
tific Applications,” in Proceedings of the 10th IEEE International Symposium
on Parallel and Distributed Computing (ISPDC 2011), vol., no., pp.86-93, 6-8
July 2011.

(h) S. Srivastava, I. Banicescu, F.M. Ciorba, “Investigating the robustness of adap-
tive Dynamic Loop Scheduling on heterogeneous computing systems,” in Pro-
ceedings of the IEEE International Symposium on Parallel and Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), 2010, vol., no., pp.1-8, 19-23
April 2010.

(i) S. Srivastava, F. M. Ciorba, I. Banicescu, “Employing a Study of the Determin-
istic Robustness Metrics to Assess the Reliability of Dynamic Loop Schedul-
ing,” in Proceedings of the IEEE High Performance Computing Conference
(HiPC 2010) - Student Research Symposium (SRS), Goa, India:, IEEE Com-
puter Society Press.

10

CHAPTER 2

BACKGROUND

With the advent of increasingly complex computation and communication systems that

have evolved from a single node machine to parallel and distributed computing systems

containing clusters of very powerful (multiprocessor, muti-core, and others) machines,

there is a need for a robust design of these computing and communication systems. In gen-

eral, the textitmapping problem, which is scheduling independent tasks (or applications)

onto a set of heterogeneous parallel processors, is known to be NP-Complete [34][44][68].

This research is a step towards the ongoing efforts towards achieving a robust schedule

for allocation of independent tasks on heterogeneous machines in parallel and distributed

computing systems.

2.1 Robustness

In advanced computing systems, robustness is a quality which defines their ability to

withstand changes in procedures or their working environments. Such systems are defined

robust if they are capable of coping with unpredictable variations with minimal damage

in their functionality. As robustness has various definitions under different contexts and

applications, it has not yet been possible to give it a universally valid definition for all

circumstances. The IEEE standard glossary defines robustness as “the degree to which a

11

system or component can function correctly in the presence of invalid inputs or stressful

environmental conditions” [77]. Invalid inputs include errors above tolerance levels, such

as faults and in this context, robustness might be interpreted as the degree of the system’s

ability to handle exceptions, such as to tolerate faults. Most of the current research in this

area concerns the design of methods that address issues of fault-tolerance and resilience.

2.1.1 Robustness of Static Resource Allocation

The initial work on robust scheduling originated from job-shop application scheduling

frameworks. Robustness measures and robust scheduling methods have been developed

to schedule job-shop applications [82]. The authors define schedule robustness as a mea-

sure of the post disturbance makespan and the post disturbance makespan variability. The

authors utilize a right-shift control policy when a job is interrupted in the presence of a

disturbance to maintain the schedule performance. The impact of a disturbance on the

job-shop performance is minimized via employing a robust initial schedule, where the ro-

bustness is defined as a weighted function of the expected makespan and the expected

delay. Standard branch and bound approach is used to solve the NP-Hard robust schedul-

ing problem (RSP) to obtain a robust schedule for N independent jobs on a single machine

[35]. A robust schedule is obtained for scheduling metaprograms on a computational grid

[26]. The authors implement a naive model using a proposed empirical formula to cal-

culate the robustness of a schedule. During the process, a current schedule is replaced

with another schedule yielding a smaller execution time and all the schedules yielding a

larger execution time than the current schedule are rejected. Work has also been done on

12

improving the robustness or flexibility of a schedule in a job-shop execution environment,

by minimizing the lateness factor and by using neighborhood-based methods for recover-

ing from a disturbance [72]. A stochastic mixed integer programming (SMIP) approach is

used to obtain a robust resource allocation for parallel and distributed systems [49]. The

linearization of the mixed integer programming (MIP) formulation of the resource alloca-

tion mapping problem leads to a robust initial resource allocation, and the robustness of

the mapping is measured as the amount of additional workload that the system can handle

at runtime while maintaining the performance. As a subsequent work, the authors generate

a more robust resource allocation using iterative integer programming (IIP) [50]. The re-

source allocation obtained upon the IIP formulation of the mapping problem allows some

slackness (δ), which is provided by the user of the application. The authors involved with

the INRIA GRAAL project, propose a fault tolerant scheduling algorithm (FTSA), based

on an active replication scheme. The authors identify the reliability of a scheduling algo-

rithm as a guarantee of application performance in the presence of processor failures on

heterogeneous computing platforms [22].

Designing a scheduling algorithm with the goal of achieving robustness gives no guar-

antee that the algorithm is more robust than an algorithm designed without that goal. In

such a situation formulating robustness metrics can be helpful to measure the robustness

of a scheduling method against possible erroneous inputs or variable environmental fac-

tors. A general methodology for developing robustness metrics for resource allocation

has been presented by Ali et al. [6]. The authors present state of the art work for for-

mulating a robustness metric for finding the most robust initial resource allocation for

13

heterogeneous systems prone to uncertain perturbations, such as, unexpected system load

variations, processor failures, and others. They provide a mathematical description for

the robustness metric followed by a procedure for deriving the robustness metric. The

proposed procedure, to formulate the generalized robustness metric, is termed as a FePIA

(Feature Perturbation Impact Analysis) procedure. For resource allocations, the authors

give a customized definition as follows: “a resource allocation is defined to be robust

with respect to specific system performance features against perturbations (uncertainties)

in specified system parameters if degradation in these features is constrained when limited

perturbations occur” [6]. Further, the authors also address three questions on robustness

and render them as mandatory for claiming robustness of resource allocations in hetero-

geneous parallel computing systems [5]. The three questions are: (i) what behavior of

the system makes it robust? (ii) What uncertainties is the system robust against? And

(iii) quantitatively, how robust is the system? In their initial work, the authors formu-

late a deterministic robustness metric (DRM) that uses a scalar estimate of the execution

time of each application on each machine to determine the robustness of a resource al-

location [6][5][99][7]. The DRM is obtained via employing the FePIA procedure and is

defined as the variation in the perturbation parameter that can be tolerated by the system

before the performance feature of interest exceeds an allowable range. The goal is to obtain

a resource allocation that can yield the largest value of the DRM. This is further formulated

as a convex optimization problem, where the goal is to maximize the value of the DRM

and the constraints are given by the allowable range of values for the performance fea-

ture of interest. The authors use a number of greedy heuristics that use the DRM to solve

14

the optimization problem for obtaining the most robust resource allocation [6][5][99][7].

In their subsequent work, a stochastic robustness metric (SRM) is proposed to determine

a robust static resource allocation via a mathematical model that describes the stochas-

tic relation between uncertainty in system parameters and its impact on system perfor-

mance [101][104][103][100][111][71][90][98][4][102]. The SRM is defined as the prob-

ability that a performance feature is confined in an allowable interval in the presence of

perturbations and does not exceed the QoS constraints (such as deadline). The SRM uses

information about the execution time distributions of the application for the robustness of

the resource allocation. Thus, the resource allocation obtained upon employing the SRM

is associated with a probability. The goal is to obtain a resource allocation that provides

the maximum value for the SRM. This goal is formulated as a solution to an optimization

problem of maximizing the SRM value constrained by the QoS attributes desired from the

application execution. A number of heuristic techniques are utilized to find an optimized

resource allocation that can provide the highest value for the SRM. The authors use heuris-

tics based on greedy search algorithms that optimize the SRM to find a robust resource

allocation in a stochastic computing environment [104][71]. A number of iterative search

algorithms, such as ant colony optimization, steady state genetic algorithms, and simu-

lated annealing, have been used in [100][71]. Immediate mode heuristics and batch mode

heuristics have also been utilized to solve the optimization problem in [90]. To solve the

optimization problem under memory constrained systems, the authors also experimented

with branch and bound heuristics based on integer linear programming [98]. A compari-

son between the set of heuristics (greedy, genetic algorithms, simulated annealing, and ant

15

colony optimization) that were utilized for obtaining a solution to the optimization prob-

lem for maximizing the SRM, has been presented in [4][102]. A more comprehensive

description of robustness of resource allocations in heterogeneous systems, deterministic

models of robustness using a DRM, stochastic models of robustness using an SRM, and a

comparison between the DRM and SRM has been discussed in [106][102].

2.1.2 Robustness of Dynamic Scheduling

The study of robustness of scheduling scientific applications on high-performance par-

allel and distributed computing systems is a two-faceted issue that can be addressed at

the system level and at the application level. Therefore, it is of interest to investigate the

robustness of scheduling techniques at the application level, which together with studies

conducted at the system level constitute a holistic approach to ensure robustness of exe-

cuting the scientific applications on modern and future computing systems [42]. To ad-

dress this issue, in addition to the work done towards the evaluation of robustness of static

resource allocation [6][5][99][7][101][104][103][100][111][71][90][98][4][102], research

studies have also been conducted towards analyzing the robustness of a number of DLS

methods, for dynamic scheduling of scientific applications on large-scale parallel and dis-

tributed system of heterogeneous processors, in the presence of varying processor loads

(defined by the flexibility metric) and processor failures (defined by the resilience met-

ric) [15][107]. A mathematical formulation of the flexibility metric (used for measuring

the flexibility of DLS algorithms in the presence of fluctuating processor availabilities that

results in a variation of the load on that processor) and the resilience metric (used for mea-

16

suring the resilience of DLS algorithms in the presence of processor failures), using the

FePIA procedure as described in [6][5], has been presented as preliminary work towards

analyzing the flexibility and resilience of the DLS algorithms for dynamic scheduling of

computationally intensive, irregular, and data parallel scientific applications on parallel and

distributed computing systems that are prone to runtime variations in the problem, algo-

rithm, and system characteristics [15][107]. In subsequent work, simulation, of the dy-

namic scheduling (using DLS algorithms) and the execution of the scientific applications

on a set of parallel and heterogeneous processors, has been performed to compare the load

balancing characteristics of the DLS methods, and to evaluate the flexibility of the DLS

methods in the simulated parallel and distributed computing environment [108][110][112].

In earlier work, the performance evaluation of the DLS methods has been obtained ex-

perimentally, using real world applications executing on real physical machines [13][27].

However, conducting the real experiments was a tedious and time-consuming task. In ad-

dition, the results obtained from these real experiments were difficult to reproduce for a fair

comparison of the DLS methods, given the same computing environments. To overcome

this limitation, a simulation of scheduling scientific applications on a cluster of grid re-

sources via the DLS techniques, was presented as the first step towards evaluating the flex-

ibility of the DLS algorithms [108]. The simulation framework was provided by Alea [76],

which is a Gridsim [25] based simulator specifically designed for task scheduling on paral-

lel and distributed computing systems. Alea provided a platform to simulate the execution

of different types of irregular loop iteration execution times (representing variations in

application characteristics), on different sizes of computing systems (representing hetero-

17

geneity among processors) with the required level of detail to assess the performance (in

terms of the parallel execution time), and thereafter the flexibility the DLS methods. The

basic structure of the Alea simulator, used for the simulation of scheduling loop iterations

modeled as individual tasks of a scientific application on a grid environment, is illustrated

in Figure 2.1.

Figure 2.1: Architecture of Alea’s functionality extended with DLS algorithms

Further, a simulation, using priority queues written in the C language, has been used to

simulate the execution of data parallel loops within a scientific application exhibiting irreg-

ular behavior, and to simulate the uncertainty in the variation of processor weights using

random probability distributions [110]. The simulation results are used to experimentally

analyze and evaluate the robustness of the DLS methods for various execution scenarios,

which reflect the performance of the DLS methods in both dedicated and non-dedicated

18

computing environments. To exemplify the execution environments, a set of tolerable

threshold values is chosen, and the flexibility of the DLS methods is measured (using the

FePIA procedure as described in [6][5]) against the variation of the computational speed

of the processors, with respect to the chosen threshold values.

A flexibility analysis of DLS techniques against fluctuating system load at a larger

scale by employing the experimental scenarios of different combinations of problem size,

computing systems size, and scheduling methods has been conducted using SimGrid [28],

which is a more complex simulator as compared to the C-based simulation using priority

queues used in [110]. The robustness analysis of the DLS techniques has been performed

considering the fluctuation of the system load as a compound effect of both the algorithmic

and the systemic variances, which are modeled using probability distributions. The choice

of various distributions representing variances in applications and system characteristics

has been made for the purpose of identifying the effects of the resulting irregularities on

the DLS techniques, thus leading towards finding a measure of their flexibility. The use

of the Simgrid simulation toolkit is motivated by the need to overcome the constraints in-

volved in testing the performance of the DLS methods repeatedly on real systems because

real testbeds are time intensive to create, have limited control over the dynamic behavior

of the computing system, and it is often difficult to perform repeated and controlled exper-

iments to schedule scientific applications composed of a large number of computationally

intensive loop iterations on real computing systems.

19

2.1.3 A Combined Dual-stage Framework for Robust Scheduling of Applications in
Stochastic Computing Environments

Scheduling parallel applications on existing or emerging computing platforms is chal-

lenging, and, among other attributes, must be efficient and robust. The need for robustness

at both, the system and the application, levels motivated the study of a dual-stage frame-

work evaluate the robustness of efficient resource allocation and dynamic load balancing

of scientific applications in heterogeneous computing environments with uncertain avail-

ability [32]. The first stage employs heuristics that produce a robust resource allocation for

an initial static mapping of applications to machines, while the second stage incorporates

robust dynamic loop scheduling techniques for a robust scheduling and execution, of those

applications on the allocated machines, at runtime. The combined dual-stage framework

constitutes a comprehensive framework that enables and provides guarantees for the ro-

bust execution of scientific applications in computing systems where uncertainty is caused

by various unpredictable perturbations. The research reports on studies for determining

the best techniques to be used for each stage that: (a) maximize the probability that the

system makespan satisfies a deadline, and (b) minimize the system makespan for every

given availability level in the system [32]. The goal of the combined dual-stage framework

is to assign applications to heterogeneous computing systems and execute them in such a

way that all applications complete before a common deadline, and their completion times

are robust against uncertainty in input data and system availability. To accomplish this

goal, the approach behind the combined dual-stage framework is to divide the execution of

scientific applications on heterogeneous computing systems into two stages, as outlined in

20

Figure 3.7. In Stage I initial mapping, resources are allocated to each application according

to a given robust RA policy. Initial mapping (IM) can be defined as the problem of finding

a mapping of a batch of applications onto a set of resources to maximize robustness against

uncertain input data and system availability. Robustness here is defined as the probability

that applications are completed on the allocated resources by a common deadline [102]. In

Stage II runtime application scheduling, the execution of each application is optimized, for

the set of resources allocated in the previous stage, according to a given robust application

scheduling strategy.

Figure 2.2: Schematic illustration of the proposed combined dual-stage framework

21

To claim robustness for the overall system, the following questions have been an-

swered [5]: (i) What behavior of the system makes it robust? Answer: The system consid-

ered in this work is robust if all applications complete before a common deadline, given

uncertainty in input data (which impacts application execution time) and system availabil-

ity. The system robustness is achieved via employing robust RA and robust DLS in two

consecutive stages. A robust RA is one that is capable of maximizing the probability that

all applications complete before the deadline. A DLS technique is said to be robust if it

facilitated the execution of an application in the smallest amount of time, and if this time

satisfies the deadline when the runtime system availability may vary from the one assumed

initially. (ii) What uncertainties is the system robust against? Answer: Given uncertain

variations in input data and system availability, application execution times are a known

source of uncertainty in the system, and may have a significant impact on the stated per-

formance objective. The uncertainty against which the system considered in this work is

assumed to be robust is the 2-tuple (π1, π2). (iii) How is the system robustness quantified?

Answer: The robustness of the system, using the combined dual stage framework, can be

quantified as the joint robustness of the initial mapping in stage I and the runtime applica-

tion scheduling in stage II. Let ρ1 be the largest robustness value of stage I. Also, let ρ2 be

the largest robustness value of stage II. The system robustness is quantified as the 2-tuple

(ρ1, ρ2).

The usefulness of the combined dual stage framework has been explained via a small

scale example of a batch of 3 applications and 8 processors divided into two machines.

Further details of the results and the benefits of this approach can be found in [32].

22

Although work had been done towards formulating a mathematical description of the

robustness metrics for a number of resource allocation techniques [106] and dynamic

scheduling techniques [15], developing formal analytical models for evaluating the ro-

bustness of such techniques on heterogeneous parallel and distributed systems is still an

open problem. Moreover, the existing analysis of the robustness of a resource allocation

and a task scheduling system has been performed via simulation. Analyzing the robust-

ness of a resource allocation via high-level models of application execution on parallel

and distributed computing systems allow the computational resources to be utilized more

efficiently for yielding an optimized execution performance. Therefore, the analysis pro-

cess should have low computational cost (overhead). In addition, the high-level models

need to represent realistic configurations of the overall system and not a simplified ver-

sion. Simulation-based analysis is very time consuming and it imposes the additional

burden computing confidence intervals for the results. In addition, simulation methods

consider strong simplifying assumptions and approximations which compromise their ac-

curacy. Therefore, there is a need for employing numerical analytical methods and formal-

ism for performance modeling and analysis of the robustness of resource allocations for

applications in a parallel and distributed computing environment.

2.2 Performance Modeling and Evaluation of Parallel and Distributed Computing
Systems

Performance modeling is concerned with the dynamic behavior of systems and a quan-

tified assessment of that behavior. A model can be constructed to represent some aspect

of the dynamic behavior of a system. Once the model is created, it can be used as a tool

23

for investigating the behavior of the system. Parallel and distributed computing systems

behave as discrete event systems. The state of such systems is characterized by variables

which take distinct values and which change by discrete events. Therefore, at a given dis-

tinct time, the occurrence of an event within the system results in a change in one or more

of the state variables. Within discrete event systems, there is a distinction between a dis-

crete time representation and a continuous time representation. In models with a discrete

time representation, the system is only considered at predetermined time intervals, such

as a time sample of a number of seconds. In models with a continuous time representa-

tion, the system is considered at the time of occurrence of each event. Therefore, in such

models, the time parameter is conceptually continuous. Under the realistic assumption,

about events that are countably finite and that can affect the performance of parallel and

distributed computing systems, are stochastic in nature and do not necessarily occur at pre-

defined time intervals, models with continuous time representations are more suitable for

evaluating such systems.

Markovian models have been shown to be an effective technique for performance anal-

ysis of computer and communication systems, where the system components are mod-

eled as Markov processes and the overall performance (for example, throughput, resource

utilization, and others) is evaluated from the numerical analysis of these Markov pro-

cesses [114]. A Markov process, X(t), is a stochastic process that holds a Markov prop-

erty such that, ∀{X(t) : 0 ≤ t < 8}, the joint probability, Pr(X(tn+1) = xn+1|X(tn) =

xn, · · · , X(t1) = x1) = Pr(X(tn+1) = xn+1|X(tn) = xn). This signifies that the future

path X(s) for s > t, does not depend upon the knowledge of the past history X(u) for

24

u < t, ∀(0 ≤ t <). Continuous time Markov chain (CTMC) is a mathematical model8

composed of continuous time stochastic processes that hold the Markov property. CTMC

has been used for numerical analysis of performance of a number of computer and com-

munication systems, such as queueing networks [81][92]. The state-transition diagram of

a Markov process captures all the information about the states of the system and the transi-

tions that occur between these states. Often, for the convenience of the reasoning of these

processes, this state-transition diagram is represented as an infinitesimal generator matrix,

Q. A state space size N yields an NxN matrix. A matrix element, q(i, j), represents

the rate at which a transition occurs between states xi and xj and its value is a random

number drawn from an exponential distribution, which provides a memoryless property to

the processes in the model. Another important feature in the derivation of performance

measures is the steady state probability distribution. It is the probability distribution of a

random variable X(t) over a state space S, as the system settles into a regular pattern of

behavior or equilibrium. For a state space size N , the steady state probability vector, π,

contains N elements and each element of the vector is an unknown value that represents

the steady state probability of X(t) to be in one of the N states at equilibrium. In CTMC,

these steady state probability values are calculated via solving the following global balance

equation [114]. X
π · Q = 0, s.t. π[i] = 1 (2.1)

i

Further, reward structures are used to derive performance measures, such as utilization and

throughput, from the steady state probability values obtained from Equation 2.1 [91]. The

reward associated with a component, and the corresponding state, is the sum of the rewards

25

attached to the activities it enables. Performance measures are then derived from the total

reward based on the steady state probability distribution of that component [59]. If ρi is

the reward associated with the component Ci, and Π(Ci) is the steady state probability

distribution, then the total reward for that component can be calculated as:

X
R = ρiΠ(Ci) (2.2)

i

Many performance measures of interest correspond to some identifiable aspect of system

behavior. Since the behavior of the system is associated with activities of the system com-

ponents, these performance measures can be formulated by associating a reward with an

activity or set of activities enabled by that component [59].

Figure 2.3: Schematic description of performance modeling and evaluation of computing systems.

26

Often, working directly with CTMC, at the level of state-transition diagrams and in-

finitesimal generator matrix, is time consuming, error prone, and infeasible for computer

and communication systems that involve a large number of system components. Therefore,

various high level modeling formalisms, such as queuing networks, stochastic Petri nets,

and process algebras, have been developed to reduce the complexity of constructing per-

formance models for system designers. A schematic description of performance modeling

and evaluation of computing systems via a high level formalism is given in Figure 2.3. The

high level formalism is further translated into the underlying mathematical structure (such

as CTMCs) for obtaining performance measures.

Among the high level formalism methods, queueing networks offer compositionality

but not formality; stochastic extensions of Petri nets offer formality but not composition-

ality; and neither offer abstraction mechanisms. Process algebras, and their stochastic ex-

tensions, offer formality, compositionality, and abstraction, which are the three important

features expected from a performance modeling paradigm [11][23]. Moreover, stochastic

process algebras capture the timing information associated with the system components

and their activities, which provides a more coherent translation of the high level formalism

into the underlying mathematical structure of the CTMC. Given these advantages of pro-

cess algebras over the other high level formalism methods, the work done in this thesis is

focused upon the use of a suitable process algebra for modeling and evaluating the robust-

ness of scheduling in a resource allocation system for parallel and distributed computing.

A more detailed description of the theoretical developments of process algebra is given in

the following sections.

27

2.3 Process Algebra

In theoretical computer science, process algebra (PA) is an algebraic approach to the

study of concurrent processes that is used to model computer systems for obtaining quali-

tative and quantitative information from the modeled system. PA uses algebraic languages

for the specification of processes and the formulation of statements about their role, and a

calculi for the verification of these statements [10]. The term process algebra was coined

in 1982 by Bergstra and Klop [23]. A PA is a structure that satisfies a particular set of ax-

ioms, known as the laws of PA. Given a set of atomic actions, the basic operators of the PA

can be used to compose these actions into more complicated processes. Among the set of

pre-defined basic operators, parallel composition is the backbone of any PA, which enables

calculation and deducing qualitative results. PAs are mathematical structures that are often

formulated in terms of automata, and are referred to as transition systems [23]. However,

unlike automata theory, the notion of equivalence is different from language equivalence

and is often referred to as the notion of bisimulation. Thus, overall PAs can be defined

as the study of concurrent processes, their equational theories, transition systems, and the

equivalencies between the systems.

2.3.1 Process Algebra for Parallel and Distributed Computing

Process algebra is a widely accepted and much used technique in the specification and

verification of parallel and distributed software systems [23][11]. A system can be speci-

fied via the syntax provided, and the axioms can be used to verify that a computing system

shows the required expected external behavior. The classical algebraic approaches to con-

28

http:system.PA

currency are, Milner’s Calculus of Communicating Systems (CCS) [93] and Hoare’s Com-

municating Sequential Processes (CSP) [61]. These classical PAs provided the foundation

for studying the behavioral properties of parallel and distributed computing and communi-

cation systems and enabling qualitative analysis of these systems. However, the classical

PAs lacked the notion of timing and synchronization and hence could not be used for ex-

tracting quantitative information about the system due to the missing translation of the PA

model to an underlying mathematical Markov model. Therefore, stochastic extensions of

these classical PAs were developed that captured the timing information of the system into

the PA model. Below is a detailed description of the two classical PAs, CCS and CSP,

followed by a description of the stochastic PA called PEPA that evolved from the classical

PAs and has been used for performance modeling and evaluation of a number of concurrent

computation and communication systems. In this thesis, PEPA has been used to model and

analyze performance in terms of robustness of a resource allocation in a stochastic parallel

and distributed computing environment.

CCS, the Calculus of Communicating Systems is a process algebra developed by Robin

Milner in 1980 [93]. The active components or processes are called agents that are built

from a set of discrete actions. An action can be observable such that it includes an in-

teraction or communication among different agents. Observable actions are represented

by lower case alphabet letters (a, b, c, ...). Or an action may be unobservable (silent) is

internal and confined to an agent. Internal actions are denoted by τ and agents can perform

these actions simultaneously. Observable actions are of two types, input actions and output

actions. An input action a is complimentary to an output action a0. There are primarily five

29

different process algebraic operators that can be used for constructing agents. Following is

a description of these process constructors.

• Action prefixing: this is the most basic process constructor in CCS. If a is an action
and P is a process, then a · P is a process such that P can become active only after
the action a has been performed. The “·” is an operator called action prefixing and
denotes sequentialization.

• Choice (+): If P and Q are processes, then so is P + Q. The process P + Q has
the initial capabilities of both P and Q. However, choosing to perform initially an
action from P will preempt the further executions of actions from Q, and vice versa.

• Parallel composition (|): Given two CCS processes P and Q, the process P |Q de-
scribes a system in which P andQ may proceed independently or may communicate
via complementary ports.

• Restriction (\): Let Q be a process and Σ be a set of visible actions, s.t. τ /∈ Σ. Then
(Q)\Σ is a process that can execute all the actions of Q except the actions in the set
Σ or their complementary actions.

• Relabeling: Process P is similar to process Q, where the actions of P are obtained
by mapping the actions ofQ through a transformation functionm. Thus, P is known
to be relabeled as Q.

CCS has been given operational semantics that specifies the behavior of CCS by defin-

ing a simple abstract machine for it, using a labelled transition system, similar to the style

of Plotkin [94]. Further, a derivative tree or a graph can be constructed, where the language

terms are represented by the nodes, and the transitions are represented by the arcs. The la-

belled structure is a useful tool for reasoning about agents and the systems they represent,

and forms the basis for the bisimulation style of equivalence. Two agents are considered to

be equivalent if they perform the exact same actions. Equivalence can be strong or weak,

depending on whether the internal actions of an agent are also considered to be observable.

CCS models have been used extensively to establish the correct behavior of systems, in

an abstract sense, with respect to a given specification. This is also know as functional

30

or qualitative modeling where, behavioral properties such as fairness and freedom from

deadlock are investigated, in contrast to quantitative modeling where, the quantitative val-

ues extracted from performance models. IN CCS, no timing information is associated with

processes and their actions. Therefore, quantitative values cannot be extracted from system

models derived using CCS.

CSP, the Communicating Sequential Processes, a classical process algebra that evolved

from CCS was introduced by Hoare, 1984 [61]. It is an abstract and formal event-based

language to model concurrent systems. CSP was developed for a specific group of re-

searchers who wanted a simpler modeling language with a smaller set of operations than

CCS and the main objective behind developing CSP had been to find the simplest possible

mathematical theory with the following desirable properties [61]:

• It should describe a wide range of interesting computer applications, from vending
machines, through process control and discrete event simulation, to shared-resource
operating systems.

• It should be capable of efficient implementation on a variety of conventional and
novel computer architectures, from time-sharing computers through microprocessors
to networks of communicating microprocessors.

• It should provide clear assistance to the programmer in his tasks of specification,
design, implementation, verification and validation of complex computer systems.

Simplicity was the motivation behind developing CSP and was sought through design-

ing of a single simple model, such that it is easy to define as many operators as possible

for appropriate investigation of a range of distinct concepts. In CSP, a concurrent system

is made of a set of interacting processes. Each process sequentially produces events. Each

event is atomic and the set of all events belonging to a process is called an alphabet. The

basic constructs or the operators of CSP are described below.
31

• Prefix: a → P is the prefix construct for a process P and an event a belonging to the
alphabet of P , such that a process upon performing a behaves as P .

• Choice: Unlike CCS, where the Choice operator always presented a deterministic
choice, the construct in CSP is able to provide the functionality of a system with
both a deterministic and a non-deterministic choice.

– Non-deterministic choice (Π): If a system is defines as, R1 = a → P Πb → Q,
the choice between P and Q is decided internally by the system itself. The
environment, external to the system, has no control over the choice.

– Deterministic choice(+): Here if a system is described as, R1 = a → P + b →
Q, then the system can behave as either P or Q. The choice is decided by the
external environment depending on the actions offered by the environment.

• Parallel Composition (k): P k Q denotes a process that behaves as the interleaving
of P and Q, but synchronizing them on the events that are common to both P and
Q.

• Hiding (abstraction) (/): Denoted by P/A, where A is the alphabet of the events of
P that are not visible to the external environment.

CSP has been used in a modeling a number of modern computing systems such as, software

design of dependable and safety-critical systems, fault management system to confirm that

the design is free of deadlock, systems that incorporate complex message exchanges, veri-

fication of communications and security protocols, and verification of elements in commu-

nication systems to verify their correctness. The minimized operator set (in comparison to

CCS) is useful in theoretical investigations of modern computing systems [61]. However,

because a process must specify the names of all the other linked processes, it is hard to

write large libraries of functions for very large computing systems with a small set of op-

erators. Moreover, like CCS, there is no timing information associated with processes and

their events in CSP. Therefore, quantitative values cannot be extracted from performance

models designed using CSP.

32

2.3.2 Performance Evaluation Process Algebra

The PEPA project was initiated at the Laboratory for Foundations of Computer Sci-

ence, a research institute of the Division of Informatics at the University of Edinburgh,

by Jane Hillston in 1991 [59]. The project was motivated by the problems that were en-

countered during the performance analysis of large computer and communication systems

via the numerical analysis of the underlying Markov processes and the CTMCs. PEPA

provided a high level formalism for CTMC, which expresses the behavior or performance

of the computing system. The performance measure is obtained from the CTMC gener-

ator matrix and the steady state probabilities. PEPA is an expressive formal language for

modeling distributed systems. PEPA models are constructed by the composition of com-

ponents which perform individual activities or cooperate on shared ones. To each activity

is attached an estimate of the rate at which it may be performed. Using such a model, a

system designer can determine whether a candidate design meets both the behavioral and

the temporal requirements demanded of it. PEPA offers several attractive features which

were not available in performance modeling paradigms, such as queueing networks and

Petri nets, that existed prior to process algebras. The most important of these features are:

• compositionality, which is the ability to model a system as the interaction of subsys-
tems,

• formality, which means giving a precise meaning to all terms in the language, and

• abstraction, which is the ability to build up complex models from detailed compo-
nents, disregarding the details when they are not necessary.

Queueing networks offer compositionality but not formality; stochastic extensions of

Petri nets offer formality but not compositionality; and neither offer abstraction mecha-

33

nisms. In addition, when compared to classical process algebras, such as CCS and CSP,

PEPA provides the modeling of timing information associated with the components of the

system and their activities, which enables extraction of quantitative information from the

PEPA models of the computing systems.

It is shown that this language supports a compositional approach to model construction,

resulting in models which are easy to understand and modify. Moreover, the structure pro-

vided within a model can be exploited for model manipulation and simplification [59][60].

The objective behind developing a language in which the performance evaluation features

can be regarded as an extension to the classical process algebra to be used as a design for-

malism within the performance model. The features of the classical process algebra that

are regarded as being essential are described below.

• Parsimony: Process algebras are simple languages with only a few elements. There-
fore, it provides easy reasoning and a great deal of flexibility to the modeler. In
PEPA the basic elements of the language are components (similar to agents in CCS
and CSP) and activities (similar to actions in CCS and events in CSP) that correspond
to states and transitions in the underlying stochastic model.

• Formal definition: The language is given a structured operational semantics in the
style of Plotkin [94], providing a formal interpretation of all expressions. The no-
tions of equivalence which are subsequently developed are based on these semantic
rules. This gives a formal basis for the comparison and manipulation of models
and components, and introduces the possibility of developing tools to automate, or
semi-automate, these tasks.

• Compositionality: The model structure provided by the compositional nature of pro-
cess algebras, and the ability to reason about that structure, have been highlighted
as a major motivation for investigating the use of such a language for performance
modeling. In PEPA the cooperation combinator forms the basis of composition.
Model simplification and aggregation techniques can be developed which are com-
plementary to this combinator. This means that part of a model can be simplified in
isolation, if its interaction with the rest of the system is modeled by such a combina-
tor, and replaced by the simplified component without affecting the integrity of the
overall model.

34

The main attribute which is missing from a classical process algebra such as CCS or

CSP, and which is necessary for performance evaluation, is the quantification of time and

uncertainty. In performance models, in order that performance measures can be extracted

from the model, it is important that timing behavior and uncertainty be quantifiable. This

is achieved in PEPA by associating a random variable with each activity of a component,

representing its duration. A delay is thus incorporated in each activity in the model and

the timing behavior of the system is captured. Moreover since the duration is a random

variable, temporal uncertainty, which is the uncertainty of how long an action will take, is

represented. This also captures spatial uncertainty, the uncertainty about what will happen

next within a system, which is an inherent property of parallel and distributed systems.

Thus adapting the process algebra to make it suitable for performance modeling is achieved

by introducing a random variable for each activity within the system. The construction is

analogous to the association of a duration with the firing of a timed transition the stochastic

extensions of Petri nets.

The theoretical developments underpinning PEPA has been focused on the interaction

between process algebra and the underlying mathematical structure, the Markov process.

This work has been broadly classified into three areas, (i) designing the language, (ii) ma-

nipulating the models, and (iii) solving the models and deriving performance measures.

For designing the language, PEPA models are described as interactions of components.

Each component can perform a set of actions: an action a ∈ Act is described by a pair (α,

r), where α ∈ A is the type of the action and r ∈ R+ is the parameter of a negative expo-

nential distribution governing its duration. Whenever a process P can perform an action,

35

an instance of the probability distribution is sampled: the resulting number specifies how

long it will take to complete the action for that process. The components correspond to the

identifiable parts in the system, or roles in the behavior of the system. They represent the

active units within a system; the activities capture the actions of those units. For example,

a job queue may be considered to consist of an arrival component, which defines the jibs

arriving at the queue with a job arrival rate, and a service component that describes the

jobs being serviced from the queue at a given service rate. The components interact to

form the behavior of the job-queue system. A component may be atomic or may itself be

composed of components. Thus, the queue in the above example may be considered to

be a component, composed of the atomic components, arrival and service. Assuming that

there is a countable set of possible components, C, each component has a behavior which

is defined by the activities in which it can engage. From the example given above, actions

of the queue might be accept, when a job enters the queue, service, when a job is being

serviced from the queue, or loss, when a job is denied entry into a full queue. Like CCS

or CSP, to model situations when a system is carrying out some action (or sequence of

actions) which is unknown or unimportant, there is a distinguished action type, which can

be regarded as the unknown type, in PEPA and is represented by the symbol τ . Activities

of this type will be private to their associated component.

A small but powerful set of combinators is used to build up complex behavior from

simpler behavior. The set of combinators in PEPA provide an extension to the classical

process algebra. These combinators are explained in detail below.

36

• Prefix (·): this is defined as the designated first action and represents a sequence of
activities performed by a component. For a component P with an activity α and an
activity rate r, prefix can be used to define the component as P ::= (α, r) · P .

• Choice (+): this combinator provides a choice between two competing components,
which is often determined by a race policy dependent on the apparent rates of the
activities of those components.

• Cooperation (BC): this combinator defines a set of components that can perform
L

their activities concurrently and synchronize on the activities that belong to the co-
operation set L. For example, components P and Q, can be defined as P BC Q,

L
where α is a concurrent activity if α /∈ L, and is a cooperative activity if α ∈ L.

• Hiding (/): This combinator provides an abstraction of the range of activities that
can be considered for a component during the analysis of that component. In this
case, a component P can be defined as P ::= P/L, where L is the set of activities
that are hidden from or unknown to the component P . Therefore if an activity α ∈ L,
then for P , α = τ .

The semantic rules of PEPA generate a labelled transition system, similar to classical

process algebra. However there are some significant differences introduced by the inclu-

sion of quantified information in PEPA. The semantics may give rise to a multi-transition

system. Moreover, it is not sufficient to record the existence of a transition or arc between

two nodes, as the rate at which the transition occurs also becomes significant part of the

analysis. The multiplicity of the transition is important. This is because the apparent rate

of a term which has two copies of the same arc, generated by two instances of the same

action, will differ from that of a term with only one instance. The generated derivation

graph forms the basis of the Markov process on which performance analysis will be car-

ried out. Driven by the problem of state space explosion, there have been efforts to address

the problem using PEPA for aggregating Markov processes by considering a coarser view

of the state space, grouping equivalent states into clusters, and redefining the dynamics of

the system [59][60].
37

To manipulate models (via model simplification and model aggregation) there is a need

to define equivalence relations. In process algebra, equivalence relations are based on the

notion of observability. In PEPA, observation is assumed to record timing information over

a number of runs. The equivalence in PEPA models is defined via bisimulation as opposed

to trace equivalence in other formal languages. Two trace equivalent components, p and

Q, of a PEPA model may not always be bi-simulation equivalent, because at a given time,

the number of states associated with P and Q may not always be equal. PEPA will identify

this difference between the states of the components and will not aggregate them under the

same label. The equivalence relations are used to manipulate PEPA models via (i)model

simplification, which uses model-model equivalence if different models imply the same

pattern of partial correlations among the variables in them, to substitute complex model

with a simpler model from a solution point of view. (ii) Model aggregation that uses a

state-state equivalence to establish a partition of the state space of the model and replace a

large number of equivalent states with one macro state.

After the models have been manipulated to simplify the state space from a solution

point of view, there is a need for solving the model to derive performance measures from

the underlying CTMC structure. A state of the Markov process is associated with each

node of the state-transition graph generated from the PEPA model, and the transition rate

between two states is the sum of the rates of the actions labeling the arcs between the cor-

responding nodes. PEPA models contain information about the duration of activities and

their relative probabilities. From these models a corresponding continuous time Markov

chain (CTMC) is generated by elaborating the model against the structured operational se-

38

mantics of the PEPA language. The CTMC processes can be translated into an infinitesimal

generator matrix (explained in earlier section of this chapter), where the rows and columns

of the matrix represent the states of the processes or PEPA components, and each element

of the matrix represents the rate of the transition between the two associated states of the

model. This rate of transition is the same as the rate of the activity that leads a component

to transform from one state to another in the corresponding PEPA model. Linear algebra

can then be used to solve the model in terms of equilibrium behavior. This behavior is

represented as a probability distribution over all the possible states of the model, which is

also represented as the steady state probability distribution vector. This vector consists of

unknown steady state probability values that can be obtained by solving the global balance

equation. However, this distribution is seldom the ultimate goal of performance analy-

sis. The modeler is interested in performance measures which can be derived from this

distribution via a reward structure defined over the CTMC [59].

A range of tools have been developed to solve PEPA models for performance analysis.

The premier PEPA tool is the PEPA Workbench Eclipse Plug-in [53], which was also the

first tool developed as a part of the PEPA project for performance analysis of distributed

computer and communication systems and for deriving performance measures such as,

utilization and throughput. More recently support for the PEPA language has been added

to other tools such as the Mobius Modeling Framework, developed by the Performability

Engineering Research Group, Motorola Center for High-Availability System Validation at

the University of Illinois at Urbana-Champaign. PEPA is also supported by the PRISM

probabilistic model checker at the University of Birmingham, England. The latest devel-

39

opment in the suite of PEPA tools is the Imperial PEPA Compiler (IPC) [24]. It is a tool

that extends the modeling capability, provided by PEPA, by allowing extraction of a larger

number of performability measures (such as, performance and reliability metrics) from

the PEPA models. It compiles PEPA models to Will Knottenbelt’s DNAmaca format [24],

which is well suited for storage and analysis of very large systems. In particular, DNAmaca

is adept at analyzing very large Markov models, and producing passage-time distributions

and reliability quantiles or bounds. The analysis of Markov models for generating pas-

sage time distributions, to capture the time elapsed between the start and end of any two

activities, has also been added as a functionality to the premier PEPA Workbench [53].

PEPA and the aforementioned PEPA tools have been used for performance modeling

and analysis of a wide range of concurrent systems. In a recent research study related

to the scheduling of pipeline applications on grid resources, the PEPA workbench [53]

has been to solve the performance models of such a scheduling system to obtain relevant

performance information required for enhancing the execution performance of pipeline ap-

plications on the allocated grid resources (processors and network links) [19][21]. In this

work, the authors use algorithmic skeletons that describe the intended execution path of

the pipeline application on a grid computing system. PEPA language is used to model the

pipeline structured skeletons, where the problem is split into modeling the stages of the

pipeline, the processing resources, and the network resources as components within the

model. The overall model is defined by modeling the mapping of the application on grid

resources using the cooperation combinator between the pipeline stages, the processors,

and the network. The PEPA workbench is used to calculate the performance feature, which

40

http:systems.In
http:thePEPAmodels.It

is the throughput of the pipeline application, that is obtained when employing the modeled

mapping for scheduling the pipeline applications onto the grid resources. This measure of

the throughput value is then used for comparing the performance of various possible map-

pings for selecting the mapping that gives the highest throughput value [19][21]. Although

CTMCs provide accurate and efficient solution procedures, the CTMC models do not scale

well to represent Grid-scale computing with large numbers of jobs executing on large com-

pute clusters. In a recent research study, an approach to the problem of scalability has been

provided as a continuous approximation of the discrete state space underlying the mathe-

matical representation of the model rather than singly representing each of the individual

states of the various model components. The authors propose to model a Grid-based sys-

tem with the PEPA process algebra, and generate a set of ordinary differential equations

(ODEs) that are used to generate the underlying mathematical structure to describe the

evolution of each model component as a function of time. Solving a system of ODEs has

low computational cost and memory requirements [20]. In addition, unlike CTMCs, mod-

eling with ODEs does not require the assumption for the system to reach a steady-state

equilibrium for deriving performance measures from the mathematical structure [20]. The

required transformation tools that translate a PEPA model into a mathematical system of

ODEs, and the numerical computing platforms that offer high-level support for the solution

of the generated ODEs are provided by the IPC tool [24].

Performance measures, such as throughput and resource utilization, have successfully

been analyzed, via performance modeling of application (pipeline) scheduling and grid

computing systems using the PEPA process algebra, in the literature discussed above

41

[59][60][19][21][20]. However, to the best of our knowledge, response time measure,

which is a very important measure for analyzing the performance of a resource allocation

or a task scheduling system in parallel and distributed computing that are bound by time

constraints (such as an execution deadline), have not been evaluated in any of these re-

search work. The CTMC steady state analysis of the mathematical structure underlying

the PEPA models (using tools such as, PEPA workbench and IPC) enables the calculation

of performance measures, such as throughput and response time, using the theory of re-

ward structures. However, it does not provide any platform for the calculation of response

time measures [59]. A research direction towards evaluating response time profiles has

been given in the work done on evaluating PEPA models via ODE analysis [20]. Further,

an extension of this work was presented as a research study for evaluating response time

profiles from passage-end analysis for service-based systems (for example, emergency re-

sponse service quality systems for roadside assistance) [33]. Using a passage-end analysis,

the authors proposed the calculation of the probability of completing a passage by a cached

response at or within a given time, along with the cumulative distribution function (cdf)

and probability mass function (pmf) of all the requests that were serviced successfully. In

addition, the authors propose the use of stochastic probes that are added to a model (in the

context of PEPA, it is a single sequential component) for observing and reasoning about

the activities of the model. The functionality for the passage-end analysis has been im-

plemented in the IPC tool [24] and more recently in the PEPA workbench [53]. Further,

the performance specification and evaluation of response time measures, in a complex dis-

tributed wireless network system, via stochastic probes using grouped PEPA (GPEPA),

42

which is an extension of PEPA that consists of a number of labeled cooperating compo-

nent groups composed of a large number of components executing in parallel, and imme-

diate GPEPA (iGPEPA), which adds immediate action functionality to the GPEPA formal-

ism [57], has been presented in [58]. The immediate actions, in an iGPEPA formalism,

are high priority actions and are performed instantaneously before any other timed actions.

In addition, the authors demonstrate the analysis of the response time measures using a

fluid analysis approach, which is based around fast solutions of a system of differential

equations.

In the rest of the thesis, a performance model, derived using the PEPA, GPEPA, and iG-

PEPA formalism for the evaluation of the robustness of resource allocations of applications

in a parallel and distributed computing system, has been presented. A detailed description

of the work that is related to and evolved as the modeling study presented in this thesis

is given in the next chapter. The analytical model of the resource allocation system, the

analysis of the response time measure (as a makespan of the system), and an analysis of

the robustness the resource allocation mapping, is described in Chapter 3. An analysis of

the experimental results obtained using the PEPA workbench is presented in Chapter 5.

The benefits and the usefulness of the proposed model, the conclusions derived from the

proposed model and the related performance analysis, along with its implications towards

potential future work, is discussed in Chapter 6.

43

CHAPTER 3

RELATED WORK

The modeling study presented in this dissertation has resulted from a series of related

work as preliminary research contributing towards the evolution of the research presented

herein. This work evolved from a long study of dynamic load balancing (DLB) method-

ologies, such as dynamic loop scheduling (DLS), a study of robustness of scheduling and

resource allocation methods used in parallel and distributed computing systems, a study

of autonomic computing systems and the use of machine learning techniques for auto-

nomic selection of robust scheduling methodologies to execute scientific applications on

parallel computing environment that is prone to unpredictable variations in application and

systemic characteristics. A synopsis the preliminary work that has led to the research pre-

sented in this dissertation is given in following sections.

3.1 Enhancing the Functionality of a GridSim-based Scheduler for Effective Use
with Large-Scale Scientific Applications

The work presented in this section is related to the understanding of the need for DLB

for executing scientific applications in parallel and distributed computing systems [108]. A

number of DLS techniques were surveyed to understand the utlization and the benefits of

using DLS for executing scientific applications on a parallel and distributed computing sys-

44

tems, which are prone to load imbalance at runtime. A number of DLS techniques that have

been developed to provide load balancing on parallel and distributed systems for the exe-

cution of scientific applications with large, computationally intensive loops and irregular

loop iteration execution times, were surveyed. Further details regarding the experimental

scalability studies of the DLS techniques such as, fixed sized chunking (FSC), guided self

scheduling (GSS), factoring (FAC), weighted factoring (WF), adaptive weighted factor-

ing (AWF) and its variants AWF-batched (AWF-B) and AWF-chunked (AWF-C), adaptive

factoring (AF) can be found in the literature [78] [95] [66] [64] [27] [13] [15].

3.1.1 Motivation

In previous studies, these DLS methods have been tested for a number of scientific

applications running on ready to use infrastructure for parallel and distributed systems.

However, the experiments conducted involved a limited range of problem sizes and num-

ber of processors available for running the scientific applications. This also limited the

testing of the DLS methods for their scalability and adaptability. The scalability of the

DLS techniques has been previously studied experimentally on various architectural and

computational environments with limited number of processors. Analyzing the scalability

of these DLS methods and scheduling scientific applications on large scale parallel systems

requires a framework for modeling and simulation of such systems and the scientific appli-

cations. To address and overcome the limitations of testing the DLS methods exhaustively

on real systems, we use an event based simulator called Alea [76]. It is a task scheduling

simulator built on top of the GridSim simulator [25]. Alea is composed of independent

45

http:cations.To

entities which communicate amongst each other through message passing. To the best of

our knowledge, the DLS methods are implemented for the first time in a simulator in this

work [108]. In contrast to the scheduling techniques already present in Alea, DLS address

the variations in the algorithmic and systemic characteristics during application execution.

The first step for running the experiments is to generate the application tasks (jobs) and

their characteristics. We used a workload generator called Lublin [85] for generating a

workload file in the standard workload format (SWF) [30]. The workload file carries the

.swf extension and consists of the specified number of jobs or tasks of the application and

their characteristics. The execution times of these tasks follows a hyper-gamma distribu-

tion to simulate the irregular loop iteration execution times within a scientific application.

The hyper-gamma distribution has already been implemented in Lublin [85] to generate

the running times of various tasks. This workload file is then read by the job submission

system to create job descriptions in the form of gridlets and to send these gridlets to the

scheduler entity.

3.1.2 Integrating DLS within Alea

The first step for running the experiments is to generate the application tasks (jobs)

and their characteristics. We used a workload generator called Lublin [85] for generating

a workload file in the standard workload format (SWF) [30]. The workload file carries the

.swf extension and consists of the specified number of jobs or tasks of the application and

their characteristics. The execution times of these tasks follows a hyper-gamma distribu-

tion to simulate the irregular loop iteration execution times within a scientific application.

46

The hyper-gamma distribution has already been implemented in Lublin [85] to generate

the running times of various tasks. This workload file is then read by the job submission

system to create job descriptions in the form of gridlets and to send these gridlets to the

scheduler entity. The grid resource entity reads the number and characteristics of the re-

sources from a machine file which is generated offline along with the workload file. The

machine file carries the extension .swf.machines and contains a list of all the grid re-

sources and their respective configurations. Alea allows a resource to be configured with

several machines, and each machine to be configured with several processors. As Alea

only allows mapping of one task to one processor at a time, it was a challenging task to

implement the DLS methods by which a chunk of tasks is assigned to a processor at a

time. To overcome this problem, we configured each grid resource to consist of a single

processor by declaring in the machine file only one machine and a single processor to a

grid resource. This enabled assigning more than one task to a resource or, in our case, a

processor. The implementation of the DLS methods in Alea requires their incorporation

into the scheduler module, which is the Scheduler.java class. After the scheduler

assigns and executes the application tasks onto the resources according to the scheduling

policies provided by the DLS methods, it sends the execution results, such as the makespan

value, the resource utilization, the scheduling overhead, and others, to the results collector

entity, which in turn, reports these statistics to the user.

47

3.1.3 Analysis of simulation results

In this work, an analysis of the makespan value and the resource utilization has been

illustrated Figures 3.1 and 3.2 to evaluate the performance and scalability of the DLS meth-

ods. These results are in confirmation with the analytical and experimental results obtained

for these DLS methods in previous studies [78] [95] [66] [64] [27] [13] [15].

Figure 3.1: Makespan obtained from simulated execution of different number of tasks on 1024
resources.

3.2 Performance Optimization of Scientific Applications using an Autonomic Com-
puting Approach

An effective approach for improving the performance of scientific applications via au-

tonomic computing using machine learning techniques (reinforcement learning (RL)) is

48

Figure 3.2: Resource utilization of simulated execution of different number of tasks on 1024 re-
sources.

described in this section [16]. This study was conducted to understand the the use of

machine learning techniques for an autonomic selection of DLS methodologies based on

their performance for scheduling time-stepping scientific applications on high performance

computing systems.

3.2.1 Motivation

Selecting an effective and efficient scheduling algorithm from the currently available

options to achieve load balancing for applications executing in an unpredictable environ-

ment is a difficult task. The difficulty is due to the complex nature of application char-

acteristics, which may change during runtime, combined with the dynamic nature and

unpredictability of the computing environment. Load balancing may be necessary in sev-

eral parts of an application, and each part may require different scheduling algorithms for

49

optimal performance. Furthermore, certain scientific applications require the execution of

their computations repeatedly over the computational domain. The repetitive calculations

are usually performed over a series of time-steps. Such applications are referred to as time-

stepping applications, and examples include heat solvers, solving time-dependent Euler

equations, N-Body simulations, simulation of wavepackets dynamics, and others. In appli-

cations requiring a large number of time-steps, the load imbalance characteristics of each

part may vary as the application execution progresses through the time-steps. A schedul-

ing algorithm selected offline, which performs well early in the application’s lifetime, may

later become inappropriate. Therefore, in this scenario, the selection of a scheduling al-

gorithm for such a dynamic environment is a very difficult task, and a relatively more

intelligent entity is needed to dynamically select during runtime the best scheduling algo-

rithm for (possibly each part of) an application. In this work, the autonomic computing

aspect of the execution of an application is focused on application’s self-management at-

tributes with respect to performance optimization. Therefore, the dynamic selection of the

DLS algorithms must be based on the application performance during its execution. A

RL agent implementing two RL techniques, Q-learning and SARSA [115], has been inte-

grated with a scientific parallel application characterized by a large number of time-steps

(a time-stepping application) [36, 37].

3.2.2 Integrated framework for an autonomic algorithm selection

In [36], a RL agent incorporating Q-learning and SARSA was embedded into a parallel

scientific application, namely simulation of wavepacket dynamics using the quantum tra-

50

http:others.In

jectory method (QTM). To our best knowledge, [36] is the first work that has attempted to

integrate an RL agent with a parallel scientific application for autonomic DLS algorithm(s)

selection. Subsequent works investigated and reported on a performance comparison of the

QTM application in terms of Tp with and without the RL agent, with varying learning rate

(α) and discount factor (γ), and the influence of a particular RL technique for a particular

set of learning parameters (α,γ) [37, 96]. The algorithm selection problem is addressed

by providing a generic design of a RL system to autonomically determine at runtime the

optimal scheduling algorithm for a time-stepping application using RL techniques. Figure

3.3 illustrates the design of the proposed RL system, derived by adding the loop scheduling

context to the environment of a generic RL system. During the first few invocations of the

loop, the agent simply specifies each algorithm in the library in a round-robin fashion, in

absence of prior knowledge about the characteristics of the loop. When sufficient knowl-

edge is obtained during this initial learning period, the agent applies an adaptive learning

policy B (Q-learning or SARSA) on the accumulated information to select an algorithm

(action a�select a particular DLS method) from the library of DLS algorithms, and the

environment moves to another state s (application is using the particular selected DLS

method). The loop completion time using the selected DLS algorithm determines a per-

formance level, which is the basis of the reward r for the action a taken by the RL agent.

The application communicates information i about the changed state s and the reward r

to the RL agent, for continuous learning by the policy B. If the agent takes action only

after a specified number of loop invocations, the application simply reuses the algorithm

51

associated with the current state s, denoted by the loopback arrow from the environment to

the library (Figure 3.3).

Environment
(Application)

Agent

I

R
B

Loop scheduler

s a

i

r

Library of loop scheduling
algorithms

Figure 3.3: RL system for autonomic selection of DLS methods

3.2.3 Experimental results, analysis, and evaluation

Following an analysis of the results in Figure 3.4, the following observations can be

made:

• For each p, the Tp of the application with either RL technique (from the LEARN
set) is significantly lower than the Tp of the application without learning (i.e., a DLS
method from the NOLEARN set).

• For each p, there is no significant difference between the Tp obtained using Q-
learning or SARSA.

• For the LEARN set, there is a significant drop in the Tp when p is increased from
p=2 to p=8. Tp does not significantly change, however, as p is further increased
from p=12 to p=24. When using RL the optimum p for the application with 501
pseudoparticles is p∗ = 12.

• For the NOLEARN set, STATIC has the worst Tp from p=2 to p=8, but better Tp
than most other techniques in NOLEARN for p=16 to p=24. The explanation is

52

0

1

2

3

4

5

6

7

8

9

10

2 4 8 12 16 20 24

Me
an

 p
ar

all
el

tim
e (

se
c)

Th

ou
sa

nd
s

Number of Processors

STATIC
FSC
MFSC
GSS
FAC
AF
AWF
AWF-B
Q-learning
SARSA

!"
#$%"&$'

"
($)

"
*$+

"
,$

-"
.$'

"
!"!

$."
#$%"

#$,
"

&$/
"

($)
"0

$#"
*$+

"
,$

-"
0$#

"!$0
"

!$&
"

)$1
"

'$*
"2$*

"*$
+"

1$-
"

($*
"!$3
"

!$(
"

#$%")$1
"#$,

"*$+
"

%$+
"/$
*"

&$'
"%$+

"%$+
"

+$-
"

-$4
"

4"
%$+

"

3"3"
5"

6"
7"7"

8"
6"

Figure 3.4: Mean parallel time (Tp) for wavepacket simulation using QTM using with RL

that with a fixed problem size, the performance of a dynamic scheduling method
degrades with additional processors due to the increase in scheduling overhead. It is
well known that STATIC has no scheduling overhead, therefore, it is not penalized
as the dynamic techniques when using more processors.

• The Tp for the LEARN set at p=2 is not significantly different from the Tp for the
NOLEARN set at p=4. Similarly, the Tp for LEARN at p=4 is statistically compa-
rable to the Tp for NOLEARN at p=8, with the exception of STATIC and FSC. For
p ≤8, the QTM application using RL on p processors has statistically the same Tp as
the application without RL on the next higher p. The Tp for the LEARN set at p=12
is even significantly better than the Tp for the NOLEARN set at p=16.

These results validate the suitability of RL as a viable procedure for online selection

of DLS algorithms from a library to improve the performance of a class of large, time-

stepping scientific applications with computationally intensive parallel loops.

53

3.3 Investigating the robustness of dynamic loop scheduling on heterogeneous com-
puting systems

This study was one of the first steps towards defining robustness for dynamic schedul-

ing methods and formulating robustness metrics to guarantee certain performance level of

such DLS methods, to measure their robustness against various unpredictable variations of

factors in the computing environment [107].

3.3.1 Motivation

Scientific applications often contain large loops. Running such computationally inten-

sive applications in heterogeneous environments exhibits an irregular behavior, in general

due to both variations of algorithmic and systemic nature. Therefore, load imbalance is

their major performance degradation factor. Heterogeneous computing systems are uncer-

tain computing environments and often consist of computing resources that differ in quan-

tity and availability over time. Nowadays, time to solution consists of more factors than

just the execution time of the application. It naturally follows that new metrics are needed

to characterize the time to solution, in addition to the traditional performance metrics, such

as execution time, efficiency, scalability, and others. The new metrics must characterize

the robustness of scientific applications running on the complex high-performance com-

puting systems. Therefore, a study of robustness is essential to ensure the performance of

the techniques used to parallelize scientific applications under highly unpredictable condi-

tions. DLS techniques are one of the best ods to obtain dynamic load balancing, because

DLS methods are based on probabilistic analyses and are inherently robust against pertur-

bations at runtime. In this work, two metrics are proposed to measure the robustness of

54

these techniques against variations of two system related parameters: load variations and

processor failures.

3.3.2 Formulating robustness metrics for DLS

The study in [107] shows that the FePIA procedure [5] can be used to derive metrics to

model and estimate the robustness of the DLS methods against various perturbation param-

eters. This procedure consists of the four steps, (i) Identify the performance features., (ii)

Identify the perturbation parameters., (iii) Identify and clarify the impact of perturbation

parameters on performance features, (iv) Identify the analysis to determine the robustness.

An increased system load imbalance and the presence of failures are expected to degrade

the performance of the DLS techniques. Possible such scenarios are illustrated in Fig-

ure 3.5 and are elaborated later in the paper. We formulate here a flexibility metric as a

measure of robustness against system load variations, and resilience metric as measure of

robustness against processor failures.

Figure 3.5: Two possible scenarios to determine DLS flexibility

55

Let us assume N independent tasks. Each loop iteration is considered to be a task and

the terms iteration and task are used interchangeably. The goal of any DLS technique is

to schedule the N tasks onto the set of P processors of large-scale heterogeneous com-

puting systems, while minimizing the total parallel execution time (or makespan) TP AR.

A minimum TP AR is achieved via dynamic load balancing, and accounting for different

processor speeds. Each processor executes a set of tasks (called chunks) at a time. Each

task is executed in a non-preemptive fashion, i.e., no other tasks of higher priority will

suspend it. The same holds for the execution of a chunk, or for all chunks during a single

time-step. In this work, the performance featuresof interest are: the (expected) proces-

sor finishing time, ET j , the total parallel time, TP AR, and the number of iterations that

need to be rescheduled, Nresch. The performance features should be limited in variation

under certain application, system or environment related perturbations parameters. The

perturbation parameters of interest include variations of the following: irregularities of

application computational requirements, system availability due to uncertain load varia-

tions, and resource reliability (caused by processor or network failures). Commonly, all

these perturbation parameters vary over time and cause uncertainties during runtime. A ro-

bust DLS algorithm must adapt to any kind of variations in these perturbation parameters,

while constraining the variation in the performance features. Designing robustness metrics

that incorporate all these parameters is very challenging [5].

To measure the flexibility of DLS against perturbations in system load, we formulate

here the flexibility metric to measure the robustness of DLS methods against system load

perturbations We make the following assumptions with respect to perturbations in the load

56

of the heterogeneous system during run-time: (i) variations of individual worker loads are

mutually independent, (ii) individual worker loads may or may not occur simultaneously,

(iii) DLS has load variation detection and monitoring mechanisms.

In Step 1, let Φ = {φ1}, where φ1 = ET j and 1 ≤ j ≤ P be the performance features

set. The individual finishing time, ET j , of processor mj is the sum of computation times

Tj , of all tasks ai executed by mj , and the sum of communication times Tj
W 2F , between

processor mj and its corresponding foreman, and the sum of communication times Tj
W 2W ,

between mj and any other worker processor. Mathematically, for all {tasks i|ai executed

on mj }, this is written as:

N,PX� �
ET j = Tj + Tj

W 2F + Tj
W 2W (3.1)

i,j

In Step 2, let the perturbation parameters set be Π = {π1}, where π1 = λj and 1 ≤

j ≤ P . For the analysis in this work, it is considered that the perturbation parameter is

to be λj , times the individual load of processor mj . Vector λ contains the load values of

all processors in the target system. DLS initially assumes that the system has λorig load.

The value of λorig can be usually determined by executing the first batch of chunks, as

determined by the original factoring rules and their subsequent evolution. The initial load

of mj is λ
orig
j , found at position j in the λorig vector.

In Step 3, in order to determine the impact of λj over ET j , for all processors, their

finishing time, given their own load, is analyzed individually. Each actual finishing time is

expected to vary with according to λj . This is denoted as ET j (λj) – the actual execution

(computation and any communication associated with it) time of all tasks ai assigned to

57

mj , in the presence of load variation on mj , as indicated by λj . Mathematically, for all

{tasks i|ai executed on mj under varying load λj }, this is written as:

N,PX� �
ET j (λj) = Tj (λj) + Tj

W 2F (λj) + Tj
W 2W (λj) (3.2)

i,j

In Step 4, for every parameter in Φ, there is a need to define the boundary values of the

π ∈ Π under consideration. A key role for deriving appropriate boundary relationships,

is played by the possibility that the perturbation parameter is a continuous or a discrete

variable. For our analysis, Π has only one parameter: π1 = λj . It is really a matter of taste

to consider λj a discrete or a continuous variable. Traditionally, the load of a processor for

task scheduling in heterogeneous systems is measured either as the number of processes in

the processor run-queue, or as the processor delivered speed. The first measure renders λj

a discrete parameter, taking integer values larger than or equal to 1. The second measure

renders λj a continuous parameter, measured as availability percentage of the particular

processor (in our case mj) for computing our tasks, usually taking values of 60%, 80% or

95%.

In this work, λj is considered a continuous variable that measures the availability of

processor mj in %. The percentual availability of a procesor expresses its delivered com-

putational speed, which encompasses all three effects of applications’ requirements, hard-

ware capabilities and network speed in one. The boundary values of λj must satisfy the

following boundary relationships:

n D E � �o� �00 00
λj ∈ λ0 , λ | f1(λ0) = βmin ∧ f1(λ) = βmax (3.3)j j j 1 j 1

58

The tolerable variation interval for the performance feature of interest, i.e., ET j , is given

by βmin, βmax
�
. Even though it is assumed the processor load will be λorig , this value1 1 j

might differ in practice, due to inaccuracies in load estimations or unforeseeable changes

in the environment. The tolerable increase in the actual finishing time, ET j , of processor

mj , considering the effects of errors in the estimation of variations of λj , cannot exceed

τ1(> 1) times its estimated value ET orig
j . Then boundary relationships for this analysis

are: n D E � o
ET j (λj) = τ1ET orig �

λj ∈ λ0 , λ 00 | ∧ (1 ≤ j ≤ P) (3.4)j j j

Now, there is a need to define a robustness radius, which is the largest increase in proces-

sor load in any direction (for any combination of processor load values) from the assumed

value, that does not cause any tolerance interval violation for the execution time of all

tasks ai assigned to mj . To define the robustness radius we need to choose which norm

will give us the smallest variation in the system (and ultimately processor) load. A norm is

a function that assigns a strictly positive length or size to all vectors in a vector space, other

than the zero vector. The choice of a particular norm depends on the DLS algorithm (and

target environment), for which it is required to measure the robustness. Another aspect

to be considered when choosing the norm is the actual nature of the selected perturbation

parameters. According to the nature of λj , a more intuitive norm should be used for de-

termining the robustness radius which in this paper is the ` 1-norm. A proper definition of

` 1-norm can be found in [5]. In general, the robustness radius can be defined using the

` 1-norm as follows:

rDLS(ET j , λj) = max kλj � λorig k1 s.t. ET j (λj) = τ1ET orig (3.5)j j

59

Finally, the robustness metric is the minimum of all robustness radii, assuming more than

one performance feature in Φ:

ρDLS (Φ, λj) = min (rDLS (φ1, λj)) ∀ φi ∈ Φ (3.6)

And therefore, the robustness metric of the total parallel time TP AR against variations in

the total system load would be:

ρDLS(TP AR, λ) = min(ρDLS (ET j, λj)), 1 ≤ j ≤ P (3.7)

This flexibility metric can be used to determine the impact of system load variations on

the performance of the three adaptive DLS techniques, and differentiate them according

to their flexibility against variations in the system load. Figure 3.5 illustrates two possible

scenarios. The first scenario, describes the situation when three DLS methods perform

similarly in terms of performance, with the difference being in the variation in system load

that each of them is able to capture. Based on scenario (a) in Figure 3.5, one should choose

the DLS method that has the lowest impact on DLS performance and can handle the largest

variation of Λ, which in this case is AF. The second scenario, describes the situation when

for the same captured variation of system load, the three DLS methods perform differently

in terms of computational performance. For this scenario, one should choose the DLS

method that has the lowest impact on DLS performance, for a fixed variation interval of Λ,

which is again AF.

To measure the Resilience of DLS in the presence of processor failures, both the num-

ber of tasks to be rescheduled, N resch, and the total parallel time, TP AR, given by the DLS

algorithm, should be robust. N resch must not exceed τ2% of the total number of tasks N ,
60

origand TP AR must not exceed τ3(> 1) times it’s estimated value TP AR. Whenever a processor

failure occurs, the DLS algorithm must be able to reschedule the tasks that were assigned

to the failed processors dynamically. It is also required to reschedule other tasks on the

remaining processors if necessary. The following simplifying assumptions are made: (iv)

only resources (e.g. network link, processor) associated with worker processors fail, (v)

resource failures occur simultaneously, (vi) resource failures are mutually independent,

(vii) resource failures are permanent and, (viii) the DLS algorithm has fault-discovery and

fault-recovery mechanisms.

The resilience analysis is elaborated below:

In Step 1, in contrast to the first analysis, the set of performance features has two

elements in this case: Φ = {φ1, φ2}, where φ1 = N resch and φ2 = TP AR.

In Step 2, in order to identify which processors fail, the approach proposed by Ali et

al. in [5] is used here. Thus, let F = [f1f2 . . . fP]
T be the vector containing the live status

of all resources, defined as:

fj =

⎧ ⎪⎪⎨ ⎪⎪⎩

1 iff processor link mj failed
1 ≤ j ≤ P

0 otherwise

The original value of F is expressed by Forig = [0 0 . . . 0]T , indicating that initially all

resources are alive. The perturbation parameters set in this case is Π = {π1}, where

π1 = F.

In Step 3, in order to determine the impact of Π over Φ, there is a need to determine

separately each of the two relationships:

φ1 = f11(π1) (3.8)
61

φ2 = f21(π1) (3.9)

which relate φ1, and φ2, respectively, to π1. The number of tasks that need to be resched-

uled is directly proportional to the number of processors that fail: N resch increases as more

processors fail. Thus, relationship (9a) becomes as N resch = f11(F). In particular,

N resch(F) = N resch (F) + N resch
p lb (F) (3.10)

where Np
resch (F) is the total number of tasks assigned to the failed resources that need to

be rescued (or restarted), and Nlb
resch (F) is the total number of ‘surviving’ tasks, assigned

to ‘surviving’ resources, which the failure-recovery mechanism will need to reschedule

together with Np
resch (F) with the goal of achieving and then maintaining a good load bal-

ancing on the remaining active processors. Additionally, Nlb
resch (F) also depends on the

choice of the DLS algorithm in use. It follows that the total parallel time TP AR increases

when the computational resources start to fail. Hence, TP AR is expected to vary with re-

spect to F and relationship (9b) can be written as TP AR = f21(F). The exact impact of F

over TP AR depends on the choice of DLS algorithm, as well as on its fault-discovery and

fault-recovery mechanisms.

In Step 4, there is a need to define the boundary values of F, for which each element in

Φ is less than the maximum tolerable number. In this work, F is assumed to be a discrete

variable, that measures the number of live resources. Thus there is a need to determine

all the pairs of F, such that for a given pair, the boundary value is the one that falls in the

robust region. Assume that F0 is a perturbation parameter value, such that the resources

that fail in the situation represented by F0, include the resources that fail in the situation

62

represented by F and exactly one other resource. Then, the boundary relationships can be

written as follows, in which T orig is the estimated parallel time assuming that the systemP AR

is completely safe, i.e., Forig = [0 0 . . . 0]T .

� � � � �	
F| N resch(F) ≤ τ2N ∧ ∃F0s.t. N resch(F0) > τ2N (3.11)

� � � � �	
F| TP AR(F) ≤ τ3T orig ∧ P AR (3.12)P AR ∃F0s.t. TP AR(F

0) > τ3T orig

The robustness radius for this case in a similar manner to the previous case. Given the

nature of the perturbation parameter, we use the ` 1-norm for determining the robustness

radii in a generalized form:

rDLS (N
resch , F) = max kF � Forigk1s.t.N resch(F0) > τ2N) (3.13)

rDLS (TP AR, F) = max kF � Forigk1s.t.TP AR(F
0) > τ3T orig) (3.14)P AR

rDLS (N
resch , F) is the largest number of resources that can fail until N resch exceeds

its tolerable value. rDLS (TP AR, F) is the largest number of resources that can fail until the

degradation of TP AR is less than τ3T orig An important assumption for this work is thatP AR.

T ft if the system is completely safe and no resource failures occur, then P AR given by the

fault-tolerant DLS algorithm should be comparable to the TP AR of the non fault-tolerant

DLS algorithm. The robustness metric is the minimum of all robustness radii:

ρDLS (Φ, F) = min (rDLS (φj , F)) ∀ φi ∈ Φ (3.15)

3.3.3 Notes on the usefulness of the proposed robustness metrics

The proposed flexibility and resilience robustness metrics depend on certain applica-

tion, system or algorithm specific parameters, most of which can be determined a priori.
63

http:Forigk1s.t.TP

If certain parameters become available (or known) only at runtime, the metrics are formu-

lated using initial values (e.g., every element of vector F is zero or the system load Λ is

equal to the original system load Λorig), which are updated in the master when newer values

become available (e.g., vector F contains non-zero elements or Λ is smaller than Λorig). In

brief, the usefulness of the proposed metrics is twofold: (1) the metrics can be formulated

offline with application, system, and/or algorithm-specific initial values and integrated into

the scheduler to guide and adapt autonomously the scheduling decisions, and (2) usable

in conjunction with other desired performance metrics (e.g. makespan) for differentiating

among DLS that have similar performance from the makespan-only viewpoint.

The choice of tolerance factors, τ1, τ2 and τ3 can increase or decrease the robustness

of DLS algorithms, thus, they should be chosen such that they reflect reality with high

accuracy. Table 3.1 gives some suggested values for these parameters.

Table 3.1: Bounds on the tolerance factors, τ1, τ2, τ3, and their suggested average case values

Tolerance factor Depends on Best case Worst case Average case
τ1 Application type 1.0 1.5 1.25
τ2 DLS method of

choice
0%of N 50%of N 25% of N

τ3 DLS method of
choice, # of fail-
ures, fault detec-
tion & recovery
mechanism

Sideal
p 1 Sp

2

The metrics proposed in this work, are essential to bringing the most adaptive and

efficient DLS algorithms to the state-of-the-art performance and robustness levels imposed

64

by today’s computing platforms and applications. A careful choice of the tolerance factors

makes the proposed metrics useful towards producing efficient, qualitative and reliable

schedules for execution of large and complex scientific applications.

3.4 A Combined Dual-stage Framework for Robust Scheduling of Scientific Appli-
cations in Heterogeneous Environments with Uncertain Availability

Studies for determining the best techniques to be used for each stage (of a two-stage

framework) that: (a) maximize the probability that the system makespan satisfies a deadline

in stage I of initial static mapping, and (b) minimize the system makespan for every given

availability level in the system in stage II of pplication scheduling at a fine grain level, are

presented in this section [32].

3.4.1 Motivation

Using robust resource allocation (RA) heuristics [6] and application load balancing

via dynamic loop scheduling (DLS) techniques, in concert, will enhance the execution of

computationally intensive scientific applications in uncertain heterogeneous systems. The

goal of this research is to assign applications to heterogeneous computing systems and

execute them in such a way that all applications complete before a common deadline, and

their completion times are robust against uncertainty in input data and system availability.

To accomplish this goal, the approach proposed herein is to divide the execution of

scientific applications on heterogeneous computing systems into two stages, as outlined in

Figure 3.6: Stage I initial mapping–resources are allocated to each application according

to a given robust RA policy, and Stage II runtime application scheduling–the execution

65

Figure 3.6: Schematic illustration of the proposed dual-stage framework.

of each application is optimized, for the set of resources allocated in the previous stage,

according to a given robust application scheduling strategy.

Initial mapping (IM) can be defined as the problem of finding a mapping of a batch

of applications onto a set of resources to maximize robustness against uncertain input data

and system availability. Robustness here is defined as the probability that applications are

completed on the allocated resources by a common deadline [99].

The motivation for solving the IM problem via robust RA is to avoid the runtime re-

source reallocation problem, i.e., reallocating resources already assigned to applications

to avoid violations of the performance objective. The robustness of an RA can be quanti-

fied as the joint probability that all applications will complete by their deadline given the

uncertain input data and system availability.

66

Just as in stage I, uncertain runtime availability of resources allocated to an application,

as well as uncertain input data, are known sources of uncertainty in stage II and may impact

the applications execution times. The motivation for this stage is based on the assumption

that a specific runtime application scheduling (RAS) policy exists that avoids the runtime

resource reallocation problem and that satisfies the stated performance objective, while

possibly allowing a larger degree of uncertainty in input data and system availability.

3.4.2 Outline of the combined dual-stage framework

Figure 3.7: Schematic illustration of the proposed combined dual-stage framework with robust-
ness.

67

The proposed CDSF for robust execution of scientific applications on heterogeneous

uncertain computing systems is schematically illustrated in Figure 3.7.

Initial mapping conducted in stage I is the problem of finding a static mapping (i.e.,

one found in an offline planning phase) of a batch of applications onto a set of resources

to maximize robustness of the allocation against uncertain input data and system availabil-

ity, by maximizing the probability that all applications will complete before the deadline,

given a probability mass function (PMF) for system availability Â. Runtime application

scheduling carried out in stage II is the problem of finding a dynamic scheduling policy for

each application that minimizes the parallel time to complete of an application for every

given runtime system availability A.

In Stage I – initial mapping, scientific applications arrive at random intervals in the

queue of a resource manager, in view of assignment for execution onto any one of a group

of resources of a heterogeneous computing system. The applications queue consists of dif-

ferent scientific applications, which can represent different instances of the same applica-

tion. As the applications arrive, their assignment to available resources is made in batches.

After assignment, an application is placed in the input queue of the resource designated as

coordinator (master) of the assigned group of resources. Any required data are staged at

the master, in advance of application execution. Let N be the number of applications in

the batch. Each application is assumed to be data parallel (with no interprocessor com-

munications needed) and to contain large computationally intensive parallel loops. Robust

heuristics are employed for the initial mapping, and the intention is to conduct studies to

determine the best heuristic to use in this stage. The best heuristic will provide the most ro-

68

bust mapping of groups of resources to applications, i.e., maximize the probability that an

application completes before Δ, assuming a certain system availability Â. The resource

allocation actions are pre-planned before the actual execution of the applications begins

and the goal is to minimize (or to prevent) the immediate effects of uncertain perturbation

in �̂ and Â on the system makespan Ψ, such that φ1 = {Pr(Ψ ≤ Δ)} is maximized.

Regardless of the type of allocated resources, once an allocation decision has been made,

it cannot be adjusted for a currently executing application. Perturbations during the actual

execution of applications are expected and addressed (or compensated for) in stage II via

the use of robust DLS techniques. Let maxi, i = 1, N be the number of resources al-

located to application i, and T exp be the expected time to complete of application i onmaxi,i

maxi processors.

In Stage II – runtime application scheduling, each application from the current batch

of N applications is executed on its group of resources allocated in stage I. A robust DLS

technique from the set {FAC, WF, AWF-B, AF} [15][107][13] is employed to define the

rules for executing an application at runtime. The intention is to conduct studies to de-

termine the best DLS technique to employ for each application in the batch, such that the

completion time of an application is minimized for every given runtime system availability

A, and consequently, the system makespan is smaller than or equal to the deadline. A sin-

gle DLS technique may be employed for several applications as several distinct instances of

the particular DLS technique. In general, the runtime system availability is expected to be

different than the estimated system availability. In this work, it is assumed that A ≤ E[Â].

The most robust DLS technique will provide the best runtime scheduling decisions for

69

http:systemavailability.In

executing an application on the allocated group of processors that minimize the system

makespan while tolerating a larger degree of perturbation in system availability than the

one assumed in stage I. The goal of the robust DLS technique is to detect any runtime

perturbation in system availability as soon as it occurs, and to take appropriate scheduling

decisions for the remaining unexecuted application iterations. Stage II can, thus, be con-

sidered a runtime approach for the detection and recovery from the uncertain effects of the

perturbation expected to occur in A, on the performance feature for this stage. To guide

the scheduling decisions at runtime and to tune the performance of an application, the DLS

techniques use runtime estimations of the time required to compute loop iterations. These

times are determined using probabilistic analyses and are influenced by the application

input data and the availability to compute of the resource executing the iteration(s). The

execution of an application using a DLS technique is non-preemptive, and, therefore, the

choice of the DLS technique cannot be changed during runtime. The overhead associated

with employing a robust DLS technique is higher than that of a robust RA heuristic. The

actions are not pre-planned and are taken dynamically during the application execution, as

soon as perturbation occurs. The benefits are expected to, and in general do, compensate

the overhead of employing robust DLS techniques. Let ρ1 be the largest robustness value

of stage I. Also, let ρ2 be the largest robustness value of stage II. The system robustness is

quantified as the 2-tuple (ρ1, ρ2).

70

3.4.3 Usefulness of Proposed Framework

The assessment of the usefulness of the proposed CDSF requires an investigation of

the impact of the different possible RA heuristics and DLS techniques on the performance

objective of interest. A small scale example was provided illustrate the usefulness of the

proposed CDSF in [32]. The data that was chosen for this example was used to demon-

strate the efficacy of the CDSF. A heterogeneous system with twelve processors of two

types was considered, where processors of type 1 are assumed to have a different computa-

tional capacity and availability than processors of type 2. A batch of N = 3 applications is

considered, having different sizes and serial/parallel component ratios. Serial iterations can

only be executed on a single processor and parallel iterations can be executed on multiple

processors of the same type. The system deadline considered was Δ = 3, 250 time units,

and was chosen to help illustrate the differences between using intelligent stages (stages

that consider robustness at both stages) versus naı̈ve stages (stages that do not consider

robustness at either stage) in the dual-stage framework. The usefulness of the proposed

CDSF is based on the hypothesis that any of the naı̈ve scenarios will result in solutions

that tolerate much less perturbations variations in the overall system, and therefore, are

less robust. Thus, the scenario (robust IM�robust RAS) is expected to be superior to the

other scenarios. The CDSF allows investigation of the overall degree of tolerable uncer-

tainty for which the stated performance objective is satisfied, at the level of each individual

application and for the entire batch of applications executing on the heterogeneous system.

71

3.5 Analyzing the Robustness of Dynamic Loop Scheduling for Heterogeneous Com-
puting Systems

In this work, a methodology is proposed for performing robustness analysis of the dy-

namic loop scheduling techniques using a metric, formulated in earlier work, to measure

their robustness in heterogeneous computing systems with uncertainties. The dynamic

loop scheduling methods have been implemented in a simulation. The experimental re-

sults were used as an input to the proposed methodology, which in turn has been used to

experimentally analyze the robustness of a number of dynamic loop scheduling methods

on a heterogeneous system with variable processor availability [110].

3.5.1 Motivation

The theoretical foundation of measuring the robustness value of a set of DLS methods

with respect to variation in the processor loads has been described in earlier work [15][107].

Further, an experimental analysis of the robustness of the DLS methods is required to

compare and select the most robust DLS technique to achieve an optimal execution perfor-

mance in the presence of perturbations in processor loads. The central idea is to simulate

the execution of data parallel loops within a scientific application exhibiting irregular be-

havior, and to simulate the uncertainty in the variation of processor weights using random

probability distributions. The simulation results are used to experimentally analyze and

evaluate the robustness of the DLS methods for various execution scenarios, which reflect

the performance of the DLS methods in both dedicated and non-dedicated computing en-

vironments. To exemplify the execution environments, a set of tolerable threshold values

is chosen, and the robustness of the DLS methods is measured (using the robustness metric

72

described in [15] and [107]) against the variation of processor weights with respect to these

threshold values.

3.5.2 Experimental Analysis and Evaluation

The robustness value of the scheduling method, given by rmethod, is defined as the

increase in the value of TP AR from its ideal expected value, T ideal, for a fixed variationP AR

in the system load. The robustness metric, ρ, is defined as the minimum of all robustness

radii values. The actual parallel execution time TP AR obtained in the presence of variation

in the system load must not exceed by τ (where τ > 1) times the ideal expected execution

time for the application, T ideal. This can be mathematically expressed as:P AR

· T idealTP AR ≤ τ P AR (3.16)

To measure the robustness of the DLS methods for non-dedicated heterogeneous systems

we examine two cases that have been generated for an experimental study of robustness.

The application being considered for the experimental simulation study has N loop iter-

ations and the iteration execution times follow a Gaussian distribution as shown in Fig-

ure 3.8. The first case is generated to obtain the value of T ideal for the application on a setP AR

of P heterogeneous processors, with constant processor availability or no processor weight

variation. In the second case, TP AR is measured for the same application in the presence

of varying processor weights. In this case, the Gamma distribution is used to represent the

variation in processor weights over time, as shown in Figure 3.9. The figure illustrates a

total of 32329 processor weight samples distributed over 60 weight intervals for a system

of upto 4096 processors. The robustness analysis conducted in this paper can be applied
73

to any type of distribution. However, for the purpose of illustration, we are reporting the

results obtained using Gaussian distribution for iteration execution times and Gamma dis-

tribution for variation in processor weights. The DLS techniques have been implemented

in a simple simulation using priority queues. The experimental results obtained via the

use of this simulation confirmed the expectations raised by the earlier analytical studies

[13][27]. The robustness analysis described in this paper using the simulation results is

a preliminary step towards a more comprehensive analysis of the robustness of the DLS

methods. In this work, the scientific application being executed is considered to contain N

independent loop iterations and the execution times of the loop iterations are represented

using a Gaussian distribution as shown in Figure 3.8. The loop iterations are generated in

a separate file, which is provided as an input to the simulation code implementing the DLS

methods.

Figure 3.8: Iteration execution times generated using Gaussian distribution with µ = 25 and σ =
5.

74

Figure 3.9: Variation in processor weights as a Gamma distribution with µ = 11.

The computing system is modeled as a system with P heterogeneous processors. The

simulation of the system is divided into two cases as mentioned earlier:

(i) the system is comprised of processors with constant weights, and

(ii) the system is comprised of processors with varying weights.

For a system with constant processor weights, the processors are assigned a fixed weight

value at the beginning of the simulation. These weights do not change for the entire dura-

tion of the simulation. For a system with varying processor weights, Gamma distribution

is used to characterize the variation in the processor weight values, as shown in Figure 3.9.

In both cases, the processor weight values are read from a separate input file during the

simulation of the execution of the DLS methods. Also, in both cases, the experiments have

been conducted for all the DLS methods, namely, FSC, GSS, FAC, WF, AWF-B, AWF-C,

and AF, and for the straight forward parallelization, STATIC. A number of experiments

have been performed for different values of N and P . Figures 3.10 to 3.15 show the per-

formance of the above DLS techniques on computing systems with constant and varying

75

processor weights, respectively. The longest time required to conduct one simulation test

(i.e., simulation time) for N = 4194304 iterations and P = 4096 simulated processors

for all the DLS methods was 19 hours on a physical computer with an Intel(R) Core(TM)

i5-2430M processor and 4.00 GB RAM.

Figure 3.10: Execution of the DLS methods and STATIC on a system with 1024 processors and
constant processor weights equal to 27.66

Figure 3.11: Execution of the DLS methods and STATIC on a system with 2048 processors and
constant processor weights equal to 27.66

The behavior of the DLS methods for case (i) is illustrated in Figures 3.10 to 3.12. The

processors are initially assigned a constant weight value at the beginning of the simula-

76

Figure 3.12: Execution of the DLS methods and STATIC on a system with 4096 processors and
constant processor weights equal to 27.66

Figure 3.13: Execution of the DLS methods and STATIC on a system with 1024 processors and
varying processor weights in the [3.52, 27.66] range

Figure 3.14: Execution of the DLS methods and STATIC on a system with 2048 processors and
varying processor weights in the [3.52, 27.66] range

77

Figure 3.15: Execution of the DLS methods and STATIC on a system with 4096 processors and
varying processor weights in the [3.52, 27.66] range

tion, which does not change during the execution of the application. For the experiments

shown in this paper for case (i) the processors have been assigned a weight value of 27.66.

Given that the availability for the processor with the minimum weight value of 3.52 has an

availability of 12.73% and the processor with maximum weight value of 27.66 has an avail-

ability of 100%, the availability for the processor weights considered for case (i), which is

also referred to as an ideal case for executing the scientific applications, uses processors

weights with maximum availability. Recall that, the iteration execution times follow the

Gaussian distribution shown in Figure 3.8. This variation in iteration execution times was

the same for each DLS method, to simulate the execution of the same application using

every DLS technique. Figure 3.8 shows that the iteration execution times are distributed

over a defined range of values [0.1361s, 49.9082s]. However, the processor weights remain

constant throughout the execution of the entire application, which causes admissible load

imbalance in the execution of the application. In this case, the non-adaptive DLS methods

are sufficient to provide an optimal performance. For instance, in Figures 3.10 to 3.12, WF

outperforms all other DLS techniques by almost a factor of 2. The superior performance

78

of WF can be explained by the fact that this technique has a knowledge of the processor

weights before the first scheduling step and that in this case, the processor weights do

not change over time. Thus, WF is capable of scheduling optimal sized chunks to each

processor at every scheduling step.

The behavior of the DLS methods for case (ii) is illustrated in Figures 3.13 to 3.15.

The iteration execution times follow the same distribution as in case (i). However, in this

case, the processor weights vary randomly over time according to the Gamma distribution

as shown in Figure 3.9. Figures 3.13 to 3.15 show a general trend that the adaptive DLS

techniques outperform the non-adaptive DLS techniques, and among the adaptive ones, AF

performs the best. This is due to the fact that AF allows relaxation of some of the theoretical

assumptions imposed by the models used in the other DLS methods, which make AF be

inherently more robust to the extreme load variation caused by the random variation in

the processor weights. In general, the number of chunks produced by an adaptive DLS

technique is greater than the number of chunks produced by a non-adaptive DLS technique.

For any variation in the processor weights, a non-adaptive DLS either takes into account the

initial state of the system in the first scheduling step, or assumes the processor weights are

the same or equal. On the contrary, an adaptive DLS technique determines the processor

weights for every chunk size calculation. Thus, the adaptive DLS methods, assign fewer

iterations to a more loaded processor having a lower weight value, and more iterations to a

less loaded processor with higher weight value. Ideally, in this scenario, the adaptive DLS

method is expected to deliver a more load balanced allocation of iterations and a lower

application execution time.

79

T ideal TP AR � T idealTable 3.2: P AR , TP AR, and rmethod = values for N = 1048576 iterations andP AR
P = 4096 processors

Method Tideal (s)PAR TPAR (s) rmethod (s)
STATIC 593.206 2299 1705.794
FSC 562.943 1651.71 1088.767
GSS 561.327 1382.58 821.25
FAC 561.4 982.474 421.074
WF 282.964 707.939 424.975
AWF-B 560.14 786.64 226.5
AWF-C 559.781 762.25 202.469
AF 559.744 689.82 130.076

For the robustness analysis of the DLS methods against the variations in the system

load, the results from the test case shown in Figure 3.15 are used, where N = 4194304

iterations and P = 4096 processors. This particular test case is chosen, as it is executed

for the largest number of loop iterations and processors used in our experiment, such that

it accounts for a significant amount of load imbalance required to analyze the behavior of

the DLS methods. The value of T ideal for each DLS method is calculated from a similarP AR

test scenario without the processor weight variation as shown in Figure 3.12. Table 3.2

shows the values of T ideal rmethod for each of the DLS methods for the test caseP AR , TP AR, and

where N = 4194304 iterations and P = 4096 processors. To analyze the robustness of

the DLS methods three values of τ are selected, which are 1.25 in the best case, 1.5 in the

average case, and 2.5 in the worst case. For the best case when τ = 1, only AF proves

to be a robust DLS, and to satisfy the condition given in equation (1). The robustness

value of AF is given by rAF equals 130.076 seconds. Similarly, for the average case when

τ = 1.5, only AF (rAF = 130.076 seconds), AWF-B (rAW F �B = 226.5 seconds), and

AWF-C (rAW F �C = 202.469 seconds) satisfy the condition for robustness. For the worst

80

case when τ is further relaxed to a value of 2.5, all the scheduling techniques except the

DLS methods, GSS (rGSS = 821.253 seconds) and FSC (rF SC = 1088.767 seconds),

and the straight forward parallelization method, STATIC (rST AT IC = 1705.794 seconds),

satisfy the condition for robustness against a fixed variation in the system load. The value

of ρ is calculated as the minimum of all the rmethod values obtained for all the scheduling

methods for all values of τ . In this test case rAF = 130.076 seconds is the minimum of

all values for the robustness of the scheduling techniques. Thus, the value of ρ is 130.076

seconds for this scenario and the robustness values of the DLS methods and STATIC in

terms of this robustness metric are as follows: AF = ρ, AWF-C = 1.56ρ, AWF-B = 1.74ρ,

WF = 3.27ρ, FAC = 3.24ρ, GSS = 6.3ρ, FSC = 8.37ρ, and STATIC = 13.11ρ. Thus, the

scheduling methods can be arranged in the decreasing order of their degree of robustness

against variation in processor weights for this test scenario: AF < AWF-C < AWF-B <

FAC < WF < GSS < FSC < STATIC.

3.5.3 Benefits of the Proposed Methodology

Prior work on the performance analysis of the DLS methods has only compared the

performance of the DLS methods with respect to the parallel execution time of the ap-

plication obtained upon employing the DLS methods. In this work, a comparison of the

robustness of the DLS methods has been performed. The robustness analysis of the DLS

methods tests their flexibility toards the variation of system load at runtime. The method-

ology proposed in this work establishes a general simulation to analyze the robustness of

the DLS methods when they are used to execute scientific applications on other types of

81

systems. The simulation framework provides a more controlled environment for a compar-

ative analysis of the robustness of the DLS methods. To the best of our knowledge, this is

the first implementation of a methodology to assess the robustness of the DLS methods via

simulation. The robustness metric obtained as a result of using the proposed methodology

is used to quantify the robustness of the DLS methods, and to compare the DLS methods

with respect to their robustness values. The robustness metric can also be used in con-

junction with other performance metrics, such as makespan, to describe, for instance the

quality of performance of the DLS methods. When used in conjunction with other perfor-

mance metrics, the robustness metric proves useful when selecting the most robust DLS

technique which also yields performance from the point of view of the parallel execution

time and cost.

3.6 Predicting the Flexibility of Dynamic Loop Scheduling Using an Artificial Neu-
ral Network

In this work, an artificial neural network (ANN) model [97] is proposed to predict the

flexibility (or robustness against system load fluctuations in heterogeneous computing sys-

tems) of dynamic loop scheduling (DLS) methods. The multilayer perceptron (MLP) ANN

model [97] has been used to predict the degree of robustness of a DLS method, given spe-

cific values for the problem size, the system size, and the characteristics of the system load

fluctuations as a compound effect of the variations in the application’s iteration execution

times and the processor availabilities. The developed MLP ANN model can be useful in an

effective selection of the most robust DLS technique for scheduling a certain type of sci-

82

entific application onto a given set of non-dedicated heterogeneous processors, when their

system load is expected to fluctuate unpredictably during the application’s runtime [109].

3.6.1 Motivation

The system load is defined as the compound effect of the variations in the problem

characteristics (loop iteration execution times) and the systemic characteristics (processor

availabilities). In the previous work, the robustness of the DLS methods was only assessed

with respect to the variations in the processor availabilities for a manageable number of

test cases [110]. However, it is of interest to investigate the robustness of dynamic loop

scheduling via an ANN analysis, to ensure the robustness of the DLS methods for a con-

siderably larger number of experimental cases resulting from considering different com-

binations of problem sizes, number of processors, and scheduling methods. Forecasting

robustness using traditional statistical specifications in the form of tables and equations

for performing a comprehensive manual robustness analysis is a very time consuming and

tedious task. Traditional statistical approaches often assume a linear functional relation

between the actual parallel execution performance feature and the affecting perturbation

parameters. However, the actual performance shows highly non-linear behavior in relation

to the perturbation parameters. A multilayered perceptron (MLP) ANN model is used in

this paper to predict the flexibility of the DLS methods in the presence of system load fluc-

tuations, by learning the relation among the following attributes: loop scheduling methods,

problem sizes, system sizes, characteristics of the system load fluctuations as a compound

effect of the characteristics of the variations in the iteration execution times and the pro-

83

cessor availabilities, and impact of system load fluctuations on the parallel execution time.

The MLP ANN model generates a non-linear function from the perturbation parameters

(i.e., system load) to the performance feature (i.e., execution time). The ANN does not re-

quire any prior assumption of the type of functional relation between the above mentioned

attributes. The ANN is trained on a part of the input data set and tested with a different

subset of the input data set. The results for generating the input dataset have been obtained

in a similar manner as described in the work presented in [12]. Furthermore, when ex-

posed to new data, the MLP ANN is capable of accurately predicting the DLS robustness.

This work is a proof of concept that ANNs can be employed to predict the flexibility of

DLS in the presence of fluctuating system load. Preliminary results obtained in [12], have

been used to verify this concept. The results obtained from the work done here provide a

novel contribution towards predicting the flexibility of scheduling in parallel and distributed

computing, considering that very limited work has been done in this area [116][41].

3.6.2 Design of the MLP ANN Model

In this work, an MLP ANN model is developed to predict the flexibility of the loop

scheduling methods in the presence of system load fluctuations. The model is generated

using the MLP classifier of the open source data mining tool, Weka [55]. The input data

set for the proposed MLP consists of parallel execution times obtained using a simula-

tion toolkit as described in [12] and using the robustness analysis methodology proposed

in [110]. These execution time values have been obtained for various problem sizes, sys-

tem sizes and probability distributions characterizing the fluctuations in system load. The

84

degree of robustness is defined in the MLP input data set as the range of values [1, ... 5],

where 5 is the highest degree of robustness denoting the most robust scheduling method for

a particular execution scenario, and 1 denotes a non-robust scheduling method. For a given

number of processors, a given number of loop iterations, and a particular probability dis-

tribution for the variations in the iteration execution times and the processor availabilities,

the degree of robustness is calculated as follows:

• Calculate the parallel execution time for the ideal case T ideal, for each schedulingP AR
method, where the computing system has dedicated processors with 100% availabil-
ity, for each scheduling method.

• Calculate the parallel execution time TP AR, where the application has variable iter-
ation execution times, and the computing system has non-dedicated processors with
variable availability.

• Set the values of the tolerance factor, τ , enforcing an upper limit to the impact of
fluctuating system load on TP AR, as 1, 1.25, 1.5, and 1.75.

· T ideal• A scheduling method is robust if it satisfies the condition TP AR ≤ τ P AR . Thus,
the degree of robustness is 5 for τ = 1, 4 for τ = 1.25, 3 for τ = 1.5, 2 for τ = 1.75,
and 1 for all values of τ > 1.75.

T idealFor the calculation of the degrees of robustness, the values of P AR and TP AR, were ob-

tained for all possible combinations of the values of the following parameters: schedul-

ingMethod = {STATIC, FSC, GSS, FAC, WF, AWF-B, AWF-C, AF}, P = {2048, 4096,

8092},N = {1048576, 4194304, 16777216}, iterationDistribution = {Gaussian,Gamma,

Exponential} and availDistribution = {Uniform,Exponential-constant,Exponential-

variable}. The final input dataset for our experiment contained 1,152 samples (or in-

stances). The input dataset is preprocessed using the NumericToNominal preprocessor in

Weka, which converts all of the numeric values, such as 8, 092 and 4, 194, 304, into cate-

gorical values. Thus, during the ANN learning, these values represent categories. This step
85

prevents the magnitude of N from dominating all of the calculations. We then converted

each instance into a 22-dimension binary vector with the NumericToBinary preprocessor

in Weka. In this step, a binary variable is introduced for each value of each parameter.

For example, there is a binary variable corresponding to availDistribution = Gaussian.

Each instance is converted to a binary vector by setting the binary variables correspond-

ing to the parameter values for that instance to 1 and the others to 0. We perform this

transformation to avoid suggesting an ordering to the parameter values. For example, if

for availDistribution, we encoded Gaussian = 1, Gamma = 2 and Exponential = 3,

then that implies to the learning algorithm that Gamma is “closer” to Gaussian than

Exponential. The binary encoding avoids this implication. The degreeOfRobustness

was similarly transformed. In order to minimize any bias in the distribution of samples, due

to the skewed nature of the collected data, during our cross-validation evaluation, we ran-

domized the ordering of the instances. Different number of iterations of training were used

during backpropagation. However, the results reported in this paper have been generated

with 500 iterations of training (or epochs). This offers a good tradeoff between the com-

puting time required to train the MLP and overfitting the training set. Empirically, other

numbers of iterations resulted in similar prediction accuracy and increased or decreased

the computation time linearly. The preprocessed data is then fed as the input dataset to

the MLP classifier in Weka. We use stratified 10-fold cross-validation to divide the dataset

into the respective training and testing sets. The goal of the MLP is to predict the degree of

robustness given scheduling method, P, N, iteration distribution and availability distribu-

tion, and as such we select degree of robustness as the class variable. During training, we

86

http:classifierinWeka.We

use the class variable to adjust the edge weights. Backpropagation is then used to train the

MLP. After training for each cross-validation fold, we use the MLP to predict the degree of

robustness for the test data set. While testing, the class variable is treated as unknown and

predicted with the MLP. Based on the predictions, we calculate the accuracy and balanced

error rate of the model.

3.6.3 Experimental Analysis and Evaluation

The MLP ANN model generated using Weka is used to predict the flexibility of the

scheduling methods as a measure of their degree of robustness against system load fluc-

tuations in a given execution scenario. The structure of the MLP ANN, generated using

Weka, is illustrated in Figure 3.16. The MLP ANN has an input layer with 22 neurons, one

hidden layer with 13 neurons, and one output layer with 5 neurons.

Figure 3.16: Weka-generated MLP ANN with five input attributes and one output class attribute.

87

The accuracy of the MLP ANN for predicting the degree of robustness was 0.95 on

the test dataset samples, which were not used during training. The balanced error rate

of the MLP ANN was 0.58. The time taken by Weka to build and train the MLP ANN

model was 9.55 seconds, and the time taken to test and validate the ANN model was 0.94

seconds. These timings were recorded by Weka on an Apple R computer with an Intel R

Core i5-2.3GHz processor and 4.00 GB RAM.

For comparison, we show the prediction errors of the learned MLP ANN compared

to the errors of a simple 0-R classifier, which simply predicts the most common value

(robustness class 1, in this case) for all samples. As expected, and confirmed in Figure 3.17,

the MLP ANN outperforms the naive 0-R classifier. Of course, the 0-R classifier correctly

predicts all of the samples for class 1, but does not distinguish between any of the other four

robustness classes. For comparison, this gives the 0-R classifier a seemingly impressive

accuracy of 0.90 (5% worse than the MLP ANN, though); however, its balanced error rate

was 0.8. These results call attention to the skewed distribution of our data and highlight

the difficulty and importance of distinguishing between robustness classes.

Qualitatively, as shown in the confusion matrices in Figure 3.17, the MLP ANN only

mis-classifies 10 instances (out of 62) from class 5 and correctly identifies 8 instances (out

of 31) from class 2. These correct predictions are important for downstream planning be-

cause they allow a scheduler to effectively decide which loop scheduling algorithm will

best adhere to user constraints. In contrast, the incorrect predictions by the 0-R classi-

fier could lead to very poor decisions about which scheduling algorithm to prefer. Both

the MLP ANN and the 0-R classifier were unable to correctly predict any instances from

88

http:confirmedinFigure3.17

classes 3 or 4. The MLP ANN was unable to distinguish these classes because of the

limited number of training instances available for them (13 and 7, respectively). A larger

training set would allow the backpropagation algorithm to better learn the characteristics of

these classes. The use of a larger training dataset is potential future work to the preliminary

work done in this paper for predicting the flexibility of DLS with ANNs.

A scatter plot of the predicted values of the degree of robustness for all scheduling

methods is in Figure 3.18. Furthermore, the visual interface of the output result in Weka

allows a detailed view of any coordinate point on the scatter plot in a textual mode. This

visual interface is shown in Figure 3.18 as the two overlaid GUI windows (one showing

correctly predicted degree of robustness for AF, and the other showing incorrectly pre-

dicted degree of robustness for STATIC) on top of the scatter plot. For a desired degree

of robustness and a particular scheduling method, this detailed view helps in identifying

the required execution scenario. Similarly, the visual output of the ANN model in Weka

enables the identification of the required values of all input parameters in the execution

scenario, when the output class attribute (degree of robustness) is plotted against against

any other input attribute. For example, this can help in selecting the most flexible schedul-

ing method to achieve a desired level of robustness, for a given problem size, system size

and assumed variations in the system load characteristics. Additionally, the MLPs learned

by Weka can be exported and used online. For a given execution scenario, they can be

used to predict the degree of robustness of each scheduling method in real time. Then, the

scheduling method predicted to be the most robust can be selected to run the desired job.

89

Figure 3.17: The confusion matrices of (a) the MLP ANN and (b) the 0-R classifier.

Figure 3.18: Degree of robustness predictions obtained from the MLP ANN model.

As illustrated by the areas highlighted via the red circles in Figure 3.18, the STATIC,

FSC and GSS scheduling methods contribute towards the largest number of incorrectly

predicted degree of robustness values by the MLP ANN. The statistical results generated

by Weka show that STATIC, FSC and GSS together contribute to 79% of the total number

of incorrectly predicted values by the proposed MLP ANN model. This indicates that

STATIC, FSC and GSS are less predictable compared to the other scheduling methods

because, even though the MLP can model highly non-linear functions, it was still unable to

consistently predict the robustness of these three methods. All results are in confirmation

90

with the theoretical and the experimental results obtained for these scheduling techniques

in related previous work [13][110].

3.6.4 Benefits of the MLP ANN Flexibility Prediction Model

In previous work, a methodology to assess the robustness of the scheduling methods

has been proposed to test their robustness against variations in processor availabilities at

runtime. The methodology proposed in [110] establishes a general procedure to analyze

the robustness of the dynamic loop scheduling (DLS) methods when they are used to ex-

ecute scientific applications on non-dedicated heterogeneous computing systems. The ro-

bustness metric is used to quantify the robustness of the DLS methods, and to compare

them with respect to their robustness values; however, the work presented in [110] is only

a preliminary step towards analyzing the robustness of the the scheduling methods. The

statistical calculations in that work are restricted to smaller test data sets.

In this work, an MLP ANN model is used to predict the robustness of the scheduling

methods against fluctuating system load and captures more realistic execution scenarios.

The advantages of using an ANN model over traditional statistical methods for predicting

the flexibility of the scheduling methods are: (i) a capability to handle larger input datasets,

(ii) a high real time prediction speed (approximately 1 second) as jobs are presented to a

computing system, (iii) a capability to learn non-linear relations among input and class at-

tributes (does not require any prior information related to the functional relation among the

input and output attributes), and (iv) a capability to make correct predictions of robustness

91

(of DLS) on data unexplored during training (verified by using 10-fold cross validation

technique).

The MLP ANN model developed in this paper can be useful in the appropriate selection

of the most flexible DLS method for achieving a desired level of robustness for a given ap-

plication and execution scenario. The proposed ANN model can also be adapted to include

additional input attributes (such as makespan, cost, power consumption, and others) for

predicting the robustness, performance and execution cost of using a specific DLS method.

In conclusion, based on the studies performed as a part of the work described above

in this chapter, the DLS robustness is a postmortem analysis of the performance of the

execution of scientific applications on parallel and distributed computing system. The use-

fulness of the DLS robustness analysis is applicable to a specific class of time-stepping

scientific applications, where the scheduling system has the ability to make decisions for

selecting the most robust DLS technique at runtime based on the feedback recieved in the

form of the execution performance from the previous time-step of the application. Often,

such scheduling changes at runtime add a significant overhead cost to the execution perfor-

mance. Therefore, a more concrete analysis of robustness is required at the initial mapping

stage that can be used as a more generic way to measure robustness of scheduling method-

ologies. This led to the conceptualization of a more foundational work towards he study

of process algebra and its use for performance modeling of static resource allocations for

initial mapping of applications on parallel and heterogeneous machines.

92

CHAPTER 4

ROBUSTNESS ANALYSIS VIA PERFORMANCE MODELING USING A

STOCHASTIC PROCESS ALGEBRA

4.1 A Study of Robustness of Resource Allocations in Parallel Computing Systems
using Performance Modeling

Herein, a modeling study is presented to evaluate the robustness of resource alloca-

tions, obtained via performance modeling formalism provided by the PEPA language, in

a parallel computing system. The resource allocation system considered for this study is

comprised of independent parallel applications that are waiting in a job queue, parallel

machines (that contain K heterogeneous processors, where K varies from machine to ma-

chine), and a set of possible resource allocation mappings. The mappings are obtained

generated upon the analysis of a matrix of the estimated execution times of the applica-

tions on the machines. This is called the expected time to compute (ETC) matrix, where

the entry (i, j) is the expected execution time of application i on machine j. In an ETC

matrix, the row elements are the estimates of the expected execution times of a given ap-

plication on different machines, and the column elements are the estimates of the expected

execution times of different applications on a given machine [8]. In general, in parallel and

distributed computing, it is realistic to assume that the ETC values of applications on all

the available machines are known a priori. Often, these estimates are derived from applica-

93

http:machine[8].In

tion profiling and machine benchmarking, from the previous executions of an application

on a machine, or are provided by the user [52][69][74][83][86]. All the applications in the

job queue have a workload associated with them and are assumed to start executing at time

t = 0 seconds. A resource allocation mapping is used to allocate computing resources (in

this case, machines) to each application in the job queue. Each application receives data

at a certain rate, which is also known as the workload associated with that application.

The perturbation parameter for the robustness analysis is defined as the variation in the

workload of the applications.

Robustness of a resource allocation mapping is defined as the probability that the ex-

ecution of the applications completes by a predefined makespan goal in the presence of

perturbations. Given, A: set of parallel applications, i ∈ A: a parallel application, βi
max:

user defined makespan goal for i, P : set of parallel processors, j ∈ P : processors in a

machine M allocated to i, λ̂i: perturbation parameter defined as workload variation from

the initial workload (λi) for an application i, Fi(Mj , λi): finishing time of application i,

then the robustness (ψ) of a mapping is formulated as Equation 4.1.

ψ = min Pr[Fi(Mj , λi) ≤ βi
max] (4.1)

∀i∈A

Formally, for a given number of machines(M), a given number of applications (A), and an

expected range of variations in the system workload, the robustness or a resource allocation

mapping is calculated as follows:

• Define the performance feature for which the robustness needs to be measured. In
this study, the performance feature is the pre-defined makespan goal, βi

max .

• Define the perturbation parameter against which the performance of the system is
measured for a robustness analysis of the resource allocation. In this study, the per-
turbation parameter is the runtime variation in the system workload (λ̂), which also

94

translates into errors in the calculations of ETC values used for mapping applications
to machines.

• Define the impact of the perturbation parameter on the performance feature. In this
study, the impact of runtime variations in the system workload has an impact on the
machine finishing times (Fi(Mj , λi)) and hence the system makespan. The ETC er-
rors lead to an increase in the machine finishing times under the current resource
allocation mapping. Therefore, the impact can be defined as the increased sys-
tem makespan (max∀i∈A,∀j∈M [Fi(Mj , λ̂i)]). The machine finishing times and the
makespan values are calculated using PEPA performance models, which are de-
scribed later in this chapter and Chapter 5.

• Define the easure for the robustness analysis of the resource allocation mapping. In
this study, the robustness (ψ) of a mapping is formulated as Equation 4.1, which is
the smallest probability that the actual system makespan is less than or equal to the
makespan goal, βi

max .

The goal of the robustness analysis study is to find a resource allocation that maximizes

the robustness of the execution of the applications on the assigned parallel computing ma-

chines. The robustness of a resource allocation is studied for the cases where, (i) the

workload for all applications varies at the same rate, and (ii) the workload for an applica-

tion varies independently of the other applications. The robustness model for a resource

allocation mapping is composed as a cooperation model of the independent parallel ap-

plications and the parallel machines, which are modeled as PEPA components. Further,

the parallel machines are modeled as a parallel composition of the processors in that ma-

chine. The application and the machines cooperate on all the activities that are associated

with the processors in the machine allocated to that application. A high level example

of a PEPA model of a mapping system for two applications (A1, A2) and five processors

(P0, P1, P2, P3, P4) distributed among two machines (M1,M2) is illustrated below. The ex-

ample model is composed of application and processor components and each component

has one state of compute activity associated with it (one state per component). The under-
95

lying transition diagram for the example PEPA model is illustrated as an activity transition

in Figure 4.1.

def
A1 = (compute1, >).RET URN

def
A2 = (compute2, >).RET URN

def
P0 = (compute1, r1).RET URN

def
P1 = (compute1, r1).RET URN

def
P2 = (compute2, r2).RET URN

def
P3 = (compute2, r2).RET URN

def
P4 = (compute2, r2).RET URN

def
M1 = P0 k P1

def
M2 = P2 k P3 k P4

def
Mapping = (A1 k A2) BC (M1 k M2)L

where L = {compute1, compute2}

Figure 4.1: Activity diagram of an example PEPA model for a mapping system.

96

> is a predefined symbol in PEPA that denotes an unknown rate for an activity. The rate (r1

or r2) of the compute activity is calculated as a function of the speed of the processors in

the machine allocated to the application and the workload for that application. Therefore,

for a PEPA model of a resource allocation n parallel computing systems, these rates (r1 and

r2) are the computational rate of a machine for processing the workload of applications as-

signed to that machine. The computational rates also represent the compound effect of the

variations in the application (workload variation) and the system (machine availabilities)

characteristics. A detailed explanation of this calculation of activity rates is included in

Chapter 5 along with the discussion of the experiment test cases.

The PEPA model of the resource allocation mapping becomes an input to the PEPA

workbench [53]. The model components are translated into an underlying mathematical

Markovian model by the PEPA workbench. The robustness of the modeled resource al-

location mapping is obtained as a probability of a predefined makespan value, which is

calculated by solving the Markovian model for a passage time analysis of the computa-

tional activities of all the machines. The solution is generated by the PEPA workbench

as a cumulative distribution function (CDF) of the machine finishing times for the mod-

eled resource allocation mapping. Further, the robustness of the mapping is obtained, as

the minimum probability of achieving a user defined makespan goal, from the generated

CDFs.

97

4.2 PEPA Performance Models of Resource Allocations in Parallel Computing Sys-
tems

As aforementioned, the robustness analysis of resource allocations is categorized into

two test cases: (i) when the workload for all applications varies at the same rate, and (ii)

when the workload for an application varies independently of the other applications. In the

first test case, PEPA models are developed to mimic the functionality of the experiments

related to the state-of-the-art study of robustness of static resource allocations in heteroge-

neous computing systems [3]. A comparison of the results of the numerical evaluation of

the PEPA model with the results obtained using state-of-the-art experiments that validates

the model design and the associated robustness analysis is discussed in detail in Chapter 5.

In the second test case, for the sake of a comparative analysis, PEPA models are developed

for the same mappings that are used in the first test case. However, the perturbation param-

eter, which s an application workload, varies non-uniformly and independently from the

workloads of other applications in the same job queue. A PEPA model has been developed

for every feasible mapping of the 20 applications to the 5 heterogeneous machines. Each

PEPA model captures an execution scenario for a probable workload variation for a given

mapping. Following is a detailed description of the PEPA models developed for analyzing

the robustness of two mappings for allocating 5 heterogeneous machines to 20 independent

applications. The two mappings, denoted as Mapping A and Mapping B, are modeled

using PEPA for the two test case scenarios. Mapping A and Mapping B are used for

validation of the PEPA models and are analogous to the mappings used for the robustness

analysis via direct experimentation in [3].

98

4.2.1 PEPA modeling for case study (i): equal workload variation across all appli-
cations

The case study is designed to investigate the robustness, using the performance model-

ing provided by PEPA, of resource allocations (mappings of applications to computational

machines) in a class of parallel heterogeneous computing systems that are prone to per-

turbations in the form of unpredictable variations in the system workload. For this case

study, the variations in the workload are considered to be equal across all applications.

The parallel computing system consists of 20 independent applications, 5 heterogeneous

machines, and a set of 3 heterogeneous sensors that produce the workload (λ1, λ2, andλ3)

for a data set that is executed by an application. Several mappings are generated based on

the ETC values of an application on a given machine. The ETC values are known a priori

and are calculated as a function of the compound effect of the application workload and the

computational availability of the machines. The computational availabilities are obtained

through a profiling of the historical data of the performance of that machine. For a given

data set, the ETC value of an application i on machine j is calculated assuming that i is

the only application executing on j. For comparison and validation purposes, the ETC val-

ues, used for generating the PEPA model of mappings in this case study, and the values of

the initial and varying application workload are obtained from the experimental data used

in [3]. These ETC values were generated by sampling a gamma distribution, where the

characteristic shape parameter, α, and scale parameter, β, were derived using three param-

eters: mean (µ = 10), machine heterogeneity = 0.7, task heterogeneity = 0.7 [8][3]. The

two mappings used for validation of the PEPA models are given in Table 4.1.

99

Table 4.1: Mapping A and Mapping B of applications (ai) to machines (mj) based on the
initial sensor load values: λ1 = 962, λ2 = 380, andλ3 = 240.

Machine Mapping A Mapping B
m1 a5, a9, a12, a17, a20 a3, a4, a5, a17, a18, a20
m2 a6, a16 a2, a11, a14, a19
m3 a1, a3, a7 a1, a7, a13
m4 a2, a4, a10, a13, a15, a19 a9, a12, a15
m5 a8, a11, a14, a18 a6, a8, a10, a16

In this case study, both Mapping A and Mapping B are modeled individually using

PEPA. Therefore, two separate PEPA models are created to numerically produce the func-

tionality of the execution of applications on the assigned machines based on Mapping A

and Mapping B. The two PEPA models are illustrated in Figure 4.2 and Figure 4.3.

As illustrated in the two PEPA models, the applications (A1 · · · A20) are defined as

PEPA components that engage in the compute activity. The rates of all the compute activ-

ities across all the applications are unspecified, as denoted by the PEPA symbol >, since

the computation times depend on the machines that are executing the corresponding ap-

plications. Further, the machines (M1 · · · M5) are defined as components that engage in

multiple compute activities that are associated with the applications assigned to the ma-

chine. Each machine is modeled using the PEPA choice (+) operator, which represents

the two possible execution scenarios for a machine. The left hand side of the + operator

models the ideal execution scenario in the absence of perturbations in the initial application

workload, where λ̂i = λi, ∀i ∈ {1, 2, 3}. The right hand side of the + operator models

the perturbed execution scenario in the presence of equal variations in the workload across

all applications, where λ̂i 6= λi. The rates of the compute activities are calculated as a

100

Figure 4.2: PEPA model for Mapping A defined as a cooperation between the applications and the
machines over the compute activity.

function of λi and the actual computation times (Ti, ∀i ∈ {1 · · · 20}) of each application

on the machine where it is mapped. Further, Ti is calculated as a function of the machine

availabilities (generated by sampling a gamma distribution) and λ̂i. In the ideal execution

101

Figure 4.3: PEPA model for Mapping B defined as a cooperation between the applications and the
machines over the compute activity.

ˆscenario, λi = λi, ∀i ∈ {1, 2, 3}. Therefore, Ti is equal to the initial ETC values and con-

sequently, the rates, r1 · · · r20, are only calculated using the machine availability values.

However, in the perturbed execution scenario (where, λ̂i 6 · · ·= λi) the rates p1 p20 are cal-

culated differently than the rates r1 · · · r20. Due to the variation in the workload, Ti values

102

vary from the ETC values of the applications on the assigned machines. Therefore, the per-

turbed rates, p1 · · · p20, are calculated using the machine availabilities, λi, and λ̂i values. A

more detailed description of the calculation of the rates of the compute activities is given in

Chapter 5. The overall mapping is defined in the last statement of the PEPA model given

in Figures 4.2 and 4.3. The mapping itself is modeled as a separate PEPA component,

which results from a cooperation of the application and the machine components over the

cooperation set of all the associated compute activities. In addition, the applications and

the machines are modeled as independent parallel components in the cooperation function.

4.2.2 PEPA modeling for case study (ii): non-uniform workload variation across all
applications

Similar to the previous case study, this case study is also designed to investigate the

robustness, using the performance modeling provided by PEPA, of resource allocations

(mappings of applications to computational machines) in a class of parallel heterogeneous

computing systems that are prone to perturbations in the form of unpredictable variations

in the system workload. However, in this case study, the workload vary non-uniformly

across different applications. PEPA models are created for for 20 independent applica-

tions, 5 heterogeneous machines, and a set of 3 heterogeneous sensors that produce the

workload (λ1, λ2, andλ3). For comparison purpose, PEPA models are generated for the

same mappings that were modeled in the previous case study as shown in Table 4.1. The

semantics of the new PEPA models for these mappings remain similar to the ones as il-

lustrated in Figure 4.2 and 4.3. However, the values of the perturbed rates, p1 · · · p20, are

calculated using different values of λ̂i. Different random values, for λ̂i, are sampled from a

103

mixture distribution (gamma, Gaussian, Erlang-K, and exponential) for every application

for modeling a highly perturbed execution environment with a non-uniform variation of

system workload. The machine availabilities are assumed to remain constant throughout

the execution.

104

CHAPTER 5

MODELING STUDY AND ROBUSTNESS ANALYSIS

A modeling study, of resource allocations in parallel computing systems, using PEPA

for performance evaluation is presented in this chapter. Performance results drawn from

the modeling study are used for analyzing the robustness of candidate mappings of a num-

ber of applications to available parallel heterogeneous machines. Moreover, a comparison

of the mappings, in terms of performance constraints (such as, achieving a makespan goal)

and their robustness with respect to variations in workload, is also studied. The resource

allocation system under consideration for this study is similar to the HiPer-D like sys-

tem [56][51], which was also used in the robustness analysis performed in the state-of-the-

art [3] used for validation of the modeling study. The resource allocation system consists

of a job queue that contains 20 independent applications (i), at any given time, waiting to

be scheduled onto one of the 5 parallel machines (j). The machines are dedicated to the

applications assigned to them and together, they form a heterogeneous computing environ-

ment. The system also consists of 3 heterogeneous sensors producing load distributions

(λ1, λ2, λ3), which contribute to the overall system workload (λi). Under the assumption

that the ETC values are known a priori, a number of candidate mappings are obtained for

allocating applications to the available machines. A resource allocation mapping is de-

105

rived using the known ETC values and the initial application workload (λi). According to

the robustness evaluation methodology as described in Chapter 4, performance in terms of

the system makespan needs to be calculated for a mapping in the given resource alloca-

tion system. The calculation of the system performance is done via performance modeling

and a numerical performance evaluation of the models using the stochastic process alge-

bra, PEPA [59]. The resource allocation mapping under consideration is modeled using

the high level formalism provided by PEPA, which includes a definition the applications

and their characteristics, definition of the machines and their computational characteris-

tics with respect to the actual system workload (λ̂i), and definition of the overall system

as the mapping of applications to the respective machines. Further, this PEPA formalism

is input to the PEPA workbench [53], where the model is compiled and translated into

an underlying mathematical system of continuous time Markov chain (CTMC) processes.

The execution of the mapping is modeled via these CTMC processes. The performance

feature, calculated by solving the mathematical system of CTMC processes for a pas-

sage time analysis, is obtained as cumulative distribution functions (CDFs) of the finishing

times of the computing machines (Fi(Mj, λ̂i)), which translate into the system makespan

(max∀i∈A,∀j∈M [Fi(Mj , λ̂i)]). The robustness of the modeled mapping is then analyzed

as the probability for which the calculated system makespan is less than or equal to the

makespan goal (βi
max).

The modeling study is divided into two case studies: (i) validation case study, is used to

validate the robustness analysis and the numerical performance modeling and evaluation

against the results of the robustness analysis performed in experiments presented in the

106

considered state-of-the-art [3], (ii) robustness evaluation case study, is used to evaluate

the robustness of the mappings modeled in the previous case under a highly perturbed

execution environment, where the sensors produce data at rapidly varying rates (λ1, λ2, λ3)

that may lead to a highly uncertain execution environment with entirely different sensor

loads for every application application. The mappings used for the two case studies are

given in Table 4.1. The modeling case studies are discussed in more detail in the following

sections.

5.1 Robustness evaluation case study: equal workload variation across all applica-
tions

In this study, the execution of two mappings, the two mappings as given in Table 4.1,

are modeled as CTMC processes using PEPA. The PEPA input file that defines the model

for the two mappings is shown in Figure 4.2 and 4.3, respectively. Further, to complete

the PEPA model, the rates r1 · · · r20 and p1 · · · p20, need to be calculated for solving the

underlying Markovian model via a passage time analysis using the PEPA workbench to

derive performance measures.

5.1.1 Deriving PEPA activity rates in ideal computing environment (λ̂ = λ)

The rates associated with the computei activities, when there is no variation in the

application workload, are represented by r1 · · · r20. The calculation for the rate is given

in Equation 5.1, where Tij is the actual time to compute an application i on machine j, λ̂i

is calculated as a function of the varying sensor loads λ̂1, λ̂2, λ̂3, and λi is calculated as a

function of the initial sensor loads λ1, λ2, λ3.

107

ri =
λi ∀i, j, where Tij = f(λ̂i = λi) (5.1)
Tij

The Tij values of the 20 applications on the machines they are assigned according to the

two mappings are listed in Table 5.1 and 5.2, respectively [3]. Tij is calculated as a product

of the machine availability factor (ηi), which is the computational availability of the allo-

cated machine j for executing application i, and the runtime workload for that application

(λ̂i). The right most column of the table also lists the corresponding value of the ideal rate

ri at which the allocated machine executes application ai. ri is calculated as a ratio of the

initial workload λi and Tij . This signifies that the rate at which a machine will compute an

assigned application is directly proportional to the workload value according to which the

application was initially allocated to that machine and concurrently, is inversely affected

by the actual computational time, which is dependent upon the actual (initial or varied)

sensor loads during the execution of that application. In the ideal computing scenario,

where λ̂i = λi, the value of ri reduces to an inverse of the machine availability factor (ηi).

The initial sensor load values are, λ1 = 962, λ2 = 380, and λ3 = 240.

5.1.2 Deriving PEPA activity rates in perturbed computing environment (ˆ 6λ = λ)

The rates associated with the computei activities, in the presence of perturbations in

the form of varying application workload, are represented by p1 · · · p20. The calculation

for the rate is given in Equation 5.2, where Tij is the actual time to compute an application

i on machine j, λ̂i is calculated as a function of the varying sensor loads λ̂1, λ̂2, λ̂3, and λi

is calculated as a function of the initial sensor loads λ1, λ2, λ3.

108

ˆ ˆTable 5.1: Example Tij and ri values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and the
machine availability factor (η) for Mapping A.

Application Tij = ηi(̂λi) λi 1 ri = =
Tij ηi

a1 3.90(4 λ̂3) 1/3.90
a2 7.80(5 λ̂2) 1/7.80
a3 3.90(6 λ̂1) 1/3.90
a4 7.80(λ̂1) 1/7.80
a5 6.50(3 λ̂1 + λ̂3) 1/6.50
a6 2.60(λ̂3) 1/2.60
a7 3.90(5 λ̂2) 1/3.90
a8 5.20(6 λ̂2) 1/5.20
a9 6.50(20 λ̂3) 1/6.50
a10 7.80(5 λ̂2 + 7 λ̂3) 1/7.80

ˆ ˆTable 5.2: Example Tij and ri values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and the
machine availability factor (η) for Mapping B.

Application Tij = ηi(̂λi) λi 1 ri = =
Tij ηi

a1 3.90(4 λ̂3) 1
3.90

a2 5.20(2 λ̂2) 1
5.20

a3 7.80(11 λ̂1) 1
7.80

a4 7.80(4 λ̂1 + 2 λ̂2) 1
7.80

a5 7.80(3 λ̂1 + λ̂3) 1
7.80

a6 5.20(λ̂3) 1
5.20

a7 3.90(5 λ̂2) 1
3.90

a8 5.20(6 λ̂2) 1
5.20

a9 3.90(3 λ̂3) 1
3.90

a10 5.20(3 λ̂2 + 3 λ̂3) 1
5.20

109

pi =
λi ∀i, j, where Tij = f(ˆ 6 (5.2)λi = λi)
Tij

The Tij values of the 20 applications on the machines they are assigned to according

to the two mappings are listed in Table 5.3 and 5.4, respectively [3]. Tij is calculated as

a product of the machine availability factor (ηi), which is the computational availability

of the allocated machine j for executing application i, and the runtime workload for that

application (λ̂i). The runtime application workload is calculated as a function of the three

runtime sensor loads (λ̂1, λ̂2, λ̂3). The right most column of the table also lists the corre-

sponding value of the perturbed rate pi at which the allocated machine executes application

ai. pi is calculated as a ratio of the initial workload λi and Tij . This signifies that the rate at

which a machine will compute an assigned application is directly proportional to the work-

load value according to which the application was initially allocated to that machine and

concurrently, is inversely affected by the actual computational time, which is dependent

upon the actual (initial or varied) sensor loads during the execution of that application. In

the perturbed computing scenario, λ̂i 6= λi. The initial sensor load values are, λ1 = 962,

λ2 = 380, and λ3 = 240. The runtime sensor load values are set at, λ̂1 = 962, λ̂2 = 1546,

and λ̂3 = 593, for all the 20 applications to match the specifications in the experiments

done in [3]. This also represents a case study for a resource allocation system that has a

low load imbalance factor.

110

ˆ ˆTable 5.3: Example Tij and pi values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and the
machine availability factor (η) for Mapping A.

Application Tij = ηi(̂λi) λi λiri = =
Tij ηi(λ̂i)

a1 3.90(4 λ̂3) 4λ3
3.90(4 λ̂3)

a2 7.80(5 λ̂2) 5λ2
7.80(5 λ̂2)

a3 3.90(6 λ̂1) 6λ1
3.90(6 λ̂1)

a4 7.80(λ̂1) λ1
7.80(λ̂1)

a5 6.50(3 λ̂1 + λ̂3) 3λ1+λ3
6.50(3 λ̂1+ λ̂3)

a6 2.60(λ̂3) λ3
2.60(λ̂3)

a7 3.90(5 λ̂2) 5λ2
3.90(5 λ̂2)

a8 5.20(6 λ̂2) 6λ2
5.20(6 λ̂2)

a9 6.50(20 λ̂3) 20λ3
6.50(20 λ̂3)

a10 7.80(5 λ̂2 + 7 λ̂3) 5λ2+7λ3
7.80(5 λ̂2+7 λ̂3)

ˆ ˆTable 5.4: Example Tij and pi values, as a function of runtime sensor loads (λ̂1, λ2, λ3) and the
machine availability factor (η) for Mapping B.

Application Tij = ηi(̂λi) λi λiri = =
Tij ηi(λ̂i)

a1 3.90(4 λ̂3) 4λ3
3.90(4 λ̂3)

a2 5.20(2 λ̂2) 2λ2
5.20(2 λ̂2)

a3 7.80(11 λ̂1) 11λ1
7.80(11 λ̂1)

a4 7.80(4 λ̂1 + 2 λ̂2) 4λ1+2λ2
7.80(4 λ̂1+2 λ̂2)

a5 7.80(3 λ̂1 + λ̂3) 3λ1+λ3
7.80(3 λ̂1+ λ̂3)

a6 5.20(λ̂3) λ3
5.20(λ̂3)

a7 3.90(5 λ̂2) 5λ2
3.90(5 λ̂2)

a8 5.20(6 λ̂2) 6λ2
5.20(6 λ̂2)

a9 3.90(3 λ̂3) 3λ3
3.90(3 λ̂3)

a10 5.20(3 λ̂2 + 3 λ̂3) 3λ2+3λ3
5.20(3 λ̂2+3 λ̂3)

111

5.1.3 Numerical Analysis and Validation of Performance Modeling of Resource Al-
locations using the PEPA Workbench

Once the ideal and the perturbed rates are calculated for completing the PEPA input

files representing the performance models of the execution of applications on the allocated

machines with respect to the two mappings, the PEPA models are compiled and solved

using the PEPA workbench tool. The PEPA input files as shown in Figure 4.2 and 4.3,

along with the rates ri and pi calculated using Tables 5.3, 5.4, 5.1, and 5.2, are compiled

using the Eclipse Luna development tool [40] in a PEPA workbench framework, as shown

in Figure 5.1. After the model compiles successfully according to the PEPA formalisms,

the state space of the underlying mathematical Markovian model of the execution of the

mappings is derived (shown in the screenshot in Figure 5.2).

Figure 5.1: Screenshot of the Eclipse Luna Development Tool with the PEPA workbench modeling
framework.

112

Figure 5.2: Screenshot of the derivation of the state space of the underlying mathematical Marko-
vian model.

The state space generated for the Markov model representing the execution of the two

mappings consists of 8640 and 13475 number of states, respectively, of the CTMC pro-

cesses representing the execution states of the applications and the allocated machines.

Examples of activity diagrams resulting from the generated state space are illustrated in

Figures 5.3 and 5.4. In the activity diagram, the rectangular boxes represent the differ-

ent states of a PEPA component (or the underlying CTMC process). The arcs represent

the transitions between the states. The multiplicity of outgoing arcs (represented by two

different colors) represent the possibility that a component may transition to either of the

states at the end of one of the multiple outgoing arcs in its current state. For example, in

Figure 5.3, the PEPA component M3 has two outgoing arcs in its initial state. The two

arcs represent the uncertainty that signifies the computation the application A1 on the al-

located machine M3 in, either the ideal computing scenario with the rate r1 = 0.256 or

the perturbed computing scenario with the rate p1 = 0.104. Every PEPA component is

translated into its own activity diagram, modeling its evolution throughout the execution of

the computational activities, similar to the activity diagrams shown in Figures 5.3 and 5.4.

113

Figure 5.3: An activity diagram of the CTMC processes of the corresponding PEPA components
in Mapping A.

Figure 5.4: An activity diagram of the CTMC processes of the corresponding PEPA components
in Mapping B.

Once the state space and the resulting activity diagrams of the components (CTMC

processes) of the PEPA model are generated, the tool allows the modeler to specify the

type of Markovian analysis that needs to be used for solving the generated Markov models

to derive performance measures. As defined in Chapter 2, the PEPA workbench allows two

types of Markovian analysis: (i) steady state analysis is used to solve the global balance

equation (representing the state of equilibrium of the Markov model) using the infinitesimal

generator matrix to calculate steady state probability values for every component to derive

performance measures, such as, throughput and utilization, (ii) passage time analysis is

114

used to solve the Markov models using the timing information associated with the activity

rates to derive performance measures, such, as makespan and response time. The passage

time analysis generates a CDF of the passage time (Tp) from a source state (Ss) into a

non-empty set of target states (ST), s.t.,

Tp = inf{u > 0 : Ss(u) ∈ ST |Ss(0) = initial state} (5.3)

The CDF is generated by convolving state holding times over all possible paths from state

i ∈ Ss into any of the states in the set ST . In this case study, the performance feature

of interest is makespan, therefore, passage time analysis is used to solve the underlying

Markov models. Based on the knowledge that the modeler provides to the PEPA work-

bench in the form of PEPA formalism of the resource allocation system, the tool extracts

the information from that knowledge in the form of initial state values, final state values,

and the intermediate transitions. Using this information, the tool enables a passage time

analysis of the Markov models for deriving the makespan as the passage time between the

defined initial and final states. For example, as shown in Figure 5.5, the tool collects in-

formation from the PEPA model regarding the initial state(s) to be the state(s) associated

with the compute1 activity values and the final state(s) to be the state(s) associated with the

compute8 activity. The start time and the stop time values are specified the modeler and are

often specified by the application user. For example, the stop time is analogous to the user

specified makespan goal, βi
max . In our modeling study, the passage time analysis of the

Markov models underlying the PEPA definitions of the two resource allocation mappings,

yield CDFs of the machine finishing times, Fi(Mj, λ̂i), as passage times between the states

115

associated with the applications assigned to that machine. The CDFs of the finishing times

of machines M1 · · · M5 in the Markov model for Mapping A are shown in Figures 5.6

through 5.10, and for Mapping B are shown in Figures 5.11 through 5.15.

Figure 5.5: Passage time analysis parameters generated by the PEPA workbench.

For validation of performance modeling and robustness analysis, the performance mod-

eling of resource allocations considered in the modeling study in this research has been

validated via a comparative analysis of the performance results obtained using PEPA mod-

eling and by solving the underlying numerical Markov models, with the results obtained

from the experiments given in the considered state-of-the-art [3][6][5]. The metric used

116

Figure 5.6: Cumulative distribution function (CDF) of the finishing time of machine M1 for exe-
cuting applications A5, A9, A12, A17, A20 as given by Mapping A.

Figure 5.7: Cumulative distribution function (CDF) of the finishing time of machine M2 for exe-
cuting applications A6, A16 as given by Mapping A.

Figure 5.8: Cumulative distribution function (CDF) of the finishing time of machine M3 for exe-
cuting applications A1, A3, A7 as given by Mapping A.

117

Figure 5.9: Cumulative distribution function (CDF) of the finishing time of machine M4 for exe-
cuting applications A2, A4, A10, A13, A15, A19 as given by Mapping A.

Figure 5.10: Cumulative distribution function (CDF) of the finishing time of machine M5 for ex-
ecuting applications A8, A11, A14, A18 as given by Mapping A.

Figure 5.11: Cumulative distribution function (CDF) of the finishing time of machine M1 for ex-
ecuting applications A3, A4, A5, A17, A18, A20 as given by Mapping B.

118

Figure 5.12: Cumulative distribution function (CDF) of the finishing time of machine M2 for ex-
ecuting applications A2, A11, A14, A19 as given by Mapping B.

Figure 5.13: Cumulative distribution function (CDF) of the finishing time of machine M3 for ex-
ecuting applications A1, A7, A13 as given by Mapping B.

Figure 5.14: Cumulative distribution function (CDF) of the finishing time of machine M4 for ex-
ecuting applications A9, A12, A15 as given by Mapping B.

119

Figure 5.15: Cumulative distribution function (CDF) of the finishing time of machine M5 for ex-
ecuting applications A6, A8, A10, A16 as given by Mapping B.

for comparing the performance results are the machine finishing times. A close similar-

ity in the performance results of the two methods (simulation experiments and analytical

modeling using PEPA) of performance evaluation illustrated as a result of the comparative

analysis as shown in Figure 5.16. The slight differences in the finishing times of the ma-

chines can be explained as a result of the systemic variations, from external factors such

as, I/O tasks, in the actual computing machines that were used to carry out the simula-

tion experiments. This also validates the advantage of numerical analysis over simulation

experiments for obtaining more precise results.

The robustness of the resource allocation defined by the performance modeling of the

two mappings is formulated using Equation 4.1. Let ψA and ψB be the robustness values

of the two mappings respectively. Based on the experiments in [3], the makespan goal

is set as βi
max = 45 seconds. Then, the robustness of the two mappings is calculated

using Equation 5.4 and 5.5. Both the two mappings yield a makespan of 90 seconds.

However, they differ in their robustness values when the makespan goal is set to 45 seconds,

where ψA = 81% and ψB = 43%. The difference in the robustness values of the two

120

Figure 5.16: A comparative analysis of the numerical results of performance modeling with exist-
ing simulation results.

mappings that yield the same system makespan, reinstates the need for robustness analysis

for selecting an initial mapping that can withstand the runtime perturbations in application

and system parameters in a parallel computing environment. For example, in this modeling

study, both the two mappings yield the same performance in the form of overall system

makespan. However, Mapping A is a more robust choice for initial allocation in terms of

achieving a set makespan goal in the presence of runtime perturbations, such as workload

variation. An illustration of the difference in the robustness of the two mappings with the

same performance value is given in Figure 5.17.

ψA = min Pr[Fi(Mj , λi) ≤ 45] (5.4)
∀i,j paired as in MappingA

ψB = min Pr[Fi(Mj, λi) ≤ 45] (5.5)
∀i,j paired as in MappingB

121

Figure 5.17: A comparison between the robustness values of the two resource allocations Mapping
A and Mapping B delivering equal performance in terms of the system makespan.

5.2 Robustness evaluation case study: non-uniform workload variation across all
applications

This modeling study is designed to evaluate the robustness of the mappings modeled in

the previous case under a highly perturbed execution environment, where the sensors pro-

duce data at rapidly varying rates (λ1, λ2, λ3) that may lead to a highly uncertain execution

environment with entirely different sensor loads for every application. Like the previous

case study, the execution of the two mappings, as given in Table 4.1, are modeled as CTMC

processes using PEPA. The PEPA input file that defines the model for the two mappings

is shown in Figure 4.2 and 4.3, respectively. Further, to complete the PEPA model, the

rates r1 · · · r20 and p1 · · · p20, need to be calculated for solving the underlying Marko-

vian model via a passage time analysis using the PEPA workbench to derive performance

measures.

122

5.2.1 Deriving PEPA activity rates in ideal computing environment (λ̂ = λ)

The rates associated with the computei activities, when there is no variation in the

application workload, are represented by r1 · · · r20. The calculation for the rate is given

in Equation 5.1, where Tij is the actual time to compute an application i on machine j, λ̂i

is calculated as a function of the varying sensor loads λ̂1, λ̂2, λ̂3, and λi is calculated as a

function of the initial sensor loads λ1, λ2, λ3. The Tij values of the 20 applications on the

machines they are assigned to according to the two mappings are listed in Table 5.1 and 5.2,

respectively [3]. Tij is calculated as a product of the machine availability factor (ηi), which

is the computational availability of the allocated machine j for executing application i, and

the runtime workload for that application (λ̂i). The right most column of the table also

lists the corresponding value of the ideal rate ri at which the allocated machine executes

application ai. ri is calculated as a ratio of the initial workload λi and Tij . This signifies that

the rate at which a machine will compute an assigned application is directly proportional

to the workload value according to which the application was initially allocated to that

machine and concurrently, is inversely affected by the actual computational time, which

is dependent upon the actual (initial or varied) sensor loads during the execution of that

application. In the ideal computing scenario, where λ̂i = λi, the value of ri reduces to an

inverse of the machine availability factor (ηi). The initial sensor load values are, λ1 = 962,

λ2 = 380, and λ3 = 240.

123

5.2.2 Deriving PEPA activity rates in perturbed computing environment (ˆ 6λ = λ)

The rates associated with the computei activities, in the presence of perturbations in

the form of varying application workload, are represented by p1 · · · p20. The calculation

for the rate is given in Equation 5.2, where Tij is the actual time to compute an application

i on machine j, λ̂i is calculated as a function of the varying sensor loads λ̂1, λ̂2, λ̂3, and λi

is calculated as a function of the initial sensor loads λ1, λ2, λ3. The Tij values of the 20 ap-

plications on the machines they are assigned to according to the two mappings are listed in

Table 5.3 and 5.4, respectively [3]. Tij is calculated as a product of the machine availability

factor (ηi), which is the computational availability of the allocated machine j for executing

application i, and the runtime workload for that application (λ̂i). The runtime application

workload is calculated as a function of the three runtime sensor loads (λ̂1, λ̂2, λ̂3). The

right most column of the table also lists the corresponding value of the perturbed rate pi

at which the allocated machine executes application ai. pi is calculated as a ratio of the

initial workload λi and Tij . This signifies that the rate at which a machine will compute an

assigned application is directly proportional to the workload value according to which the

application was initially allocated to that machine and concurrently, is inversely affected

by the actual computational time, which is dependent upon the actual (initial or varied)

sensor loads during the execution of that application. In the perturbed computing scenario,

λ̂i 6 λi. The initial sensor load values are, λ1 = 962, λ2 = 380, and λ3 = 240. The=

runtime sensor load values are randomly sampled, for every application, from a mixture

distribution hat consists a set of values generated from gamma, Gaussian, Erlang-K, and

exponential distributions. The parameters of each of these distributions were derived as

124

functions of the shape parameter (k) and the scale parameter (θ) of the gamma distribution.

The mixture distribution was created using the MATLAB statistics toolbox R2014b [73].

Therefore, for every application, three values of sensor loads λ̂1, λ̂2, λ̂3 were sampled from

the mixture distribution. This also represents a case study for a resource allocation system

that has a very high load imbalance factor at runtime.

5.2.3 Numerical Analysis and Validation of Performance Modeling of Resource Al-
locations using the PEPA Workbench

Once the ideal and the perturbed rates are calculated for completing the PEPA input

files representing the performance models of the execution of applications on the allocated

machines with respect to the two mappings, the PEPA models are compiled and solved

using the PEPA workbench tool. The PEPA input files as shown in Figure 4.2 and 4.3,

along with the rates ri and pi calculated using Tables 5.3, 5.4, 5.1, and 5.2, are compiled

using the Eclipse Luna development tool [40] in a PEPA workbench framework, as shown

in Figure 5.1. After the model compiles successfully according to the PEPA formalisms,

the state space of the underlying mathematical Markovian model of the execution of the

mappings is derived (shown in the screenshot in Figure 5.2).

The state space generated for the Markov model representing the execution of the two

mappings consists of 10395 and 13475 number of states, respectively, of the CTMC pro-

cesses representing the execution states of the applications and the allocated machines.

Examples of activity diagrams resulting from the generated state space are illustrated in

Figures 5.18 and 5.19. In the activity diagram, the rectangular boxes represent the differ-

ent states of a PEPA component (or the underlying CTMC process). The arcs represent

125

the transitions between the states. The multiplicity of outgoing arcs (represented by two

different colors) represent the possibility that a component may transition to either of the

states at the end of one of the multiple outgoing arcs in its current state. For example, in

Figure 5.3, the PEPA component M3 has two outgoing arcs in its initial state. The two

arcs represent the uncertainty that signifies the computation the application A1 on the al-

located machine M3 in, either the ideal computing scenario with the rate r1 = 0.256 or

the perturbed computing scenario with the rate p1 = 0.054. Every PEPA component is

translated into its own activity diagram, modeling its evolution throughout the execution of

the computational activities, similar to the activity diagrams shown in Figures 5.3 and 5.4.

Figure 5.18: An activity diagram of the CTMC processes of the corresponding PEPA components
in Mapping A for the modeling study in Case (ii).

Figure 5.19: An activity diagram of the CTMC processes of the corresponding PEPA components
in Mapping B for the modeling study in Case (ii).

126

Once the state space and the resulting activity diagrams of the components (CTMC

processes) of the PEPA model are generated, the tool allows the modeler to specify the

type of Markovian analysis that needs to be used for solving the generated Markov models

to derive performance measures. As defined in Chapter 2, the PEPA workbench allows two

types of Markovian analysis: (i) steady state analysis is used to solve the global balance

equation (representing the state of equilibrium of the Markov model) using the infinites-

imal generator matrix to calculate steady state probability values for every component to

derive performance measures, such as, throughput and utilization, (ii) passage time anal-

ysis is used to solve the Markov models using the timing information associated with the

activity rates to derive performance measures, such, as makespan and response time. In

this case study, the performance feature of interest is makespan, therefore, passage time

analysis is used to solve the underlying Markov models. Based on the knowledge that the

modeler provides to the PEPA workbench in the form of PEPA formalism of the resource

allocation system, the tool extracts the information from that knowledge in the form of ini-

tial state values, final state values, and the intermediate transitions. Using this information,

the tool enables a passage time analysis of the Markov models for deriving the makespan

as the passage time between the defined initial and final states. For example, as shown in

Figure 5.5, the tool collects information from the PEPA model regarding the initial state(s)

to be the state(s) associated with the compute1 activity values and the final state(s) to be

the state(s) associated with the compute8 activity. The start time and the stop time values

are specified the modeler and are often specified by the application user. For example, the

stop time is analogous to the user specified makespan goal, βi
max. In our modeling study,

127

the passage time analysis of the Markov models underlying the PEPA definitions of the

two resource allocation mappings, yield CDFs of the machine finishing times, Fi(Mj , λ̂i),

as passage times between the states associated with the applications assigned to that ma-

chine. The CDFs of the finishing times of machines M1 · · · M5 in the Markov model for

Mapping A are shown in Figures 5.20 through 5.24, and for Mapping B are shown in

Figures 5.25 through 5.29.

Figure 5.20: Cumulative distribution function (CDF) of the finishing time of machine M1 for ex-
ecuting applications A5, A9, A12, A17, A20 as given by Mapping A for the modeling
study in Case (ii).

Figure 5.21: Cumulative distribution function (CDF) of the finishing time of machine M2 for ex-
ecuting applications A6, A16 as given by Mapping A for the modeling study in Case
(ii).

128

Figure 5.22: Cumulative distribution function (CDF) of the finishing time of machine M3 for ex-
ecuting applications A1, A3, A7 as given by Mapping A for the modeling study in
Case (ii).

Figure 5.23: Cumulative distribution function (CDF) of the finishing time of machine M4 for ex-
ecuting applications A2, A4, A10, A13, A15, A19 as given by Mapping A for the mod-
eling study in Case (ii).

The robustness of the resource allocation defined by the performance modeling of the

two mappings is formulated using Equation 4.1. Let ψA and ψB be the robustness values

of the two mappings respectively. Similar to the modeling study in case (i), the makespan

goal is set as βi
max = 45 seconds. Then, the robustness of the two mappings is calculated

using Equation 5.6 and 5.7. Both the two mappings yield a makespan of 90 seconds. How-

ever, they differ in their robustness values when the makespan goal is set to 45 seconds,

129

Figure 5.24: Cumulative distribution function (CDF) of the finishing time of machine M5 for exe-
cuting applications A8, A11, A14, A18 as given by Mapping A for the modeling study
in Case (ii).

Figure 5.25: Cumulative distribution function (CDF) of the finishing time of machine M1 for ex-
ecuting applications A3, A4, A5, A17, A18, A20 as given by Mapping B for the mod-
eling study in Case (ii).

where ψA = 35% and ψB = 41%. The difference in the robustness values of the two

mappings that yield the same system makespan, reinstates the need for robustness analysis

for selecting an initial mapping that can withstand the runtime perturbations in application

and system parameters in a parallel computing environment. For example, in this model-

ing study, both the two mappings yield the same performance in the form of overall system

makespan β = 200 seconds. However, Mapping B is a more robust choice for initial al-

location in terms of achieving a set makespan goal in the presence of runtime perturbations,

130

Figure 5.26: Cumulative distribution function (CDF) of the finishing time of machine M2 for exe-
cuting applications A2, A11, A14, A19 as given by Mapping B for the modeling study
in Case (ii).

Figure 5.27: Cumulative distribution function (CDF) of the finishing time of machine M3 for ex-
ecuting applications A1, A7, A13 as given by Mapping B for the modeling study in
Case (ii).

such as workload variation. In addition, it is also evident that Mapping A, which was a

better choice for the previous computational scenario with a low load imbalance factor, is a

less robust choice for the computational scenario with a high load imbalance factor in this

case study. A comparison of the robustness values associated with the two mappings in

the two modeling studies, case (i) and (ii), is given in Figures 5.30 and 5.31. Mapping A

is a more robust choice when there are equal workload variations across all applications,

as shown in Figure 5.30. However, Mapping B is a more robust choice when there is

131

http:case(i)and(ii),isgiveninFigures5.30and5.31

Figure 5.28: Cumulative distribution function (CDF) of the finishing time of machine M4 for ex-
ecuting applications A9, A12, A15 as given by Mapping B for the modeling study in
Case (ii).

Figure 5.29: Cumulative distribution function (CDF) of the finishing time of machine M5 for ex-
ecuting applications A6, A8, A10, A16 as given by Mapping B for the modeling study
in Case (ii).

non-uniform and highly random workload variation across all applications, as shown in

Figure 5.31.

ψA = min Pr[Fi(Mj , λi) ≤ 45] (5.6)
∀i,j paired as in MappingA

ψB = min Pr[Fi(Mj, λi) ≤ 45] (5.7)
∀i,j paired as in MappingB

132

Figure 5.30: Case (i) probability values s.t. Fi(Mj , λi) ≤ 45 and the robustness.

Figure 5.31: Case (ii) probability values s.t. Fi(Mj , λi) ≤ 45 and the robustness.

133

CHAPTER 6

BENEFITS, CONCLUSIONS, AND FUTURE WORK

6.1 Benefits of robustness analysis via analytical and numerical modeling of re-
source allocations

The results from the robustness analysis of resource allocations modeled analytically

and solved numerically via PEPA can be used in the design phase of a parallel and dis-

tributed resource allocation system. The evaluation obtained from the PEPA models of

robustness enables a more informed decision for selecting the most robust mapping from

a set of initial mapping schemes. In addition, the analytical modeling enables selection

of the most robust resource allocation from a set of resource allocations promising equal

execution performance.

When compared to direct experiments and simulation, the analysis using analytical

and numerical models is easier to reproduce, does not incur any setup or installation costs,

does not impose any prerequisites for learning a simulation framework, and is not limited

by the complexity of the underlying infrastructure or simulation libraries. Further, the use

of PEPA modeling allows the system designer to seamlessly incorporate new system com-

ponents and their behavior, for re-evaluation purposes. Stochastic process algebra models

and the related numerical analysis provide a cost effective and low overhead analysis of

robustness.

134

6.2 Conclusions and future work

Analytical and numerical models of resource allocations for parallel execution of appli-

cations, that have varying workload, on parallel and heterogeneous computing resources,

has been developed in this work using a stochastic process algebra PEPA. Further, the per-

formance evaluated from these models has been used for the robustness analysis of the

resource allocations. The robustness obtained from the performance modeling of resource

allocations has been validated against the results obtained from the robustness analysis

performed in prior simulation experiments [3][6].

Novel contributions as well as the contributions that led to the research in this disserta-

tion are listed below.

1. Performance modeling of resource allocations in parallel and distributed computing
using PEPA.

2. Robustness evaluation using a passage time analysis (numerical analysis of Marko-
vian models) of the developed performance models of resource allocations.

3. Robustness analysis of resource allocations w.r.t. equal variation in workload across
all applications, and validating the robustness results of resource allocations obtained
from performance modeling using PEPA with the robustness of the same resource
allocations obtained via prior simulation experiments.

4. Robustness analysis of resource allocations w.r.t. the non-uniform variation in work-
load across all applications.

5. First implementation of the DLS methods in a simulation framework for a compara-
tive analysis of the execution performance of these methods [108].

6. Study of the use of a model free machine learning (reinforcement learning) approach
towards an automatic selection of the best DLS method for scheduling time-stepping
scientific applications [16].

7. Formulation of robustness metrics for dynamic scheduling methods used in paral-
lel computing systems and a study towards an online selection, of the most robust
dynamic scheduling method, using machine learning techniques. The study of ro-
bustness of dynamic scheduling is applicable to a class of time-stepping scientific

135

applications and is a part of the foundation work on robustness that has led to the
proposed thesis [107][110].

8. First implementation of a learning based methodology for an online prediction of the
robustness of DLS methods using an artificial neural network [109].

9. A power-aware execution of scientific applications parallel and distributed comput-
ing systems using an existing model-based framework that combines the functional-
ities of DLS methods with a feedback limited look ahead controller [87].

10. A combined dual-stage framework for robust scheduling of scientific applications in
heterogeneous environments with uncertain processor availability [32].

The proposed PEPA model for analyzing the robustness of a mapping in parallel and dis-

tributed computing can be useful for a predictive analysis in the design phase of a re-

source allocation system for selecting a robust initial mapping. Further, the proposed

models can be extended with features to be useful for a runtime predictive analysis at

predefined time samples during the execution of the application on the initially allocated

resources. This will require an integration of the proposed PEPA models into a runtime

scheduler/controller in a model-based framework, where the embedded models can be re-

evaluated with minimal overhead when a system parameter changes at runtime.

136

REFERENCES

[1] S. Abdelwahed, N. Kandasamy, and S. Neema, “Online Control for Self-
Management in Computing Systems,” Proc. RTAS, 2004, pp. 365–375.

[2] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance guarantees for Web server end-
systems: a control-theoretical approach,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 13, no. 1, Jan 2002, pp. 80–96.

[3] S. Ali, Robust resource allocation in dynamic distributed heterogeneous computing
systems, Purdue University, 2003.

[4] S. Ali, J.-K. Kim, H. J. Siegel, and A. A. Maciejewski, “Static Heuristics for Robust
Resource Allocation of Continuously Executing Applications,” J. Parallel Distrib.
Comput., vol. 68, no. 8, Aug. 2008, pp. 1070–1080.

[5] S. Ali, A. Maciejewski, and H. Siegel, Perspectives on robust resource allocation
for heterogeneous parallel systems, Chapman & Hall/CRC Press, Boca Raton, FL,
2008.

[6] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim, “Measuring the robustness of a
resource allocation,” Parallel and Distributed Systems, IEEE Transactions on, vol.
15, no. 7, 2004, pp. 630–641.

[7] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim, “Robust resource allocation for
sensor-actuator distributed computing systems,” Parallel Processing, 2004. ICPP
2004. International Conference on, Aug 2004, pp. 178–185 vol.1.

[8] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Representing task and
machine heterogeneities for heterogeneous computing systems,” Tamkang Journal
of Science and Engineering, vol. 3, no. 3, 2000, pp. 195–208.

[9] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities,” Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, 1967, AFIPS ’67 (Spring), pp. 483–485.

[10] J. Baeten, N. D. o. C. S. Centrum voor Wiskunde en Informatica (Amsterdam, and
R. van Glabbeek, Merge and Termination in Process Algebra, Centre for Mathe-
matics and Computer Science, 1987.

137

[11] J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput. Sci., vol. 335,
no. 2-3, May 2005, pp. 131–146.

[12] M. Balasubramaniam, N. Sukhija, F. Ciorba, I. Banicescu, and S. Srivastava, “To-
wards the Scalability of Dynamic Loop Scheduling Techniques via Discrete Event
Simulation,” Parallel and Distributed Processing Symposium Workshops PhD Fo-
rum (IPDPSW-PDSEC, On CD-ROM), In Proceedings of The 2012 IEEE/ACM 26th
International, May 2012, pp. 1343–1351.

[13] I. Banicescu and R. L. Cari˜ “Addressing the Stochastic Nature of Scientificno,
Computations via Dynamic Loop Scheduling,” Electronic Transactions on Numer-
ical Analysis - Special Issue on Combinatorial Scientific Computing, vol. 21, 2005,
pp. 66–80.

[14] I. Banicescu and R. L. Carino, “Addressing the stochastic nature of scientific com-
putations via dynamic loop scheduling,”, Electronic Transactions on Numerical
Analysis 21:66-80, 2005.

[15] I. Banicescu, F. M. Ciorba, and R. L. Cariño, “Towards the robustness of dynamic
loop scheduling on large-scale heterogeneous distributed systems,” International
Symposium on Parallel and Distributed Computing (ISPDC 2009), vol. 0, 2009, pp.
129–132.

[16] I. Banicescu, F. M. Ciorba, and S. Srivastava, “Performance Optimization of Scienti

c Applications using an Autonomic Computing Approach,” Scalable Computing
and Communications: Theory and Practice, A. Y. Z. Samee U. Khan and L. Wang,
eds., John Wiley & Sons, Inc., 2013, pp. 437–466.

[17] I. Banicescu and S. Flynn Hummel, “Balancing processor loads and exploiting data
locality in N-body simulations,” Supercomputing ’95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), New York, NY, USA, 1995,
p. 43, ACM.

[18] I. Banicescu and V. Velusamy, “Performance of Scheduling Scientific Applications
with Adaptive Weighted Factoring,” IPDPS ’01: Proceedings of the 15th Interna-
tional Parallel & Distributed Processing Symposium, Washington, DC, USA, 2001,
p. 84, IEEE Computer Society.

[19] A. Benoit, M. Cole, S. Gilmore, and J. Hillston, “Evaluating the performance of
skeleton-based high level parallel programs,” Computational Science-ICCS 2004,
Springer, 2004, pp. 289–296.

[20] A. Benoit, M. Cole, S. Gilmore, and J. Hillston, “Enhancing the effective utilisation
of grid clusters by exploiting on-line performability analysis,” Cluster Computing
and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, May 2005,
vol. 1, pp. 317–324 Vol. 1.

138

[21] A. Benoit, M. Cole, S. Gilmore, and J. Hillston, “Scheduling skeleton-based grid
applications using PEPA and NWS,” The Computer Journal, vol. 48, no. 3, 2005,
pp. 369–378.

[22] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of precedence task
graphs on heterogeneous platforms,” Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–8.

[23] J. Bergstra, A. Ponse, and S. Smolka, Handbook of Process Algebra, Elsevier
Science, 2001.

[24] J. T. Bradley, N. J. Dingle, S. T. Gilmore, and W. J. Knottenbelt, “Derivation
of passage-time densities in PEPA models using IPC: The Imperial PEPA Com-
piler,” Modeling, Analysis and Simulation of Computer Telecommunications Sys-
tems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium on. IEEE,
2003, pp. 344–351.

[25] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing,” CON-
CURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE (CCPE, vol.
14, no. 13, 2002, pp. 1175–1220.

[26] L. Blni, L. Boloni, and D. C. Marinescu, “Robust Scheduling of Metaprograms,”
Journal of Scheduling, vol. 5, 1998, pp. 395–412.

[27] R. L. Cariño and I. Banicescu, “Dynamic load balancing with adaptive factoring
methods in scientific applications,” Journal of Supercomputing, vol. 44, no. 1, Apr.
2008, pp. 41–63.

[28] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: A Generic Framework
for Large-Scale Distributed Experiments,” 10th IEEE International Conference on
Computer Modeling and Simulation, Mar. 2008.

[29] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback–Feedforward
Scheduling of Control Tasks,” Real-Time Syst., vol. 23, no. 1/2, 2002, pp. 25–53.

[30] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards for the
evaluation of parallel job schedulers,” Job Scheduling Strategies for Parallel Pro-
cessing. Springer, 1999, pp. 67–90.

[31] W. chun Feng, X. Feng, and R. Ge, “Green Supercomputing Comes of Age,” IT
Professional, vol. 10, no. 1, 2008, pp. 17–23.

139

[32] F. Ciorba, T. Hansen, S. Srivastava, I. Banicescu, A. Maciejewski, and H. Siegel, “A
Combined Dual-stage Framework for Robust Scheduling of Scientific Applications
in Heterogeneous Environments with Uncertain Availability,” Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW-HCW, On CD-
ROM), In Proceedings of The 2012 IEEE/ACM 26th International, May 2012, pp.
193–207.

[33] A. Clark, A. Duguid, and S. Gilmore, “Passage-End Analysis,” Computer Perfor-
mance Engineering, J. Bradley, ed., vol. 5652 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2009, pp. 110–115.

[34] E. Coffman and J. Bruno, Computer and job-shop scheduling theory, A Wiley-
Interscience publication. Wiley, 1976.

[35] R. L. Daniels and J. E. Carrillo, “Beta-robust scheduling for single-machine systems
with uncertain processing times,” IIE Transactions, vol. 29, no. 11, 1997, pp. 977–
985.

[36] S. Dhandayuthapani, Automatic Selection of Dynamic Loop Scheduling Algorithms
for Load Balancing using Reinforcement Learning, master’s thesis, Mississippi
State University, 2004.

[37] S. Dhandayuthapani, I. Banicescu, R. L. Cariño, E. Hansen, J. P. Pabico, and
M. Rashid, “Automatic Selection of Loop Scheduling Algorithms Using Reinforce-
ment Learning,” Challenges of Large Applications in Distributed Environments
(CLADE 2005), 2005, pp. 87–94.

[38] Y. Dong, J. Chen, X. Yang, L. Deng, and X. Zhang, “Energy-Oriented OpenMP
Parallel Loop Scheduling,” Proceedings of the 2008 IEEE International Symposium
on Parallel and Distributed Processing with Applications, Washington, DC, USA,
2008, pp. 162–169, IEEE Computer Society.

[39] A. Dubey, R. Mehrotra, S. Abdelwahed, and A. Tantawi, “Performance modeling of
distributed multi-tier enterprise systems,” SIGMETRICS Performance Evaluation
Review, vol. 37, no. 2, 2009, pp. 9–11.

[40] . Eclipse contributors 2000, “Eclipse documentation - Current Release Eclipse
Luna,”, 2013.

[41] T. Eguchi, F. Oba, and S. Toyooka, “A robust scheduling rule using a Neural Net-
work in dynamically changing job-shop environments.,” IJMTM, vol. 14, 2008, pp.
266–288.

[42] D. et. al., “The International Exascale Software Project roadmap,” Int. J. High
Perform. Comput. Appl., vol. 25, no. 1, Feb. 2011, pp. 3–60.

140

[43] W. Feng, “Green Destiny + mpiBLAST = Bioinfomagic,” PARCO, 2003, pp. 653–
660.

[44] D. Fernandez-Baca, “Allocating Modules to Processors in a Distributed System,”
IEEE Trans. Softw. Eng., vol. 15, no. 11, Nov. 1989, pp. 1427–1436.

[45] U. S. N. C. O. for Information Technology Research, Development, U. S. O. of Sci-
ence, T. P. E. O. of the President, N. Science, and T. C. U. C. on Technology. High-
End Computing Revitalization Task Force, Federal Plan for High-end Computing:
Report of the High-end Computing Revitalization Task Force (HECRTF)., Executive
Office of the President, Office of Science and Technology Policy, 2004.

[46] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree,
and M. E. Femal, “Analyzing the Energy-Time Trade-Off in High-Performance
Computing Applications,” IEEE Trans. Parallel Distrib. Syst., vol. 18, June 2007,
pp. 835–848.

[47] R. Ge and K. Cameron, “Power-Aware Speedup,” Parallel and Distributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International, March 2007, pp. 1–10.

[48] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, “CPU MISER: A Performance-
Directed, Run-Time System for Power-Aware Clusters,” ICPP ’07: Proceedings of
the 2007 International Conference on Parallel Processing, Washington, DC, USA,
2007, p. 18, IEEE Computer Society.

[49] S. Gertphol and V. Prasanna, “MIP formulation for robust resource allocation in dy-
namic real-time systems,” International Parallel and Distributed Processing Sym-
posium, 2003. Proceedings., 2003, pp. 8 pp.–.

[50] S. Gertphol and V. Prasanna, “Iterative integer programming formulation for robust
resource allocation in dynamic real-time systems,” 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., 2004, pp. 118–.

[51] S. Gertphol, Y. Yu, S. B. Gundala, V. K. Prasanna, S. Ali, J.-K. Kim, A. A. Ma-
ciejewski, and H. J. Siegel, “A Metric and Mixed-Integer-Programming-Based Ap-
proach for Resource Allocation in Dynamic Real-Time Systems,” Proceedings of
the 16th International Parallel and Distributed Processing Symposium, Washington,
DC, USA, 2002, IPDPS ’02, IEEE Computer Society.

[52] A. Ghafoor and J. Yang, “A distributed heterogeneous supercomputing management
system,” Computer, vol. 26, no. 6, June 1993, pp. 78–86.

[53] S. Gilmore and J. Hillston, “The PEPA workbench: A tool to support a process
algebra-based approach to performance modelling,” Computer Performance Eval-
uation Modelling Techniques and Tools, G. Haring and G. Kotsis, eds., vol. 794 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1994, pp. 353–368.

141

http:J.-K.Kim,A.A.Ma
http:ence,T.P.E.O.of
http:Research,Development,U.S.O.of

[54] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol.
31, no. 5, 1988, pp. 532–533.

[55] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
Weka data mining software: an update,” ACM SIGKDD Explorations Newsletter,
vol. 11, no. 1, Nov. 2009, pp. 10–18.

[56] R. Harrison, L. Zitzman, and G. Yoritomo, “High performance distributed comput-
ing program (HiPer-D)engineering testbed one (T1) report,” Naval Surface Warfare
Center, Dahlgren, VA, Tech. Rep, 1995.

[57] R. A. Hayden and J. T. Bradley, “A Fluid Analysis Framework for a Markovian
Process Algebra,” Theor. Comput. Sci., vol. 411, no. 22-24, May 2010, pp. 2260–
2297.

[58] R. A. Hayden, J. T. Bradley, and A. Clark, “Performance Specification and Evalua-
tion with Unified Stochastic Probes and Fluid Analysis,” IEEE Trans. Softw. Eng.,
vol. 39, no. 1, Jan. 2013, pp. 97–118.

[59] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge
University Press, 1996.

[60] J. Hillston, “Tuning Systems: From Composition to Performance,” The Computer
Journal, vol. 48, no. 4, May 2005, pp. 385–400.

[61] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[62] C.-H. Hsu and W.-C. Feng, “Effective dynamic voltage scaling through CPU-
boundedness detection,” In Workshop on Power Aware Computing Systems, 2004,
pp. 135–149.

[63] C.-h. Hsu and W.-c. Feng, “A Power-Aware Run-Time System for High-
Performance Computing,” SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, 2005, p. 1, IEEE Computer Society.

[64] S. F. Hummel, J. Schmidt, R. Uma, and J. Wein, “Load-sharing in heterogeneous
systems via weighted factoring,” Proceedings of the eighth annual ACM symposium
on Parallel algorithms and architectures. ACM, 1996, pp. 318–328.

[65] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-sharing in heterogeneous
systems via weighted factoring,” SPAA ’96: Proceedings of the eighth annual ACM
symposium on Parallel algorithms and architectures, New York, NY, USA, 1996,
pp. 318–328, ACM.

[66] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A method for scheduling
parallel loops,” Communications of the ACM, vol. 35, no. 8, 1992, pp. 90–101.

142

[67] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method for scheduling
parallel loops,” Commun. ACM, vol. 35, no. 8, 1992, pp. 90–101.

[68] O. H. Ibarra and C. E. Kim, “Heuristic Algorithms for Scheduling Independent
Tasks on Nonidentical Processors,” J. ACM, vol. 24, no. 2, Apr. 1977, pp. 280–289.

¨[69] M. A. Iverson, F. Ozgüner, and L. Potter, “Statistical Prediction of Task Execution
Times Through Analytic Benchmarking for Scheduling in a Heterogeneous Envi-
ronment,” IEEE Trans. Comput., vol. 48, no. 12, Dec. 1999, pp. 1374–1379.

[70] R. Jain, The art of computer systems performance analysis, John Wiley & Sons,
2008.

[71] D. Janovy, J. Smith, H. Siegel, and A. Maciejewski, “Models and Heuristics for Ro-
bust Resource Allocation in Parallel and Distributed Computing Systems,” Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
March 2007, pp. 1–5.

[72] M. T. Jensen, “Improving Robustness and Flexibility of Tardiness and Total Flow-
time Job Shops Using Robustness Measures,” Journal of Applied Soft Computing,
vol. 1, 2001, pp. 35–52.

[73] B. Jones, MATLAB: Statistics Toolbox; User’s Guide, MathWorks, 1997.

[74] M. Kafil and I. Ahmad, “Optimal Task Assignment in Heterogeneous Distributed
Computing Systems,” IEEE Concurrency, vol. 6, no. 3, July 1998, pp. 42–51.

[75] N. Kandasamy, S. Abdelwahed, and M. Khandekar, “A hierarchical optimization
framework for autonomic performance management of distributed computing sys-
tems,” Proc. 26th IEEE Int’l Conf. Distributed Computing Systems (ICDCS), 2006.

[76] D. Klusáček and H. Rudová, “Alea 2 – Job Scheduling Simulator,” Proceedings of
the 3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010). 2010, ICST.

[77] P. Koopman, K. DeVale, and J. DeVale, “INTERFACE ROBUSTNESS TESTING:
EXPERIENCES AND LESSONS LEARNED FROM the Ballista project,”, 2008.

[78] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on parallel proces-
sors,” Software Engineering, IEEE Transactions on, , no. 10, 1985, pp. 1001–1016.

[79] C. P. Kruskal and A. Weiss, “Allocating Independent Subtasks on Parallel Proces-
sors,” IEEE Trans. Softw. Eng., vol. 11, no. 10, 1985, pp. 1001–1016.

143

[80] D. Kusic, N. Kandasamy, and G. Jiang, “Approximation Modeling for the Online
Performance Management of Distributed Computing Systems,” ICAC ’07: Proceed-
ings of the Fourth International Conference on Autonomic Computing, Washington,
DC, USA, 2007, p. 23, IEEE Computer Society.

[81] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative Sys-
tem Performance: Computer System Analysis Using Queueing Network Models,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[82] J. V. Leon, D. S. Wu, and R. H. Storer, “Robustness Measures and Robust Schedul-
ing for Job Shops,” IIE Transactions, vol. 26, no. 5, 1994, pp. 32–43.

[83] N. Lopez-Benitez and J.-Y. Hyon, “Simulation of task graph systems in hetero-
geneous computing environments,” Heterogeneous Computing Workshop, 1999.
(HCW ’99) Proceedings. Eighth, 1999, pp. 112–124.

[84] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online Data Migration with Perfor-
mance Guarantees,” FAST ’02: Proceedings of the 1st USENIX Conference on File
and Storage Technologies, Berkeley, CA, USA, 2002, p. 21, USENIX Association.

[85] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: modeling
the characteristics of rigid jobs,” Journal of Parallel and Distributed Computing,
vol. 63, no. 11, 2003, pp. 1105–1122.

[86] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed comput-
ing,” In Encyclopedia of Electrical and Electronics Engineering. 1999, pp. 679–690,
John Wiley.

[87] R. Mehrotra, I. Banicescu, and S. Srivastava, “A Utility Based Power-Aware Au-
tonomic Approach for Running Scientific Applications,” In Proceedings of The
2012 IEEE/ACM 26th International Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW-PDSEC, On CD-ROM),, May 2012, pp. 1457–
1466.

[88] R. Mehrotra, A. Dubey, S. Abdelwahed, and W. Monceaux, “Large Scale Moni-
toring and Online Analysis in a Distributed Virtualized Environment,” Engineering
of Autonomic and Autonomous Systems, IEEE International Workshop on, vol. 0,
2011, pp. 1–9.

[89] R. Mehrotra, A. Dubey, S. Abdelwahed, and A. Tantawi, “Integrated Monitoring and
Control for Performance Management of Distributed Enterprise Systems,” Model-
ing, Analysis, and Simulation of Computer Systems, International Symposium on,
vol. 0, 2010, pp. 424–426.

144

http:Leon,D.S.Wu

[90] A. Mehta, J. Smith, H. Siegel, A. Maciejewski, A. Jayaseelan, and B. Ye, “Dy-
namic resource allocation heuristics that manage tradeoff between makespan and
robustness,” The Journal of Supercomputing, vol. 42, no. 1, 2007, pp. 33–58.

[91] J. F. Meyer, “On Evaluating the Performability of Degradable Computing Systems,”
IEEE Trans. Comput., vol. 29, no. 8, Aug. 1980, pp. 720–731.

[92] P. V. Mieghem, Performance Analysis of Communications Networks and Systems,
Cambridge University Press, New York, NY, USA, 2005.

[93] R. Milner, Communication and Concurrency, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[94] G. D. Plotkin, “The origins of structural operational semantics,” The Journal of
Logic and Algebraic Programming, vol. 6061, 2004, pp. 3 – 15.

[95] C. D. Polychronopoulos and D. J. Kuck, “Guided Self-scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers,” IEEE Trans. Comput., vol. 36,
no. 12, Dec. 1987, pp. 1425–1439.

[96] M. Rashid, I. Banicescu, and R. L. Cariño, “Investigating a dynamic loop scheduling
with reinforcement learning approach to load balancing scientific applications,” 7th
IEEE Int. Symposium on Parallel and Distributed Computing (ISPDC 2008), 2008,
vol. 0, pp. 123–130.

[97] E. Rich and K. Knight, Artificial Intelligence, McGraw-Hill Sci-
ence/Engineering/Math, December 1990.

[98] V. Shestak, E. K. P. Chong, H. J. Siegel, A. A. Maciejewski, L. Benmohamed, I.-J.
Wang, and R. Daley, “A Hybrid Branch-and-Bound and Evolutionary Approach for
Allocating Strings of Applications to Heterogeneous Distributed Computing Sys-
tems,” J. Parallel Distrib. Comput., vol. 68, no. 4, Apr. 2008, pp. 410–426.

[99] V. Shestak, H. Siegel, A. Maciejewski, and S. Ali, “The Robustness of Resource
Allocations in Parallel and Distributed Computing Systems,” Architecture of Com-
puting Systems - ARCS 2006, W. Grass, B. Sick, and K. Waldschmidt, eds., vol.
3894 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp.
17–30.

[100] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Iterative algorithms for
stochastically robust static resource allocation in periodic sensor driven clusters,”
in: 8th IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS 2006, 2006, pp. 166–174.

[101] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic robustness
metric and its use for static resource allocations,” J. Parallel Distrib. Comput., vol.
68, no. 8, Aug. 2008, pp. 1157–1173.

145

[102] V. Shestak, J. Smith, A. A. Maciejewski, and H. J. Siegel, “Stochastic Robustness
Metric and Its Use for Static Resource Allocations,” J. Parallel Distrib. Comput.,
vol. 68, no. 8, Aug. 2008, pp. 1157–1173.

[103] V. Shestak, J. Smith, H. Siegel, and A. Maciejewski, “A Stochastic Approach to
Measuring the Robustness of Resource Allocations in Distributed Systems,” Par-
allel Processing, 2006. ICPP 2006. International Conference on, Aug 2006, pp.
459–470.

[104] V. Shestak, J. Smith, R. Uml, J. Hale, P. Moranville, A. A. Maciejewski, and H. J.
Siegel, “Greedy approaches to static stochastic robust resource allocation for pe-
riodic sensor driven distributed systems,” In Proceedings the 2006 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA06, 2006, pp. 3–9.

[105] B. J. Smith, “Architecture and applications of the HEP multiprocessor computer
system,” SPIE - Real-Time Signal Processing IV, 1981, pp. 241–248.

[106] J. Smith, H. J. Siegel, and A. A. Maciejewski, “Robust Resource Allocation in
Heterogeneous Parallel and Distributed Computing Systems,” Wiley Encyclopedia
of Computer Science and Engineering, 2008.

[107] S. Srivastava, I. Banicescu, and F. Ciorba, “Investigating the Robustness of Adaptive
Dynamic Loop Scheduling on Heterogeneous Computing Systems,” In Proceedings
of The 2010 IEEE/ACM International Symposium on Parallel Distributed Process-
ing, Workshops and Phd Forum (IPDPSW-PDSEC, On CD-ROM), April 2010, pp.
1–8.

[108] S. Srivastava, I. Banicescu, F. Ciorba, and W. Nagel, “Enhancing the Function-
ality of a GridSim-Based Scheduler for Effective Use with Large-Scale Scientific
Applications,” Parallel and Distributed Computing (ISPDC, On CD-ROM), In Pro-
ceedings of The 2011 10th IEEE International Symposium on, July 2011, pp. 86–93.

[109] S. Srivastava, B. Malone, N. Sukhija, I. Banicescu, and F. Ciorba, “Predicting the
Flexibility of Dynamic Loop Scheduling Using an Artificial Neural Network,” Par-
allel and Distributed Computing (ISPDC, On CD-ROM), In Proceedings of The
2013 IEEE 12th International Symposium on, June 2013, pp. 3–10.

[110] S. Srivastava, N. Sukhija, I. Banicescu, and F. Ciorba, “Analyzing the Robustness of
Dynamic Loop Scheduling for Heterogeneous Computing Systems,” Parallel and
Distributed Computing (ISPDC), In Proceedings of The 2012 11th IEEE Interna-
tional Symposium on, June 2012, pp. 156–163.

146

[111] P. Sugavanam, H. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel,
A. Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M. Ay-
din, P. Lee, K. Guru, M. Raskey, and A. Pippin, “Robust static allocation of re-
sources for independent tasks under makespan and dollar cost constraints,” Journal
of Parallel and Distributed Computing, vol. 67, no. 4, 2007, pp. 400 – 416.

[112] N. Sukhija, I. Banicescu, S. Srivastava, and F. Ciorba, “Evaluating the Flexibility of
Dynamic Loop Scheduling on Heterogeneous Systems in the Presence of Fluctuat-
ing Load Using SimGrid,” Parallel and Distributed Processing Symposium Work-
shops PhD Forum (IPDPSW-PDSEC, On CD-ROM), In Proceedings of The 2013
IEEE/ACM 27th International, May 2013, pp. 1429–1438.

[113] T. H. Tzen and L. M. Ni, “Trapezoid Self-Scheduling: A Practical Scheduling
Scheme for Parallel Compilers,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 1,
1993, pp. 87–98.

[114] V. L. Wallace and R. S. Rosenberg, “Markovian models and numerical analysis
of computer system behavior,” Proceedings of the April 26-28, 1966, Spring joint
computer conference. ACM, 1966, pp. 141–148.

[115] C. J. C. H. Watkins and P. Dyan, “Q-Learning,” Machine Learning, vol. 8, no. 3–4,
May 1992, pp. 279–292.

[116] F. Xia and Y. Sun, “Neural Network Based Feedback Scheduling of Multitasking
Control Systems,” Proc. KES2005, Lecture Notes in Computer Science,. 2005, pp.
237–246, Springer-Verlag.

147

APPENDIX A

ADDITIONAL WORK RELATED TO DISSERTATION RESEARCH

148

The work presented in this chapter is related to the study of a power aware execution

of scientific applications on parallel and distributed computing systems. The study was

conducted as a part of the project related to the NSF Center for Cloud and Autonomic

Computing at Mississippi State University. My contribution to the project was related to

providing dynamic load balancing features via a number of dynamic scheduling methods

that were used to schedule the parallel and independent tasks within the scientific applica-

tions on the allocated machines with power tuning capabilities. An article was delivered as

a part of the study and was published in a renowned IEEE conference proceeding [87].

A.1 A Utility Based Power-Aware Autonomic Approach for Running Scientific Ap-
plications

The primary objective for designing high performance computing (HPC) systems is

performance - to solve scientific problems in minimum time with efficient or maximum

utilization of the allocated computing resources. The efficient utilization of the allocated

computing resources is achieved by following two objectives: (i) decreasing the compu-

tational and interprocess communication overheads, and (ii) ensuring that computing re-

sources are effectively utilized in doing useful work at their peak performance all the time.

With the recent advancements in the HPC system size and the processing power of comput-

ing nodes led to a significant increase in the power consumption. A study commissioned by

the U.S. Environmental Protection Agency estimates that the worldwide power consumed

by servers increased by a factor of two between 2000 and 2006 worldwide. In addition

to this, an increase in power consumption results in increased temperature, which in turn

translates into increased heat dissipation issues, resulting in increased system failure rate

149

http:capabilities.An

that leads to downtime penalty for the service providers in extremely high values. Accord-

ing to Arrhenius’ equation when applied to HPC hardware, each 10 degree increase in sys-

tem’s temperature doubles the system failure rate [31]. These HPC systems with enormous

heat dissipation need aggressive cooling systems. These additional deployment of aggres-

sive cooling systems contribute even more to the power consumption of the infrastructure

resulting into an increased operating cost. Another solution to the heat dissipation problem

is to increase the space between different computing nodes. However, this approach re-

sults in high infrastructure cost due to larger space used for fewer computing nodes. Both

of these solutions ignore the performance vs. operating cost and performance vs. space

cost metrics of the system, which have become significant to the service providers in the

current scenario.

Solutions to the increased concerns of outrageous amounts of power consumption in

HPC environments have led to the development of Green Supercomputing or Energy Ef-

ficient Computing technologies. Green Supercomputing provides two major approaches

for minimizing power consumption in HPC environments while maintaining the desired

performance. These approaches are: Low-Power and Power-Aware.

In Low-Power approach, the HPC system consists of many low power nodes which

can be configured for a supercomputing environment. Green Destiny was the first low

power supercomputer developed at Los Alamos National Laboratory [43]. It consists of

240 computing nodes working at the rate of 240 gigaflops on a linux-based cluster. It fits

into a six square feet surface, consumes only 3.2 kW of power, and extra cooling or space

is not required. The design of this supercomputer led to a breakthrough in the technology

150

of HPC environments, and shifted the focus towards efficiency, availability, and reliability

of the computing systems in addition to speed.

In a Power-Aware approach, the HPC system is considered to be aware of the power

requirements of the system executing scientific applications. In these systems, the power

can be dynamically adjusted based on the demands of the application, while maintaining

the performance at desired levels [48, 47, 63]. In most HPC systems, the power aware

functionality is achieved through Dynamic Voltage and Frequency Scaling (DVFS). The

power consumption by a processor directly depends upon the frequency and the square

of the CPU supplied voltage. The frequency or the voltage across the processor can be

decreased when CPU is not doing any or much useful work. This approach translates into

considerable power savings.

In general, scientific applications are large, highly irregular, computational intensive,

and data parallel. Often, one of the major difficulties in achieving performance objectives

when running scientific applications in heterogeneous environments is their stochastic be-

havior [14]. This stochastic behavior results in severe load imbalance, which degrades the

performance of the overall HPC system to a great extent, and becomes a potential threat for

missing a pre-specified execution deadline. Moreover, the variability of the resource con-

sumption behavior of other applications running on the same computing node (on which

a parallel application is running) represents an additional overhead for meeting the dead-

line in HPC system. Due to these issues, a runtime monitoring and corrective strategy is

required that can reallocate or reconfigure the computational resources.

151

Parallel loops are the dominant source of parallelism in scientific computing applica-

tions. For minimizing the computation time of an application, the loop iterations need to

be executed efficiently over the network of computing nodes. In recent years, various loop

scheduling techniques based on probabilistic analyses have been developed and applied to

effectively allocate these iterations to different computing nodes and improve performance

of applications via load balancing. Details regarding these techniques can be found in the

related literature on loop scheduling, and are also summarized in [14]. However, these

loop scheduling algorithms do not consider power-awareness, reallocation of computing

resources, and application deadline.

In this paper, a control theoretic, model-based, and power-aware approach for parallel

loop execution is presented, where system performance and power requirements can be ad-

justed dynamically, while maintaining the predefined quality of service (QoS) goals in the

presence of perturbations such as variations in the availability of computational resources.

In this approach, the target turnaround time for the application is identified or supplied and

guides the appropriate adjustment of the voltage and frequency. The adjustment is made

at the computational resource to ensure that the application finishes execution by the pre-

specified deadline (within an acceptable or chosen tolerance value) is performed with the

help of a control theoretic approach. This approach also ensures the load-balanced execu-

tion of the application feature in the computing environment because all of the processing

nodes finish execution simultaneously within an acceptable tolerance value. The general

framework of this work considers multiple applications (each one being deadline driven)

executing over a set of computational resources, where each application has its own set

152

of dedicated resources. This approach is autonomic, performance directed, dynamically

controlled, and independent of the execution of the execution of application.

The paper is organized as follows. The background knowledge and related works are

presented in Section A.2, while the proposed approach is described in Section A.3. The

simulation setup and results are discussed in Section A.4, while benefits of the approach

are highlighted in Section A.5. Finally, conclusions and future work are presented in Sec-

tion A.6.

A.2 Background

In this section past and ongoing research efforts, such as: approaches based on power-

aware, loop scheduling, and control theory for HPC systems are discussed.

A.2.1 Power-Aware Approaches with DVFS

Power-Aware computing has recently gained attention of the research communities

in HPC systems for the purpose of lowering the power consumption and for increasing

the system availability and reliability. The proposed power-aware approaches attempt to

model the power consumption pattern of the scientific application, or that of the entire HPC

system, based on the application and/or system performance. It is always recommended to

minimize the power consumption of the HPC system with minimal or no impact on system

performance.

An effort to minimize the power consumption of a HPC system through identifying the

different execution phases (memory access, I/O access, and system idle) and their perfor-

mance requirements while executing scientific applications is highlighted in [48]. In this

153

approach, a minimum frequency for each execution phase is determined and applied to the

system for achieving the desired system performance. Another approach [47], presents a

speedup model to minimize the power consumption while maintaining the similar applica-

tion performance through identifying the relationship between parallel overhead and power

requirement of an application via their impact on execution time. Through this model, the

parallel overhead and the power-aware performance can be predicted over several system

configurations. The approach shown in [62] describes a DVFS algorithm that detects the

level of CPU-Boundness of the scientific application at runtime via dynamic regression and

adjusts the CPU frequency accordingly. Another approach of utilizing the multiple power-

performance state is presented in [46], and shows that a power scalable system can save

significant amount of energy with negligible time penalty while maintaining the system

QoS parameters.

A.2.2 Loop Scheduling

In the past years, extensive work has been performed in academia and industry to

improve the performance of scientific applications through achieving load balancing via

scheduling of parallel loops present in the applications. There are two primary methods of

loop scheduling: static loop scheduling and dynamic loop scheduling (DLS).

In case of static loop scheduling, parallel loops are assigned to multiple processing

elements (computing nodes) in blocks of fix sizes. The blocks contain iteration of variable

execution times, thus causing load imbalance among processors.

154

The approach of dynamic loop scheduling assigns the parallel loop iterations at run-

time one by one in a group of iterations or chunks. Each processing element keeps exe-

cuting the iterates until all of them are finished. The simplest of these schemes is Self-

Scheduling [105] where each processing element executes one iteration of the loop at a

time until it finishes all the iterations. This scheme achieves perfect load balancing among

the processing elements at the cost of high synchronization overhead. Other approaches

presented in [79, 113, 67, 17] consider the profile of the integrations, availability of pro-

cessing elements, chunk size, or locality of the data elements while assigning the iterations

to the processors at runtime.

In the past, the loop scheduling methods addressed load imbalance and did not take into

account the fact that the application performance may vary both due to algorithmic char-

acteristic of the application and system related issues (interference by other applications

running by the operating system). However, recent techniques are based on probabilistic

analysis and take into account these factors when assigning the iterations to processors at

runtime [79, 113, 67, 17].

There are also several adaptive approaches offering better performances described in

[65, 18]. These approaches consider processor speed and performance while distributing

the jobs resulting into better results. In [65], the ratio of job distribution is determined

based on the relative processor speed. However, it does not take into account the fact that

the processor speed may vary due to algorithmic characteristic of the application or due

to system related issues (interference by the other applications running on the operating

system). A similar kind of approach is described in [18], where the distribution of loop

155

iterations depends upon the processor performance at runtime. Each processor is assigned

a weight based on its performance at the last sample period and receives a chunk of ap-

propriate size, such that all processors finish at the same time with high probability. These

weights are dynamically computed every time when a processor is allocated a chunk of

loop iterations.

A.2.3 DVFS Based Loop Scheduling

DVFS based loop scheduling techniques take advantage of multiple power modes of

the processing elements to control the load imbalance issue during the execution and to

save the power consumption of the executing system by lowering down the speed or shut-

ting down the idle processing element. These approaches utilize the notion of DVFS in the

ways described below:

In Shut Down Based Techniques, fixed chunks of loop iterations are assigned to each

processor within a group of processors at the beginning, and they start executing their

assignment. As soon as a processor finishes the execution of its assigned iterations, the

system assigns to it the minimum frequency (standby). This scheme does not ensure load

balancing (simultaneous completion of the execution of iterations by processors). How-

ever, it offers minimal power consumption by forcing idle processors in the low power

mode.

In the DVFS with Static Scheduling scheme, fixed size chunks of loop iterations are

assigned to each processor within a group of the processors before they start executing their

156

assignments. Each processor is assigned the optimal frequency of system operation with

respect to the execution time taken by the slowest processor (at the beginning) and then

proceeds with the execution of its fixed size assigned chunks [38]. This approach needs

prior information regarding the execution time of loop iterations at different processors to

select the slowest processor.

In case of DVFS with dynamic scheduling, to minimize the power consumption, the

chunk of loop iterations can be assigned to the group of processors at runtime and the pro-

cessor that finishes before the slowest processor will be kept at minimum frequency. This

approach is an extension of shut down based techniques with dynamic loop scheduling.

A.2.4 Elements of Control Theory

Control theory concepts offer a powerful ground to investigate various resource man-

agement, uncertain changes, and system disturbance issues. Recently, control theoretic

approaches have successfully been applied to selected resource management problems in-

cluding task scheduling [29], bandwidth allocation, QoS adaptation in web servers [2, 88],

multi-tier websites [84, 89], load balancing in e-mail and file servers [84], and processor

power management [80]. Control theory provides a taxonomy to design an automated,

self-managed and effective resource management or partition scheme by continuous mon-

itoring on the system states, changes in the environmental input, and system response to

these changes. This scheme ensures that the system is always operating in the region of

safe operational states, while maintaining the QoS demands of the service provider.

157

Figure A.1: Structure of a Control System.

A typical control system consists of the components shown in Figure A.1. The Sys-

tem Set Point is the desired state of the system considering in consideration that a system

tries to achieve during its operation. The Control Error indicates the difference between

the desired system set point and the measured output during system operation. The Con-

trol Inputs are the set of system parameters which are applied dynamically to the system

dynamically for changing the performance level. The Controller Module monitors the mea-

sured output and provides the optimal combination of different control inputs to achieve

the desired set point. The Estimator Module estimates the unknown parameters for the sys-

tem based upon the previous history using statistical methods. The Disturbance input can

be considered as the environment input that affects the system performance. The Target

system is the system in consideration, while the System Model is the mathematical model

158

of the system, which defines the relationship between its input and output variables. The

Learning Module collects the output through the monitor and extracts information based

on statistical methods. Typically, the System State defines the relationship between the

control or the input variables, and the performance parameters of the system.

A.3 Proposed Approach

A generic control framework is designed in [1, 75] for the performance management

problem in computing systems. For each time interval, the control function tries to opti-

mize the multi-dimensional QoS objective with respect to the cost incurred while using the

computational resources. In this framework, control actions are taken based on continu-

ous observation of the system states and environmental input variation are predicted by a

mathematical system model for achieving predefined QoS objectives, in terms of execution

time and minimum power consumption.

Figure A.2: Online Controller Architecture.

159

Prior work on scheduling large numbers of loop iterations (N) in a multiprocessor

environment with P processors through a static scheduling approach is presented in [38].

In this approach, equal amounts to loop iterations (N) are assigned to each of the processors
P

at the beginning of execution. These processors are assigned frequencies(fi, where i ∈

(1...P)) in terms of their relative speed of execution, such that these processors will finish

the execution at the same time with minimum time and minimum load imbalance [38].

However, this approach ignores the possibility of variation in the computational resource

(i.e. CPU cycles) availability for scheduling the loop iterations. This variation in the

availability of computational resources is caused by the use of the same resources by other

applications (i.e. I/O or OS). In extreme cases, the perturbation in the available CPU at

different processing nodes may result in a severe load imbalance among them, and in turn

result in missing the execution deadline. Thus, an effective monitoring technique should

be used to reconfigure the computational resources to achieve the predefined deadline.

A solution to the above problem employs an effective monitoring technique within the

proposed control framework that keeps track of the total number of completed iterates by

each processor after each sample time (T), and re-adjusts the assigned CPU frequencies

in a way that these processors finish within the deadline Td while consuming minimum

power. The increment in CPU frequencies ensures that the loop execution environment

receives sufficient computational power (CPU cycles) even in the presence of overhead

applications that takes some percentage of the total CPU cycles. The proposed approach

lowers the CPU frequency in case of low overhead in CPU availability at runtime after

160

Figure A.3: The proposed two-level approach

each sample time. This approach tries to optimize a multi-objective utility function that

contains conflicting parameters of execution time and power consumption.

The proposed approach (see Figure A.3) contains two levels that function indepen-

dently. The top level assigns the incoming tasks (loop iterations) with deadlines in optimal

numbers (equal in case of static scheduling) to the group of processors at the bottom-

level. The bottom-level ensures that the best response time of each processor is achieved

with minimum power consumption by monitoring the performance of individual proces-

sors even in the presence of perturbations in CPU availability. This level optimizes the loop

execution, as well as the HPC system performance, through balancing the need between

using the minimum power consumption and a chosen average response time. The bottom

level consists of two layers: an Application Layer and a Control Layer. The application

layer contains several (usually in multiples of 4) independent processing elements (pro-

161

cessors), which in this case execute the assigned chunk of loop iterations according to the

CPU availability. The control layer contains the local controllers, which assign the control

input (frequency) to the processing elements of the application layer. The control layer

receives performance specification for the scientific applications in terms of recommended

deadlines from the top-level, and attempts to achieve this objective with minimum power

consumption. Each of the processors in the group of processors interacts with its local

controller for exchanging the performance data and the optimal value of CPU frequency.

The proposed control framework consists of following key components. A System

Model component describes the dynamics of the active state processing element. System

model will be developed through extensive regression over the system with different possi-

ble values of the control inputs as well as environmental inputs. The most simple equation

of the system dynamics can be described as:

x(t + 1) = φ(x(t), u(t), ω(t)) (A.1)

where x(t) is the system state at time t, the set of user controlled system inputs is u(t)

(CPU frequency at time t), and ω(t) is the environment input at time t (the percentage of

the CPU available to the loop execution environment). The number of loop iterations fin-

ished at time t are shown as l(t) and the number of loop iterations remaining at time t are

shown as L(t). Here x(t) ⊂ Rn and u(t) ⊂ Rm, where Rn and Rm represent the set of

system states and control input respectively.

162

∗ α(t+1)l(t + 1) = ω(t+1) ∗ T (A.2)
100 Ŵf

α(t) is the scaling factor defined as u(t)/umax, where u(t) ∈ U is the frequency at

time t (U is the finite set of all possible frequencies that the system can take), umax is the

maximum supported frequency of the processor.

Ŵf is predicted average service time (work factor in units of time) required to execute

a single loop iteration at max frequency umax.

T is the sampling time of the system.

System state x(t) at time t can be defined as the set of loop iterations executed at current

time l(t) and the remaining number of loop iterations L(t)

x(t) = [l(t), L(t)]

E(t) is the power consumed by the processor at current frequency u(t).

Theoretically, the power consumed by a processor is proportional to the applied fre-

quency and square of the supplied voltage across it, while the experiment shows that this

relationship is linear [39]. However, we can only monitor the overall power consumed

inside a complete system through wattmeter, which accommodate the power consumed by

all the devices present in the system (e.g. CPU, Memory, Hard Disk, CD-Rom, CPU cool-

ing Fan etc.) Therefore, the measured power consumption shows a non-linear relationship

with the CPU frequency, and utilization. As a result, a look-up table with near neighbor

interpolation was found to be the best fit for aggregating the power consumption model of

the physical machine. A power consumption model is generated by using multiple CPU

163

frequencies, CPU utilization values, and corresponding power consumption values similar

to the ones described earlier. For the loop execution systems in the proposed approach,

the model utilize the maximum available CPU that results into 100% CPU utilization at

all times. Therefore, the power calculation model is only dependent upon the frequency in

this case because CPU utilization is constant to 100%.

As a limitation of the current online framework, the estimation of the environmental

inputs (available CPU to the loop execution process) and corresponding outputs of the sys-

tem are crucial for the accuracy of the model. An autoregressive moving average model is

used as estimator of the environmental inputs as per Equation A.4 and A.5. Actually, the

forecasting method calculates the available CPU for the loop execution environment indi-

rectly, by calculating the CPU utilized by other applications executing on the processing

node. If other applications utilize CPU percentage equal to σ(t) at time t, then the available

CPU to loop execution will be 100 � σ(t), which will be considered as ω(t).

ω(t) = 100 � σ(t), (A.3)

σ(t + 1) = β ∗ σ(t) + (1 � β) ∗ σavg, (A.4)

where β is the weight on the available CPU utilization in previous sampling time. A

high value of β pushes the estimate towards current CPU utilization by other applications.

A low value of β shows biasing towards average CPU utilization in past history window

by the other applications.
164

Instead of using static β, an adaptive estimator can be used for better estimation.

δ(t) = γ ∗ δ + (1 � γ) ∗ |σ(t � 1) � σ(t)| , (A.5)

where δ(t) denotes the error between observed and estimated available CPU at time t, δ

denotes the mean error over a certain history period and γ is determined by the experiments.

β(t) = 1 � δ(t)/δmax, (A.6)

where δmax denotes the maximum error observed over a certain history period.

During any time interval t, the controller on processor P should be able to calculate the

optimal value of the frequency f for the time interval from t to (t + 1), such that the cost

function J(t+1) can be minimized. The desired cost function J(t+1) is the conjunction of

drift from the desired set point (xs) and power consumption E(t+1) with different relative

weights to them. Here, (xs) indicates the expected number of loop iterations executed by

the processor for time interval a t to finish the execution of all of the assigned iterates (N)
P

before the deadline Td. The controller keeps updating the xs based upon the total number

of remaining loop iterations to be executed by the processor.

xs = [l∗, L∗], where l∗ is the optimal number of loop iterations desired for execution

in the given time interval t, and L∗ is the optimal number of loop iterations remaining for

execution at time t, in order to finish the execution by the deadline Td

x(t) = [l(t), L(t)] is system state at current time

165

J(x(t + 1), u(t + 1)) = Q ∗ (x(t + 1) � xs)2 + R ∗ E(u(t + 1))2 , (A.7)

whereQ andR are user specified relative weights for the drift from the optimal number

of executed loop iterations xs, and power consumption, respectively.

The optimization problem from the controller can be described as minimizing the total

cost of operating the system J, in a look-ahead prediction horizon using t = 1,2, 3,...H

steps.

Finally, the chosen control input is:

Pt=t0+H u(t0) = arg minu(t)∈U (J(x(t), u(t))) (A.8)t=t0+1

After calculating the control input u(t0), it will be assigned to the CPU for the next time

interval.

A.4 Simulations and Analysis

A simulation of the proposed approach is performed in a MATLAB R2010 simulation

environment on a 3.0 GHz machine with 3 GB of RAM. We have used four CPUs to run

the parallel loop execution program, and the available CPU frequencies are (1.0, 1.2, 1.4,

1.7, 2.0) in GHz. The sample time (T) for observation during the simulation is consid-

ered to be equal to 30 seconds, while the work factor (Wf) of the individual loop iterate

is considered be a constant, 2X10�4 seconds. The simulations are performed with and

without the perturbations due to other applications running on the same processing nodes.

166

The synthetic graphs indicating the CPU utilization by the overhead applications on the

four computing nodes are generated with the help of a random function in MATLAB and

plotted in Figure A.5 (sub-figure 4 - tagged “ OtherappUtilization Statistics”). In addition,

the look ahead horizon (H) for the current simulation is kept equal to a value of “2” to keep

the computation overhead low. The total number of loop iterations to be executed on four

processors are equal to 108, and the deadline for the execution is varied between 200 to

800 samples (1 sample = T seconds) depending upon the experiment settings as described

in the following subsections.

A series of experiments are performed to address the deadline violation issues in case

of static scheduling of loop iterations over a group of four processors with perturbations re-

lated to the CPU availability in the system. With static scheduling, each processor receives

an equal amount of loop iterations and proceeds executing until it finishes its entire as-

signment. Experiments with this proposed framework are performed with various types of

perturbations at different processors, and the results demonstrate whether the QoS objec-

tives (deadline and power consumption) have or not been achieved. Various experiments,

their settings, and their observations are described as follows.

For simulation without perturbations, 108 loop iterations are executed by a group of

four processors before a given deadline (500 samples of 30 seconds each = 15000 seconds).

No other application is utilizing the CPU on the processing nodes, which means that the

CPU is fully available (dedicated) to the loop execution environment. All of the CPUs

are assigned their average frequency (1.4 GHz.) from the frequency range supported by

the system. The results of this experiment are shown in Figure A.4 under the tag “No

167

http:Statistics�).In

Disturbance”. The results from only one processor are plotted, because all the processors

have similar settings, therefore producing the same results. The results also indicate that

the execution of loop iterations gets completed before the deadline of 500 samples, and

that load balancing is achieved.

For simulation with perturbations, this experiment is performed in similar settings as

the previous one, with the addition of CPU perturbations at each processor due to another

local OS application running at each node. Plots of perturbations at four processors are

shown in Figure A.5 (sub-figure 4 - tagged “OtherappUtilization Statistics”), while results

of the experiments are shown in Figure A.4 under the tag “With Disturbance”. The primary

observation in this case is that the presence of perturbations in computational resources

(CPU) results in failures to achieve the deadline (500 samples), compared to the case of

no disturbance. In addition, severe load imbalance issues can be observed, as all the four

processors finish their execution at different times. To address these issues, a monitoring

and reconfiguring approach is needed that can reallocate the computational resources when

required to meet the deadline.

For simulation with perturbations and controller, this experiment is performed in simi-

lar settings as the previous ones, in the presence of perturbations in CPU resource availabil-

ity to the application and the proposed framework. In this experiment, once the proposed

framework is deployed, it monitors the progress of loop execution on the CPUs, and re-

assigns the optimal frequency that leads the processors to achieve the deadline of executing

loop iterations while keeping the power consumption low. The results of this experiment

are shown in Figure A.5. According to the results, it is clear that after the deployment using

168

Figure A.4: Experiments performed with and without perturbation in CPU availability with dead-
line = 500 samples.

the proposed framework, even with the same amount of perturbations as in the previous

experiment, the deadlines can easily be met by re-assigning the computational resources

through changing the CPU frequency. Moreover, the results indicate considerable power

savings because the CPU is not always running at its peak frequency, compared to the

scenario in which the CPU is left running at its peak frequency while ignoring the pertur-

bations inside the system.

For simulation with various priorities to deadline and power consumption, this ex-

periment is performed to show the capability of the proposed approach in giving relative

priorities to the deadline (800 samples) achievement and power consumption as described

in section A.3. Three sets of experiments (deadline:power consumption - 1:1, 2:1, 4:1)

are performed to show the variation in the results due to the use of relative priorities (see

Figure A.6). In the case of 1:1 priority, the controller selects the optimal frequency too

169

Figure A.5: Experiments performed with the proposed approach and perturbation in CPU avail-
ability with deadline = 500 samples.

170

conservatively (by keeping it at a minimum supported frequency value of 1.0 GHz), due

to the high power consumption at higher frequencies, which in turn results in missing of

the execution deadline. Even after changing the priority to 2:1, the controller continues

to still conservatively select the optimal frequency, and tries to assign the higher frequen-

cies at the end of the experiment, which in turn results in missing the deadline by a slight

margin compared to the case when the relative priority used was 1:1. Finally, when the

ratio is changed to 4:1, the controller starts giving priority to the deadline and changes the

frequency often with respect to the perturbations in the system, which in turn results in

meeting the execution deadline with efficient use of power.

In other experiments, additional simulations with various deadline values and various

degree of perturbations in the system were performed. However, the results are not pre-

sented herein due to space constraints. These simulation results indicate that the proposed

approach accommodate harder (400 samples) or unrealistic (200 samples) deadlines. In

both of these cases, either the proposed approach achieves the deadline by assigning higher

CPU frequencies (in case of harder deadlines), or assigns highest frequency in the case of

unrealistic deadlines (200 samples) until the CPU finishes the execution of loop iterations.

A.5 Benefits of the Proposed Approach

The proposed approach is using a state-of-the-art methodology for performance opti-

mization: a model-based control theoretic approach. This approach is transparent to the

user and to the application. The controller and application are running as independent

entities. The controller is used to tune the performance of the application while ensuring

171

Figure A.6: Experiments performed to show the impact of relative weights to deadline and power
consumption with the proposed approach and perturbation in CPU availability with
deadline = 800 samples.

172

efficient power consumption for the overall system. The controller must have the capa-

bility to dynamically obtain measurements of the performance data while the application

is running. The proposed approach is well-suited for executing scientific applications of

high complexity that are scheduled in heterogeneous environments and suffer from perfor-

mance degradation due to computational resource perturbations on the nodes. In addition,

no code profiling or modification is needed except collecting the application performance

data. The proposed framework allocates the optimal amount of computational resources

for minimum power consumption in the HPC system, while keeping the deadline of the

execution in consideration with the supplied priorities. Moreover, this approach provides

adequate load balancing among processors.

The current approach has a single limitation, that it can only be applied to the HPC

systems containing computing nodes capable of being adjusted by using DVFS techniques.

Due to this limitation, the approach cannot be applied to older HPC systems, which do not

have this capability. For HPC clusters, this approach is a trade-off between response time

and power consumption, and can be considered as one of the solutions for achieving multi-

dimensional objectives.

A.6 Conclusion and Future Work

In this paper, a model-based control theoretic and power-aware approach is presented

using loop scheduling for performance optimization of HPC systems when executing sci-

entific applications. This approach is well-suited for scientific applications of high com-

plexity with deadline requirements. The HPC systems consume minimum power while

173

maintaining the predefined QoS objective of deadline (response time) with load balancing

among the processing nodes. This approach provides options to the service providers to

select the optimal trade-off between response time and power consumption for their in-

frastructure. In the future, as an extension of this work, dynamic loop scheduling methods

can also be applied in conjunction with the proposed control framework for optimizing the

proposed approach.

174

	Evaluating the Robustness of Resource Allocations Obtained through Performance Modeling with Stochastic Process Algebra
	Recommended Citation

	tmp.1625165283.pdf.7fzXQ

